Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

148andy= ′m B ◦ (ν B B) ◦ (y ′ B) ◦ ( ) (QQν )B ◦ QQy′(166)= m B ◦ (m B B) ◦ ( σ B σ B B ) ◦ (P iQB) ◦ (qQB) ◦ ( QQm B)◦(QQσ B σ B)◦ ( QQP iQ ) ◦ ( QQqQ )(144)= m B ◦ (m B B) ◦ ( σ B σ B B ) ◦ (jP QB) ◦ (κ ′ 0QB) ◦ ( QQm B)◦(QQσ B σ B)◦ ( QQjP Q ) ◦ ( QQκ ′ 0Q )= m B ◦ (m B B) ◦ ( Bσ B B ) ◦ ( σ B P QB ) ◦ (jP QB) ◦ (κ ′ 0QB) ◦ ( QQm B)◦ ( QQBσ B) ◦ ( QQσ B P Q ) ◦ ( QQjP Q ) ◦ ( QQκ ′ 0Q )(67)= m B ◦ (m B B) ◦ ( Bσ B B ) ◦ (u B P QB) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQm B)◦ ( QQBσ B) ◦ ( QQu B P Q ) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )u B= m B ◦ (m B B) ◦ (u B BB) ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQm B)◦ ( QQu B B ) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )Bmonad= m B ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )ν B ◦ m B ′ ◦ (y ′ y ′ ) (163)= ν B ◦ y ′ ◦ ( Qχ ) = m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ )(144)= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (jP Q) ◦ (κ ′ 0Q) ◦ ( Qχ )(67)= m B ◦ ( Bσ B) ◦ (u B P Q) ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qχ )u B= m B ◦ (u B B) ◦ σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qχ )Bmonad= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qχ )defχ= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ B Q ◦ Q A µ Q B ) ◦ ( QAQσ B) ◦ ( Qσ A QP Q )◦ ( QQP iQ ) ◦ ( QQqQ )A µ Q= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ ) B Q ◦ QQσB◦ ( Q A µ Q P Q ) ◦ ( Qσ A QP Q )◦ ( QQP iQ ) ◦ ( QQqQ )(82)= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ ) B Q ◦ QQσB◦ ( Qµ B QP Q )◦ ( QQσ B P Q ) ◦ ( QQP iQ ) ◦ ( QQqQ )(144)= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ ) B Q ◦ QQσB◦ ( Qµ B QP Q )◦ ( QQσ B P Q ) ◦ ( QQjP Q ) ◦ ( QQκ ′ 0Q )(67)= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qµ B Q◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )Qmodulefunctor= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qµ B Q)◦(QQσB ) ◦ ( Qµ B QP Q ) ◦ ( QQu B P Q ))◦(QQσB ) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )

κ ′ 0= σ B ◦ ( ε D P Q ) ◦ ( )DP µ B Q ◦ (κ′0 QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )ε= D σ B ◦ ( (P µ Q) B ◦ ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )(81)= m B ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )so that we obtainm B ◦ (ν B ν B ) ◦ (y ′ y ′ ) = ν B ◦ m B ′ ◦ (y ′ y ′ )and since y ′ is an epimorphism we deduce thatNow, let us calculatem B ◦ (ν B ν B ) = ν B ◦ m B ′.ν B ◦ u B ′ ◦ ε D (163)= ν B ◦ y ′ ◦ δ D(166)= m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) ◦ δ D= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ δ D(144)= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (jP Q) ◦ (κ ′ 0Q) ◦ δ D(67),(148)= m B ◦ ( Bσ B) ◦ (u B P Q) ◦ (ε D P Q) ◦ (Dj) ◦ ∆ Du B ,ε D= m B ◦ (u B B) ◦ σ B ◦ j ◦ (ε D D) ◦ ∆ DBmonadDcomonad= σ B ◦ j (67)= u B ◦ ε D .Since the tame condition is assumed, BA σ B ABAσ B A(97)= A σ B ABBF (94)= B U BA σ B ABAFis also an isomorphism. By (95) we have thatAσ B A ◦ (p P A Q) = σ Bis a functorial isomorphism and thusand Lemma ong>2.ong>6, since p P A Q is a regular epimorphism by construction, we deducethat σ B is also a regular epimorphism. Thus, by Theorem 6.6, so is Bε D . Since Breflects coequalizers we get that ε D is an epimorphism and therefore we obtainHence ν B is a morphism of monads.2) Consider the following diagramν B ◦ u B ′ = u B .149DQQDhQDP Q(Qχ)◦(δ D QQ)(ε D QQ)(P µ S Q )◦(jS)◦(Dσ S) (ε D P Q)QQ y′ hQ P Q π Z ZS ′ ν Zwhere (Z, π Z ) = Coequ Fun((P µBQ)◦ (jB) ◦(DσB ) , ε D P Q ) . Note that(ε D P Q ) ◦ (DhQ) εD = (hQ) ◦ ( ε D QQ ) .

κ ′ 0= σ B ◦ ( ε D P Q ) ◦ ( )DP µ B Q ◦ (κ′0 QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )ε= D σ B ◦ ( (P µ Q) B ◦ ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )(81)= m B ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )so that we obtainm B ◦ (ν B ν B ) ◦ (y ′ y ′ ) = ν B ◦ m B ′ ◦ (y ′ y ′ )and since y ′ is an epimorphism we deduce thatNow, let us calculatem B ◦ (ν B ν B ) = ν B ◦ m B ′.ν B ◦ u B ′ ◦ ε D (163)= ν B ◦ y ′ ◦ δ D(166)= m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) ◦ δ D= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ δ D(144)= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (jP Q) ◦ (κ ′ 0Q) ◦ δ D(67),(148)= m B ◦ ( Bσ B) ◦ (u B P Q) ◦ (ε D P Q) ◦ (Dj) ◦ ∆ Du B ,ε D= m B ◦ (u B B) ◦ σ B ◦ j ◦ (ε D D) ◦ ∆ DBm<strong>on</strong>adDcom<strong>on</strong>ad= σ B ◦ j (67)= u B ◦ ε D .Since the tame c<strong>on</strong>diti<strong>on</strong> is assumed, BA σ B ABAσ B A(97)= A σ B ABBF (94)= B U BA σ B ABAFis also an isomorphism. By (95) we have thatAσ B A ◦ (p P A Q) = σ Bis a functorial isomorphism and thusand Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>6, since p P A Q is a regular epimorphism by c<strong>on</strong>structi<strong>on</strong>, we deducethat σ B is also a regular epimorphism. Thus, by Theorem 6.6, so is Bε D . Since Breflects coequalizers we get that ε D is an epimorphism and therefore we obtainHence ν B is a morphism of m<strong>on</strong>ads.2) C<strong>on</strong>sider the following diagramν B ◦ u B ′ = u B .149DQQDhQDP Q(Qχ)◦(δ D QQ)(ε D QQ)(P µ S Q )◦(jS)◦(Dσ S) (ε D P Q)QQ y′ hQ P Q π Z ZS ′ ν Zwhere (Z, π Z ) = Coequ Fun((P µBQ)◦ (jB) ◦(DσB ) , ε D P Q ) . Note that(ε D P Q ) ◦ (DhQ) εD = (hQ) ◦ ( ε D QQ ) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!