12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proof. We will <strong>on</strong>ly prove the statement for the left module. Similarly can be provedthe other <strong>on</strong>e. Since λ Q is associative, we deduce thatNow, assume that (S, σ) is such thatThen we haveλ Q (m A · 1 Q ) = λ Q (1 A · λ Q ) .σ (m A · 1 Q ) = σ (1 A · λ Q ) .σ (u A · 1 Q ) λ Qu A= σ (1 A · λ Q ) (u A · 1 A · 1 Q )propσ= σ (m A · 1 Q ) (u A · 1 A · 1 Q ) Am<strong>on</strong>ad= σ.Moreover, since λ Q is epi, we c<strong>on</strong>clude that the 2-cell σ (u A · 1 Q ) is unique withrespect to the propertyσ (u A · 1 Q ) λ Q = σso that(Q, λ Q ) = Coequ C (m A · 1 Q , 1 A · λ Q ) .□Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>5. Let (X, A) , (Y, B) and (W, C) be m<strong>on</strong>ads in C and let Q : Y →X and Q ′ : W → Y be respectively a A-B-bimodule with (Q, λ Q , ρ Q ) and a B-Cbimodulein C with (Q ′ , λ Q ′, ρ Q ′). Then (Q • B Q ′ , p Q,Q ′) = Coequ C (ρ Q · 1 Q ′, 1 Q · λ Q ′)is a A-C-bimodule in C via the acti<strong>on</strong>s λ Q•B Q ′ and ρ Q• B Q ′ uniquely determined by(236) λ Q•B Q ′ (1 A · p Q,Q ′) = p Q,Q ′ (λ Q · 1 Q ′)and(237) ρ Q•B Q ′ (p Q,Q ′ · 1 C) = p Q,Q ′ (1 Q · ρ Q ′) .Proof. Let us define the bimodule structures <strong>on</strong> Q• B Q ′ . Let us c<strong>on</strong>sider the followingdiagramQ · B · Q ′ · C1 Q·1 B·ρ Q ′ρ Q·1 Q ′·1 C1 Q·λ Q ′·1 CQ · B · Q ′ ρ Q·1 Q ′1 Q·λ Q ′Q · Q ′ · C1 Q·ρ Q ′p Q,Q ′·1 C Q · Q ′ p Q,Q ′Q • B Q ′ · Cρ Q•B Q ′ Q • B Q ′Note that the left square serially commutes. In fact we have(1 Q · ρ Q ′) (ρ Q · 1 Q ′ · 1 C ) ρ Q= (ρ Q · 1 Q ′) (1 Q · 1 B · ρ Q ′)and(1 Q · ρ Q ′) (1 Q · λ Q ′ · 1 C ) Qbim= (1 Q · λ Q ′) (1 Q · 1 B · ρ Q ′) .Therefore, we getp Q,Q ′ (1 Q · ρ Q ′) (ρ Q · 1 Q ′ · 1 C ) = p Q,Q ′ (1 Q · ρ Q ′) (1 Q · λ Q ′ · 1 C )and by the universal property of the coequalizer(Q • B Q ′ · C, p Q,Q ′ · 1 C ) = Coequ C (ρ Q · 1 Q ′ · 1 C , 1 Q · λ Q ′ · 1 C ), there exists a unique2-cell ρ Q•B Q ′ : Q • B Q ′ · C → Q • B Q ′ such thatρ Q•B Q ′ (p Q,Q ′ · 1 C) = p Q,Q ′ (1 Q · ρ Q ′) .221

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!