Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

120We want to prove that Γ is an opposite mixed distributive law. We compute(m B D) ◦ (BΓ) ◦ (ΓB) ◦ (Dyy) y = (m B D) ◦ (BΓ) ◦ (ΓB) ◦ (DyB) ◦ (DP Qy)defγ= (m B D) ◦ (BΓ) ◦ (yDB) ◦ ( P ρ D QB ) ◦ (P χB) ◦ (δ D P QB) ◦ (DP Qy)δ D= (m B D) ◦ (BΓ) ◦ (yDB) ◦ ( P ρ D QB ) ◦ (P χB) ◦ (P QP Qy) ◦ (δ D P QP Q)χ= (m B D) ◦ (BΓ) ◦ (yDB) ◦ ( P ρ D QB ) ◦ (P Qy) ◦ (P χP Q) ◦ (δ D P QP Q)ρ D Q= (m B D) ◦ (BΓ) ◦ (yDB) ◦ (P QDy) ◦ ( P ρ D QP Q ) ◦ (P χP Q) ◦ (δ D P QP Q)y= (m B D) ◦ (BΓ) ◦ (BDy) ◦ (yDP Q) ◦ ( P ρ D QP Q ) ◦ (P χP Q) ◦ (δ D P QP Q)defγ= (m B D) ◦ (ByD) ◦ ( )BP ρ D Q ◦ (BP χ) ◦ (BδD P Q) ◦ (yDP Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)y= (m B D) ◦ (yDP Q) ◦ (P QyD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)y= (m B D) ◦ (yyD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)(109)= (yD) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)(127)= (yD) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P δC QP Q) ◦ ( P C ρ Q P Q )◦ (P χP Q) ◦ (δ D P QP Q)δ=C(yD) ◦ (P χD) ◦ (P δ C QD) ◦ ( (P CρQ) D ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (P χP Q) ◦ (δ D P QP Q)(112)= (yD) ◦ ( P ε C QD ) ◦ ( ) (P Cρ D Q ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (P χP Q) ◦ (δ D P QP Q)ε= C (yD) ◦ ( ) (P ρ D Q ◦ (P χ) ◦ P ε C QP Q ) ◦ ( P C ρ Q P Q ) ◦ (P χP Q) ◦ (δ D P QP Q)Qcomfun= (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (P χP Q) ◦ (δD P QP Q)(111)= (yD) ◦ ( P ρQ) D ◦ (P χ) ◦ (P QP χ) ◦ (δD P QP Q)δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) ◦ (DP χ)defγ= Γ ◦ (Dy) ◦ (DP χ) (109)= Γ ◦ (Dm B ) ◦ (Dyy)and since Dyy is an epimorphism we deduce thatLet us compute(m B D) ◦ (BΓ) ◦ (ΓB) = Γ ◦ (Dm B ) .(ΓD) ◦ (DΓ) ◦ ( ∆ D B ) ◦ (Dy) ∆D= (ΓD) ◦ (DΓ) ◦ (DDy) ◦ ( ∆ D P Q )

defγ= (ΓD) ◦ (DyD) ◦ ( )DP ρ D Q ◦ (DP χ) ◦ (DδD P Q) ◦ ( ∆ D P Q )defγ= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ (δ D P QD) ◦ ( DP ρ D Q)◦ (DP χ)◦ (Dδ D P Q) ◦ ( ∆ D P Q )121δ=D(yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q)◦ (δ D DP Q) ◦ ( ∆ D P Q )(126)= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( P QP ρ D Q)◦ (P QP χ) ◦ (P QδD P Q)◦ ( P ρ D QP Q ) ◦ (δ D P Q)(127)= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( P QP ρ D Q)◦ (P QP χ) ◦ (P δC QP Q)◦ ( P C ρ Q P Q ) ◦ (δ D P Q)δ C= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ (P δ C QD) ◦ ( P Cρ D Q)◦ (P Cχ) ◦(P C ρ Q P Q )◦ (δ D P Q)(112)= (yDD) ◦ ( P ρ D QD ) ◦ ( P ε C QD ) ◦ ( ) (P Cρ D Q ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (δ D P Q)ε= C (yDD) ◦ ( P ρ D QD ) ◦ ( ) (P ρ D Q ◦ (P χ) ◦ P ε C QP Q ) ◦ ( P C ρ Q P Q ) ◦ (δ D P Q)Qcomfun= (yDD) ◦ ( P ρ D QD ) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q)Qcomfun= (yDD) ◦ ( P Q∆ D) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q)y= ( B∆ D) ◦ (yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) defγ= ( B∆ D) ◦ Γ ◦ (Dy)and since Dy is an epimorphism we get thatNow we compute(ΓD) ◦ (DΓ) ◦ ( ∆ D B ) = ( B∆ D) ◦ Γ.Γ ◦ (Du B ) ◦ ( Dε D) (110)= Γ ◦ (Dy) ◦ (Dδ D )defγ= (yD) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q) ◦ (Dδ D )δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (P QδD ) ◦ (δ D D)(113)= (yD) ◦ ( P ρ D Q)◦(P QεD ) ◦ (δ D D)ρ D Q= (yD) ◦ ( P QDε D) ◦ ( P ρ D QD ) ◦ (δ D D)(126)= (yD) ◦ ( P QDε D) ◦ (δ D DD) ◦ ( ∆ D D )δ D= (yD) ◦ (δ D D) ◦ ( DDε D) ◦ ( ∆ D D ) ∆ D= (yD) ◦ (δ D D) ◦ ∆ D ◦ ( Dε D)(110)= (u B D) ◦ ( ε D D ) ◦ ∆ D ◦ ( Dε D) Dcomonad= (u B D) ◦ ( Dε D)

defγ= (ΓD) ◦ (DyD) ◦ ( )DP ρ D Q ◦ (DP χ) ◦ (DδD P Q) ◦ ( ∆ D P Q )defγ= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ (δ D P QD) ◦ ( DP ρ D Q)◦ (DP χ)◦ (Dδ D P Q) ◦ ( ∆ D P Q )121δ=D(yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q)◦ (δ D DP Q) ◦ ( ∆ D P Q )(126)= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( P QP ρ D Q)◦ (P QP χ) ◦ (P QδD P Q)◦ ( P ρ D QP Q ) ◦ (δ D P Q)(127)= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( P QP ρ D Q)◦ (P QP χ) ◦ (P δC QP Q)◦ ( P C ρ Q P Q ) ◦ (δ D P Q)δ C= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ (P δ C QD) ◦ ( P Cρ D Q)◦ (P Cχ) ◦(P C ρ Q P Q )◦ (δ D P Q)(112)= (yDD) ◦ ( P ρ D QD ) ◦ ( P ε C QD ) ◦ ( ) (P Cρ D Q ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (δ D P Q)ε= C (yDD) ◦ ( P ρ D QD ) ◦ ( ) (P ρ D Q ◦ (P χ) ◦ P ε C QP Q ) ◦ ( P C ρ Q P Q ) ◦ (δ D P Q)Qcomfun= (yDD) ◦ ( P ρ D QD ) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q)Qcomfun= (yDD) ◦ ( P Q∆ D) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q)y= ( B∆ D) ◦ (yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) defγ= ( B∆ D) ◦ Γ ◦ (Dy)and since Dy is an epimorphism we get thatNow we compute(ΓD) ◦ (DΓ) ◦ ( ∆ D B ) = ( B∆ D) ◦ Γ.Γ ◦ (Du B ) ◦ ( Dε D) (110)= Γ ◦ (Dy) ◦ (Dδ D )defγ= (yD) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q) ◦ (Dδ D )δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (P QδD ) ◦ (δ D D)(113)= (yD) ◦ ( P ρ D Q)◦(P QεD ) ◦ (δ D D)ρ D Q= (yD) ◦ ( P QDε D) ◦ ( P ρ D QD ) ◦ (δ D D)(126)= (yD) ◦ ( P QDε D) ◦ (δ D DD) ◦ ( ∆ D D )δ D= (yD) ◦ (δ D D) ◦ ( DDε D) ◦ ( ∆ D D ) ∆ D= (yD) ◦ (δ D D) ◦ ∆ D ◦ ( Dε D)(110)= (u B D) ◦ ( ε D D ) ◦ ∆ D ◦ ( Dε D) Dcom<strong>on</strong>ad= (u B D) ◦ ( Dε D)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!