12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

denote the can<strong>on</strong>ical inclusi<strong>on</strong>. Then i is a left C-comodule map, in fact, for every∑i (h i ⊗ g i ) ( l i − ε H (l i ) ) = ∑ i h il i(1) ⊗ g i l i(2) − h i ⊗ g i ε H (l i ) ∈ (H ⊗ H) L + , since∆ H (l i ) = l i(1) ⊗ l i(2) ∈ L ⊗ H, we have∑i π ( h i(1) l i(1))⊗ hi(2) l i(2) ⊗ g i l i(3) − π ( h i(1))⊗ hi(2) ⊗ g i ε H (l i )= ∑ i π ( h i(1))⊗ hi(2) l i(1) ⊗ g i l i(2) − π ( h i(1))⊗ hi(2) ⊗ g i ε H (l i )= ∑ i π ( h i(1))⊗(hi(2) ⊗ g i) (li − ε H (l i ) ) ∈ C ⊗ (H ⊗ H) L + .Hence, for every ( X, ρ C X)∈ Comod-C, we can c<strong>on</strong>sider the mapX□ C i : X□ C (H ⊗ H) L + → X□ C (H ⊗ H) .so that, for every ( X, ρ C X)∈ Comod-C, we havewhereI X□C L =Let p : H ⊗ H →E ( X, ρ C X)=X□ C H ⊗ HI X□C z= X□ CH ⊗ HI X□C L〈 ∑i xi ⊗ h i y (1) ⊗ gy (2) − ∑ i xi ⊗ h i ⊗ gε H (y)| ∑ i xi ⊗ h i ⊗ g ⊗ y ∈ X□ C H ⊗ H ⊗ L= X□ C[(H ⊗ H) L+ ] .H⊗H(H⊗H)L +〉195be the can<strong>on</strong>ical projecti<strong>on</strong> and let us assume that i isleft C-copure i.e. for every ( X, ρ C X)∈ Comod-C, the sequence0 → X□ C (H ⊗ H) L + X□ Ci−→ X□ C (H ⊗ H) X□ Cp−→ X□ Cis exact. In this case we get that, for every ( X, ρX) C ∈ Comod-C,E ( )X, ρ C ∼= H ⊗ HX X□C(H ⊗ H) L = X□ + C (H ⊗ H) LH ⊗ H(H ⊗ H) L → 0 +where (H ⊗ H) Ldenotes the invariants with respect to the algebra L. In the sequel,given h i , k i ∈ H we will use the notati<strong>on</strong>][∑i hi ⊗ k i = ∑ i hi ⊗ k i + (H ⊗ H) L +ELet us denote E := −□ C (H ⊗ H) Land let us c<strong>on</strong>sider multiplicati<strong>on</strong> and unit ofE. Following Theorem 6.29, they are uniquely determined byi.e.wherêm E :m E ◦ (yy) = y ◦ (P χ) and y ◦ δ D = u E ◦ ε Dm E = −□ Ĉm E and u E = −□ C û EH ⊗ H(H ⊗ H) L □ H ⊗ H+ C(H ⊗ H) L −→ H ⊗ H+ (H ⊗ H) L and û + E : C −→ H ⊗ H(H ⊗ H) L +given by(∑ ∑ ∑ [̂m E k i,j ⊗ h i,j] □ [E C g i,s ⊗ l i,s] [∑E)= k i,j S ( h i,j) ]g i,s ⊗ l i,sE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!