12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

174l = eC ρ L : L = − ⊗ B A −→ ˜CL = − ⊗ B Σ ⊗ A A ⊗ R H ∼ = − ⊗ B A ⊗ R CA sec<strong>on</strong>d particular case of this situati<strong>on</strong> we have the <strong>on</strong>e where R = kis a commutative ring, C = H is a Hopf algebra over k and A is a rightGalois extensi<strong>on</strong> of T = A co(H) .Now let us setA = Mod-R,B = Mod-T where T = End eC (Σ)A = − ⊗ R A : A = Mod-R −→ A = Mod-RC = − ⊗ R C : A = Mod-R −→ A = Mod-RB = − ⊗ T B : B = Mod-T −→ B = Mod-T where B = Hom A (Σ A , Σ A )Ψ = − ⊗ R ψ : AC = − ⊗ R C ⊗ R A −→ CA = − ⊗ R A ⊗ R CL = − ⊗ T Σ : Mod-T −→ Mod-A ∼ = A AW = Hom A (Σ, −) : Mod-A −→ Mod-T˜C = − ⊗ A A ⊗ R C : Mod-A −→ Mod-Al = eC ρ L : L = − ⊗ T Σ −→ ˜CL = − ⊗ T Σ ⊗ A A ⊗ R C ∼ = − ⊗ T Σ ⊗ R CWhen Σ A is f.g.p., we setA (Σ ∗ ) B= Hom A ( B Σ, A A)and we c<strong>on</strong>sider the following formal dual structure M = (A, B, P, Q, σ A , σ B ) <strong>on</strong> thecategories A and B .• A = (− ⊗ R A, − ⊗ R m A , − ⊗ R u A ) is a m<strong>on</strong>ad <strong>on</strong> A = Mod-R• B = (− ⊗ T B, − ⊗ T m B , − ⊗ T u B ) is a m<strong>on</strong>ad <strong>on</strong> B = Mod-T where T =End eC (Σ)• P = − ⊗ R Σ ∗ T : Mod-R → Mod-T• Q = A U ◦ L = − ⊗ T Σ R : Mod − T → Mod − R − ⊗ T Σ : Mod-T → Mod-R• σ A : QP → A is defined by• σ B : P Q → B is defined byσ A : QP = − ⊗ R Σ ∗ ⊗ T Σ → − ⊗ R A− ⊗ R f ⊗ T x ↦→ − ⊗ R f (x)σ B : P Q = − ⊗ T Σ R ⊗ R Σ ∗ T → B = − ⊗ T B ∼ = − ⊗ T Σ R ⊗ A Σ ∗ T− ⊗ T y ⊗ R γ ↦→ − ⊗ T y · γ () ≃ − ⊗ T yγ (x i ) ⊗ A x ∗ i= − ⊗ T y ⊗ A γ (x i ) x ∗ i = − ⊗ T y ⊗ A γ• ( P : A → B, B µ P : BP → P, µ A P : P A → P ) is a bimodule functor• ( Q : B → A, A µ Q : AQ → Q, µ B Q : QB → Q) is a bimodule functor• σ A : QP → A is A-bilinear• σ B : P Q → B is B-bilinearσ A ◦ (A µ Q P ) = m A ◦ ( Aσ A) and σ A ◦ ( )Qµ A P = mA ◦ ( σ A A )σ B ◦ (B µ P Q ) = m B ◦ ( Bσ B) and σ B ◦ ( )P µ B Q = mB ◦ ( σ B B )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!