Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

134Assume now that there is another morphism t : ̂Q → X such that ξ = t ◦ ν ′ 0. Thenwe havet ◦ l ◦ (P x) (149)= t ◦ ν ′ 0 ◦ (yP ) = ξ ◦ (yP ) = ν ◦ ν ′ 0 ◦ (yP ) (149)= ν ◦ l ◦ (P x) .Since l ◦ (P x) is an epimorphism, we deduce that t = ν.(2) We want to equip ̂Q with the structure of a B-A-bimodule functor. To beginwith, let us prove a number of equalities. Let us calculateso thatχ ◦ ( Qz l) = χ ◦ (QP χ) ◦ (Qδ D P Q) (98)= χ ◦ (χP Q) ◦ (Qδ D P Q)(105)= χ ◦ ( Qε D P Q ) = χ ◦ (Qz r )(153) χ ◦ ( Qz l) = χ ◦ (Qz r ) .Let(154) b = m A ◦ (xA) .Thenso thatx ◦ (χP ) (102)= m A ◦ (xx) = m A ◦ (xA) ◦ (QP x)(155) x ◦ (χP ) = b ◦ (QP x) .We haveand hence(P χ) ◦ ( z l P Q ) = (P χ) ◦ (P χP Q) ◦ (δ D P QP Q)(98)= (P χ) ◦ (P QP χ) ◦ (δ D P QP Q)δ D= (P χ) ◦ (δ D P Q) ◦ (DP χ) = z l ◦ (DP χ)y ◦ (P χ) ◦ ( z l P Q ) = y ◦ z l ◦ (DP χ) ycoequ= y ◦ z r ◦ (DP χ) = y ◦ ( ε D P Q ) ◦ (DP χ)so that we getε D = y ◦ (P χ) ◦ ( ε D P QP Q ) = y ◦ (P χ) ◦ (z r P Q)(156) y ◦ (P χ) ◦ ( z l P Q ) = y ◦ (P χ) ◦ (z r P Q) .From previous equalities, it follows thatl ◦ (P b) ◦ ( z l P A ) ◦ (DP QP x) = zll ◦ (P b) ◦ (P QP x) ◦ ( z l P QP )(155)= l ◦ (P x) ◦ (P χP ) ◦ ( z l P QP ) (149)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ ( z l P QP )(156)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (z r P QP ) (149)= l ◦ (P x) ◦ (P χP ) ◦ (z r P QP )(155)= l ◦ (P b) ◦ (P QP x) ◦ (z r P QP ) zr= l ◦ (P b) ◦ (z r P A) ◦ (DP QP x) .Since DP QP x is an epimorphism, we obtain(157) l ◦ (P b) ◦ ( z l P A ) = l ◦ (P b) ◦ (z r P A)

135that isl ◦ (P m A ) ◦ (P xA) ◦ ( z l P A ) = l ◦ (P m A ) ◦ (P xA) ◦ (z r P A) .From ong>2.ong>9 we have that(̂QA, lA)= Coequ Fun((P xA) ◦(z l P A ) , (P xA) ◦ (z r P A) ) .Hence there exists a unique functorial morphism µ A Q b : ̂QA → ̂Q which satisfies (150).( )Now we want to prove that ̂Q, µ A Q b is a right A-module functor. First let us provethat µ A b Qis associative that isµ A b Q◦( ) ( )µ A Q bA= µ A Q b ◦ ̂QmA .We computeµ A b Q◦( )µ A Q bA◦ (lAA) (150)= µ A Q b ◦ (lA) ◦ (P m A A)(150)= l ◦ (P m A ) ◦ (P m A A) m Aass= l ◦ (P m A ) ◦ (P Am A )(150)= µ A b Q◦ (lA) ◦ (P Am A ) l = µ A b Q◦( )̂QmA ◦ (lAA) .Since lAA is an epimorphism, we get that µ A b Qis associative. Let us prove that µ A b Qis unital that isin fact( )µ A Q b ◦ ̂QuA( )µ A Q b ◦ ̂QuA = ̂Q◦ l l = µ A b Q◦ (lA) ◦ (P Au A ) (150)= l ◦ (P m A ) ◦ (P Au A ) Amonad= land since l is an epimorphism we conclude. We want to prove a series of equalities.First of all, let us prove that(158)(159)In fact, we haveand(χP ) ◦ ( QP w l) = w l ◦ (χP C)(χP ) ◦ (QP w r ) = w r ◦ (χP C)(χP ) ◦ ( QP w l) = (χP ) ◦ (QP χP ) ◦ (QP QP δ C )(98)= (χP ) ◦ (χP QP ) ◦ (QP QP δ C )χ= (χP ) ◦ (QP δ C ) ◦ (χP C) = w l ◦ (χP C)(χP ) ◦ (QP w r ) = (χP ) ◦ ( QP QP ε C) χ=(QP εC ) ◦ (χP ) = w r ◦ (χP C) .From (158) we deduce thatx ◦ (χP ) ◦ ( QP w l) (158)= x ◦ w l ◦ (χP C)xcoequ= x ◦ w r ◦ (χP C) (159)= x ◦ (χP ) ◦ (QP w r )

135that isl ◦ (P m A ) ◦ (P xA) ◦ ( z l P A ) = l ◦ (P m A ) ◦ (P xA) ◦ (z r P A) .From <str<strong>on</strong>g>2.</str<strong>on</strong>g>9 we have that(̂QA, lA)= Coequ Fun((P xA) ◦(z l P A ) , (P xA) ◦ (z r P A) ) .Hence there exists a unique functorial morphism µ A Q b : ̂QA → ̂Q which satisfies (150).( )Now we want to prove that ̂Q, µ A Q b is a right A-module functor. First let us provethat µ A b Qis associative that isµ A b Q◦( ) ( )µ A Q bA= µ A Q b ◦ ̂QmA .We computeµ A b Q◦( )µ A Q bA◦ (lAA) (150)= µ A Q b ◦ (lA) ◦ (P m A A)(150)= l ◦ (P m A ) ◦ (P m A A) m Aass= l ◦ (P m A ) ◦ (P Am A )(150)= µ A b Q◦ (lA) ◦ (P Am A ) l = µ A b Q◦( )̂QmA ◦ (lAA) .Since lAA is an epimorphism, we get that µ A b Qis associative. Let us prove that µ A b Qis unital that isin fact( )µ A Q b ◦ ̂QuA( )µ A Q b ◦ ̂QuA = ̂Q◦ l l = µ A b Q◦ (lA) ◦ (P Au A ) (150)= l ◦ (P m A ) ◦ (P Au A ) Am<strong>on</strong>ad= land since l is an epimorphism we c<strong>on</strong>clude. We want to prove a series of equalities.First of all, let us prove that(158)(159)In fact, we haveand(χP ) ◦ ( QP w l) = w l ◦ (χP C)(χP ) ◦ (QP w r ) = w r ◦ (χP C)(χP ) ◦ ( QP w l) = (χP ) ◦ (QP χP ) ◦ (QP QP δ C )(98)= (χP ) ◦ (χP QP ) ◦ (QP QP δ C )χ= (χP ) ◦ (QP δ C ) ◦ (χP C) = w l ◦ (χP C)(χP ) ◦ (QP w r ) = (χP ) ◦ ( QP QP ε C) χ=(QP εC ) ◦ (χP ) = w r ◦ (χP C) .From (158) we deduce thatx ◦ (χP ) ◦ ( QP w l) (158)= x ◦ w l ◦ (χP C)xcoequ= x ◦ w r ◦ (χP C) (159)= x ◦ (χP ) ◦ (QP w r )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!