12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

200This map is well-defined, in fact, let us c<strong>on</strong>sider the map θ : H ⊗ H → H ⊗ LL⊗H(L⊗H)L + defined by settingθ (x ⊗ y) = x ⊗ L [1 L ⊗ y]b Q.For every (h ⊗ g) · (t− ε H (t) ) ∈ (H ⊗ H) L + , we have (h ⊗ g) · (t− ε H (t) ) =ht (1) ⊗ gt (2) − h ⊗ gε H (t) and using that ∆ (L) ⊆ L ⊗ H, we computeht (1) ⊗ L(1L ⊗ gt (2))− h ⊗L(1L ⊗ gε H (t) )= h ⊗ L t (1) · (1L ⊗ gt (2))− h ⊗L(1L ⊗ gε H (t) )= h ⊗ L(t(1) ⊗ gt (2))− h ⊗L(1L ⊗ gε H (t) )= h ⊗ L(t(1) ⊗ gt (2) − 1 L ⊗ gε H (t) )= h ⊗ L((1L ⊗ g) · t − (1 L ⊗ g) ε H (t) )= h ⊗ L((1L ⊗ g) · (t− ε H (t) )) ∈ H ⊗ L (L ⊗ H) L +so that θ factors throughH⊗H(H⊗H)L + → H ⊗ LL⊗H(L⊗H)L +giving rise to the map ̂θ. Wecompute, using definiti<strong>on</strong> of ̂Q L = ⊗ L ̂Q and µ A b Q(̂θ ◦ ̂β) (h ⊗ L [x ⊗ h ′ ]b Q)= ̂θ ([hx ⊗ h ′ ] E) = hx ⊗ L [1 L ⊗ h ′ ]b Q= h ⊗ L x · [1 L ⊗ h ′ ]b Q= h ⊗ L [x1 L ⊗ h ′ ]b Q= h ⊗ L [x ⊗ h ′ ]b Qand (̂β ◦ ̂θ)([x ⊗ y] E) = ̂β)(x ⊗ L [1 L ⊗ y]b Q= [x ⊗ y] E.Let us show that ̂β is an isomorphism of left E-modules. Using definiti<strong>on</strong> of ̂µ E Q ,(215) i.e. ∑ ∑i j ki,j ⊗ S (h i,j ) g i ∈ H ⊗ L, definiti<strong>on</strong> of ̂m E we compute(∑ ∑ [̂βk i,j ⊗ h i,j] )·i jE gi ⊗ L [x ⊗ h ′ ]b Q= ̂β(∑i∑j ki,j S ( h i,j) )g i ⊗ L [x ⊗ h ′ ]b Q= ̂β(∑i∑j ki,j ⊗ L S ( h i,j) )g i · [x ⊗ h ′ ]b Q= ̂β(∑[ (i∑j ki,j ⊗ ) L S hi,jg i x ⊗ h ′] )Q b[∑=i∑j ki,j S ( h i,j) ]g i x ⊗ h ′ = ∑ ∑ [k i,j S ( h i,j) g i x ⊗ h ′]E i jE= ∑ ∑ [k i,j ⊗ h i,j] · [g i x ⊗ h ′] = ∑ ∑ [i jE E k i,j ⊗ h i,j] · ̂β)(g i ⊗i jE L [x ⊗ h ′ ]b Q.Similarly we want to understand the other isomorphism. Given a right L-modulefunctor G we will denote simply by − ⊗ L G the functor defined byCoequ Fun(µLG LU, G L Uλ L).Let us c<strong>on</strong>sider the functorL ⊗ HLQ EE ̂QL = − ⊗ L(L ⊗ H) L ⊗ + E H : L A = Mod-L → L A = Mod-L.We want to prove that L Q EE ̂QL is functorially isomorphic to Id L A. Now, for any(X, L µ X)∈ L A we have(X, L µ X)⊗L L = Coequ Fun(µLL LU ( X, L µ X), LL Uλ L(X, L µ X))

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!