Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

184= abd 0 ⊗ d 1 1 ⊗ d 2 1b⊗d∈C= a ⊗ b ⊗ d.Therefore, A ⊗ ϕ is an isomorphism and since A/k is faithfully flat, also ϕ is anisomorphism, i.e. Ĉ ∼ = H.Now we want to compute the comonad D. We haveθ l = ( A ⊗ A ⊗ σ B) ◦ (τ ⊗ A) : A ⊗ A → A ⊗ A ⊗ Aθ l (a ⊗ b) = a 0 ⊗ a 1 1 ⊗ a 2 1bθ r = A ⊗ A ⊗ u B : A ⊗ A → A ⊗ A ⊗ Aθ r (a ⊗ b) = a ⊗ b ⊗ 1 A .((Since (D, j) = Equ ) )Fun A ⊗ A ⊗ σB◦ (τ ⊗ A) , A ⊗ A ⊗ u B , we have{∑D = a i ⊗ b i | ∑ ( ) ai ⊗ ( a i) 1⊗ ( a i) 20 1 1 bi = ∑ }a i ⊗ b i ⊗ 1 A .By applying A ⊗ can to θ l and θ r , for every ∑ a i ⊗ b i ∈ D, we get that[ ] ( ∑ )(∑ ((A ⊗ can) ◦ θl a i ⊗ b i = (A ⊗ can)) ai ⊗ ( a i) 1⊗ ( a i) )20 1 1 bi= ∑ ( ) ai ⊗ ( a i) (1 (a ) (i 2 (a0 1 1)0 bi i⊗) 21)1bi= ∑ ( ) ai ⊗ ( a i) (1 (a ) )i 2 ( ) (0 1 1 bi (a ⊗ ) )i 2 ( )00 1 bi11(206)= ∑ ( ) ai ⊗ ( b i) ⊗ ( a i) ( ) (∑ )0 0 1 bi = 1 ρH A⊗A a i ⊗ b iand(∑ )[(A ⊗ can) ◦ θ r ] a i ⊗ b i(∑ )= (A ⊗ can) a i ⊗ b i ⊗ 1 A = ∑ a i ⊗ b i ⊗ 1 H .Since (A ⊗ can) is an isomorphism, we get D = Equ ( ρ H A⊗A , A ⊗ A ⊗ u H)= (A ⊗ A) co(H) .By Theorem 6.5, ∆ D and ε D are uniquely determined by(P τ) ◦ j = (jj) ◦ ∆ D and σ B ◦ j = u B ◦ ε D .Let ∑ a i ⊗ b i ∈ D = (A ⊗ A) co(H) . Then we have(∑ ) (∑ )(jj) ◦ ∆ D a i ⊗ b i = [(τ ⊗ A) ◦ j] a i ⊗ b iand also(uA ◦ ε D) ( ∑a i ⊗ b i )= ∑ (ai ) 0 ⊗ ( a i) 11 ⊗ ( a i) 21 ⊗ bi(∑ )= (τ ⊗ A) a i ⊗ b i(∑ )= (m A ◦ j) a i ⊗ b i = ∑ a i · b iSince ∑ a i ⊗ b i ∈ (A ⊗ A) co(H) , we have∑ ( ) ai ⊗ ( b i) ⊗ ( a i) ( )0 0 1 bi = ∑ a i ⊗ b i ⊗ 11 Hso that, by applying m A ⊗ H, since A is an H-comodule algebra, we get∑ (a i b i) ⊗ ( a i b i) = ∑ ( ) ( )0 1 ai0 bi ⊗ ( a i) ( )0 1 bi = ∑ a i · b i ⊗ 11 H

so that (θ l P ) ◦ (P i) : H ⊗ A → A ⊗ A ⊗ A∑i.e. ai · b i ∈ A co(H) = k1 A∼ = k. Note that from mA ◦ (A ⊗ u A ) ◦ (r A ) −1 = Id Awe get that A ⊗ u A is a monomorphism and hence, since A is faithfully flat overk, also u A is a monomorphism. We denote by ν = u |k1 AA: k → k1 A the obviousisomorphism. Thus from(uA ◦ ε D) ( ∑ )a i ⊗ b i = ∑ a i · b i185we getLet us computei.e.ε D (∑a i ⊗ b i )= v −1 (∑ai · b i ).θ l P = A ⊗ θ l : a ⊗ b ⊗ c ↦→ a ⊗ b 0 ⊗ b 1 1 ⊗ b 2 1cθ r P = A ⊗ θ r : a ⊗ b ⊗ c ↦→ a ⊗ b ⊗ c ⊗ 1 AA ⊗ θ l : A ⊗ A ⊗ AP i : C ⊗ A → A ⊗ A ⊗ Ah ⊗ a ↦→ h 1 ⊗ h 2 ⊗ ah ⊗ a ↦→ h 1 ⊗ ( h 2) ⊗ ( h 2) 1h 2) 20 1 1 h1 1 ⊗ h 2 1 ⊗ h 1 2 ⊗ h 2 2a(θ r P ) ◦ (P i) : H ⊗ A → A ⊗ A ⊗ Ah ⊗ a ↦→ h 1 ⊗ h 2 ⊗ a ⊗ 1 A .Recall that H ⊆ C ⊆ A ⊗ A. Such Q = (C ⊗ A) ∩ [A ⊗ D] ∼[= ” (H ⊗ A) ∩A ⊗ (A ⊗ A) co(H)] ”. Note that, assuming that A preserves equalizers, forevery h ⊗ a ∈ H ⊗ A, i.e. h 1 ⊗ h 2 ⊗ a ∈ C ⊗ A, h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) ifand only if h 1 ⊗ h 2 ⊗ a ∈ Equ ( A ⊗ ρ H A⊗A , A ⊗ A ⊗ A ⊗ u H)whereEqu ( )A ⊗ ρ H A⊗A, A ⊗ A ⊗ A ⊗ u H= Equ ( (A ⊗ A ⊗ A ⊗ m H ) ◦ (A ⊗ A ⊗ f ⊗ H) ◦ ( ) )A ⊗ ρ H A ⊗ ρ H A , A ⊗ A ⊗ A ⊗ uH= {a ⊗ b ⊗ c | a ⊗ b 0 ⊗ c 0 ⊗ b 1 c 1 = a ⊗ b ⊗ c ⊗ 1 H }so that h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) = Equ ( A ⊗ ρ H A⊗A , A ⊗ A ⊗ A ⊗ u H)if andonly ifh 1 ⊗ ( h 2) 0 ⊗ a 0 ⊗ ( h 2) 1 a 1 = h 1 ⊗ h 2 ⊗ a ⊗ 1 H .Let us prove that Q = (H ⊗ A) co(H) . Now,(H ⊗ A) co(H) = {h ⊗ a | h 1 ⊗ a 0 ⊗ h 2 a 1 = h ⊗ a ⊗ 1 H }where h ∈ H, h ϕ↦→ h 1 ⊗ h 2 ∈ C.1) Let h ⊗ a ∈ (H ⊗ A) co(H) and let us prove that h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) .Since h ⊗ a ∈ (H ⊗ A) co(H) , we computeh 1 ⊗ ( h 2) 0 ⊗ a 0 ⊗ ( h 2) 1 a 1(207)= (h 1 ) 1 ⊗ (h 1 ) 2 ⊗ a 0 ⊗ h 2 a 1 = h 1 ⊗ h 2 ⊗ a ⊗ 1 H

184= abd 0 ⊗ d 1 1 ⊗ d 2 1b⊗d∈C= a ⊗ b ⊗ d.Therefore, A ⊗ ϕ is an isomorphism and since A/k is faithfully flat, also ϕ is anisomorphism, i.e. Ĉ ∼ = H.Now we want to compute the com<strong>on</strong>ad D. We haveθ l = ( A ⊗ A ⊗ σ B) ◦ (τ ⊗ A) : A ⊗ A → A ⊗ A ⊗ Aθ l (a ⊗ b) = a 0 ⊗ a 1 1 ⊗ a 2 1bθ r = A ⊗ A ⊗ u B : A ⊗ A → A ⊗ A ⊗ Aθ r (a ⊗ b) = a ⊗ b ⊗ 1 A .((Since (D, j) = Equ ) )Fun A ⊗ A ⊗ σB◦ (τ ⊗ A) , A ⊗ A ⊗ u B , we have{∑D = a i ⊗ b i | ∑ ( ) ai ⊗ ( a i) 1⊗ ( a i) 20 1 1 bi = ∑ }a i ⊗ b i ⊗ 1 A .By applying A ⊗ can to θ l and θ r , for every ∑ a i ⊗ b i ∈ D, we get that[ ] ( ∑ )(∑ ((A ⊗ can) ◦ θl a i ⊗ b i = (A ⊗ can)) ai ⊗ ( a i) 1⊗ ( a i) )20 1 1 bi= ∑ ( ) ai ⊗ ( a i) (1 (a ) (i 2 (a0 1 1)0 bi i⊗) 21)1bi= ∑ ( ) ai ⊗ ( a i) (1 (a ) )i 2 ( ) (0 1 1 bi (a ⊗ ) )i 2 ( )00 1 bi11(206)= ∑ ( ) ai ⊗ ( b i) ⊗ ( a i) ( ) (∑ )0 0 1 bi = 1 ρH A⊗A a i ⊗ b iand(∑ )[(A ⊗ can) ◦ θ r ] a i ⊗ b i(∑ )= (A ⊗ can) a i ⊗ b i ⊗ 1 A = ∑ a i ⊗ b i ⊗ 1 H .Since (A ⊗ can) is an isomorphism, we get D = Equ ( ρ H A⊗A , A ⊗ A ⊗ u H)= (A ⊗ A) co(H) .By Theorem 6.5, ∆ D and ε D are uniquely determined by(P τ) ◦ j = (jj) ◦ ∆ D and σ B ◦ j = u B ◦ ε D .Let ∑ a i ⊗ b i ∈ D = (A ⊗ A) co(H) . Then we have(∑ ) (∑ )(jj) ◦ ∆ D a i ⊗ b i = [(τ ⊗ A) ◦ j] a i ⊗ b iand also(uA ◦ ε D) ( ∑a i ⊗ b i )= ∑ (ai ) 0 ⊗ ( a i) 11 ⊗ ( a i) 21 ⊗ bi(∑ )= (τ ⊗ A) a i ⊗ b i(∑ )= (m A ◦ j) a i ⊗ b i = ∑ a i · b iSince ∑ a i ⊗ b i ∈ (A ⊗ A) co(H) , we have∑ ( ) ai ⊗ ( b i) ⊗ ( a i) ( )0 0 1 bi = ∑ a i ⊗ b i ⊗ 11 Hso that, by applying m A ⊗ H, since A is an H-comodule algebra, we get∑ (a i b i) ⊗ ( a i b i) = ∑ ( ) ( )0 1 ai0 bi ⊗ ( a i) ( )0 1 bi = ∑ a i · b i ⊗ 11 H

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!