12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

216Definiti<strong>on</strong> 9.3<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let H = ( )H, ∆ H , ε H , m H , u H be a k-bialgebra, letA = ( ) (((A, m A , u A ) , ρ H A be a right H-comodule algebra, let D = D, ∆ D , ε D) ), µ H Dbe a right H-module coalgebra and g ∈ D be a grouplike element. We definethe category of (D, A)-Hopf modules (or Doi-Koppinen Hopf modules) denoted byM D A (H) , as follows:• M ∈ Ob ( M D A (H)) is a right D-comodule via ρ D M , a right A-module via µA Msuch that for every m ∈ M we have( ) ∑(230) ρDM ◦ µ A M (m ⊗ a) = µAM (m 0 ⊗ a 0 ) ⊗ µ H D (m 1 ⊗ a 1 )where ρ D M (m) = ∑ m 0 ⊗ m 1 ∈ M ⊗ D and ρ H A (a) = ∑ a 0 ⊗ a 1 ∈ A ⊗ H, i.e.ρ D M is a morphism of right A-modules or equivalently, µA M is a morphism ofright D-comodules• f ∈ Hom M DA (H) (M, N) is both a morphism of right D-comodules and amorphism of right A-modules.Lemma 9.33. Let H = ( ) (H, ∆ H , ε H , m H , u H be a k-bialgebra, let A = (A, mA , u A ) , ρ H Abe a right H-comodule algebra, let D = (( D, ∆ D , ε D) , µ D) H be a right H-modulecoalgebra and g ∈ D be a grouplike element. Then A ∈ M D A (H) and A is a rightD-comodule algebra.Proof. We denote µ H D (d ⊗ h) = d · h. First of all we want to prove that A is a rightD-comodule. In fact we can c<strong>on</strong>siderdefined by settingρ D A : A → A ⊗ Dρ D A (a) = a 0 ⊗ g · a 1 .Let us compute, for every a ∈ A,[( ) ] (A ⊗ ∆D◦ ρ ) D A (a) = A ⊗ ∆D(a 0 ⊗ g · a 1 ) = a 0 ⊗ (g · a 1 ) (1)⊗ (g · a 1 ) (2)so thatDisHmodcoalg= a 0 ⊗ g (1) · a 1(1) ⊗ g (2) · a 1(2)A is Hcom= a 00 ⊗ g (1) · a 01 ⊗ g (2) · a 1ggrouplike= a 00 ⊗ g · a 01 ⊗ g · a 1 = ( ρ D A ⊗ D ) (a 0 ⊗ g · a 1 ) = [( ρ D A ⊗ D ) ◦ ρ D A](a)(A ⊗ ∆D ) ◦ ρ D A = ( ρ D A ⊗ D ) ◦ ρ D A.We compute, for every a ∈ A,[rA ◦ ( A ⊗ ε D) ] [◦ ρ D A (a) = rA ◦ ( A ⊗ ε D)] (a 0 ⊗ g · a 1 )(= r A a0 ⊗ ε D (ga 1 ) ) DisHmodcoalg (= r A a0 ⊗ ε D (g) ε H (a 1 ) )so that= a 0 ε D (g) ε H (a 1 ) ggrouplike= a1 k = ar A ◦ ( A ⊗ ε D) ◦ ρ D A = Id A .Note that A is a right A-module via m A . It remains to prove (230) . Recall thatρ D A (a) = ∑ a 0 ⊗ g · a 1 ∈ A ⊗ D)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!