Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

160χ= h 1 ◦ (P xQ B ) ◦ (P QP p Q ) ◦ (P χP Q B U)x= h 1 ◦ (P Ap Q ) ◦ (P xQ B U) ◦ (P χP Q B U)(184)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U) ◦ (P χP Q B U)(187)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(184)= h 1 ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(186)= h 2 ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(188)= h 2 ◦ ( ̂Q A µ QB ) ◦ (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q ) .Since (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q ) is an epimorphism, we deduce thath 2 ◦ ( ̂Q)A µ QB ) = h 2 ◦(µ A Q bQ B .By Proposition 8.3 we have(̂QAA Q B , pb Q AQ B)= Coequ Fun(µ A b QAU A Q B , ̂Q A Uλ AA Q B)Coequ Fun(µ A b QQ B , ̂Q A µ QB)and hence we infer that there exists a functorial morphismĥ : ̂Q AA Q B → X such that)ĥ ◦(pb Q AQ B = h 2 .Hence we get)ĥ ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = h 2 ◦ (l A U A Q B ) ◦ (P Ap Q )= h 2 ◦ (lQ B ) ◦ (P Ap Q ) (186)= h 1 ◦ (P Ap Q ) (184)= h ◦ (y B U) ◦ ( P A µ Q BU )and hence equality (177) is proven. Now we have( )ĥ ◦ α ◦ (y B U) (179)= ĥ ◦ pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)(177)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P u A Q B U) A µ Q is unital= h ◦ (y B U)so we getĥ ◦ α = h.Let now ĥ′ : ̂QAA Q B → X be another functorial morphism such that ĥ′ ◦ α = h.Then we haveĥ ◦ (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)(179)= ĥ ◦ α ◦ (y BU) = h ◦ (y B U) = ĥ′ ◦ α ◦ (y B U)(179)= ĥ′ ◦ (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) .)Note that, by (178) , since the second term is an epimorphism,(pb Q AQ B ◦(l A U A Q B )◦(P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U) is epi and so (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)is also ( an epimorphism. Therefore we deduce that ĥ′ = ĥ. Hence we have provedthat ̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B ). □=

Theorem 8.6. Within the assumptions and notations of Theorem 6.29, we have afunctorial isomorphism B ̂QAA Q B∼ = B B.Proof. In Proposition 8.5 we have proved the existence of a functorial morphism α :B B U → ̂Q(AA Q B such that ̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B. ) . By Proposition3.13 and Proposition 3.14 also ( B U, ( B Uλ B )) = Coequ Fun (m BB U, B B Uλ B. ). Inview of uniqueness of a coequalizer up to isomorphisms, there exists a functorialisomorphismNow sinceβ : ̂Q AA Q B = B U B ̂QAA Q B → B U such that β ◦ α = B Uλ B .( B Uλ B ) ◦ (m BB U) = ( B Uλ B ) ◦ (B B Uλ B )and since β ◦ α = B Uλ B , by applying (177) where ”ĥ” = β and ”h” = BUλ B , wededuce that)β ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = ( B Uλ B ) ◦ (y B U) ◦ ( P A µ Q BU )equivalentlyi.e.(189) β ◦)β ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P xQ B U)= ( B Uλ B ) ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U)(101)= ( B Uλ B ) ◦ (y B U) ◦ (P χ B U)(pb Q AQ B)◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P xQ B U) = ( B Uλ B ) ◦ (y B U) ◦ (P χ B U) .Recall ( that, in view of Proposition 3.13, ( B U, B Uλ B ) is an B-left module functor.Also ̂QAA Q B , B µb QA A B)Q is an B-left module functor (see proof of Proposition3.30 and Lemma 3.17) where B µb QA= B Uλ BB ̂QA : B ̂Q A → ̂Q A .Now we want toprove that β lifts to a functorial morphism B ̂QAA Q B → B B i.e. thatβ :(̂QAA Q B , B µb QA AQ B)→ ( B U, B Uλ B )is a morphism of B-left module functors. Thus we have to proveWe calculate( B Uλ B ) ◦ (Bβ) = β ◦ ( B µb QA AQ B )(y ̂Q)◦ (P Ql) ◦ (P QP x)B µb Q◦ (Bl) ◦ (yP A) ◦ (P QP x) = B µb Q◦((149)= B µb Q◦ y ̂Q)◦ (P Qν 0) ′ ◦ (P QyP ) = y B µb Q◦ (Bν 0) ′ ◦ (yBP ) ◦ (P QyP )(151)= ν ′ 0 ◦ (m B P ) ◦ (yBP ) ◦ (P QyP ) = ν ′ 0 ◦ (m B P ) ◦ (yyP )(109)= ν ′ 0 ◦ (yP ) ◦ (P χP ) (149)= l ◦ (P x) ◦ (P χP )161

160χ= h 1 ◦ (P xQ B ) ◦ (P QP p Q ) ◦ (P χP Q B U)x= h 1 ◦ (P Ap Q ) ◦ (P xQ B U) ◦ (P χP Q B U)(184)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U) ◦ (P χP Q B U)(187)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(184)= h 1 ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(186)= h 2 ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(188)= h 2 ◦ ( ̂Q A µ QB ) ◦ (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q ) .Since (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q ) is an epimorphism, we deduce thath 2 ◦ ( ̂Q)A µ QB ) = h 2 ◦(µ A Q bQ B .By Propositi<strong>on</strong> 8.3 we have(̂QAA Q B , pb Q AQ B)= Coequ Fun(µ A b QAU A Q B , ̂Q A Uλ AA Q B)Coequ Fun(µ A b QQ B , ̂Q A µ QB)and hence we infer that there exists a functorial morphismĥ : ̂Q AA Q B → X such that)ĥ ◦(pb Q AQ B = h 2 .Hence we get)ĥ ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = h 2 ◦ (l A U A Q B ) ◦ (P Ap Q )= h 2 ◦ (lQ B ) ◦ (P Ap Q ) (186)= h 1 ◦ (P Ap Q ) (184)= h ◦ (y B U) ◦ ( P A µ Q BU )and hence equality (177) is proven. Now we have( )ĥ ◦ α ◦ (y B U) (179)= ĥ ◦ pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)(177)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P u A Q B U) A µ Q is unital= h ◦ (y B U)so we getĥ ◦ α = h.Let now ĥ′ : ̂QAA Q B → X be another functorial morphism such that ĥ′ ◦ α = h.Then we haveĥ ◦ (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)(179)= ĥ ◦ α ◦ (y BU) = h ◦ (y B U) = ĥ′ ◦ α ◦ (y B U)(179)= ĥ′ ◦ (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) .)Note that, by (178) , since the sec<strong>on</strong>d term is an epimorphism,(pb Q AQ B ◦(l A U A Q B )◦(P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U) is epi and so (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)is also ( an epimorphism. Therefore we deduce that ĥ′ = ĥ. Hence we have provedthat ̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B ). □=

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!