Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

168)(155)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP b A U) ◦ (QP QP x A U))(154)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xAU A ) ◦ (QP QP xU A ))= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xx A U))(102)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U))(149)= k 2 ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (QyP A U) ◦ (QP χP A U))(109)= k 2 ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (Qm B P A U) ◦ (QyyP A U)) ( )(151)= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0P ′ A U) ◦ (QyyP A U)) ( )= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0P ′ A U) ◦ (QByP A U) ◦ (QyP QP A U)) ( )(149)= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBlP A U) ◦ (QBP x A U) ◦ (QyP QP A U)) ( ) (y= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U ◦ (QP QlP A U) ◦ (QP QP x A U)) ) ((175)= k 2 ◦(Q B µb QA◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)def A µ QB) ) (= k2 ◦(Q B Uλ BB ̂QA ◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)) (Since(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U) is epi, we get))k 2 ◦(µ B QBU B ̂QA = k 2 ◦(Q B Uλ BB ̂QA .)()From(Q BB ̂QA , p QB ̂QA = Coequ Fun µ B QBU B ̂QA , Q B Uλ BB ̂QA we deduce thatthere exists a unique functorial morphism ̂k : Q BB ̂QA → Y such that(201) ̂k ◦(p QB ̂QA)= k 2 .Moreover we have( ) ))̂k ◦ p QB ̂QA ◦(Qpb Q◦ (Ql A U) = k 2 ◦(Qpb Q◦ (Ql A U)i.e.(202) ̂k ◦(p QB ̂QA)◦Now we compute(200)= k 1 ◦ (Ql A U) (199)= k ◦ (m AA U) ◦ (xA A U)̂k ◦ Ξ ◦ (xA U) (191)= ̂k ◦) (Qpb Q◦ (Ql A U) = k ◦ (m AA U) ◦ (xA A U) .) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)(202)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP u AA U) x = k ◦ (m AA U) ◦ (Au AA U) ◦ (x A U)= k ◦ (x A U) .

Since x A U is epi we get that̂k ◦ Ξ = k.Let now ̂k ′ : Q BB ̂QA → Y be another functorial morphism such that ̂k ′ ◦ Ξ = k.Then we have( ) )̂k ◦ p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)(191)= ̂k ◦ Ξ ◦ (x A U) = k ◦ (x A U) = ̂k ′ ◦ Ξ ◦ (x A U)(191)= ̂k) )′ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)) )Since we already observed from (196) that(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)is an epimorphism, we have ̂k ′ = ̂k.( )Hence we have proved that Q BB ̂QA , Ξ =Coequ Fun (m AA U, A A U A λ) and, in view of (202) , we get that (197)holds.Theorem 8.9. Within the assumptions and notations of Theorem 6.29, we have afunctorial isomorphism A A ∼ = A Q BB ̂QA .Proof. In Proposition 8.8 we ( have proved)the existence of a functorial morphismΞ : AU A → Q BB ̂QA such that Q BB ̂QA , Ξ = Coequ Fun (m AA U, A A Uλ A ). By Proposition3.13 and Proposition 3.14 also ( A U, A Uλ A ) = Coequ Fun ((m AA U, A A Uλ A )) , inview of uniqueness of a coequalizer up to isomorphisms, there exists a functorialisomorphismρ : A U A Q BB ̂QA = Q BB ̂QA → A U such that ρ ◦ Ξ = A Uλ A .Now since( A Uλ A ) ◦ (m AA U) = ( A Uλ A ) ◦ (A A Uλ A )and since ρ ◦ Ξ = A Uλ A , by Proposition 8.8, we deduce that) )(203) ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) = ( A Uλ A ) ◦ (m AA U) ◦ (xA A U)Now we want to prove that ρ lifts to a functorial morphism A Q BB ̂QA → A A of A-leftmodule functors. First we observe that ( A U, A Uλ A ) is an A-left module functor inview of Proposition 3.13. Also(Q BB ̂QA , A µ ̂Q)QB B A is an A-left module functor(see proof of Proposition 3.30) where A µ QB = A Uλ AA Q B : AQ B → Q B . To showthat ρ is morphism of A-left module functors we have to prove( A Uλ A ) ◦ (Aρ) = ρ ◦ ( A µ QB B ̂Q A ).We have(A ρ ◦ µ ̂Q))) )QB B A ◦(Ap QB ̂QA ◦(xQ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) ◦ (QP QP x A U))(174)= ρ ◦(p (A )) )QB ̂QA ◦ µ Q BU B ̂QA ◦(xQ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U)◦ (QP QP x A U))) )(101)= ρ ◦(p QB ̂QA ◦(χ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) ◦ (QP QP x A U)169□

168)(155)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP b A U) ◦ (QP QP x A U))(154)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xAU A ) ◦ (QP QP xU A ))= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xx A U))(102)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U))(149)= k 2 ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (QyP A U) ◦ (QP χP A U))(109)= k 2 ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (Qm B P A U) ◦ (QyyP A U)) ( )(151)= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0P ′ A U) ◦ (QyyP A U)) ( )= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0P ′ A U) ◦ (QByP A U) ◦ (QyP QP A U)) ( )(149)= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBlP A U) ◦ (QBP x A U) ◦ (QyP QP A U)) ( ) (y= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U ◦ (QP QlP A U) ◦ (QP QP x A U)) ) ((175)= k 2 ◦(Q B µb QA◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)def A µ QB) ) (= k2 ◦(Q B Uλ BB ̂QA ◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)) (Since(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U) is epi, we get))k 2 ◦(µ B QBU B ̂QA = k 2 ◦(Q B Uλ BB ̂QA .)()From(Q BB ̂QA , p QB ̂QA = Coequ Fun µ B QBU B ̂QA , Q B Uλ BB ̂QA we deduce thatthere exists a unique functorial morphism ̂k : Q BB ̂QA → Y such that(201) ̂k ◦(p QB ̂QA)= k 2 .Moreover we have( ) ))̂k ◦ p QB ̂QA ◦(Qpb Q◦ (Ql A U) = k 2 ◦(Qpb Q◦ (Ql A U)i.e.(202) ̂k ◦(p QB ̂QA)◦Now we compute(200)= k 1 ◦ (Ql A U) (199)= k ◦ (m AA U) ◦ (xA A U)̂k ◦ Ξ ◦ (xA U) (191)= ̂k ◦) (Qpb Q◦ (Ql A U) = k ◦ (m AA U) ◦ (xA A U) .) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)(202)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP u AA U) x = k ◦ (m AA U) ◦ (Au AA U) ◦ (x A U)= k ◦ (x A U) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!