12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

240the unique A-bimodule morphism such thatm Q·A = m (Q·A,(1 Q·m A)(φ·1 A ),1 Q·m A) p Q·A,Q·A.Note that also u (Q,φ) · 1 A is an A-bimodule morphism, in factλ Q·A(1A · u (Q,φ) · 1 A)= (1Q · m A ) (φ · 1 A ) ( 1 A · u (Q,φ) · 1 A)andTherefore,(252)= (1 Q · m A ) ( u (Q,φ) · 1 A · 1 A) u (Q,φ)= ( u (Q,φ) · 1 A)mA( )ρ Q·A u(Q,φ) · 1 A · 1 A = (1Q · m A ) ( ) u (Q,φ)u (Q,φ) · 1 A · 1 A = ( )u (Q,φ) · 1 A mA .()Q · A, m (Q·A,(1Q·m A)(φ·1 A ),1 Q·m A) , u (Q·A,(1 Q·m A)(φ·1 A ),1 Q·m A)= ( Q · A, ( ) )m (Q,φ) · 1 A α, u(Q,φ) · 1 Ais an A-ring, so that the functor Mnd (F (C)) : Mnd (Mnd (C)) → Mnd (BIM (C))associates distributive laws to A-rings.Let us now c<strong>on</strong>sider Cmd (Mnd (C)) :• 0-cells: ((X, A) , (C, γ)) where (X, A) is a m<strong>on</strong>ad, C : X → X, γ : A · C →C·A together with ∆ C : C → C·C and ε C : C → 1 X satisfying coassociativityand counitality and satisfying(1 C · γ) (γ · 1 C ) ( 1 A · ∆ C) = ( ∆ C · 1 A)γ(257)1 A · ε C = ( ε C · 1 A)γ.(258)Note that, if we c<strong>on</strong>sider ( C · A, ∆ C·A , ε C·A) where∆ C·A = (γ · 1 C · 1 A ) ( 1 A · ∆ C · 1 A)(uA · 1 C · 1 A ) and ε C·A : C · A → A coassociativityand counitality properties are not satisfied. But, by applying thefunctor Cmd (F (C)) to the com<strong>on</strong>ad ( C, ∆ C , ε C) we getCmd (F (C)) (( C, ∆ C , ε C)) = ( C · A, ∆ C · 1 A , ε C · 1 A)where∆ C · 1 A ≃ ∆ C·A : C · A → C · A • A C · Aand ∆ C · 1 A and ε C · 1 A are A-bimodule morphisms, clearly satisfying coassociativityand counitality c<strong>on</strong>diti<strong>on</strong>s. Hence, ( )C · A, ∆ C · 1 A , ε C · 1 A is anA-coring.SinceMnd (C) ((X, 1 X ) , (Y, B)) = C(X,B) C (X, Y )dually we getCmd (C) ((X, 1 X ) , (Y, C)) = C(X,C) C (X, Y ) .C<strong>on</strong>sider the objects ( (X, 1 X ) , ( ))1 (X,1X ), 1 X , ((X, A) , (C, γ)) ∈ Cmd (Mnd (C))[(C, γ) : (X, A) → (X, A) , γ : A · C → C · A] and let((Q, φ) , σ) ∈ Cmd ( Mnd (C) ( (X, 1 X ) , ( )) )1 (X,1X ), 1 X , ((X, A) , (C, γ)) be a com<strong>on</strong>adfunctor, where (Q, φ) : (X, 1 X ) → (X, A) is a 1-cell in Mnd (C), i.e. φ : A · Q → Qsatisfies φ (u A · 1 Q ) = 1 Q and φ (1 A · φ) = φ (m A · 1 Q ) and σ : (Q, φ) ( )1 (X,1X ), 1 X =(Q, φ) → (C, γ) (Q, φ) = (C · Q, (1 C · φ) (γ · 1 Q )) is a 2-cell in Mnd (C), i.e.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!