12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

181On the other side,(θ r P ) ◦ ( )P can −11 ◦ (P CuA ) : − ⊗ R C ⊗ R Σ ∗ T −→ − ⊗ R Σ ∗ T ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T B− ⊗ R c ⊗ R f ↦→ − ⊗ R 1 A ⊗ R c ⊗ R f ↦→ − ⊗ R c 1 ⊗ T c 2 ⊗ R f↦→ − ⊗ R c 1 ⊗ T c 2 ⊗ R f ⊗ T 1 B .MaybewhereQ = − ⊗ R XX = Ker (ϕ)ϕ : C ⊗ R Σ ∗ T → Σ R ⊗ R Σ ∗ T ⊗ T Bc ⊗ R f ↦→ c 1 ⊗ T(c2 ) 0 ⊗ R β 1 ⊗ T β 2 · f = c 1 ⊗ T c 2 ⊗ R f ⊗ T 1 BIn case all the computati<strong>on</strong>s above make sense, we could write a coherd associatedto the pretorsor. By Theorem 7.5, the coherd is defined byχ : = µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ ( QP [ can −11 ◦ (Cu A ) ] Q ) ◦ (QqQ)i.e.= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ ( QP can −11 Q ) ◦ (QP Cu A Q) ◦ (QqQ)χ : QQQ ⊆ QP CQ = − ⊗ T Σ R ⊗ R C ⊗ R Σ ∗ T ⊗ T Σ R → Q = − ⊗ T Σ R− ⊗ T x ⊗ R c ⊗ R f ⊗ T y ↦→ − ⊗ T x ⊗ R 1 A ⊗ R c ⊗ R f ⊗ T y↦→ − ⊗ T x ⊗ R c 1 ⊗ T c 2 ⊗ R f ⊗ T y ↦→ − ⊗ T x ⊗ R c 1 ⊗ T c 2 ⊗ R f (y)↦→ − ⊗ T x · c 1 ⊗ T c 2 ⊗ R f (y) ↦→ − ⊗ T x · c 1 ⊗ T c 2 f (y)↦→ − ⊗ T(x · c1 ) ( c 2 f (y) ) = − ⊗ T xc 1 ( c 2 f (y) ) = − ⊗ T xc 1 ( c 2) f (y)where for every x ∈ Σ A and h ∈ Σ ∗In particular, we have= − ⊗ T x ( 1 A ε C (c) ) f (y)x · h ∈ B = Hom A (Σ A , Σ A ) is defined by setting(x · h) (t) = xh (t) for every t ∈ Σ.x · c 1 : Σ A → Σ At ↦→ xc 1 (t) .9.<str<strong>on</strong>g>1.</str<strong>on</strong>g> H-Galois extensi<strong>on</strong>. In order to understand better the situati<strong>on</strong> of the previousexample, we decide to c<strong>on</strong>sider a very particular case, the Schauenburg setting.Let H be a Hopf algebra and let A/k be a right H-Galois extensi<strong>on</strong>. Let us recallsome useful equalities related to the translati<strong>on</strong> mapγ := can −1 (1 A ⊗ −) : H → A ⊗ A : h → can −1 (1 A ⊗ h) =: h 1 ⊗ h 2 .For every h, l ∈ H, a ∈ A, we have(206)(207)h 1 ( h 2) 0 ⊗ ( h 2) 1= 1 A ⊗ hh 1 ⊗ ( h 2) 0 ⊗ ( h 2) 1= (h 1 ) 1 ⊗ (h 1 ) 2 ⊗ h 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!