Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

202We now have to prove that this map induces a map ζ :e ∈ E. We have to prove that(∑ ∑ [ζl i,j ⊗ h i,j] ) (∑ ∑Q b · e ⊗ g i = ζijijL⊗H(L⊗H)L +⊗ E H → L. Let[l i,j ⊗ h i,j] b Q⊗ e · g i ).Since e ∈ E, there exist x k , y k ∈ H such that e = [∑ k xk ⊗ y k] . Hence we have toEprove that(∑ ∑ [ζl i,j ⊗ h i,j] ] )bi jQ ·[∑k xk ⊗ y k ⊗ g iE(∑ ∑ [= ζl i,j ⊗ h i,j] ] )Q b ⊗[∑k xk ⊗ y k · g iand by using definition of E µb Qand µ E Qi.e.∑i∑j∑i(∑ ∑ ∑ζi j(∑ ∑ ∑= ζijk li,j S ( h i,j) x k S ( y k) g i = ∑ ijkkwe have to prove that[l i,j S ( h i,j) x k ⊗ y k] )Q b ⊗ g i[l i,j ⊗ h i,j] b Q⊗ x k S ( y k) g i )∑j∑which is true, so that we can conclude that the map ̂ζ :Ek li,j S ( h i,j) x k S ( y k) g iL⊗H(L⊗H)L +⊗ E H → L iswell-defined. Now, we want to prove that ̂ζ is bijective. The inverse of ̂ζ is given byΞ : L →L ⊗ H(L ⊗ H) L ⊗ + E Hl ↦→ [1 H ⊗ 1 H ]b Q⊗ E l.Now we compute(Ξ ◦ ̂ζ) (∑ ∑ [l i,j ⊗ h i,j] ) (∑bi jQ⊗ E g i = Ξi∑j li,j S ( h i,j) )g i∑ ∑= [1 H ⊗ 1 H ]b Q⊗ Ei j li,j S ( h i,j) g i= ∑ ∑[1 [H ⊗ 1 H ]bi j Q⊗ E l i,j ⊗ h i,j] · E gi = ∑ ∑i= ∑ ∑ [l i,j ⊗ h i,j] bi jQ⊗ E g iand ) ()(̂ζ ◦ Ξ (l) = ζ [1 H ⊗ 1 H ]b Q⊗ E l = 1 H S (1 H ) l = l.j [1 H ⊗ 1 H ]b Q[l i,j ⊗ h i,j] E ⊗ E g iLet us show that ̂ζ is an isomorphism of left L-modules. Let a ∈ L and let usconsider̂ζ(a · ∑ ∑ [l i,j ⊗ h i,j] )bi jQ⊗ E g i = ̂ζ(∑ ∑ [( ) a · li,j⊗ h i,j] )bi jQ⊗ E g i= ∑ ∑i j ali,j S ( h i,j) (∑g i = a ·i∑j li,j S ( h i,j) )g i= a · ̂ζ(∑ ∑ [l i,j ⊗ h i,j] )Q b ⊗ E g i .ij

As observed at the beginning of this section, this reproduces what happens in thedual case of the [Scha4] setting where, starting from a Hopf-Galois extension, onecan produce a new Hopf algebra such that the Hopf-Galois object turns into a Hopfbi-Galois object and Hopf algebras are Morita-Takeuchi equivalent. In our setting,coming from a coGalois coextension we get a coherd, which allows us to computethe monads and in particular a new monad together with the new bimodule functor.Following the theory developed in the previous sections, we could then calculate indetails also the equivalence between the module categories with respects to the twomonads.9.3. Galois comodules. Let B Σ A be a B-A-bimodule. Let L = − ⊗ B Σ A , R =Hom A ( B Σ A , −). Let C be an A-coring and let C = (− ⊗ A C, − ⊗ A ∆, r ◦ (− ⊗ A ε)).Assume that (Σ, ρ Σ ) is a B-C-comodule i.e. (Σ, ρ Σ ) is a C-comodule andρ Σ : Σ → Σ ⊗ A Cis a morphism of B-A-bimodules. In particular the mapλ : B → EndC (Mod-A) ((Σ, ρ Σ )) defined by setting λ (b) (x) = bxis well-defined and is a ring morphism. Moreover λ is a monomorphism. In thiscase β = − ⊗ B ρ Σ : − ⊗ B Σ A → − ⊗ B Σ A ⊗ A C is a left C-comodule functor. Theassociated functorial morphism can = ϕ = (Cɛ) ◦ (βR) : LR → C,can : Hom A ( B Σ A , −) ⊗ B Σ AβR→ HomA ( B Σ A , −) ⊗ B Σ A ⊗ A C Cɛ→ − ⊗ A Cf ⊗ B x ↦→ f ⊗ B x 0 ⊗ A x 1 ↦→ f (x 0 ) ⊗ A x 1can M : Hom A ( B Σ A , M) ⊗ B Σ A → M ⊗ A Cf ⊗ B x ↦→ f (x 0 ) ⊗ A x 1203We havecan = (Cɛ) ◦ (βR) = (ɛ ⊗ A C) ◦ Hom A ( B Σ A , −) ⊗ B ρ Σcan M = ϕ M (f ⊗ B t) = (ɛ ⊗ A C) (f ⊗ B t 0 ⊗ A t 1 ) = f (t 0 ) ⊗ A t 1 .K ϕ : Mod-B → C (Mod-A) = Comod-CM ↦→ (M ⊗ B Σ, M ⊗ B ρ Σ ) .Since Mod-B has all equalizers, K ϕ has a right adjointD ϕ (X, x) = Equ ((− ⊗ A C) ◦ ρ Σ , Hom A ( B Σ A , x))= {f ∈ Hom A ( B Σ A , X) | x ◦ f = (f ⊗ A C) ◦ ρ Σ }= HomC (Mod-A) ((Σ, ρ Σ ) , (X, x))Hence D ϕ = HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) = Comod-C → Mod-B has a leftadjoint K ϕ = (− ⊗ B Σ, − ⊗ B ρ Σ ) .Theorem 9.6 ([GT, Theorem 3.1] ). HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) →Mod-B is full and faithful if and only if

As observed at the beginning of this secti<strong>on</strong>, this reproduces what happens in thedual case of the [Scha4] setting where, starting from a Hopf-Galois extensi<strong>on</strong>, <strong>on</strong>ecan produce a new Hopf algebra such that the Hopf-Galois object turns into a Hopfbi-Galois object and Hopf algebras are Morita-Takeuchi equivalent. In our setting,coming from a coGalois coextensi<strong>on</strong> we get a coherd, which allows us to computethe m<strong>on</strong>ads and in particular a new m<strong>on</strong>ad together with the new bimodule functor.Following the theory developed in the previous secti<strong>on</strong>s, we could then calculate indetails also the equivalence between the module categories with respects to the twom<strong>on</strong>ads.9.3. Galois comodules. Let B Σ A be a B-A-bimodule. Let L = − ⊗ B Σ A , R =Hom A ( B Σ A , −). Let C be an A-coring and let C = (− ⊗ A C, − ⊗ A ∆, r ◦ (− ⊗ A ε)).Assume that (Σ, ρ Σ ) is a B-C-comodule i.e. (Σ, ρ Σ ) is a C-comodule andρ Σ : Σ → Σ ⊗ A Cis a morphism of B-A-bimodules. In particular the mapλ : B → EndC (Mod-A) ((Σ, ρ Σ )) defined by setting λ (b) (x) = bxis well-defined and is a ring morphism. Moreover λ is a m<strong>on</strong>omorphism. In thiscase β = − ⊗ B ρ Σ : − ⊗ B Σ A → − ⊗ B Σ A ⊗ A C is a left C-comodule functor. Theassociated functorial morphism can = ϕ = (Cɛ) ◦ (βR) : LR → C,can : Hom A ( B Σ A , −) ⊗ B Σ AβR→ HomA ( B Σ A , −) ⊗ B Σ A ⊗ A C Cɛ→ − ⊗ A Cf ⊗ B x ↦→ f ⊗ B x 0 ⊗ A x 1 ↦→ f (x 0 ) ⊗ A x 1can M : Hom A ( B Σ A , M) ⊗ B Σ A → M ⊗ A Cf ⊗ B x ↦→ f (x 0 ) ⊗ A x 1203We havecan = (Cɛ) ◦ (βR) = (ɛ ⊗ A C) ◦ Hom A ( B Σ A , −) ⊗ B ρ Σcan M = ϕ M (f ⊗ B t) = (ɛ ⊗ A C) (f ⊗ B t 0 ⊗ A t 1 ) = f (t 0 ) ⊗ A t 1 .K ϕ : Mod-B → C (Mod-A) = Comod-CM ↦→ (M ⊗ B Σ, M ⊗ B ρ Σ ) .Since Mod-B has all equalizers, K ϕ has a right adjointD ϕ (X, x) = Equ ((− ⊗ A C) ◦ ρ Σ , Hom A ( B Σ A , x))= {f ∈ Hom A ( B Σ A , X) | x ◦ f = (f ⊗ A C) ◦ ρ Σ }= HomC (Mod-A) ((Σ, ρ Σ ) , (X, x))Hence D ϕ = HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) = Comod-C → Mod-B has a leftadjoint K ϕ = (− ⊗ B Σ, − ⊗ B ρ Σ ) .Theorem 9.6 ([GT, Theorem 3.1] ). HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) →Mod-B is full and faithful if and <strong>on</strong>ly if

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!