Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ... Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

eprints.unife.it
from eprints.unife.it More from this publisher
12.07.2015 Views

108andsatisfying(B, y) = Coequ Fun((P χ) ◦ (δD P Q) , ε D P Q ) .A µ Q ◦ (xQ) = χ and µ B Q ◦ (Qy) = χ.Furthermore1) The morphisms cocan 1 := (A µ Q P ) ◦ (Aδ C ) : AC → QP is an isomorphism.2) The morphism cocan 1 := ( P µ B Q)◦ (δD B) : DB → P Q is an isomorphisms.3)4)5)6)(χP ) ◦ (QP δ C ) = cocan 1 ◦ (xC) and (P χ) ◦ (δ D P Q) = cocan 1 ◦ (Dy)x = ( Aε C) ◦ (cocan 1 ) −1y = ( ε D B ) ◦ (cocan 1 ) −1δ C = (A µ Q P ) ◦ (Aδ C ) ◦ (u A C)δ D = ( P µ B Q)◦ (δD B) ◦ (Du B ) .From the last equalities, we deduce that if ε C A is a regular epimorphism, so is σ Aand if Bε D is a regular epimorphism, so is σ B .Proof. Note that we are in the setting of Theorem 6.29.1) Let us check that cocan 1 is an isomorphism.( The) inverse of the functorial morphism cocan 1 is given by cocan −11 = (xC) ◦QρCP : QP → AC. Indeed we compute(xC) ◦ ( Qρ C P)◦ cocan1 ◦ (xC) = (xC) ◦ ( Qρ C P)◦( Aµ Q P ) ◦ (Aδ C ) ◦ (xC)= (xC) ◦ ( Qρ C P)◦( Aµ Q P ) ◦ (xQP ) ◦ (QP δ C )(115)= (xC) ◦ ( Qρ C P)◦ (χP ) ◦ (QP δC ) = (xC) ◦ (χP C) ◦ ( QP Qρ C P)◦ (QP δC )P rightCcol= (xC) ◦ (χP C) ◦ (QP δ C C) ◦ ( QP ∆ C) = (xC) ◦ ( w l C ) ◦ ( QP ∆ C)x coequ= (xC) ◦ (w r C) ◦ ( QP ∆ C) = (xC) ◦ ( QP ε C C ) ◦ ( QP ∆ C) C comonad= (xC) .Since xC is an epimorphism, we obtain that(xC) ◦ ( Qρ C P)◦ cocan1 = AC.On the other hand, we havecocan 1 ◦ (xC) ◦ ( ) (Qρ C P = Aµ Q P ) ◦ (Aδ C ) ◦ (xC) ◦ ( )Qρ C P= (A µ Q P ) ◦ (xQP ) ◦ (QP δ C ) ◦ ( )Qρ C (115)P = (χP ) ◦ (QP δ C ) ◦ ( )Qρ C P(118)= (χP ) ◦ (Qδ D P ) ◦ ( )Q D ρ P(113)= ( Qε D P ) ◦ ( Q D ρ P) D ρ P counital= QP

so we obtain thatcocan −11 = (xC) ◦ ( Qρ C P).2) Similarly we prove that we prove that cocan 1 := ( P µ B Q)◦ (δD B) : DB → P Q isan isomorphism with (Dy) ◦ (D ρ P Q ) its inverse. In fact we have(Dy) ◦ (D ρ P Q ) ◦ cocan 1 ◦ (Dy) = (Dy) ◦ (D ρ P Q ) ◦ ( P µ B Q)◦ (δD B) ◦ (Dy)D ρ P= (Dy) ◦(DP µBQ)◦( Dρ P QB ) ◦ (δ D B) ◦ (Dy)δ D leftDcol= (Dy) ◦ ( DP µ Q) B ◦ (DδD B) ◦ ( ∆ D B ) ◦ (Dy)∆= D(Dy) ◦ ( )DP µ B Q ◦ (DδD B) ◦ (DDy) ◦ ( ∆ D P Q )δ=D(Dy) ◦ ( DP µ Q) B ◦ (DP Qy) ◦ (DδD P Q) ◦ ( ∆ D P Q )(117)= (Dy) ◦ (DP χ) ◦ (Dδ D P Q) ◦ ( ∆ D P Q )ycoequ= (Dy) ◦ ( Dε D P Q ) ◦ ( ∆ D P Q ) Dcomonad= Dyand since D preserves coequalizers, Dy is an epimorphism, so that we get(Dy) ◦ (D ρ P Q ) ◦ cocan 1 = DB.On the other hand we havecocan 1 ◦ (Dy) ◦ (D ρ P Q ) = ( )P µ B Q ◦ (δD B) ◦ (Dy) ◦ (D ρ P Q )δ= ( DP µ Q) B ◦ (P Qy) ◦ (δD P Q) ◦ (D ρ P Q ) (117)= (P χ) ◦ (δ D P Q) ◦ (D ρ P Q )so that we get3) We haveso that(118)= (P χ) ◦ (P δ C Q) ◦ ( ρ C P Q ) (112)= ( P ε C Q ) ◦ ( ρ C P Q )P com= P Qcocan 1 ◦ (Dy) ◦ (D ρ P Q ) = P Q.(χP ) ◦ (QP δ C ) (115)= (A µ Q P ) ◦ (xQP ) ◦ (QP δ C )x= (A µ Q P ) ◦ (Aδ C ) ◦ (xC) defcocan 1= cocan 1 ◦ (xC)(119) (χP ) ◦ (QP δ C ) = cocan 1 ◦ (xC) .Similarly we haveso that(P χ) ◦ (δ D P Q) (117)= ( P µ B Q)◦ (P Qy) ◦ (δD P Q)δ= ( DP µ Q) B ◦ (δD B) ◦ (Dy) defcocan 1= cocan 1 ◦ (Dy)(120) (P χ) ◦ (δ D P Q) = cocan 1 ◦ (Dy) .109

so we obtain thatcocan −11 = (xC) ◦ ( Qρ C P).2) Similarly we prove that we prove that cocan 1 := ( P µ B Q)◦ (δD B) : DB → P Q isan isomorphism with (Dy) ◦ (D ρ P Q ) its inverse. In fact we have(Dy) ◦ (D ρ P Q ) ◦ cocan 1 ◦ (Dy) = (Dy) ◦ (D ρ P Q ) ◦ ( P µ B Q)◦ (δD B) ◦ (Dy)D ρ P= (Dy) ◦(DP µBQ)◦( Dρ P QB ) ◦ (δ D B) ◦ (Dy)δ D leftDcol= (Dy) ◦ ( DP µ Q) B ◦ (DδD B) ◦ ( ∆ D B ) ◦ (Dy)∆= D(Dy) ◦ ( )DP µ B Q ◦ (DδD B) ◦ (DDy) ◦ ( ∆ D P Q )δ=D(Dy) ◦ ( DP µ Q) B ◦ (DP Qy) ◦ (DδD P Q) ◦ ( ∆ D P Q )(117)= (Dy) ◦ (DP χ) ◦ (Dδ D P Q) ◦ ( ∆ D P Q )ycoequ= (Dy) ◦ ( Dε D P Q ) ◦ ( ∆ D P Q ) Dcom<strong>on</strong>ad= Dyand since D preserves coequalizers, Dy is an epimorphism, so that we get(Dy) ◦ (D ρ P Q ) ◦ cocan 1 = DB.On the other hand we havecocan 1 ◦ (Dy) ◦ (D ρ P Q ) = ( )P µ B Q ◦ (δD B) ◦ (Dy) ◦ (D ρ P Q )δ= ( DP µ Q) B ◦ (P Qy) ◦ (δD P Q) ◦ (D ρ P Q ) (117)= (P χ) ◦ (δ D P Q) ◦ (D ρ P Q )so that we get3) We haveso that(118)= (P χ) ◦ (P δ C Q) ◦ ( ρ C P Q ) (112)= ( P ε C Q ) ◦ ( ρ C P Q )P com= P Qcocan 1 ◦ (Dy) ◦ (D ρ P Q ) = P Q.(χP ) ◦ (QP δ C ) (115)= (A µ Q P ) ◦ (xQP ) ◦ (QP δ C )x= (A µ Q P ) ◦ (Aδ C ) ◦ (xC) defcocan 1= cocan 1 ◦ (xC)(119) (χP ) ◦ (QP δ C ) = cocan 1 ◦ (xC) .Similarly we haveso that(P χ) ◦ (δ D P Q) (117)= ( P µ B Q)◦ (P Qy) ◦ (δD P Q)δ= ( DP µ Q) B ◦ (δD B) ◦ (Dy) defcocan 1= cocan 1 ◦ (Dy)(120) (P χ) ◦ (δ D P Q) = cocan 1 ◦ (Dy) .109

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!