12.07.2015 Views

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

Contents 1. Introduction 2 2. Preliminaries 4 2.1. Some results on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>C<strong>on</strong>tents</str<strong>on</strong>g><str<strong>on</strong>g>1.</str<strong>on</strong>g> <str<strong>on</strong>g>Introducti<strong>on</strong></str<strong>on</strong>g> 2<str<strong>on</strong>g>2.</str<strong>on</strong>g> <str<strong>on</strong>g>Preliminaries</str<strong>on</strong>g> 4<str<strong>on</strong>g>2.</str<strong>on</strong>g><str<strong>on</strong>g>1.</str<strong>on</strong>g> <str<strong>on</strong>g>Some</str<strong>on</strong>g> <str<strong>on</strong>g>results</str<strong>on</strong>g> <strong>on</strong> equalizers and coequalizers 4<str<strong>on</strong>g>2.</str<strong>on</strong>g><str<strong>on</strong>g>2.</str<strong>on</strong>g> C<strong>on</strong>tractible Equalizers and Coequalizers 11<str<strong>on</strong>g>2.</str<strong>on</strong>g>3. Adjuncti<strong>on</strong> 133. M<strong>on</strong>ads 153.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Liftings of module functors 233.<str<strong>on</strong>g>2.</str<strong>on</strong>g> The category of balanced bimodule functors 363.3. The comparis<strong>on</strong> functor for m<strong>on</strong>ads 404. Com<strong>on</strong>ads 444.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Lifting of comodule functors 514.<str<strong>on</strong>g>2.</str<strong>on</strong>g> The comparis<strong>on</strong> functor for com<strong>on</strong>ads 625. Liftings and distributive laws 815.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Distributive laws 815.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Liftings of m<strong>on</strong>ads and com<strong>on</strong>ads 846. (Co)Pretorsors and (co)herds 896.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Pretorsors 896.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Herds 926.3. Herds and com<strong>on</strong>ads 936.4. Herds and distributive laws 946.5. Herds and Galois functors 946.6. The tame case 986.7. Copretorsors 1026.8. Coherds 1126.9. Coherds and M<strong>on</strong>ads 1136.10. Coherds and distributive laws 1166.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Coherds and coGalois functors 1226.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> The cotame case 1267. Herds and Coherds 1287.<str<strong>on</strong>g>1.</str<strong>on</strong>g> C<strong>on</strong>structing the functor Q 1287.<str<strong>on</strong>g>2.</str<strong>on</strong>g> From herds to coherds 1287.3. C<strong>on</strong>structing the functor ̂Q 1327.4. From coherds to herds 1417.5. Herd - Coherd - Herd 1458. Equivalence for (co)module categories 1548.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Equivalence for module categories coming from copretorsor 1548.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Equivalence for comodule categories coming from pretorsor 1719. EXAMPLES 1729.<str<strong>on</strong>g>1.</str<strong>on</strong>g> H-Galois extensi<strong>on</strong> 1819.<str<strong>on</strong>g>2.</str<strong>on</strong>g> H-Galois coextensi<strong>on</strong> 1879.3. Galois comodules 20310. Bicategories 2191<str<strong>on</strong>g>1.</str<strong>on</strong>g> C<strong>on</strong>structi<strong>on</strong> of BIM (C) 2201<str<strong>on</strong>g>2.</str<strong>on</strong>g> Entwined modules and comodules 235Appendix A. Gabriel Popescu Theorem 241References 2651


2<str<strong>on</strong>g>1.</str<strong>on</strong>g> <str<strong>on</strong>g>Introducti<strong>on</strong></str<strong>on</strong>g>The starting point of this work was the noti<strong>on</strong> of a torsor which comes from principlebundles in classical geometry. A torsor is a principal homogeneous space overa group, i.e. a G-set X where G is a group acting freely and transitively over X. Anidea due to Baer which goes back to the 1920’s allows to reformulate the definiti<strong>on</strong>of a torsor without specifying the group G: a torsor is a set, sometimes called herd,X together with a structure X ×X ×X → X satisfying some parallelogram relati<strong>on</strong>s(see [Ba, p. 202] or [Pr, p. 170]).A n<strong>on</strong>commutative analogue is the noti<strong>on</strong> of a Hopf-Galois object as introducedby Kreimer and Takeuchi [KT]. Let H be a Hopf algebra, flat over the basering k, a (right) H-Galois object A is a (right) H-comodule algebra such that theGalois map β : A ⊗ A → A ⊗ H given by β (x ⊗ y) = xy (0) ⊗ y (1) is bijective(where δ : A → A ⊗ H : x ↦→ x (0) ⊗ x (1) is the H-comodule structure of A) andA co(H) = {x ∈ A | δ (x) = x ⊗ 1 H } = k.A similar c<strong>on</strong>cept for the n<strong>on</strong>commutative case was introduced by Grunspan in [G]as the noti<strong>on</strong> of a quantum torsor. Together with the definiti<strong>on</strong>, Grunspan givesthe proof that every quantum torsor gives rise to two Hopf algebras over which itis a bi-Galois extensi<strong>on</strong> of the base field. C<strong>on</strong>versely, Schauenburg in [Sch4] provesthat every Hopf-Galois extensi<strong>on</strong> of the base field is a quantum torsor in the senseof Grunspan.The axioms defining a quantum torsor were simplified allowing to prove anywaya corresp<strong>on</strong>dence between faithfully flat torsors and Hopf-(bi)Galois object (see[Sch1]). Moreover, Schauenburg in [Sch4] could prove that the two Hopf algebrascoming from a torsor are Morita-Takeuchi equivalent, i.e. their categories of comodulesare equivalent. Another equivalence between module categories has beenstudied in [BMV] and it is related with Morita c<strong>on</strong>texts defined in the pure categoricalsetting. This gave the hint to investigate a special class of herds at this level ofgenerality.The simplified versi<strong>on</strong> of the torsor axioms admits a generalizati<strong>on</strong> to arbitraryGalois extensi<strong>on</strong>s (not <strong>on</strong>ly of the base ring or field) and gave rise to different <str<strong>on</strong>g>results</str<strong>on</strong>g>which we try to summarize here. Hopf Galois extensi<strong>on</strong>s of an arbitrary algebra Bby introducing the noti<strong>on</strong> of a B-torsor in [Sch1], Galois extensi<strong>on</strong>s by bialgebroidsby means of A-B-torsors in [Ho, Chapter 5] and [BB], Galois extensi<strong>on</strong>s by coringsusing the noti<strong>on</strong> of a pretorsor in [BB] and Galois comodules of corings arising fromentwining structures using the noti<strong>on</strong> of a bimodule herd in [BV]. Generalizing thenoti<strong>on</strong> of pretorsor given in [BB], pretorsors over two adjuncti<strong>on</strong>s are introduced in[BM, Secti<strong>on</strong> 4]. Such categorical setting is the <strong>on</strong>e we choose for this work tryingto develop the noti<strong>on</strong> of pretorsor and herd at this pure general level.The first aim of this thesis is to give a unified and self-c<strong>on</strong>tained treatment of anumber of known <str<strong>on</strong>g>results</str<strong>on</strong>g> related to the theory of herds. This gives us the technicaltools to deal with the sec<strong>on</strong>d aim of our work which is to obtain some new <str<strong>on</strong>g>results</str<strong>on</strong>g>about herds and coherds in the pure categorical setting. A herd at this level is apretorsor with respect to a formal dual structure M = (A, B, P, Q, σ A , σ B ). This isgiven by two m<strong>on</strong>ads A and B over two different categories, two bimodule functors Pand Q with respect to the m<strong>on</strong>ads and functorial morphisms σ A and σ B satisfying


linearity and compatibility c<strong>on</strong>diti<strong>on</strong>s. In particular we refer to the study of thespecial class of tame herds, which yields a corresp<strong>on</strong>dence with Galois functors(generalizing the historical <str<strong>on</strong>g>results</str<strong>on</strong>g> we started with). Moreover, under the regularityassumpti<strong>on</strong> <strong>on</strong> the formal dual structure related to a herd, <strong>on</strong>e can c<strong>on</strong>struct acoherd. C<strong>on</strong>versely, beginning with a coherd over a regular formal codual structure,a herd can be obtained. By applying twice this process, <strong>on</strong>e can start with a formaldual structure and a herd, c<strong>on</strong>struct a formal codual structure and a coherd andthen compute also a new formal dual structure. Under the extra assumpti<strong>on</strong> that thestarting formal dual structure is also a Morita c<strong>on</strong>text, the final formal dual structurecomputed from a tame herd comes out to be closely related to the starting <strong>on</strong>e. Wec<strong>on</strong>sider a few cases in which the m<strong>on</strong>ads are in fact isomorphic. As an applicati<strong>on</strong>,we develop some examples. The first is given by a right Galois comodule from whichwe derive the herd. Then we simplify the setting and we study the Schauenburg caseof A/k a faithfully flat Hopf-Galois extensi<strong>on</strong> with respect to H. In this example wecan compute the com<strong>on</strong>ads associated to the herd and the coherd. The last exampleis a n<strong>on</strong> trivial example of a coherd. It allows to compute the two m<strong>on</strong>ads associatedand the equivalence between the module categories with respect to these m<strong>on</strong>ads.Finally we investigate the bicategory of balanced bimodule functors which are <strong>on</strong>eof the most useful tools in this work and is inspired by the balanced bimodules inthe classical sense.We developed the porti<strong>on</strong>s of the theory of herds, resp. coherds, we found moresuitable for our purposes.In the first part we collect some well-known <str<strong>on</strong>g>results</str<strong>on</strong>g> including proofs. It is aboutequalizers and coequalizers, c<strong>on</strong>tractible equalizers and coequalizers and notati<strong>on</strong>for adjuncti<strong>on</strong>s.Then we c<strong>on</strong>centrate, in the sec<strong>on</strong>d secti<strong>on</strong>, the needed materials for the sequelabout m<strong>on</strong>ads. Similarly we do for com<strong>on</strong>ads. At this point we also includethe Beck’s Tripleability Theorem and the generalized versi<strong>on</strong> which introduce theEilenberg-Moore comparis<strong>on</strong> functor and the categories of modules and comodules.We reserve a short secti<strong>on</strong> to the noti<strong>on</strong> of distributive laws and above all thecorresp<strong>on</strong>dence between distributive laws and liftings of m<strong>on</strong>ads and com<strong>on</strong>ads.The next secti<strong>on</strong> introduces the noti<strong>on</strong> of pretorsor and herd bringing all thedetails and the <str<strong>on</strong>g>results</str<strong>on</strong>g> needed to prove the equivalence between herds and Galoisfunctors in the tame case. The same has been d<strong>on</strong>e for the dual case of copretorsorsand coherds.Later <strong>on</strong> a secti<strong>on</strong> dedicated to a new fundamental functor built from a herdand a coherd respectively and then the theorem relating the starting formal dualstructure and the <strong>on</strong>e obtained after applying the two processes from a herd andfrom a coherd.One secti<strong>on</strong> is dedicated to the equivalence between the module categories obtainedfrom a copretorsor and to the equivalence between the comodule categoriesobtained from a pretorsor.The following secti<strong>on</strong> is a collecti<strong>on</strong> of the examples we provide in this work, aboutherds and coherds first and then applicati<strong>on</strong>s of Beck’s Theorem and of its generalizati<strong>on</strong>.In particular, the example of a coherd was produced during some usefuldiscussi<strong>on</strong>s with T. Brzeziński. In the subsecti<strong>on</strong> dedicated to Galois comodules we3


4need some material related to Gabriel-Popescu theorem which is c<strong>on</strong>tained in theappendix.The last part is the first outcome of a joint work with J. Gomez-Torrecillas.It is devoted to the introducti<strong>on</strong> of the bicategory of balanced bimodule functorsBIM (C). First we fix some notati<strong>on</strong> and terminology about 2-categories and bicategories.Then we define the bicategory of balanced bimodule functors and finallywe study how it can be related to entwined modules and comodules.<str<strong>on</strong>g>2.</str<strong>on</strong>g> <str<strong>on</strong>g>Preliminaries</str<strong>on</strong>g><str<strong>on</strong>g>2.</str<strong>on</strong>g><str<strong>on</strong>g>1.</str<strong>on</strong>g> <str<strong>on</strong>g>Some</str<strong>on</strong>g> <str<strong>on</strong>g>results</str<strong>on</strong>g> <strong>on</strong> equalizers and coequalizers. In the following, most ofthe computati<strong>on</strong>s are justified. We denote by the name of a functorial morphism,its naturality property.Definiti<strong>on</strong>s <str<strong>on</strong>g>2.</str<strong>on</strong>g><str<strong>on</strong>g>1.</str<strong>on</strong>g> Let α : B → C be a functorial morphism. We say that α is• a functorial m<strong>on</strong>omorphism, or simply a m<strong>on</strong>omorphism, if for every β, γ :A → B such that α ◦ β = α ◦ γ we have β = γ.• a functorial regular m<strong>on</strong>omorphism, or simply a regular m<strong>on</strong>omorphism, ifα is the equalizer of two functorial morphisms.• a functorial epimorphism, or simply an epimorphism, if for every β, γ : C →D such that β ◦ α = γ ◦ α we have β = γ.• a regular epimorphism, or simply a regular epimorphism, if α is the coequalizerof two functorial morphisms.Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g><str<strong>on</strong>g>2.</str<strong>on</strong>g> A parallel pair α, β : F → F ′ is said to be reflexive if the twoarrows have a comm<strong>on</strong> right inverse δ : F ′ → F.Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>3. A reflexive equalizer is an equalizer of a reflexive parallel pair.Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>4. A reflexive coequalizer is a coequalizer of a reflexive parallel pair.Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>5. Let F, G, H be functors and let f : F → G, g : G → H and h : F → Hbe functorial morphisms such that h = g ◦ f. Assume that f is a functorial isomorphism.Then h is a regular epimorphism if and <strong>on</strong>ly if g is a regular epimorphism.Proof. First, let us assume that g is a regular epimorphism, i.e.(H, g) = Coequ Fun (α, β). Then we haveh ◦ f −1 ◦ α = g ◦ f ◦ f −1 ◦ α = g ◦ f ◦ f −1 ◦ β = h ◦ f −1 ◦ β.Now, let χ : F → X be a functorial morphism such that χ ◦ f −1 ◦ α = χ ◦ f −1 ◦ β.By the universal property of the coequalizer (H, g) = Coequ Fun (α, β), there existsa unique functorial morphism χ : H → X such that χ ◦ g = χ. Then, by composingto the right with f we getχ ◦ h = χ ◦ g ◦ f = χ ◦ f −1 ◦ f = χ.Moreover, let χ ′ be another functorial morphism such that χ ′ ◦ h = χ. Since we alsohave χ ◦ h = χ we haveχ ′ ◦ g ◦ f = χ ′ ◦ h = χ = χ ◦ h = χ ◦ g ◦ f


5and since g ◦ f is an epimorphism, we deduce that χ ′ = χ so that(H, h) = Coequ Fun(f −1 ◦ α, f −1 ◦ β ) .C<strong>on</strong>versely, let us assume that h is a regular epimorphism, i.e.(H, h) = Coequ Fun (α, b). Then we haveg ◦ f ◦ a = h ◦ a = h ◦ b = g ◦ f ◦ b.Now, let ξ : G → X be a functorial morphism such that ξ ◦ f ◦ a = ξ ◦ f ◦ b. Bythe universal property of (H, h) = Coequ Fun (α, b), there exists a unique functorialmorphism ξ : H → X such that ξ ◦ h = ξ ◦ f, i.e. ξ ◦ g ◦ f = ξ ◦ f and since f isan isomorphism we deduce that ξ ◦ g = ξ. Let us assume that there exists anotherfunctorial morphism ξ ′ : H → X such that ξ ′ ◦ g = ξ. Since we also have ξ ◦ g = ξwe get thatξ ′ ◦ h = ξ ′ ◦ g ◦ f = ξ ◦ f = ξ ◦ g ◦ f = ξ ◦ hand since h is an epimorphism, we deduce that ξ ′ = ξ. Therefore, (H, g) =Coequ Fun (f ◦ a, f ◦ b).□Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>6. Let F, G, H be functors and let f : F → G, g : G → H and h : F → Hbe functorial morphisms such that h = g ◦ f. Assume that g is a functorial isomorphism.Then h is a regular epimorphism if and <strong>on</strong>ly if f is a regular epimorphism.Proof. Assume first that f is a regular epimorphism, i.e. (G, f) = Coequ Fun (α, β).Then we haveh ◦ α = g ◦ f ◦ α = g ◦ f ◦ β = h ◦ β.Let ξ : F → X be a functorial morphism such that ξ ◦ α = ξ ◦ β. By the universalproperty of the coequalizer (G, f) = Coequ Fun (α, β), there exists a unique functorialmorphism ξ such that ξ ◦ f = ξ. Then we haveξ ◦ g −1 ◦ h = ξ ◦ g −1 ◦ g ◦ f = ξ ◦ f = ξso that ξ factorizes through h via ξ ◦g −1 . Moreover, if there exists another functorialmorphism ξ ′ : F → X such that ξ ′ ◦ h = ξ, since we also have ξ = ξ ◦ g −1 ◦ h wehaveξ ′ ◦ g ◦ f = ξ ′ ◦ h = ξ = ξ ◦ g −1 ◦ h = ξ ◦ g −1 ◦ g ◦ f = ξ ◦ fand since f is epi we getfrom which we deduce thatTherefore we obtainedξ ′ ◦ g = ξξ ′ = ξ ◦ g −1 .(H, h) = Coequ Fun (α, β) .C<strong>on</strong>versely, let now assume that h is a regular epimorphism, i.e.(H, h) = Coequ Fun (a, b). Then we haveand since g is m<strong>on</strong>o we get thatg ◦ f ◦ a = h ◦ a = h ◦ b = g ◦ f ◦ bf ◦ a = f ◦ b.


6Let now χ : F → X be a functorial morphism such that χ ◦ a = χ ◦ b. by theuniversal property of the coequalizer (H, h) = Coequ Fun (a, b) there exists a uniquefunctorial morphism χ : H → X such that χ ◦ h = χ and hence χ ◦ g ◦ f = χ so thatχ factorizes through f via χ ◦ g. Moreover, let χ ′ : F → X be another functorialmorphism such that χ ′ ◦ f = χ. Since we also have χ ◦ h = χ we haveχ ′ ◦ g −1 ◦ h = χ ′ ◦ g −1 ◦ g ◦ f = χ ′ ◦ f = χ = χ ◦ hand since h is epi we get that χ ′ ◦ g −1 = χ from which we deduce thatTherefore (G, f) = Coequ Fun (a, b) .χ ′ = χ ◦ g.Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>7. Let A and B be categories, let F, F ′ : A → B be functors and α, β : F →F ′ be functorial morphisms. If, for every X ∈ A, there exists Coequ B (αX, βX),then there exists the coequalizer (C, c) = Coequ Fun (α, β) in the category of functors.Moreover, for any object X in A, we have (CX, cX) = Coequ B (αX, βX).Proof. Define a functor C : A → B with object map (CX, cX) = Coequ B (αX, βX)for every X ∈ A. For a morphism f : X → X ′ in A, naturality of α and β impliesthat(F ′ f) ◦ (αX) = (αX ′ ) ◦ (F f) and (F ′ f) ◦ (βX) = (βX ′ ) ◦ (F f)and hence(cX ′ ) ◦ (F ′ f) ◦ (αX) = (cX ′ ) ◦ (αX ′ ) ◦ (F f) ccoequ= (cX ′ ) ◦ (βX ′ ) ◦ (F f)= (cX ′ ) ◦ (F ′ f) ◦ (βX)i.e. (cX ′ ) ◦ (F ′ f) coequalizes the parallel morphisms βX and αX. In light of thisfact, by the universal property of the coequalizer (CX, cX) , Cf : CX → CX ′ isdefined as the unique morphism in B such that (Cf) ◦ (cX) = (cX ′ ) ◦ (F ′ f). Byc<strong>on</strong>structi<strong>on</strong>, c is a functorial morphism F ′ → C such that c ◦ α = c ◦ β. It remainsto prove universality of c. Let H : A → B be a functor and let χ : F ′ → H bea functorial morphism such that χ ◦ α = χ ◦ β. Then, for any object X in A,(χX) ◦ (αX) = (χX) ◦ (βX). Since ⊂ (CX, cX) = Coequ B (αX, βX), there is aunique morphism ξX : CX → HX such that (ξX) ◦ (cX) = χX. The proof iscompleted by proving naturality of ξX in X. Take a morphism f : X → X ′ in A.Since c and χ functorial morphisms,(Hf) ◦ (ξX) ◦ (cX) = (Hf) ◦ (χX) χ = (χX ′ ) ◦ (F ′ f)= (ξX ′ ) ◦ (cX ′ ) ◦ (F ′ f) = (ξX ′ ) ◦ (Cf) ◦ (cX).Since cX is a epimorphism, we get that ξ is a functorial morphism.Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>8 ([BM, Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>1]). Let C and K be categories, let G,G ′ : C → K befunctors and γ, θ : G → G ′ be functorial morphisms. If, for every X ∈ C, thereexists Equ K (γX, θX), then there exists the equalizer (E, i) = Equ Fun (γ, θ) in thecategory of functors. Moreover, for any object X in C, (EX, iX) = Equ K (γX, θX).Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>9. Let A and B be categories, let F ,F ′ : A → B be functors, and let α, β :F → F ′ be functorial morphisms. Assume that, for every X ∈ A, B has coequalizersof αX and βX and let (Q, q) = Coequ Fun (α, β). Under these assumpti<strong>on</strong>s, for anyfunctor P : D → A, Coequ Fun (αP, βP ) = (QP, qP ) .□□


Proof. Clearly (qP )◦(αP ) = (qP )◦(βP ). Let y : F ′ P → Y be a functorial morphismsuch that y ◦ (αP ) = y ◦ (βP ). Then,(yD) ◦ (αP D) = (yD) ◦ (βP D)and hence, since by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>7 (QP D, qP D) = Coequ B (αP D, βP D), there existsa unique d D : QP D → Y D such thatd D ◦ (qP D) = yD.Let us prove that the assignment D ↦→ d D yields a functorial morphism d : QP → Y .Let h : D → D ′ be a morphism in D. We compute(Y h) ◦ d D ◦ (qP D) = (Y h) ◦ (yD) y = (yD ′ ) ◦ (F ′ P h)Since qP D is an epimorphism, we c<strong>on</strong>clude.= d D ′ ◦ (qP D ′ ) ◦ (F ′ P h) q = d D ′ ◦ (QP h) ◦ (qP D) .Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>10 ([BM, Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>2]). Let G, G ′ : C → K be functors, and let γ, θ :G → G ′ be functorial morphisms. Assume that every pair of parallel morphisms inK has an equalizer and let (E, i) = Equ Fun (γ, θ). Under these assumpti<strong>on</strong>s, for anyfunctor P : D → C, Equ Fun (γP, θP ) = (EP, iP ).Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>1<str<strong>on</strong>g>1.</str<strong>on</strong>g> C<strong>on</strong>sider the following serially commutative diagram in an arbitrarycategory KAfgBn mn ′m ′n ′′ m ′′A ′ f ′ B ′ i ′ C ′g ′ee ′ e ′′A ′′ f ′′ g ′′ B ′′ i ′′ C ′′Assume that all columns are coequalizers and also the first and sec<strong>on</strong>d rows arecoequalizers. Then also the third row is a coequalizer.Proof. In order to see that the third row is a fork, note that, by commutativity ofthe diagram and fork property of the sec<strong>on</strong>d row,i ′′ ◦ f ′′ ◦ e = i ′′ ◦ e ′ ◦ f ′ = e ′′ ◦ i ′ ◦ f ′ = e ′′ ◦ i ′ ◦ g ′ = i ′′ ◦ e ′ ◦ g ′= i ′′ ◦ g ′′ ◦ e.Since e is an epimorphism, this proves that the third row is a fork that is i ′′ ◦ f ′′ =i ′′ ◦ g ′′ .To c<strong>on</strong>clude we want to prove the universality of i ′′ . To do so, let us take anymorphism x : B ′′ → X such that x ◦ f ′′ = x ◦ g ′′ . Then we want to prove that thereexist a unique functorial morphism z : C ′′ → X such that z ◦ i ′′ = x.We observex ◦ e ′ ◦ f ′ = x ◦ f ′′ ◦ e = x ◦ g ′′ ◦ e = x ◦ e ′ ◦ g ′ .so we get thatx ◦ e ′ ◦ f ′ = x ◦ e ′ ◦ g ′ .iC7□


8Since the sec<strong>on</strong>d row is a coequalizer by assumpti<strong>on</strong>, there is a unique morphismy : C ′ → X such that(1) y ◦ i ′ = x ◦ e ′ .We calculatey ◦ n ′′ ◦ i = y ◦ i ′ ◦ n ′ (1)= x ◦ e ′ ◦ n ′ = x ◦ e ′ ◦ m ′ (1)= y ◦ i ′ ◦ m ′= y ◦ m ′′ ◦ iand since i is an epimorphism we get thaty ◦ n ′′ = y ◦ m ′′ .Since the third column is a coequalizer, there exists a unique morphism z : C ′′ → Xsuch thatThenz ◦ e ′′ = y.z ◦ i ′′ ◦ e ′ = z ◦ e ′′ ◦ i ′ = y ◦ i ′ = x ◦ e ′so we get that z ◦ i ′′ = x. Since e ′′ ◦ i ′ = i ′′ ◦ e ′ and e ′′ , e ′ , i ′ are epimorphism, wededuce that i ′′ is epimorphism and hence z is unique with respect to z ◦ i ′′ = x. □Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>1<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let F , F ′ : A → B be functors and α, β : F → F ′ be functorialmorphisms. Assume that, for every X ∈ A, B has coequalizers of αX and βXhence there exists (Q, q) = Coequ Fun (α, β), cf. Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>7. Assume that (P, p) =Coequ A (f, g) of morphisms f, g : X → Y in A and that both F and F ′ preserveCoequ A (f, g). Then also Q preserves Coequ A (f, g).Proof. The following diagram (in B) is serially commutative by naturalityF XαXβXF ′ XqXQXF fF gF ′ fF ′ gQfQgF YαYβYF ′ YqY QYF pF ′ pQpF PαPβPF ′ PqP QPThe columns are coequalizers by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>7. The first and sec<strong>on</strong>d rows are coequalizersby the assumpti<strong>on</strong> that F and F ′ preserve coequalizers. Thus the third row isa coequalizer by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>1<str<strong>on</strong>g>1.</str<strong>on</strong>g>□


Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>13 ([BM, Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>5]). C<strong>on</strong>sider the following serially commutative diagramin an arbitrary category KAiBee ′ e ′′A ′ i ′ B ′ f ′ C ′g ′n mn ′m ′n ′′ m ′′A ′′ i ′′ B ′′ f ′′ g ′′ C ′′Assume that all columns are equalizers and also the sec<strong>on</strong>d and third rows are equalizers.Then also the first row is an equalizer.Proof. Dual to Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>1<str<strong>on</strong>g>1.</str<strong>on</strong>g>Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>14. Let G,G ′ : C → K be functors and γ, θ : G → G ′ be functorialmorphisms. Assume that, for every X ∈ C, K has equalizers of γX and θX hencethere exists (E, e) = Equ Fun (γ, θ), cf. Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>8. Assume that (I, i) = Equ C (f, g)of morphisms f, g : X → Y in C and that both G and G ′ preserve Equ C (f, g). Thenalso E preserves Equ C (f, g).Proof. Dual to Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>1<str<strong>on</strong>g>2.</str<strong>on</strong>g>Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>15. Let Z, Z ′ , W, W ′ : A → B be functors, let a, b : Z → W and a ′ , b ′ :Z ′ → W ′ be functorial morphisms, let ϕ : Z → Z ′ and ψ : W → W ′ be functorialisomorphisms such thatψ ◦ a = a ′ ◦ ϕ and ψ ◦ b = b ′ ◦ ϕ.Assume that there exist (E, i) = Equ Fun (a, b) and (E ′ , i ′ ) = Equ Fun (a ′ , b ′ ). Then ϕinduces an isomorphism ̂ϕ : E → E ′ such that ϕ ◦ i = i ′ ◦ ̂ϕ.fgC9□□EˆϕiZϕE ′ i ′Z ′ b ′aWProof. Let us define ̂ϕ. Let us computebψa ′ W ′a ′ ◦ ϕ ◦ i = ψ ◦ a ◦ i defi= ψ ◦ b ◦ i = b ′ ◦ ϕ ◦ iand since (E ′ , i ′ ) = Equ Fun (a ′ , b ′ ) there exists a unique functorial morphism ̂ϕ : E →E ′ such thati ′ ◦ ̂ϕ = ϕ ◦ i.Note that ̂ϕ is m<strong>on</strong>o since so are i and i ′ and ϕ is an isomorphism. C<strong>on</strong>siderϕ −1 : Z ′ → Z and ψ −1 : W ′ → W . Then we havea ◦ ϕ −1 = ψ −1 ◦ a ′ and b ◦ ϕ −1 = ψ −1 ◦ b ′ .


10Let us computea ◦ ϕ −1 ◦ i ′ = ψ −1 ◦ a ′ ◦ i ′ def i ′= ψ −1 ◦ b ′ ◦ i ′ = b ◦ ϕ −1 ◦ i ′and since (E, i) = Equ Fun (a, b) there exists a unique functorial morphism ̂ϕ ′ : E ′ →E such thati ◦ ̂ϕ ′ = ϕ −1 ◦ i ′ .Then we havei ◦ ̂ϕ ′ ◦ ̂ϕ = ϕ −1 ◦ i ′ ◦ ̂ϕ = ϕ −1 ◦ ϕ ◦ i = iand since i is a m<strong>on</strong>omorphism we deduce thatSimilarlŷϕ ′ ◦ ̂ϕ = Id E .i ′ ◦ ̂ϕ ◦ ̂ϕ ′ = ϕ ◦ i ◦ ̂ϕ ′ = ϕ ◦ ϕ −1 ◦ i ′ = i ′and since i ′ is a m<strong>on</strong>omorphism we obtain that̂ϕ ◦ ̂ϕ ′ = Id E ′.Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>16. Let K : B → A be a full and faithful functor and let f, g : X → Y bemorphisms in B. If (KE, Ke) = Equ A (Kf, Kg) then (E, e) = Equ B (f, g).Proof. Since K is faithful, from (Kf) ◦ (Ke) = (Kg) ◦ (Ke) we get that f ◦ e = g ◦ e.Let h : Z → X be a morphism in B such that f ◦ h = g ◦ h. Then in A we get(Kf) ◦ (Kh) = (Kg) ◦ (Kh) and hence there exists a unique morphism ξ : KZ →KE such that (Ke) ◦ ξ = (Kh). Since ξ ∈ Hom A (KZ, KE) and K is full, thereexists a morphism ζ ∈ Hom B (Z, E) such that ξ = Kζ. Since K is faithful, from(Ke) ◦ (Kζ) = Kh we get e ◦ ζ = h. From the uniqueness of ξ, the <strong>on</strong>e of ζ easilyfollows.□Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>17. Let α, γ : F → G be functorial morphisms where F, G : A → Bare functors. Assume that, for every X ∈ A there exists Equ B (αX, γX). Let(E, i) = Equ Fun (α, γ) , where i : E → F . Then, for every X ∈ A and Y ∈ B wehave that(Hom B (Y, EX) , Hom B (Y, iX)) = Equ Sets (Hom B (Y, αX) , Hom B(Y, γX))which means thatwhere(Hom B (−, E) , Hom B (−, i)) = Equ Fun (Hom B (−, α) , Hom B(−, γ))Hom B (−, E) and Equ Fun (Hom B (−, α) , Hom B(−, γ)) : B op × A → Sets.Proof. We have thatHom B (Y, αX) ◦ Hom B (Y, iX) = Hom B (Y, (αX) ◦ (iX))= Hom B (Y, (γX) ◦ (iX)) = Hom B (Y, γX) ◦ Hom B (Y, iX)□


i.e. Hom B (Y, iX) equalizes Hom B (Y, αX) and Hom B (Y, γX) , for every X ∈ A andY ∈ B. Let now ζ : Z → Hom B (Y, F X) be a map such that Hom B (Y, αX) ◦ ζ =Hom B (Y, γX) ◦ ζ. Then, for every X ∈ A, Y ∈ B and for every z ∈ Z we have(αX) ◦ ζ (z) = Hom B (Y, αX) (ζ (z)) = Hom B (Y, γX) ◦ (ζ (z))= (γX) ◦ ζ (z) .Then, for every X ∈ A and Y ∈ B there exists a unique morphism θ z : Y → EX inB such that(iX) ◦ θ z = ζ (z)i.e.Hom B (Y, iX) (θ z ) = ζ (z) .The assignment z ↦→ θ z defines a map θ : Z → Hom B (Y, EX) such that Hom B (Y, iX)◦θ = ζ.□<str<strong>on</strong>g>2.</str<strong>on</strong>g><str<strong>on</strong>g>2.</str<strong>on</strong>g> C<strong>on</strong>tractible Equalizers and Coequalizers.11Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>18. Let C be a category.eightuple (Z, X, Y, d, d 0 , d 1 , s, t) whereA c<strong>on</strong>tractible ( or split) equalizer is asuch thatZ d Xsd 0td 1 Yt ◦ d 0 = Id Xs ◦ d = Id Zt ◦ d 1 = d ◦ sd 0 ◦ d = d 1 ◦ d.Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>19. Let C be a category and let (Z, X, Y, d, d 0 , d 1 , s, t) be a c<strong>on</strong>tractibleequalizer. Then (Z, d) = Equ C (d 0 , d 1 ) .Proof. Let ξ : L → X be such thatthenLetso thatd 0 ◦ ξ = d 1 ◦ ξξ = Id X ◦ ξ = t ◦ d 0 ◦ ξ = t ◦ d 1 ◦ ξ = d ◦ (s ◦ ξ) .ξ ′ = s ◦ ξ : L → Zξ = d ◦ ξ ′ .Let now ξ ′′ : L → Z be such that d ◦ ξ ′′ = ξ. Thenξ ′′ = Id Z ◦ ξ ′′ = s ◦ d ◦ ξ ′′ = s ◦ ξ = ξ ′ .□


12Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>20. Let C be a category, let (Z, X, Y, d, d 0 , d 1 , s, t) be a c<strong>on</strong>tractibleequalizer and let F : C → D be a functor. Thenis a c<strong>on</strong>tractible equalizer in D.F Z F d F XF sF d 0F tF d 1 F YProof. Since functors preserve compositi<strong>on</strong>, the statement is proved.Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>2<str<strong>on</strong>g>1.</str<strong>on</strong>g> Assume thatZ d Xis an equalizer and there exists t : Y → X such thatd 0d 1 Y□t ◦ d 0 = Id Xd 1 ◦ t ◦ d 1 = d 0 ◦ t ◦ d 1Then there exists s : X → Z such that (Z, X, Y, d, d 0 , d 1 , s, t) is a c<strong>on</strong>tractible equalizer.Proof. Since d 1 ◦ t ◦ d 1 = d 0 ◦ t ◦ d 1 and (Z, d) = Equ (d 0 , d 1 ), there exists s : X → Zsuch thatt ◦ d 1 = d ◦ s.Let us computed ◦ s ◦ d = t ◦ d 1 ◦ d = t ◦ d 0 ◦ d = dand since d is m<strong>on</strong>o we gets ◦ d = Id Z .□Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>2<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let F : C → D be a functor. An F -c<strong>on</strong>tractible equalizer pair isa parallel pairin C such that there exists a c<strong>on</strong>tractible equalizerin D.XD d F Xsd 0d 1All the previous <str<strong>on</strong>g>results</str<strong>on</strong>g> can be c<strong>on</strong>sidered in the opposite category so that theygive the dual noti<strong>on</strong>, namely c<strong>on</strong>tractible coequalizers.Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>23. Let C be a category.(C, X, Y, c, d 0 , d 1 , u, v) whereF d 0tF d 1 Y F YA c<strong>on</strong>tractible coequalizer is a eightupleXd 0vd 1 YcuC


13such thatd 0 ◦ v = Id Yd 1 ◦ v = u ◦ cc ◦ u = Id Cc ◦ d 0 = c ◦ d 1 .Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>24 ([BW, Propositi<strong>on</strong> 2 (a)]). Let C be a category and let(C, X, Y, c, d 0 , d 1 , u, v) be a c<strong>on</strong>tractible coequalizer. Then (C, c) = Coequ C (d 0 , d 1 ) .Proof. Dual to Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>24.Definiti<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>25. Let F : C → D be a functor. An F -c<strong>on</strong>tractible coequalizer pairis a parallel pairin C such that there exists a c<strong>on</strong>tractible coequalizerin D.<str<strong>on</strong>g>2.</str<strong>on</strong>g>3. Adjuncti<strong>on</strong>.F XXF d 0vF d 1d 0d 1<str<strong>on</strong>g>2.</str<strong>on</strong>g>26. Let L : B → A and R : A → B be functors. Recall that L is called a leftadjoint of R, or R is called a right adjoint of L if there exists functorial morphisms F Y Yη : Id B → RL and ɛ : LR → Id Asuch that(ɛL) ◦ (Lη) = L and (Rɛ) ◦ (ηR) = R.In this case we also say that (L, R) is an adjuncti<strong>on</strong> and η is called the unit of theadjuncti<strong>on</strong> while ɛ is called the counit of the adjuncti<strong>on</strong>. Leta X,Y : Hom A (LY, X) → Hom B (Y, RX)be the isomorphism of the adjuncti<strong>on</strong> (L, R). Then, for every ξ ∈ Hom A (LY, X)and for every ζ ∈ Hom B (Y, RX) we also havea X,Y (ξ) = (Rξ) ◦ (ηY ) and a −1X,Y(ζ) = (ɛX) ◦ (Lζ) .Moreover, for every X ∈ A, Y ∈ B, unit and counit of the adjuncti<strong>on</strong> are given byηY = a LY,Y (Id LY ) and ɛX = a −1X,RX (Id RX) .<str<strong>on</strong>g>2.</str<strong>on</strong>g>27. Let (L, R) be an adjuncti<strong>on</strong>. Then L preserves colimits and thus coequalizersand R preserves limits and thus equalizers. We also say that L is right exact andthat R is left exact.Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>28. Let (L, R) be an adjuncti<strong>on</strong> with unit η and counit ɛ, where L : B → Aand R : A → B. For every Y ′ ∈ B the following c<strong>on</strong>diti<strong>on</strong>s are equivalent:(1) L −,Y ′ = a −1LY ′ ,− ◦ Hom B (−, ηY ′ ) is a functorial isomorphismcuC□


14(2) Hom B (−, ηY ′ ) is a functorial isomorphism(3) ηY ′ is an isomorphism (η is a functorial isomorphism).Proof. Since (L, R) is an adjuncti<strong>on</strong>, a X,Y : Hom A (LY, X) → Hom B (Y, RX) is anisomorphism for every X ∈ A and for every Y ∈ B, so that (1) is equivalent to (2).(3) ⇒ (2) Let η −1 Y ′ be the two-sided inverse of ηY ′ . Then Hom B (−, η −1 Y ′ ) is theinverse of the functor Hom B (−, ηY ′ ) . In fact, let f ∈ Hom B (Y, Y ′ ) and compute[ (HomB −, η −1 Y ′) ◦ Hom B (−, ηY ′ ) ] ((f) = Hom B −, η −1 Y ′) (ηY ′ ◦ f)= ( η −1 Y ′) ◦ (ηY ′ ) ◦ f = fand[HomB(−, ηY ′ ) ◦ Hom B(−, η −1 Y ′)] (f) = Hom B (−, ηY ′ ) (( η −1 Y ′) ◦ f )= (ηY ′ ) ◦ ( η −1 Y ′) ◦ f = f.Thus Hom B (−, ηY ′ ) is a functorial isomorphism.(2) ⇒ (3) Since Hom B (−, ηY ′ ) is a functorial isomorphism, in particularHom B (RLY ′ , ηY ′ ) : Hom B (RLY ′ , Y ′ ) → Hom B (RLY ′ , RLY ′ ) is an isomorphism.Thus, there exists f ∈ Hom B (RLY ′ , Y ′ ) such that (ηY ′ ) ◦ f = Id RLY ′ which impliesthat ηY ′ is an epimorphism. Moreover we also have Hom B (Y ′ , ηY ′ ) (Id Y ′) = ηY ′ =(ηY ′ ) ◦ f ◦ (ηY ′ ) = Hom B (Y ′ , ηY ′ ) (f ◦ (ηY ′ )) . Since Hom B (−, ηY ′ ) is a functorialisomorphism, also Hom B (Y ′ , ηY ′ ) is an isomorphism. Thus we deduce that Id Y ′ =f ◦ (ηY ′ ) which implies that ηY ′ is also a m<strong>on</strong>omorphism and moreover ηY ′ has atwo-sided inverse f : RLY ′ → Y ′ .□Remark <str<strong>on</strong>g>2.</str<strong>on</strong>g>29. Note that, for every f ∈ Hom B (Y, Y ′ ) we haveL Y,Y ′ (f) = [ a −1LY ′ ,Y ◦ Hom B (Y, ηY ′ ) ] (f) = a −1LY ′ ,Y (ηY ′ ◦ f)= (ɛLY ′ ) ◦ (LηY ′ ) ◦ (Lf) (L,R)adj= Lf.Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>30. Let (L, R) be an adjuncti<strong>on</strong> with unit η and counit ɛ, where L : B → Aand R : A → B. For every X ∈ A the following c<strong>on</strong>diti<strong>on</strong>s are equivalent:(1) R X,− = a −,RX ◦ Hom A (ɛX, −) is a functorial isomorphism(2) Hom A (ɛX, −) is a functorial isomorphism(3) ɛX is an isomorphism (ɛ is a functorial isomorphism).Proof. Dual to proof of Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>28.Remark <str<strong>on</strong>g>2.</str<strong>on</strong>g>3<str<strong>on</strong>g>1.</str<strong>on</strong>g> Note that, for every f ∈ Hom A (X, X ′ ) we haveR X,X ′ (f) = [a X ′ ,RX ◦ Hom A (ɛX, X ′ )] (f) = a X ′ ,RX (f ◦ ɛX) = R (f ◦ ɛX) ◦ (ηRX)= (Rf) ◦ (RɛX) ◦ (ηRX) (L,R)adj= Rf.Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>3<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let (L, R) be an adjuncti<strong>on</strong> with unit η and counit ɛ, whereL : B → A and R : A → B. Then R is full and faithful if and <strong>on</strong>ly if ɛ is afunctorial isomorphism.Proof. To be full and faithful for R means that the mapφ : Hom A (X, X ′ ) −→ Hom B (RX, RX ′ )□


f ↦→ Rfis bijective for every X, X ′ ∈ A. Since this φ (f) = R (f) = R X,X ′ (f) , φ is anisomorphism if and <strong>on</strong>ly if R X,X ′ is an isomorphism for every X, X ′ ∈ A and, byLemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>30, if and <strong>on</strong>ly if ɛX is an isomorphism for every X ∈ A.□Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>33. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B suchthat L is an equivalence of categories. Then R is also an equivalence of categories.Proof. By assumpti<strong>on</strong> L : B → A is an equivalence of categories with R ′ : A → B.Then it is well-known that (L, R ′ ) is an adjuncti<strong>on</strong>. By the uniqueness of theadjoint, we have that R ≃ R ′ which is an equivalence. Thus R is also an equivalenceof categories.□3. M<strong>on</strong>adsDefiniti<strong>on</strong> 3.<str<strong>on</strong>g>1.</str<strong>on</strong>g> A m<strong>on</strong>ad <strong>on</strong> a category A is a triple A = (A, m A , u A ) , whereA : A → A is a functor, m A : AA → A and u A : A → A are functorial morphismssatisfying the associativity and the unitality c<strong>on</strong>diti<strong>on</strong>s:m A ◦ (m A A) = m A ◦ (Am A ) and m A ◦ (Au A ) = A = m A ◦ (u A A) .Definiti<strong>on</strong> 3.<str<strong>on</strong>g>2.</str<strong>on</strong>g> A morphism between two m<strong>on</strong>ads A = (A, m A , u A ) and B =(B, m B , u B ) <strong>on</strong> a category A is a functorial morphism ϕ : A → B such thatϕ ◦ m A = m B ◦ (ϕϕ) and ϕ ◦ u A = u B .Example 3.3. Let (A, m A , u A ) be an R-ring where R is an algebra. Then• A is an R-R-bimodule• m A : A ⊗ R A → A is a morphism of R-R-bimodules• u A : R → A is a morphism of R-R-bimodules satisfying the followingm A ◦(m A ⊗ R A) = m A ◦(A ⊗ R m A ) , m A ◦(A ⊗ R u A ) = r A and m A ◦(u A ⊗ R A) = l Awhere r A : A ⊗ R R → A and l A : R ⊗ R A → A are the right and leftc<strong>on</strong>straints. LetA = − ⊗ R A : Mod-R → Mod-Rm A = − ⊗ R m A : − ⊗ R A ⊗ R A → − ⊗ R Au A = (− ⊗ R u A ) ◦ r−−1 : − → − ⊗ R R → − ⊗ R AWe prove that A = (A, m A , u A ) is a m<strong>on</strong>ad <strong>on</strong> the category Mod-R. Forevery M ∈ Mod-R we compute[m A ◦ (m A A)] (M) = (M ⊗ R m A ) ◦ (M ⊗ R A ⊗ R m A ) = M ⊗ R [m A ◦ (A ⊗ R m A )]= M ⊗ R [m A ◦ (m A ⊗ R A)] = (M ⊗ R m A ) ◦ (M ⊗ R m A ⊗ R A)= [m A ◦ (Am A )] (M)[m A ◦ (Au A )] (M) = (M ⊗ R m A ) ◦ [ ](M ⊗ R u A ) ◦ r −1M ⊗R A= (M ⊗ R m A ) ◦ (M ⊗ R u A ⊗ R A) ◦ ( r −1M ⊗ R A )= (M ⊗ R [m A ◦ (u A ⊗ R A)]) ◦ ( r −1M ⊗ R A )= (M ⊗ R l A ) ◦ ( r −1M⊗ R A ) = M ⊗ R A = AM15


16and[m A ◦ (u A A)] (M) = (M ⊗ R m A ) ◦ (M ⊗ R A ⊗ R u A ) ◦ r −1M⊗ R A= (M ⊗ R [m A ◦ (A ⊗ R u A )]) ◦ r −1M⊗ R A= (M ⊗ R r A ) ◦ r −1M⊗ R A = M ⊗ R A = AM.Propositi<strong>on</strong> 3.4 ([H]). Let (L, R) be an adjuncti<strong>on</strong> with unit η and counit ɛ whereL : B → A and R : A → B. Then RL = (RL, RɛL, η) is a m<strong>on</strong>ad <strong>on</strong> the category B.Proof. We have to prove that(RɛL)◦(RLRɛL) = (RɛL)◦(RɛLRL) and (RɛL)◦RLη = RL = (RɛL)◦(ηRL) .In fact we haveand(RɛL) ◦ (RLRɛL) ɛ = (RɛL) ◦ (RɛLRL)(RɛL) ◦ RLη (L,R)= RL (L,R)= (RɛL) ◦ (ηRL) .Definiti<strong>on</strong> 3.5. A left module functor for a m<strong>on</strong>ad A = (A, m A , u A ) <strong>on</strong> a categoryA is a pair ( Q, A µ Q)where Q : B → A is a functor and A µ Q : AQ → Q is a functorialmorphism satisfying:A µ Q ◦ ( A A µ Q)= A µ Q ◦ (m A Q) and Q = A µ Q ◦ (u A Q) .Definiti<strong>on</strong> 3.6. A right module functor for a m<strong>on</strong>ad A = (A, m A , u A ) <strong>on</strong> a categoryA is a pair ( P, µ A P)where P : A → B, is a functor and µAP : P A → P is a functorialmorphism such thatµ A P ◦ ( µ A P A ) = µ A P ◦ (P m A ) and P = µ A P ◦ (P u A ) .Remark 3.7. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let ( )Q, A µ Q bea left A-module functor and ( )P, µ A P be a right A-module functor. By the unitalityproperty of A µ Q and µ A P we deduce that they are both epimorphism.Definiti<strong>on</strong> 3.8. For two m<strong>on</strong>ads A = (A, m A , u A ) <strong>on</strong> a category A and B =(B, m B , u B ) <strong>on</strong> a category B, a A-B-bimodule functor is a triple ( Q, A µ Q , µ Q) B , whereQ : B → A is a functor and ( ) ( )Q, A µ Q is a left A-module functor, Q, µBQ is a rightB-module functor such that in additi<strong>on</strong>A µ Q ◦ ( )Aµ B Q = µBQ ◦ (A µ Q B ) .Definiti<strong>on</strong> 3.9. A module for a m<strong>on</strong>ad A = (A, m A , u A ) <strong>on</strong> a category A is a pair(X, A µ X)where X ∈ A and A µ X : AX → X is a morphism in A such thatA µ X ◦ ( A A µ X)= A µ X ◦ (m A X) and X = A µ X ◦ (u A X) .A morphism between two A-modules ( X, A µ X)and(X ′ , A µ X ′)is a morphism f :X → X ′ in A such thatA µ X ′ ◦ (Af) = f ◦ A µ X .We will denote by A A the category of A-modules and their morphisms. This is theso-called Eilenberg-Moore category which is sometimes also denoted by A A .□


Remark 3.10. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let ( X, A µ X)∈AA. From the unitality property of A µ X we deduce that A µ X is epi for every(X, A µ X)∈ A A and that u A X is m<strong>on</strong>o for every ( X, A µ X)∈ A A, i.e. u A is am<strong>on</strong>omorphism.Definiti<strong>on</strong> 3.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Corresp<strong>on</strong>ding to a m<strong>on</strong>ad A = (A, m A , u A ) <strong>on</strong> A, there is anadjuncti<strong>on</strong> ( A F, A U) where A U is the forgetful functor and A F is the free functorAU : AA → A AF : A → AA(X, A µ X)→ X X → (AX, mA X)f → f f → Af.Note that A U A F = A. The unit of this adjuncti<strong>on</strong> is given by the unit u A of them<strong>on</strong>ad A:u A : A → A U A F = A.The counit λ A : A F A U → A A of this adjuncti<strong>on</strong> is defined by settingTherefore we haveAU ( λ A(X, A µ X))= A µ X for every ( X, A µ X)∈ A A.(λ AA F ) ◦ ( A F u A ) = A F and ( A Uλ A ) ◦ (u AA U) = A U.Propositi<strong>on</strong> 3.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A. Then A U isa faithful functor. Moreover, given Z, W ∈ A A we have thatZ = W if and <strong>on</strong>ly if A U (Z) = A U (W ) and A U (λ A Z) = A U (λ A W ) .In particular, if F, G : X → A A are functors, we haveF = G if and <strong>on</strong>ly if A UF = A UG and A U (λ A F ) = A U (λ A G)Propositi<strong>on</strong> 3.13. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A. Then( A U, ( A Uλ A )) is a left A-module functor.Proof. We have to prove that( A U A λ) ◦ (A A U A λ) = ( A U A λ) ◦ (m AA U) and( A U A λ) ◦ (u AA U) = A U.Let us c<strong>on</strong>sider ( X, A µ X)∈ A A. We have to show that(AU A λ ( X, A µ X))◦(AA U A λ ( X, A µ X))=(AU A λ ( X, A µ X))◦(mAA U ( X, A µ X))17and that(AU A λ ( X, A µ X))◦(uAA U ( X, A µ X))= A U ( X, A µ X)i.e. thatA µ X ◦ ( A A µ X)= A µ X ◦ (m A X)andA µ X ◦ (u A X) = Xwhich hold since ( X, A µ X)is an A-module.□


18Propositi<strong>on</strong> 3.14. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let(X, A µ X)be a module for A. Then we have(X, A µ X)= CoequA(A A µ X , m A X ) .In particular if ( Q, A µ Q)is a left A-module functor, then we have(Q, A µ Q)= CoequFun(A A µ Q , m A Q ) .Proof. Note thatAAXm A Xu A AXA µ X AXis a c<strong>on</strong>tractible coequalizer and thus, by Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>24,(X, A µ X)= CoequA(A A µ X , m A X ) . Let now ( Q, A µ Q)be a left A-module functorwhere Q : B → A. Then, by the foregoing, for every Y ∈ B we have that(QY, A µ Q Y ) = ( QY, A µ QY)= CoequA(A A µ QY ,m A QY ) = Coequ A(A A µ Q Y,m A QY ) .A µ XThen, by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>7, we have that ( Q, A µ Q)= CoequFun(A A µ Q , m A Q ) .Corollary 3.15. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let ( A F, A U)be the associated adjuncti<strong>on</strong>. Then ( A U, ( A Uλ A )) is a left A-module functor andu A X( A U, ( A Uλ A )) = Coequ Fun (A A Uλ A , m AA U) .Proof. By Propositi<strong>on</strong> 3.13 ( A U, ( A Uλ A )) is a left A-module functor. By Propositi<strong>on</strong>3.14 we get that ( A U, ( A Uλ A )) = Coequ Fun (A A Uλ A , m AA U) . □Propositi<strong>on</strong> 3.16. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let(P, µAP)be a right A-module functor, then we have(2)Proof. Note thatX(P, µAP)= CoequFun(µAP A, P m A).P AAP m AP Au Aµ A P A P Ais a c<strong>on</strong>tractible coequalizer and thus, by Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>24,(P, µAP)= CoequFun(µAP A, P m A). □Lemma 3.17. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let ( Q, A µ Q)bea left and ( P, µ A P)be a right A-module functors where Q : Q → A and P : A → P.Let F : X → Q and G : P → B be functors. Then(1) ( QF, A µ Q F ) is a left A-module functor and(2) ( GP, Gµ A P)is a right A-module functor.Proof. Fromwe deduce thatµ A PP u AA µ Q ◦ ( A A µ Q)= A µ Q ◦ (m A Q) and Q = A µ Q ◦ (u A Q)A µ Q F ◦ ( A A µ Q F ) = A µ Q F ◦ (m A QF ) and QF = A µ Q F ◦ (u A QF )P□


19and fromµ A P ◦ ( µ A P A ) = µ A P ◦ (P m A ) and P = µ A P ◦ (P A)we deduce thatGµ A P ◦ ( Gµ A P A ) = Gµ A P ◦ (GP m A ) and GP = Gµ A P ◦ (GP A) .□Propositi<strong>on</strong> 3.18. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and let( A F, A U) be the adjuncti<strong>on</strong> associated. Then A U reflects isomorphisms.Proof. Let f : ( X, A µ X)→(Y, A µ Y)be a morphism in A A such that A Uf has atwo-sided inverse f −1 in A. SinceA µ X ′ ◦ (Af) = f ◦ A µ Xwe get thatf −1 ◦ A µ X ′ = A µ X ◦ ( Af −1) .□Lemma 3.19 ([BMV, Lemma 4.1]). Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a categoryA, let ( P, µ A P)be a right A-module functor and let(Q, A µ Q)be a left A-modulefunctor where P : A → B, Q : B → A. Then any coequalizer preserved by P A isalso preserved by P and any coequalizer preserved by AQ is also preserved by Q.Proof. C<strong>on</strong>sider the following coequalizerXfg Yz Zin the category A and assume that P A preserves it. By applying to it the functorsP A and P we get the following diagram in BP u A XP AXP Xµ A P XP AfP AgP fP gP u A YP AYP Yµ A P YP AzP zP u A ZP AZP Z.µ A P ZBy assumpti<strong>on</strong>, the first row is a coequalizer. Assume that there exists a morphismh : P Y → H such thath ◦ (P f) = h ◦ (P g) .Then, by composing with µ A P X we geth ◦ (P f) ◦ ( µ A P X ) = h ◦ (P g) ◦ ( µ A P X )and since µ A Pis a functorial morphism we obtainh ◦ ( µ A P Y ) ◦ (P Af) = h ◦ ( µ A P Y ) ◦ (P Ag) .Since (P AZ, P Az) = Coequ B (P Af, P Ag), there exists a unique morphism k :P AZ → H such that(3) k ◦ (P Az) = h ◦ ( µ A P Y ) .


20By composing with P u A Y we getk ◦ (P Az) ◦ (P u A Y ) = h ◦ ( µ A P Y ) ◦ (P u A Y )and thusk ◦ (P u A Z) ◦ (P z) = h.Let l := k ◦ (P u A Z) : P Z → H. Then we havel ◦ (P z) = k ◦ (P u A Z) ◦ (P z) u A= k ◦ (P Az) ◦ (P u A Y )(3)= h ◦ ( µ A P Y ) ◦ (P u A Y ) = h.Let l ′ : P Z → H be another morphism such thatThen we havel ′ ◦ (P z) = h.l ◦ ( µ A P Z ) ◦ (P Az) = l ◦ (P z) ◦ ( µ A P Y ) = h ◦ ( µ A P Y )= l ′ ◦ (P z) ◦ ( µ A P Y ) = l ′ ◦ ( µ A P Z ) ◦ (P Az) .Since P A preserves coequalizers, we have that P Az is an epimorphism. Since µ A P Zis also an epimorphism, we deduce that l = l ′ . Therefore we obtain that (P Z, P z) =Coequ B (P f, P g) . The sec<strong>on</strong>d statement can be proved similarly. We c<strong>on</strong>sider theabove coequalizerXfg Yin the category B and assume that AQ preserves it. By applying to it the functorsAQ and Q we get the following diagram in Au A QXAQXQXA µ Q XAQfAQgQfQgu A QYAQYQYA µ Q YzAQzQz Zu A QZAQZQZA µ Q ZBy assumpti<strong>on</strong>, the first row is a coequalizer. Assume that there exists a morphismh : QY → H such thath ◦ (Qf) = h ◦ (Qg) .Then, by composing with A µ Q X we geth ◦ (Qf) ◦ (A µ Q X ) = h ◦ (Qg) ◦ (A µ Q X )and since A µ Q is a functorial morphism we obtainh ◦ (A µ Q Y ) ◦ (AQf) = h ◦ (A µ Q Y ) ◦ (AQg) .Since (AQZ, AQz) = Coequ B (AQf, AQg), there exists a unique morphism k :AQZ → H such that(4) k ◦ (AQz) = h ◦ (A µ Q Y ) .By composing with u A QY we getk ◦ (AQz) ◦ (u A QY ) = h ◦ (A µ Q Y ) ◦ (u A QY )


and thusk ◦ (u A QZ) ◦ (Qz) = h.Let l := k ◦ (u A QZ) : QZ → H. Then we havel ◦ (Qz) = k ◦ (u A QZ) ◦ (Qz) u A= k ◦ (AQz) ◦ (u A QY )(4)= h ◦ (A µ Q Y ) ◦ (u A QY ) = h.Let l ′ : QZ → H be another morphism such thatThen we havel ′ ◦ (Qz) = h.l ◦ (A µ Q Z ) ◦ (AQz) = l ◦ (Qz) ◦ (A µ Q Y ) = h ◦ (A µ Q Y )= l ′ ◦ (Qz) ◦ (A µ Q Y ) = l ′ ◦ (A µ Q Z ) ◦ (AQz) .Since AQ preserves coequalizers, we have that AQz is an epimorphism. Since A µ Q Zis also an epimorphism, we deduce that l = l ′ . Therefore we obtain that (QZ, Qz) =Coequ B (Qf, Qg) .□Lemma 3.20 ([BMV, Lemma 4.2]). Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a categoryA and let f, g : ( X, A µ X)→(Y, A µ Y)be morphisms in A A. Assume that there exists(C, c) = Coequ A ( A Uf, A Ug) and assume that AA preserves coequalizers. Then thereexists (Γ, γ) = Coequ A A (f, g) and A U (Γ, γ) = (C, c) .Proof. Since AA preserves coequalizers and (A, m A ) is a right A-module functor, alsoA preserves coequalizers by Lemma 3.19, in particular, A preserves (C, c) . Sincec ◦ A µ Y ◦ (A A Uf) f∈ AA= c ◦ ( A Uf) ◦ A µ Xccoequ= c ◦ ( A Ug) ◦ A µ Xg∈ A A= c ◦ A µ Y ◦ (A A Ug)by the universal property of the coequalizer (AC, Ac) there exists a unique morphismA µ C : AC → C such thatc ◦ A µ Y = A µ C ◦ (Ac) .Moreover, by composing with u A Y this identity we getSince c is an epimorphism we obtainc = A µ C ◦ (Ac) ◦ (u A Y ) u A= A µ C ◦ (u A C) ◦ c.C = A µ C ◦ (u A C) .Now, c<strong>on</strong>sider the following serially commutative diagram21m A XAAX A A µ XAA A Uf AA A Ug m A YAAYAAcAACAA µ Ym A CAA µ CA A UfAXAY ACA A UgAcA µ XA µ YXAUfAUgYcA µ C C.


22Since we already observed that the columns are coequalizers and also the first andthe sec<strong>on</strong>d row are coequalizers by Propositi<strong>on</strong> 3.14, in view of Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>11 also thethird row is a coequalizer, so that (C, c) has a left A-module structure, i.e. thereexists (Γ, γ) ∈ A A such that (Γ, γ) = Coequ A A (f, g) and A U (Γ, γ) = (C, c) . □Lemma 3.21 ([BMV, Lemma 4.3]). Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a categoryA with coequalizers and let ( A F, A U) be the adjuncti<strong>on</strong> associated. The followingstatements are equivalent:(i) A : A → A preserves coequalizers(ii) AA : A → A preserves coequalizers(iii) A A has coequalizers and they are preserved by A U : A A → A(iv) A U : A A → A preserves coequalizers.Proof. (i) ⇒ (ii) and (iii) ⇒ (iv) are clear.(ii) ⇒ (iii) follows by Lemma 3.20.(iv) ⇒ (i) Note that A F is a left adjoint, so that in particular it preserves coequalizers.Then A U A F = A also preserves coequalizers.□Lemma 3.2<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A and assume that Apreserves equalizers. Then A F preserves equalizers where ( A F, A U) is the adjuncti<strong>on</strong>associated to the m<strong>on</strong>ad.Proof. LetE e Xbe an equalizer in A. Let us c<strong>on</strong>sider the fork obtained by applying the functor A Fto the equalizeri.e.(AE, m A E)AF E A F e AF XAe (AX, m A X)fgAF fAF gAfAg Y AF Y (AY, m A Y )Now, let ( Z, A µ Z)∈ A A and z : ( Z, A µ Z)→ (AX, mA X) be a morphism in A A suchthat (Af) ◦ z = (Ag) ◦ z. Since A preserves equalizers, we know that (AE, Ae) =Equ A (Af, Ag) . By the universal property of the equalizer (AE, Ae) in A, thereexists a unique morphism z ′ : Z → AE in A such that (Ae) ◦ z ′ = z. We now wantto prove that z ′ is a morphism in A A, i.e. that (m A E) ◦ (Az ′ ) = z ′ ◦ A µ Z . Since z isa morphism in A A we have that(m A X) ◦ (Az) = z ◦ A µ Zand since also Ae is a morphism in A A we have thatThen we have(m A X) ◦ (AAe) = (Ae) ◦ (m A E) .(Ae) ◦ (m A E) ◦ (Az ′ ) Ae∈ AA= (m A X) ◦ (AAe) ◦ (Az ′ )propz= (m A X) ◦ (Az) z∈ AA= z ◦ A µ Zpropz= (Ae) ◦ z ′ ◦ A µ Z


and since A preserves equalizers, Ae is a m<strong>on</strong>omorphism, so that we get(m A E) ◦ (Az ′ ) = z ′ ◦ A µ Z .Lemma 3.23. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A, let L, M : B → Abe functors and let µ : AL → L be an associative and unital functorial morphism,that is (L, µ) is a left A-module functor. Let h : L → M and let ϕ : AM → M befunctorial morphisms such that(5) h ◦ µ = ϕ ◦ (Ah) .If AAh and h are epimorphisms, then ϕ is associative and unital, that is (M, ϕ) isa left A-module functor.Proof. We calculateϕ ◦ (Aϕ) ◦ (AAh) (5)= ϕ ◦ (Ah) ◦ (Aµ) (5)= h ◦ µ ◦ (Aµ)µis ass.= h ◦ µ ◦ (m A L) (5)= ϕ ◦ (Ah) ◦ (m A L) m A= ϕ ◦ (m A M) ◦ (AAh) .Since AAh is an epimorphism, we deduce that ϕ is associative. Moreover we haveϕ ◦ (u A M) ◦ h u A= ϕ ◦ (Ah) ◦ (u A L) (5)= h ◦ µ ◦ (u A L) = h.Since h is an epimorphism, we get that ϕ is unital.3.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Liftings of module functors.Propositi<strong>on</strong> 3.24 ([Ap] and [J]). Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a categoryA and let B = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> a category B and let Q : A → B be afunctor. Then there is a bijecti<strong>on</strong> between the following collecti<strong>on</strong>s of dataF functors ˜Q : A A → B B that are liftings of Q (i.e. B U ˜Q = Q A U)M functorial morphisms Φ : BQ → QA such thatΦ ◦ (m B Q) = (Qm A ) ◦ (ΦA) ◦ (BΦ) and Φ ◦ (u B Q) = Qu Agiven by( )a : F → M where a ˜Q =( )BUλ B ˜QA F ◦ ( B U B F Qu A )b : M → F where B Ub (Φ) = Q A U and B Uλ B b (Φ) = (Q A Uλ A ) ◦ Φ i.e.b : M → F where b (Φ) (( X, A µ X))=(QX,(Q A µ X)◦ (ΦX))and b (Φ) (f) = Q (f) .Proof. Let ˜Q : A A → B B be a lifting of the functor Q : A → B (i.e. B U ˜Q = Q A U).Define a functorial morphism φ : B F Q → ˜Q A F as the composite( )φ := λ B ˜QA F ◦ ( B F Qu A )where u A : A → A U A F = A is also the unit of the adjuncti<strong>on</strong> ( A F, A U) and λ B :BF B U → B B is the counit of the adjuncti<strong>on</strong>. Let now defineΦ def= B Uφ : B U B F Q = BQ → B U ˜Q A F = Q A U A F = QA.23□□


24We have to prove that such a Φ satisfies Φ ◦ (m B Q) = (Qm A ) ◦ (ΦA) ◦ (BΦ) andΦ ◦ (u B Q) = Qu A . First, let us compute()(Qm A ) ◦ (ΦA) ◦ (BΦ) = (Qm A ) ◦ BUλ B ˜QA F A ◦ ( B U B F Qu A A)()◦ B B Uλ B ˜QA F ◦ (B B U B F Qu A )()AUλ AA F= (Q A Uλ AA F ) ◦ BUλ B ˜QA F A()◦ ( B U B F Qu A A) ◦ B B Uλ B ˜QA F ◦ (B B U B F Qu A )(eQlifting= BU ˜Qλ) ()AA F ◦ BUλ B ˜QA F A()◦ ( B U B F Qu A A) ◦ B B Uλ B ˜QA F ◦ (B B U B F Qu A )[( ) ( )]= B U ˜QλAA F ◦ λ B ˜QA F A ◦ ( B F Qu A A)()◦ B B Uλ B ˜QA F ◦ (BBQu A )[( ) (λ=BB U λ B ˜QA F ◦ BF B U ˜Qλ)]AA F ◦ ( B F Qu A A)()◦ B B Uλ B ˜QA F ◦ (BBQu A )[( )]eQlifting= B U λ B ˜QA F ◦ ( B F Q A Uλ AA F ) ◦ ( B F Qu A A)()◦ B B Uλ B ˜QA F ◦ (BBQu A )[( )]AUλ AA F= B U λ B ˜QA F ◦ ( B F Qm A ) ◦ ( B F Qu A A)()◦ B B Uλ B ˜QA F ◦ (BBQu A )( ) ()Am<strong>on</strong>ad= BUλ B ˜QA F ◦ B B Uλ B ˜QA F ◦ (BBQu A )( ) (eQisBmod= BUλ B ˜QA F ◦ m BB U ˜Q)A F ◦ (BBQu A )( )m=BBUλ B ˜QA F ◦ (BQu A ) ◦ (m B Q)( )= BUλ B ˜QA F ◦ ( B U B F Qu A ) ◦ (m B Q)Moreover we have= ( B Uφ) ◦ (m B Q) = Φ ◦ (m B Q) .( )BUλ B ˜QA F ◦ ( B U B F Qu A ) ◦ (u B Q)Φ ◦ (u B Q) = ( B Uφ) ◦ (u B Q) =( )u=BBUλ B ˜QA F ◦ (u B Q A U A F ) ◦ (Qu A )( ) (eQlifting= BUλ B ˜QA F ◦ u BB U ˜Q)A F◦ (Qu A ) ( BF, B U)adj= Qu A .


C<strong>on</strong>versely, let Φ be a functorial morphism satisfying Φ ◦ (m B Q) = (Qm A ) ◦ (ΦA) ◦(BΦ) ( and ) Φ ◦ (u B Q) = Qu A . We define ˜Q : AA → B B by setting, for everyX, A µ X ∈ A A,˜Q (( X, A µ X))=(QX,(Q A µ X)◦ (ΦX)).We have to check that ( Q (X) , ( Q A µ X)◦ (ΦX))∈ B B, that is)B µe QX◦(B B µe QX= B µe QX◦ (m B QX) and B µe QX◦ (u B QX) = QX.We compute)B µe QX◦(B B µe QXpropertyofΦ=Moreover we have= ( Q A µ X)◦ (ΦX) ◦(BQ A µ X)◦ (BΦX)Φ= ( Q A µ X)◦(QA A µ X)◦ (ΦAX) ◦ (BΦX)Xmodule= ( Q A µ X)◦ (QmA X) ◦ (ΦAX) ◦ (BΦX)(Q A µ X)◦ (ΦX) ◦ (mB QX) = B µe QX◦ (m B QX) .B µe QX◦ (u B QX) = ( Q A µ X)◦ (ΦX) ◦ (uB QX)propertyofΦ=(Q A µ X)◦ (QuA X) Xmodule= QX.Now, let f : ( X, A µ X)→(Y, A µ Y)a morphism of left A-modules, that is a morphismf : X → Y in A such thatA µ Y ◦ (Af) = f ◦ A µ X .We have to prove that ˜Q( ) ( )(f) : ˜QX = QX, B µ QX → ˜QY = QX, B µ QY is amorphism of left B-modules. We set ˜Q (f) = Q (f) and we compute(B µe ˜Qf) ( )?QY◦ B = ˜Qfi.e. by definiti<strong>on</strong> of the functor ˜Qin fact◦ B µe QXB µ QY ◦ (BQf) ? = (Qf) ◦ B µ QXB µ QY ◦ (BQf) = ( Q A µ Y)◦ (ΦY ) ◦ (BQf) Φ = ( Q A µ Y)◦ (QAf) ◦ (ΦX)fmorphA-mod= (Qf) ◦ ( Q A µ X)◦ (ΦX) = (Qf) ◦ B µ QX .Let now check that ˜Q is a lifting of Q. Let ( X, A µ X)∈ A A and computeBU ˜Q (( X, A µ X))= B U ( QX, B µ QX)= QX = QA U (( X, A µ X))and thus <strong>on</strong> the objectsBU ˜Q = Q A U.Let f : ( ) ( )X, A µ X → Y, A µ Y ∈ A A be a morphism, we haveBU ˜Q (f) : QX → QY = Q A U (f) : QX → QY.Therefore ˜Q is a lifting of the functor Q.25


26We have to prove that it is a bijecti<strong>on</strong>. Let us start with ˜Q : A A → B B a liftingof the functor Q : A → B. Then we c<strong>on</strong>struct Φ : BQ → QA given by( )Φ = BUλ B ˜QA F ◦ ( B U B F Qu A )and using this functorial morphism we define a functor Q : A A → B B as follows: forevery ( X, A µ X)∈ A AQ (( X, A µ X))=(QX,(Q A µ X)◦ (ΦX)).Since both ˜Q and Q are lifting of Q, we have that B U ˜Q = Q A U = B UQ. We haveto prove that B U ( λ B Q ) ( )= B U λ B ˜Q . Let Z ∈ A A. We computeBU ( λ B QZ ) ()= (Q A Uλ A Z) ◦ BUλ B ˜QA F A UZ ◦ ( B U B F Qu AA UZ)(eQliftingQ= BU ˜Qλ) ()A Z ◦ BUλ B ˜QA F A UZ ◦ ( B U B F Qu AA UZ)) (λ=B(BUλ B ˜QZ ◦ BU B F B U ˜Qλ)A Z ◦ ( B U B F Qu AA UZ))=(BUλ B ˜QZ ◦ ( B U B F [Q A Uλ A Z ◦ Qu AA UZ]) (u A,λ A )adj= BUλ B ˜QZ.C<strong>on</strong>versely, let us start with a functorial morphism Φ : BQ → QA satisfying Φ ◦(m B Q) = (Qm A ) ◦ (ΦA) ◦ (BΦ) and Φ ◦ (u B Q) = Qu A . Then we c<strong>on</strong>struct a functor˜Q : A A → B B by setting, for every ( X, A µ X)∈ A A,˜Q (( X, A µ X))=(QX,(Q A µ X)◦ (ΦX))which lifts Q : A → B. Now, we define a functorial morphism Ψ : BQ → QA givenby( )Ψ = BUλ B ˜QA F ◦ ( B U B F Qu A ) .Then we have( )Ψ = BUλ B ˜QA F◦ ( B U B F Qu A ) def e Q= (Q A Uλ AA F ) ◦ (Φ A F ) ◦ ( B U B F Qu A )= (Qm A ) ◦ (ΦA) ◦ (BQu A ) Φ = (Qm A ) ◦ (QAu A ) ◦ Φ Am<strong>on</strong>ad= Φ.Corollary 3.25. Let X , A be categories, let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a categoryA and let F : X → A be a functor. Then there exists a bijective corresp<strong>on</strong>dencebetween the following collecti<strong>on</strong>s of data:H Left A-module acti<strong>on</strong>s A µ F : AF → FG Functors A F : X → A A such that A U A F = F ,given byã : H → G where A Uã (A µ F)= F and A Uλ A ã (A µ F)= A µ F i.e.ã (A µ F)(X) =(F X, A µ F X ) and ã (A µ F)(f) = F (f)˜b : G → H where ˜b (A F ) = A Uλ AA F : AF → F.□


Proof. Apply Propositi<strong>on</strong> 3.24 to the case A = X , B = A, A = Id X and B = A.Then ˜Q = A F is the lifting of F and Φ = A µ F satisfies A µ F ◦(m A F ) = A µ F ◦ ( )A A µ Fand A µ F ◦ (u A F ) = F that is ( )F, A µ F is a left A-module functor.□Corollary 3.26. Let (L, R) be an adjuncti<strong>on</strong> with L : B → A and R : A → Band let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> B. Then there is a bijective corresp<strong>on</strong>dencebetween the following collecti<strong>on</strong>s of dataK Functors K : A → A B such that A U ◦ K = R,L functorial morphism α : AR → R such that (R, α) is a left module functorfor the m<strong>on</strong>ad Agiven byΦ : K → L where Φ (K) = A Uλ A K : AR → RΩ : L → K where Ω (α) (X) = (RX, αX) and A UΩ (α) (f) = R (f) .Proof. Apply Corollary 3.25 to the case ”F ” = R : A → B where (L, R) is anadjuncti<strong>on</strong> with L : B → A and R : A → B and A = (A, m A , u A ) a m<strong>on</strong>ad <strong>on</strong>B. □In the following Propositi<strong>on</strong> we give a more precise versi<strong>on</strong> of Lemma 3 in [J].Propositi<strong>on</strong> 3.27. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A and letB = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> a category B. Let Q : A → B be a functor andlet ˜Q : A A → B B be a lifting of Q (i.e. BU ˜Q = Q A U) and Φ : BQ(→ QA)asin Propositi<strong>on</strong> 3.24. Then Φ is an isomorphism if and <strong>on</strong>ly if φ = λ B ˜QA F ◦( B F Qu A ) : B F Q → ˜Q A F is an isomorphism.Proof. By c<strong>on</strong>structi<strong>on</strong> in Propositi<strong>on</strong> 3.24 we have that Φ = B Uφ. Assume thatΦ is an isomorphism. Since, by Propositi<strong>on</strong> 3.18, B U reflects isomorphisms, φ :BF Q → ˜Q A F is an isomorphism. C<strong>on</strong>versely, assume that φ : B F Q → ˜Q A F is anisomorphism. Then Φ = B Uφ is also an isomorphism.□Corollary 3.28. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → Band let B = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> B. Let K : A → B B be a functor such thatBU ◦ K = R and let (R, α) be a left B-module functor as in Corollary 3.26. Then αis an isomorphism if and <strong>on</strong>ly if λ B K : B F R → K is an isomorphism.Proof. Apply Propositi<strong>on</strong> 3.27 with Q = R, A = Id A . Then ˜Q = K is the lifting ofR and Φ = α : BR → R, given by α = B Uφ = B Uλ B K.□<str<strong>on</strong>g>Some</str<strong>on</strong>g> <str<strong>on</strong>g>results</str<strong>on</strong>g> in the following part of this secti<strong>on</strong> can be found in the literature(see e.g. [BM] and [BMV]). To introduce our main tools of investigati<strong>on</strong>, for thereader’s sake, we give here a full descripti<strong>on</strong>.Lemma 3.29. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A with coequalizers.Let Q : B → A be a left A-module functor with functorial morphisms A µ Q : AQ → Q.Then there exists a unique functor A Q : B → A A such thatAU ◦ A Q = Q and A Uλ AA Q = A µ Q .27


28Moreover if ϕ : Q → T is a functorial morphism between left A-module functors andϕ satisfiesA µ T ◦ (Aϕ) = ϕ ◦ (A µ Q)then there is a unique functorial morphism A ϕ : A Q → A T such thatAU A ϕ = ϕ.Proof. Corollary 3.25 applied to the case where F = Q gives us the first statement.Let B ∈ B. Then we have( Aµ T B ) ◦ (AϕB) = (ϕB) ◦ (A µ Q B )which means that ϕB yields a morphism A ϕB in A A.Propositi<strong>on</strong> 3.30. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A and letB = (B, m B , u B ) be a m<strong>on</strong>ad over a category B. Assume that both A and B havecoequalizers and that A preserves coequalizers. Let Q : B → A be a functor and letA µ Q : AQ → Q and µ B Q : QB → Q be functorial morphisms. Assume that A µ Q isassociative and unital and that A µ Q ◦ ( Aµ B Q)= µBQ ◦ (A µ Q B ) . Set(6) (Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B)Then Q B : B B → A is a left A-module functor where A µ QB : AQ B → Q B is uniquelydetermined by(7) p Q ◦ (A µ QB U ) = A µ QB ◦ (Ap Q ) .Moreover there exists a unique functor A (Q B ) : B B → A A such that(8) AU A (Q B ) = Q B and A Uλ AA (Q B ) = A µ QB .Proof. By Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>7 we can c<strong>on</strong>sider (Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B). SinceA µ Q ◦ ( Aµ B Q)= µBQ ◦ (A µ Q B )we deduce that(9) ( A µ QB U) ◦ ( Aµ B QBU ) = ( µ B QBU ) ◦ (A µ Q B B U ) .Also, in view of the naturality of A µ Q , we have(10) ( A µ QB U) ◦ (AQ B Uλ B ) = (Q B Uλ B ) ◦ (A µ Q B B U ) .We computeand hence we obtainp Q ◦ ( A µ QB U) ◦ (AQ B Uλ B ) (10)= p Q ◦ (Q B Uλ B ) ◦ (A µ Q B B U )p Q coeq= p Q ◦ (µ B QBU) ◦ (A µ Q B B U ) (9)= p Q ◦ ( A µ QB U) ◦ ( Aµ B QBU )p Q ◦ ( A µ QB U) ◦ (AQ B Uλ B ) = p Q ◦ ( A µ Q BU) ◦ ( Aµ B QBU ) .Since A preserves coequalizers, we get(AQ B , Ap Q ) = Coequ Fun(AµBQ BU, AQ B Uλ B).Hence there exists a unique functorial morphism A µ QBp Q ◦ (A µ Q BU ) = A µ QB ◦ (Ap Q ) .: AQ B → Q B such that□


Since Q is a left A-module functor, by Lemma 3.17, also Q B U is a left A-modulefunctor. Now p Q is an epimorphism and hence, since A preserves coequalizers, alsoAAp Q is an epimorphism. Therefore we can apply Lemma 3.23 to ”ϕ” = A µ QB ,”h” = p Q and ”µ” = A µ Q BU and hence we obtain that ( )Q B , A µ QB is a left A-module functor that is A µ QB is associative and unital. By Lemma 3.29 appliedto ( )Q B , A µ QB there exists a functor A (Q B ) : B B → A A such that A U A (Q B ) =Q B and A Uλ AA (Q B ) = A µ QB . Moreover A (Q B ) is unique with respect to theseproperties.□Propositi<strong>on</strong> 3.3<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A and letB = (B, m B , u B ) be a m<strong>on</strong>ad over a category B. Assume that both A and B havecoequalizers and A preserves them. Let Q : B → A be an A-B-bimodule functorwith functorial morphisms A µ Q : AQ → Q and µ B Q : QB → Q. Then the functorAQ : B → A A is a right B-module functor via µ B AQ : AQB → A Q where µ B AQ isuniquely determined by(11) AUµ B AQ = µ B Q.Let (( A Q) B, p A Q) = Coequ Fun(µBAQBU, A Q B Uλ B). Then we have( A Q) B= A (Q B ) : B B → A A.Proof. Since Q is endowed with a left A-module structure, by Lemma 3.29 thereexists a unique functor A Q : B → A A such that A U A Q = Q and A Uλ AA Q =A µ Q . Note that, since Q is an A-B-bimodule functor, in particular the compatibilityc<strong>on</strong>diti<strong>on</strong>A µ Q ◦ ( )Aµ B Q = µBQ ◦ (A µ Q B ) .holds. Thus, by Lemma 3.29, there exists a functorial morphism µ B AQ : AQB → A Qsuch thatAUµ B = µAQ B Q.By the associativity and unitality properties of µ B Q and since AU is faithful, weget that also µ B AQ is associative and unital, so that ( AQ, µ AQ) B is a right B-modulefunctor. Thus we can c<strong>on</strong>sider the coequalizer(12) AQB B Uµ B A Q BUAQ B Uλ B AQ B Up A Q ( A Q) Bso that we get a functor ( A Q) B: B B → A A. Since A preserves coequalizers, byLemma 3.21, also A U preserves coequalizers. Then, by applying the functor A U to12 we still get a coequalizer29that can be written as AU A QB B U A Uµ B A Q BUAU A Q B UAU A Q B Uλ BAUp A QAU ( A Q) BQB B Uµ B QBUQ B Uλ B Q B UAUp A QAU ( A Q) B


30Since, by Propositi<strong>on</strong> 3.30, (Q B , p Q ) = Coequ Fun(µBQ BU,Q B Uλ B), we get thatAU ( A Q) B= Q B and A Up A Q = p Q .MoreoverAUλ A ( A Q) B: A A U ( A Q) B= AQ B → A U ( A Q) B= Q B .By Propositi<strong>on</strong> 3.30, we know that ( )Q B , A µ QB is a left A-module functor andAUλ AA (Q B ) = A µ QB . Hence we geti.e.AUλ A ( A Q) B= A µ QB(8)= A Uλ AA (Q B )( A Q) B= A (Q B ) .Notati<strong>on</strong> 3.3<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A and letB = (B, m B , u B ) be a m<strong>on</strong>ad over a category B. Assume that both A and B havecoequalizers and A preserves them. Let Q : B → A be an A-B-bimodule functor. Inview of Propositi<strong>on</strong> 3.31, we setAQ B = ( A Q) B= A (Q B ) .Lemma 3.33. Let B = (B, m B , u B ) be a m<strong>on</strong>ad over a category B and assume that Bhave coequalizers. Let ( Q : B → A, µ B Q)be a right B-module functor. With notati<strong>on</strong>sof Propositi<strong>on</strong> 3.30 we have that(13) Q B λ BB F = µ B Q.Furthermore, if we assume that the functors Q, B preserve coequalizers we also have(14) Q B λ BB P = p Q BP .Proof. Let us c<strong>on</strong>sider the following diagramQB B U B F B U B Fµ B QBU B F B U B F Q B Uλ B B F B U B FQ B U B F B U B F p QBF B U B F Q BB F B U B F□QB B Uλ B B FQ B Uλ B B FQ B λ B B FQB B U B Fµ B QBU B FQ B Uλ B B F Q B U B Fp QB F Q BB FNote that QB B Uλ BB F = QBm B and Q B Uλ BB F = Qm B so that the left squareserially commutes because of the associativity of m B and of µ B Q . Both the rows arecoequalizers in view of the dual versi<strong>on</strong> of Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>10 so that, by the universal propertyof coequalizers, there exists a unique functorial morphism ζ : Q BB F B U B F →Q BB F such that ζ ◦ (p QB F B U B F ) = (p QB F ) ◦ (Q B Uλ BB F ). Since p Q : Q B U → Q B isa functorial morphism, we know that Q B λ BB F makes the right square be commutative,but since by (15) we have p QB F = µ B Q we also have that µB Q makesthe right square commute. Therefore, we deduce that ζ = Q B λ BB F = µ B Q . Assumingthat Q and B preserve coequalizers, by Lemma 3.21, we get that B Ualso preserves coequalizers so that, in view of Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>12 we also have that


(Q BB F, p QB F ) = Coequ Fun(µBQ B, Qm B)=(Q, µBQ).□(Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B)preserves them. Hence, using that(Q B , Q B λ B ) = Coequ Fun (Q B λ BB F B U, Q BB F B Uλ B ), in view of Lemmas <str<strong>on</strong>g>2.</str<strong>on</strong>g>10 and3.29, we have(Q BB P , Q B λ BB P ) = Coequ Fun (Q B λ BB F B U B P,Q BB F B Uλ BB P )= Coequ Fun(µBQ BU B P,Q B µ P)so that we get Q B λ BB P = p QB P .= (Q BB P , p QB P )Propositi<strong>on</strong> 3.34. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A and letB = (B, m B , u B ) be a m<strong>on</strong>ad over a category B. Assume that both A and Bhave coequalizers and let Q : B → A be an A-B-bimodule functor. Then, withnotati<strong>on</strong>s(of Propositi<strong>on</strong>)3.30, we can c<strong>on</strong>sider the functor Q B where (Q B , p Q ) =Coequ Fun µBQ BU, Q B Uλ B . Then(15) Q BB F = Q and p QB F = µ B Q.Proof. By c<strong>on</strong>structi<strong>on</strong> we have that (Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B). By applyingit to the functor B F we get that(Q BB F, p QB F ) = Coequ Fun(µBQ BU B F, Q B Uλ BB F )= Coequ Fun(µBQ B, Qm B).Since Q is a right B-module functor, by Propositi<strong>on</strong> 3.16 we have that(Q, µBQ)= CoequFun(µBQ B, Qm B)so that we get31□Propositi<strong>on</strong> 3.35. Let B = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> a category B with coequalizerssuch that B preserves coequalizers. Let G : B B → A be a functor preservingcoequalizers. SetQ = G ◦ B F and let µ B Q = Gλ BB FThen ( Q, µ B Q)is a right B-module functor and(16) Q B = (G ◦ B F ) B= G.Proof. We computeandµ B Q ◦ ( µ B QB ) = (Gλ BB F ) ◦ (Gλ BB F B) λ B= (Gλ BB F ) ◦ (G B F B Uλ BB F )= (Gλ BB F ) ◦ (G ◦ B F m B ) = µ B Q ◦ (Qm B )µ B Q ◦ (Qu B ) = (Gλ BB F ) ◦ (G B F u B ) adj= G ◦ B F = Q.Thus ( Q, µ B Q)is a right B-module functor. Recall that (see Propositi<strong>on</strong> 3.30)(Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B)


32and by Propositi<strong>on</strong> 3.34 we have Q BB F = Q and p QB F = µ B Q . In particular we getQ BB F = Q = G B F.In order to prove that Q B = G it suffices to prove that(G, Gλ B ) = Coequ Fun(µBQ BU, Q B Uλ B). In fact, by Corollary 3.15, (B U, B Uλ B ) =Coequ Fun (B B Uλ B , m BB U) and, since by Lemma 3.20 B U reflects coequalizers, wehave(Id B B, λ B ) = Coequ Fun ( B F B Uλ B , λ BB F B U) .Since G preserves coequalizers, we get that(G, Gλ B ) = Coequ Fun (G B F B Uλ B , Gλ BB F B U)= Coequ Fun(QB Uλ B , µ B QBU ) = (Q B , p Q ) .Propositi<strong>on</strong> 3.36. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A with coequalizerssuch that A preserves coequalizers. Let H : B → A A be a functor preservingcoequalizers. SetQ = A U ◦ H and let A µ Q = A Uλ A HThen ( Q, A µ Q)is a left A-module functor and(17) AQ = A ( A U ◦ H) = H.Proof. First we want to prove that A µ Q = A Uλ A H is associative. We haveA µ Q ◦ ( A A µ Q)= (A Uλ A H) ◦ (A A Uλ A H) λ A= ( A Uλ A H) ◦ ( A Uλ AA F A UH)□so that we get= ( A Uλ A H) ◦ (m AA UH) = A µ Q ◦ (m A Q)A µ Q ◦ ( A A µ Q)= A µ Q ◦ (m A Q) .Now we prove that A µ Q = A Uλ A H is unital. We computeso that we getA µ Q ◦ (u A Q) = ( A Uλ A H) ◦ (u AA UH) adj= A UH = QA µ Q ◦ (u A Q) = Q.Thus ( Q, A µ Q)is a left A-module functor. Recall that (see Lemma 3.29) there existsa unique functor A Q : B → A A such thatAU ◦ A Q = Q and A Uλ AA Q = A µ Q .Thus we haveAU ◦ A Q = Q = A U ◦ HandAUλ AA Q = A µ Q = A Uλ A Hso that, by Propositi<strong>on</strong> 3.12, we obtain thatAQ = H.□


Theorem 3.37. Let B = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> a category B with coequalizerssuch that B preserves coequalizers. Then there exists a bijective corresp<strong>on</strong>dencebetween the following collecti<strong>on</strong>s of data:F B right B-module functors Q : B → A such that QB preserves coequalizers(A ← B B) functors G : B B → A preserving coequalizersgiven byν B : F B → (A ← B B) where ν B((Q, µBQ))= QBκ B : (A ← B B) → F B where κ B (G) = (G B F,Gλ BB F )where Q B is uniquely determined by (Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B).Proof. Let Q : B → A be a right B-module functor. Then we can c<strong>on</strong>sider Q B :BB → A defined by (6) as(Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B).Since by assumpti<strong>on</strong> QB preserves coequalizers, by Lemma 3.19 also Q preservescoequalizers. Moreover, since B preserves coequalizers, by Lemma 3.21 also thefunctor B U preserves coequalizers. Thus both QB B U and Q B U preserve coequalizers.By Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>12 we get that also Q B : B B → A preserves coequalizers.C<strong>on</strong>versely, let us c<strong>on</strong>sider a functor G : B B → A that preserves coequalizers. ByPropositi<strong>on</strong> 3.35 we can c<strong>on</strong>sider the right B-module functor defined as followsQ = G ◦ B F and let µ B Q = Gλ BB F .Since B F is left adjoint to B U, in particular B F preserves coequalizers and sinceby assumpti<strong>on</strong> G preserves coequalizers, we get that also Q = G ◦ B F preservescoequalizers and so does QB.Now, we want to prove that ν B and κ B determine a bijective corresp<strong>on</strong>dence betweenF B and (A ← B B). Let us start with a right B-module functor ( Q : B → A, µ B Q).Then we haveMoreover we have(κ B ◦ ν B ) (( Q, µ Q)) B = κB (Q B ) = (Q BB F,Q B λ BB F )= ( )Q BB F,µ B (15)Q B B F = ( Q,µ Q) B .(ν B ◦ κ B ) (G) = ν B ((G B F,Gλ BB F )) = (G B F ) B(16)= G.Theorem 3.38. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A with coequalizerssuch that A preserves coequalizers. Then there exists a bijective corresp<strong>on</strong>dencebetween the following collecti<strong>on</strong>s of data:AF left A-module functors Q : B → A such that AQ preserves coequalizers( A A ← B) functors H : B → A A preserving coequalizersgiven byAν : AF → ( A A ← B) where A ν (( Q, A µ Q))= A QAκ : ( A A ← B) → A F where A κ (H) = ( A U ◦ H, A Uλ A H)33□


34where A Q : B → A A is the functor defined in Lemma 3.29.Proof. Let ( Q : B → A, A µ Q)be a left A-module functor. Then, by Lemma 3.29,there exists a unique functor A Q : B → A A such thatAU ◦ A Q = Q and A Uλ AA Q = A µ Q .Note that, since AQ preserves coequalizers, by Lemma 3.19, Q = A U ◦ A Q preservescoequalizers. Then, by Lemma 3.20, also A Q preserves coequalizers. C<strong>on</strong>versely, ifH : B → A A is a functor preserving coequalizers, we get that A U ◦ H : B → A.Moreover, by Lemma 3.21, A U preserves coequalizers and thus also A U ◦H preservescoequalizers. Now, let us prove that A ν and A κ determine a bijective corresp<strong>on</strong>dencebetween A F and ( A A ← B). We compute( A κ ◦ A ν) (( Q, A µ Q))= A κ ( A Q) = ( A U A Q, A Uλ AA Q) = ( Q, A µ Q).On the other hand we have( A ν ◦ A κ) (H) = A ν (( A U ◦ H, A Uλ A H)) = A ( A U ◦ H) (17)= H.Theorem 3.39. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A with coequalizerssuch that A preserves coequalizers. Let B = (B, m B , u B ) be a m<strong>on</strong>ad <strong>on</strong> a categoryB with coequalizers such that B preserves coequalizers. Then there exists a bijectivecorresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:AF B A-B-bimodule functors Q : B → A such that AQ and QB preserve coequalizers( A A ← B B) functors G : B B → A A preserving coequalizersgiven byAν B : AF B → ( A A ← B B) where A ν B((Q, A µ Q , µ B Q))= A Q BAκ B : ( A A ← B B) → A F B where A κ B (G) = ( A U ◦ G ◦ B F , A Uλ A G B F , A UGλ BB F ) .Proof. Let us c<strong>on</strong>sider an A-B-bimodule functor ( Q : B → A, A µ Q , µ Q) B such that AQand QB preserve coequalizers. In particular, ( Q, µ Q) B is a right B-module functor,so that we (( can apply )) the map ν B : F B → (A ← B B) of Theorem 3.37 and we get afunctor ν B Q, µBQ = QB : B B → A which preserves coequalizers. By Propositi<strong>on</strong>3.30, ( )Q B , A µ QB is a left A-module functor so that we can also apply the mapAν : A F → ( A A ← B) of Theorem 3.38 where the category B is B B. The map A νis defined by A ν (( ))Q B , A µ QB = A (Q B ) = A Q B : B B → A A and A Q B preservescoequalizers. C<strong>on</strong>versely, let us c<strong>on</strong>sider a functor G : B B → A A which preservescoequalizers. By Theorem 3.38, we get a left A-module functor given byAκ (G) = ( A U ◦ G, A Uλ A G)where A U ◦ G : B B → A and A A UG preserves coequalizers. By Lemma 3.19, alsoAU ◦ G : B B → A preserves coequalizers. Thus, we can apply Theorem 3.37 and weget a right B-module functorκ B ( A UG) = ( A UG B F, A UGλ BB F )□


where A UG B F : B → A is such that A UG B F B preserves coequalizers. Clearly, sinceAUG preserves coequalizers, B F is a left adjoint and A preserves coequalizers byassumpti<strong>on</strong>, we deduce that also A A UG B F preserves coequalizers. Now, we wantto prove that A ν B : A F B → ( A A ← B B) and A κ B : ( A A ← B B) → A F B determine abijecti<strong>on</strong>. We haveand( A κ B ◦ A ν B ) (( Q, A µ Q , µ B Q))= A κ B ( A Q B )= ( A U ◦ A Q B ◦ B F , A Uλ AA Q BB F , A U A Q B λ BB F )= (Q, A Uλ AA Q, Q B λ BB F ) = ( Q, A µ Q , µ B Q B B F)=(Q, A µ Q , µ B Q( A ν B ◦ A κ B ) (G) = A ν B (( A U ◦ G ◦ B F , A Uλ A G B F , A UGλ BB F ))= A ( A U ◦ G ◦ B F ) B = A (( A U ◦ G ◦ B F ) B )(16)= A ( A U ◦ G) (17)= G.Propositi<strong>on</strong> 3.40. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A with coequalizersand assume that A preserves coequalizers. Let Q : A → A be an A-bimodulefunctor. Then there exists a unique lifted functor A Q A : A A → A A such thatAU A Q AA F = Q.Proof. By Propositi<strong>on</strong> 3.31 there exists a unique functor A Q A : A A → A A such thatAU A Q A = Q A . Now, by Propositi<strong>on</strong> 3.34 we also get that Q AA F = Q so that weobtainAU A Q AA F = Q.□Propositi<strong>on</strong> 3.4<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A with coequalizersand assume that A preserves coequalizers. Let B = (B, m B , u B ) be a m<strong>on</strong>adover a category B with coequalizers and let Q : B → A be an A-B-bimodule functor.Then there exists a unique lifted functor A Q B : B B → A A such thatAU A Q BB F = Q.Proof. By Propositi<strong>on</strong> 3.31 there exists a unique functor A Q B : B B → A A such thatAU A Q B = Q B . Now, by Propositi<strong>on</strong> 3.34 we also get that Q BB F = Q so that weobtainAU A Q BB F = Q.□Propositi<strong>on</strong> 3.4<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A with coequalizersand assume that A preserves coequalizers. Let B = (B, m B , u B ) be am<strong>on</strong>ad over a category B with coequalizers and let P, Q : B → A be A-B-bimodulefunctors. Let f : P → Q be a functorial morphism of left A-module functors andof right B-module functors. Then there exists a unique functorial morphism of leftA-module functorsf B : P B → Q B)35□


36satisfyingf B ◦ p P = p Q ◦ (f B U) .Then we can c<strong>on</strong>siderAf B : A P B → A Q Bsuch thatAU A f B = f B .Proof. C<strong>on</strong>sider the following diagramP B B Uµ B P BUP B Uλ B P B U p PP Bf BfB B UQB B Uµ B QBUf B UQ B Uλ B Q B U pQ Q BSince f is a functorial morphism and it is a functorial morphism of right B-modulefunctors, the left square serially commutes. Note thatp Q ◦ (f B U) ◦ ( µ B P BU ) = p Q ◦ (f B U) ◦ (P B Uλ B )so that, by the universal property of the coequalizer, there exists a unique morphismf B : P B → Q B such that(18) f B ◦ p P = p Q ◦ (f B U) .We now want to prove that f B is a functorial morphism of left A-module functor.In fact we havef B ◦ A µ PB ◦ (Ap P ) (7)= f B ◦ p P ◦ (A µ P B U )(18)= p Q ◦ (f B U) ◦ (A µ P B U ) fleftAlin= p Q ◦ (A µ QB U ) ◦ (Af B U)(7)= A µ QB ◦ (Ap Q ) ◦ (Af B U) (18)= A µ QB ◦ (Af B ) ◦ (Ap P )and since A preserves coequalizers Ap Q is an epimorphism so that we getf B ◦ A µ PB = A µ QB ◦ (Af B ) .Then there exists a functorial morphism A f B : A P B → A Q B such thatAU A f B = f B .3.<str<strong>on</strong>g>2.</str<strong>on</strong>g> The category of balanced bimodule functors. We will c<strong>on</strong>struct here them<strong>on</strong>oidal category of balanced bimodule functors with respect to a m<strong>on</strong>ad.Definiti<strong>on</strong> 3.43. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A such thatAhas coequalizers and the underlying functor A preserves coequalizers. Let us definethe category ( A A ← A A) of balanced bimodule functors as followsOb Objects are functors A Q A : A A→ A A where Q : A → A is an A-A-bimodulefunctor such that Q A preserves coequalizers.M Morphisms are functorial morphisms A f A : A P A → A Q A where f : P → Q isa functorial morphism of A-A-bimodule functors.□


Propositi<strong>on</strong> 3.44. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers and let A P A , A Q A ∈ Ob (( A A ← A A)).Then the functor A P AA Q A ∈ Ob (( A A ← A A)).Proof. We will prove that A P AA Q A = A (P AA Q) A . Let us c<strong>on</strong>sider the functorP AA Q : A → A. Since A Q is a right A-module functor by Propositi<strong>on</strong> 3.31, thenalso P AA Q is a right A-module functor by Lemma 3.17. Thus, we can c<strong>on</strong>sider((P AA Q) A, p PAA Q) = Coequ Fun(µAPAA QAU, P AA Q A Uλ A)i.e.Lem3.17= Coequ Fun(PA µ A AQAU, P AA Q A Uλ A)P A preserves coequ= (P AA Q A , P A p A Q)(19) ((P AA Q) A, p PAA Q) = (P AA Q A , P A p A Q) .Now, observe that (P AA Q) Ais a left A-module functor by Propositi<strong>on</strong> 3.30 andP AA Q A is a left A-module functor by Lemma 3.17. So we can c<strong>on</strong>sider both liftingfunctors : A (P AA Q) A and A (P A ) A Q A and we haveandHenceAU A ((P AA Q) A ) Pro3.31= (P AA Q) A(19)= P AA Q APro3.31= A U A (P A ) A Q AAUλ AA ((P AA Q) A) Pro3.30= A µ A (P AA Q) A(19)= µ PAA Q ALem3.17= A µ PA AQ APro3.30= A Uλ AA (P A ) A Q A .A ((P AA Q) A ) Pro3.31= A (P AA Q) A = A (P A ) A Q APro3.31= A P AA Q A .ThusAP AA Q A = A (P AA Q) Awhere P AA Q : A → A is an A-bimodule functor satisfying the required c<strong>on</strong>diti<strong>on</strong>s.□Propositi<strong>on</strong> 3.45. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers. Then A A A ∈ Ob (( A A ← A A)) and itis the unit element for the category ( A A ← A A).Proof. Since A is a m<strong>on</strong>ad, in particular an A-bimodule functor. Then we canc<strong>on</strong>sider A A A ∈ Ob (( A A ← A A)) as the object coming from the endofunctor A :A → A. By definiti<strong>on</strong> we have(A A , p A ) = Coequ Fun (m AA U,A A Uλ A ) = ( A U, A Uλ A )and it is a left A-module functor by Propositi<strong>on</strong> 3.13.c<strong>on</strong>siderAA A = A ( A U) = Id A A37By Lemma 3.29, we can


38as the unique functor which satisfiesAU A A A = A UId A A = A U = A AandAUλ AA A A = A Uλ A Id A A = A Uλ A = A µ A U = A µ AA .Clearly A A A = Id A A is the identity element for the category ( A A ← A A).Corollary 3.46. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers. Then we havefor every F ∈ Ob (( A A ← A A)).AA A ◦ F = F and F ◦ A A A = FProof. By Propositi<strong>on</strong> 3.45 we have that A A A = Id A A is the identity element for thecategory ( A A ← A A). Therefore, in particular, we have thatfor every F ∈ Ob (( A A ← A A)).AA A ◦ F = F and F ◦ A A A = FPropositi<strong>on</strong> 3.47. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers, let A P A , A Q A , A T A ∈ Ob (( A A ← A A))and let A f A : A P A → A Q A , A g A : A Q A → A T A be morphisms in ( A A ← A A). ThenAg A ◦ A f A is still a morphism in the category ( A A ← A A) and(20) A (g ◦ f) A = A g A ◦ A f A .Proof. We will prove that A g A ◦ A f A = A (g ◦ f) A where g ◦ f is an A-bilinear functorialmorphism as composite of A-bilinear functorial morphisms. By assumpti<strong>on</strong>,using notati<strong>on</strong>s of Propositi<strong>on</strong> 3.42 we have the following serially commutative diagramP A A UfA A UQA A UgA A UT A A Uµ A P AUP A Uλ A µ A QAUQ A Uλ Aµ A T AUThen A f A is the unique morphism such thatwhereP A U p Pf A UQ A U pQ g A UP Af AQ Ag A T A U p TT AT A Uλ AAU A f A = f A(21) f A ◦ p P = p Q ◦ (f A U)and A g A is the unique morphism such thatwhereAU A g A = g A(22) g A ◦ p Q = p T ◦ (g A U) .□□


Note that, since f and g are A-bilinear morphism, g ◦ f is still an A-bilinear morphism,so that we can also c<strong>on</strong>sider (g ◦ f) Asuch that(23) (g ◦ f) A◦ p P = p T ◦ [(g ◦ f) A U] = p T ◦ (g A U) ◦ (f A U) .First we prove that (g ◦ f) A= g A ◦ f A . In fact we have(g ◦ f) A◦ p P(23)= p T ◦ (g A U) ◦ (f A U)(22)= g A ◦ p Q ◦ (f A U) (21)= g A ◦ f A ◦ p Pand since p P is an epimorphism we obtain(g ◦ f) A= g A ◦ f A .The, we can both c<strong>on</strong>sider A (g ◦ f) A = A ((g ◦ f) A ) such thatAU A (g ◦ f) A = A U A ((g ◦ f) A ) = (g ◦ f) Aand the composite of the liftings A g A ◦ A f A such thatWe haveAU [ A g A ◦ A f A ] = ( A U A g A ) ◦ ( A U A f A ) = g A ◦ f A .AU A (g ◦ f) A ◦ p P = A U A ((g ◦ f) A ) ◦ p P = (g ◦ f) A ◦ p P(23)= p T ◦ (g A U) ◦ (f A U) = g A ◦ p Q ◦ (f A U) = g A ◦ f A ◦ p Pand since p P is an epimorphism we deduce thatSince A U reflects we c<strong>on</strong>clude thatAU A (g ◦ f) A = g A ◦ f A = A U A g A ◦ A U A f A .A (g ◦ f) A = A g A ◦ A f Awhere A U A (g ◦ f) A = (g ◦ f) A and (g ◦ f) A◦ p P = p T ◦ [(g ◦ f) A U] .Propositi<strong>on</strong> 3.48. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A such that theunderlying functor A preserves coequalizers, let A P A , A Q A , A T A ∈ Ob (( A A ← A A))and let A f A : A P A → A Q A , A g A : A Q A → A T A , A h A : A T A → A W A be morphisms in( A A ← A A). ThenAh A ◦ ( A g A ◦ A f A ) = ( A h A ◦ A g A ) ◦ A f A .Proof. By Propositi<strong>on</strong> 3.47 we have that, for every morphisms A f A : A P A → A Q A ,Ag A : A Q A → A T A in ( A A ← A A) , also the morphism A g A ◦ A f A is in ( A A ← A A)and A (g ◦ f) A = A g A ◦ A f A . Hence we have that39□Ah A ◦ ( A g A ◦ A f A ) (20)= A h A ◦ ( A (g ◦ f) A ) (20)= ( A (h ◦ (g ◦ f)) A )Astrictly m<strong>on</strong>oidal= ( A ((h ◦ g) ◦ f) A ) (20)= A (h ◦ g) A ◦ A f A(20)= ( A h A ◦ A g A ) ◦ A f A .□


40Theorem 3.49. Let A = (A, m A , u A ) be a m<strong>on</strong>ad over a category A such thatAhas coequalizers and the underlying functor A preserves coequalizers. The category( A A ← A A) of balanced bimodule functors is a strict m<strong>on</strong>oidal category.Proof. By Propositi<strong>on</strong> 3.44, we defined a compositi<strong>on</strong> of the objects of the category( A A ← A A). Moreover, by Propositi<strong>on</strong> 3.45, A A A is the unit for the category( A A ← A A). Since the compositi<strong>on</strong> of functors is associative and by Corollary 3.46,it is easy to prove that ( A A ← A A) is a strict m<strong>on</strong>oidal category.□3.3. The comparis<strong>on</strong> functor for m<strong>on</strong>ads.Propositi<strong>on</strong> 3.50. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → Bwith unit η and counit ɛ and let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B.There exists a bijective corresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:M m<strong>on</strong>ad morphisms ψ : A = (A, m A , u A ) → RL = (RL, RɛL, η)R functorial morphism r : LA → L such that (L, r) is a right module functorfor the m<strong>on</strong>ad AL functorial morphism l : AR → R such that (R, l) is a left module functor forthe m<strong>on</strong>ad Agiven byΘ : M → R where Θ (ψ) = (ɛL) ◦ (Lψ)Ξ : R → M where Ξ (r) = (Rr) ◦ (ηA)Γ : M → L where Γ (ψ) = (Rɛ) ◦ (ψR)Λ : L → M where Λ (l) = (lL) ◦ (Aη) .Theorem 3.5<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → Band let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B. There exists a bijectivecorresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:K Functors K : A → A B such that A U ◦ K = RM m<strong>on</strong>ad morphisms ψ : A = (A, m A , u A ) → RL = (RL, RɛL, η)given byΨ : K → M where Ψ (K) = ([ A Uλ A K] L) ◦ (Aη)Υ : M → K where Υ (ψ) (X) = (RX, (RɛX) ◦ (ψRX)) and Υ (ψ) (f) = Rf.Remark 3.5<str<strong>on</strong>g>2.</str<strong>on</strong>g> When A = RL = (RL, RɛL, η) and ψ = Id RL the functor K =Υ (ψ) : A → RL B such that RL U ◦ K = R is called the Eilenberg-Moore comparis<strong>on</strong>functor.Corollary 3.53. Let A = (A, m A , u A ) and B = (B, m B , u B ) be m<strong>on</strong>ads <strong>on</strong> acategory B. There exists a bijective corresp<strong>on</strong>dence between the following collecti<strong>on</strong>sof data:K Functors K : A B → B B such that B U ◦ K = A U,M m<strong>on</strong>ad morphisms ψ : A → Bgiven byΨ : K → M where Ψ (K) = ([ A Uλ A K] A F ) ◦ (Au A )Υ : M → K where Υ (ψ) (X) = ( A UX, ( A Uλ A X) ◦ (ψ A UX)) and Υ (ψ) (f) = A U (f) .


Propositi<strong>on</strong> 3.54. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B,let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and let ψ : A = (A, m A , u A ) →RL = (RL, RɛL, η) be a m<strong>on</strong>ad morphism. Let r = Θ (ψ) = (ɛL) ◦ (Lψ). Then thefunctor K ψ = Υ (ψ) : A → A B has a left adjoint D ψ : A B → A if and <strong>on</strong>ly if, forevery ( Y, A µ Y)∈ A B, there exists Coequ A(rY, L A µ Y). In this case, there exists afunctorial morphism d ψ : L A U → D ψ such thatand thus(D ψ , d ψ ) = Coequ Fun (r A U, L A Uλ A )[Dψ((Y, A µ Y)), dψ(Y, A µ Y)]= CoequA(rY, L A µ Y).Corollary 3.55. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A →B. Let r = Θ (Id RL ) = ɛL. Then the functor K = Υ (Id RL ) : A → RL B has aleft adjoint D : RL B → A if and <strong>on</strong>ly, for every ( Y, RL µ Y)∈ RL B, there existsCoequ A(ɛLY, L RL µ Y). In this case, there exists a functorial morphism d : LRL U →D such that(D, d) = Coequ Fun (ɛL RL U, L RL Uλ RL )and thus[D((Y, RL µ Y)), d(Y, RL µ Y)]= CoequA(ɛLY, L RL µ Y).Remark 3.56. In the setting of Propositi<strong>on</strong> 3.54, for every X ∈ A, we note thatthe counit of the adjuncti<strong>on</strong> (D ψ , K ψ ) is given by( )˜ɛX = ã −1X,K ψ X IdKψ X : Dψ K ψ (X) → X.We will c<strong>on</strong>sider the diagram( (( )) )(24) Hom A Dψ Y, A ã X,Y (( )µ Y , X Hom A B Y, A µ Y , Kψ X )41Hom A(d ψ((Y, A µ Y )),X)Hom A (LY, X)Hom A (rY,X)Hom A(L A µ Y ,X)Hom A (LAY, X)a X,Ya X,AYHom B (Y, RX)(Γ(ψ)X)◦(A−)Hom B( A µ Y ,RX) HomB (AY, RX)defining ã −,Y in the particular case of ( Y, A µ Y)= Kψ X. Note that, since K ψ X =(RX, (RɛX) ◦ (ψRX)) = (RX, lX) , we havei.e.(D ψ K ψ (X) , d ψ K ψ (X)) = (D ψ (RX, lX) , d ψ K ψ (X)) = Coequ B (rRX, LlX)= Coequ B ((ɛLRX) ◦ (LψRX) , (LRɛX) ◦ (LψRX))(25) (D ψ K ψ (X) , d ψ K ψ (X)) = Coequ B (rRX, LlX)where l = Γ (ψ) = (Rɛ) ◦ (ψR) . We compute(˜ɛX) ◦ (d ψ K ψ X) = Hom A (d ψ K ψ X, X) ((˜ɛX))( (= Hom A (d ψ K ψ X, X) ã −1X,K ψ X IdKψ X) )


42[= Hom A (d ψ K ψ X, X) ◦ ã −1 (IdKψ )X,K ψ X]X(24)= a −1X,K ψ X AU ( ) (Id Kψ X = a−1X,K ψ X IdA UK ψ X)= a −1X,K ψ X (Id RX) = ɛXso that(˜ɛX) ◦ (d ψ K ψ X) = ɛX.(Since ˜ɛX = ã −1X,K ψ X IdKψ X)and ã−1X,K ψ Xis an isomorphism, we deduce that ˜ɛX :D ψ K ψ (X) → X is defined as the unique morphism such that(26) (˜ɛX) ◦ (d ψ K ψ X) = ɛX.On the other hand, for every ( )Y, A µ Y ∈ A B, the unit of the adjuncti<strong>on</strong> (D ψ , K ψ ) ,˜η : A B → K ψ D ψ , is given by˜η ( ) ( ) ( ) (( ))Y, A µ Y = ãDψ (Y, A µ Y ),Y IdDψ (Y, A µ Y ) : Y, A µ Y → Kψ D ψ Y, A µ Y .Then by commutativity of the diagram (24), we deduce thatAU ˜η ( ) (Y, A µ Y = A Uã Dψ (Y, A µ Y ),Y IdDψ (Y, A µ Y ))( (( )) ( )) ( )= a Dψ (Y, A µ Y ),Y ◦ Hom A dψ Y, A µ Y , Dψ Y, A µ Y IdDψ (Y, A µ Y )( (( ))) ( ( ))= a Dψ (Y, A µ Y ),Y dψ Y, A µ Y = Rdψ Y, A µ Y ◦ (ηY ) .Thus we obtain that(27) AU ˜η ( Y, A µ Y)=(Rdψ(Y, A µ Y))◦ (ηY ) .Observe that, for every Y ∈ B we have that A F (Y ) = (AY, m A Y ) . Moreoverso that we get(D ψA F (Y ) , d ψA F (Y )) = (D ψ (AY, m A Y ) , d ψ (AY, m A Y ))= Coequ A (rAY, Lm A Y ) (2)= (LY, rY )(28) (D ψA F , d ψA F ) = (L, r) .In particular(29) d ψ (AY, m A Y ) = rY.Theorem 3.57. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B, letA = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and let ψ : A = (A, m A , u A ) → RL =(RL, RɛL, η) be a m<strong>on</strong>ad morphism. Let r = Θ (ψ) = (ɛL) ◦ (Lψ). Assume that, forevery ( Y, A µ Y)∈ A B, there exists Coequ A(rY, L A µ Y). Then we can c<strong>on</strong>sider thefunctor K ψ = Υ (ψ) : A → A B. Its left adjoint D ψ : A B → A is full and faithful ifand <strong>on</strong>ly if1) R preserves the coequalizer(D ψ , d ψ ) = Coequ Fun (r A U, L A Uλ A )2) ψ : A → RL is a m<strong>on</strong>ad isomorphism.


Corollary 3.58. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B.Let r = Θ (Id RL ) = ɛL. Assume that, for every ( )( )Y, RL µ Y ∈ RL B, there existsCoequ A ɛLY, L RL µ Y . Then we can c<strong>on</strong>sider the functor K = Υ (IdRL ) : A → RL B.Its left adjoint D : RL B → A is full and faithful if and <strong>on</strong>ly if R preserves thecoequalizer(D, d) = Coequ Fun (ɛL RL U, L RL Uλ RL ) .Theorem 3.59. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B,let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and let ψ : A = (A, m A , u A ) →RL = (RL, RɛL, η) be a m<strong>on</strong>ad morphism. Let r = Θ (ψ) = (ɛL) ◦ (Lψ) andl = Γ (ψ) = (Rɛ) ◦ (ψR). Assume that, for every ( )( )Y, A µ Y ∈ A B, there existsCoequ A rY, L A µ Y . Then we can c<strong>on</strong>sider the functor Kψ = Υ (ψ) : A → A B andits left adjoint D ψ : A B → A. The functor K ψ is an equivalence of categories if and<strong>on</strong>ly if1) R preserves the coequalizer(D ψ , d ψ ) = Coequ Fun (r A U, L A Uλ A )2) R reflects isomorphisms and3) ψ : A → RL is a m<strong>on</strong>ad isomorphism.Definiti<strong>on</strong> 3.60. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and let(R, A µ R)be a left A-module functor. We say that(R, A µ R)is a left A-coGaloisfunctor if R has a left adjoint L and if the can<strong>on</strong>ical morphismcocan := (A µ R L ) ◦ (Aη) : A → RLis a m<strong>on</strong>ad isomorphism, where η denotes the unit of the adjuncti<strong>on</strong> (L, R).Corollary 3.6<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let ( R, A µ R)be a left A-coGalois functor where R : A → Bpreserves coequalizers, R reflects isomorphisms and A = (A, m A , u A ) is a m<strong>on</strong>ad <strong>on</strong>B. Assume that, for every ( Y, A µ Y)∈ A B, there exists Coequ A(rY, L A µ Y)wherer = (ɛL) ◦ (Lcocan) where L is the left adjoint of R and ɛ is the counit of theadjuncti<strong>on</strong> (L, R). Then we can c<strong>on</strong>sider the functor K cocan : A → A B and its leftadjoint D cocan : A B → A. Then the functor K cocan is an equivalence of categories.Theorem 3.62 ( Beck’s Theorem for m<strong>on</strong>ads). Let (L, R) be an adjuncti<strong>on</strong> whereL : B → A and R : A → B. Let r = Θ (Id RL ) = ɛL and assume that, for every(Y, RL µ Y)∈ RL B, there exists Coequ A(ɛLY, L RL µ Y). Then we can c<strong>on</strong>sider thefunctor K = Υ (Id RL ) : A → RL B and its left adjoint D : RL B → A. The functor Kis an equivalence of categories if and <strong>on</strong>ly if1) R preserves the coequalizer2) R reflects isomorphisms.(D, d) = Coequ Fun (ɛL RL U, L RL Uλ RL ) .Definiti<strong>on</strong> 3.63. Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B and letR : A → B be a functor. The functor R is called ψ-m<strong>on</strong>adic if it has a left adjointL : B → A for which there exists ψ : A → RL a m<strong>on</strong>ad morphism such that thefunctor K ψ = Υ (ψ) : A → A B is an equivalence of categories.43


44Definiti<strong>on</strong> 3.64. Let R : A → B be a functor. The functor R is called m<strong>on</strong>adic ifit has a left adjoint L : B → A for which the functor K = Υ (Id RL ) : A → RL B is anequivalence of categories.The following is a slightly improved versi<strong>on</strong> of Theorem 3.14 p. 101 [BW].Theorem 3.65 (Generalized Beck’s Precise Tripleability Theorem). Let R : A → Bbe a functor and let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> the category B. Then R isψ-m<strong>on</strong>adic if and <strong>on</strong>ly if1) R has a left adjoint L : B → A,2) ψ : A → RL is a m<strong>on</strong>ads isomorphism where RL = (RL, RɛL, η) with η andɛ unit and counit of (L, R) ,3) for every ( Y, A µ Y)∈ A B, there exist Coequ A(rY, L A µ Y), where r = Θ (ψ) =(ɛL) ◦ (Lψ) , and R preserves the coequalizerCoequ Fun (r A U, L A Uλ A ) ,4) R reflects isomorphisms.In this case in A there exist coequalizers of R-c<strong>on</strong>tractible coequalizer pairs and Rpreserves them.Corollary 3.66 (Beck’s Precise Tripleability Theorem). Let R : A → B be afunctor. Then R is m<strong>on</strong>adic if and <strong>on</strong>ly if1) R has a left adjoint L : B → A,2) for every ( Y, RL µ Y)∈ RL B, there exist Coequ A(ɛLY, L RL µ Y)and R preservesthe coequalizerCoequ Fun (ɛL RL U, L RL Uλ RL ) ,3) R reflects isomorphisms.In this case in A there exist coequalizers of R-c<strong>on</strong>tractible coequalizer pairs and Rpreserves them.Theorem 3.67 (Generalized Beck’s Theorem for M<strong>on</strong>ads). Let (L, R) be an adjuncti<strong>on</strong>where L : B → A and R : A → B, let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong>the category B and let ψ : A = (A, m A , u A ) → RL = (RL, RɛL, η) be a m<strong>on</strong>adsmorphism such that ψY is an epimorphism for every Y ∈ B. Let K ψ = Υ (ψ) =(R, (Rɛ) ◦ (ψR)) and A UK ψ (f) = A UΥ (ψ) (f) = R (f) for every morphism f in A.Then K ψ : A → A B is full and faithful if and <strong>on</strong>ly if for every X ∈ A we have that(X, ɛX) = Coequ A (LRɛX, ɛLRX) .Corollary 3.68 (Beck’s Theorem for M<strong>on</strong>ads). Let (L, R) be an adjuncti<strong>on</strong> whereL : B → A and R : A → B. Then K = Υ (Id RL ) : A → RL B is full and faithful ifand <strong>on</strong>ly if for every X ∈ A we have that (X, ɛX) = Coequ A (LRɛX, ɛLRX) .4. Com<strong>on</strong>adsDefiniti<strong>on</strong> 4.<str<strong>on</strong>g>1.</str<strong>on</strong>g> A com<strong>on</strong>ad <strong>on</strong> a category A is a triple C = ( C, ∆ C , ε C) , whereC : A → A is a functor, ∆ C : C → CC and ε C : C → A are functorial morphismssatisfying the coassociativity and the counitality c<strong>on</strong>diti<strong>on</strong>s(∆ C C ) ◦ ∆ C = ( C∆ C) (◦ ∆ C and) CεC◦ ∆ C = C = ( ε C C ) ◦ ∆ C .


Definiti<strong>on</strong> 4.<str<strong>on</strong>g>2.</str<strong>on</strong>g> A morphism between two com<strong>on</strong>ads C = ( C, ∆ C , ε C) and D =(D, ∆ D , ε D) <strong>on</strong> a category A is a functorial morphism ϕ : C → D such that∆ C ◦ ϕ = (ϕϕ) ◦ ∆ D and ε C ◦ ϕ = ε D .Example 4.3. Let ( C, ∆ C , ε C) an A-coring where A is a ring. Then• C is an A-A-bimodule• ∆ C : C → C ⊗ A C is a morphism of A-A-bimodules• ε C : C → A is a morphism of A-A-bimodules satisfying the following(∆ C ⊗ A C ) ◦∆ C = ( C ⊗ A ∆ C) ◦∆ C , ( C ⊗ A ε C) (◦∆ C = r −1Cand ε C ⊗ A C ) ◦∆ C = l −1Cwhere r C : C⊗ A A → C and l C : A⊗ A C → C are the right and left c<strong>on</strong>straints.LetC = − ⊗ A C : Mod-A → Mod-A∆ C = − ⊗ A ∆ C : − ⊗ A C → − ⊗ A C ⊗ A Cε C = r − ◦ ( − ⊗ A ε C) : − ⊗ A C → − ⊗ A A → −Then, dually to the case of the R-ring, C = ( C, ∆ C , ε C) is a com<strong>on</strong>ad <strong>on</strong> thecategory Mod-A.Propositi<strong>on</strong> 4.4 ([H]). Let (L, R) be an adjuncti<strong>on</strong> with unit η and counit ɛ whereL : B → A and R : A → B. Then LR = (LR, LηR, ɛ) is a com<strong>on</strong>ad <strong>on</strong> the categoryA.Proof. Dual to the proof of Propositi<strong>on</strong> 3.4.Definiti<strong>on</strong> 4.5. A left comodule functor for a com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> acategory A is a pair ( Q, C ρ Q)where Q : B → A is a functor and C ρ Q : Q → CQ isa functorial morphism such that(C C ρ Q)◦ C ρ Q = ( ∆ C Q ) ◦ C ρ Q and Q = ( ε C Q ) ◦ C ρ Q .Definiti<strong>on</strong> 4.6. A right comodule functor for a com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> acategory A is a pair ( P, ρ C P)where P : A → B is a functor and ρCP : P → P C is afunctorial morphism such that(ρCP C ) ◦ ρ C P = ( P ∆ C) ◦ ρ C P and P = ( P ε C) ◦ ρ C P .45□Definiti<strong>on</strong> 4.7. For two com<strong>on</strong>ads C = ( (C, ∆ C , ε C) <strong>on</strong> a category A and D =D, ∆ D , ε D) <strong>on</strong> a category B, a C-D-bicomodule functor is a triple ( )Q, C ρ Q , ρ D Q ,where Q : B → A is a functor and ( ) ( )Q, C ρ Q is a left C-comodule, Q, ρDQ is a rightD-comodule such that in additi<strong>on</strong>(Cρ D Q) ◦ C ρ Q = (C ρ Q D ) ◦ ρ D Q.Definiti<strong>on</strong> 4.8. A morphism between two left C-comodule functors ( Q, C ρ Q)and(Q ′ , C ρ Q)is a morphism f : Q → Q ′ in A such thatC ρ Q ◦ f = (Cf) ◦ C ρ Q .


46Definiti<strong>on</strong> 4.9. A comodule for a com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> a category A is apair ( X, C ρ X)where X ∈ A and C ρ X : X → CX is a morphism in A such that(C C ρ X)◦ C ρ X = ( ∆ C X ) ◦ C ρ X and X = ( ε C X ) ◦ C ρ X .A morphism between two C-comodules ( X, C ρ X)and(X ′ , C ρ X ′)is a morphism f :X → X ′ in A such thatC ρ X ◦ f = (Cf) ◦ C ρ X .We denote by C A the category of C-comodule and their morphisms.Definiti<strong>on</strong> 4.10. Corresp<strong>on</strong>ding to a com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> A, there is anadjuncti<strong>on</strong> (C U, C F ) where C U is the forgetful functor and C F is the free functorC U : C A → A C F : A → C A(X, C ρ X)→ X X →(CX, ∆ C X )f → f f → CfNote that C U C F = C. The counit of the adjuncti<strong>on</strong> is given by the counit ε C of thecom<strong>on</strong>ad Cε C : C = C U C F → A.The unit γ C : C A → C F C U of this adjuncti<strong>on</strong> is defined by settingC U ( γ C ( X, C ρ X))= C ρ X for every ( X, C ρ X)∈ C A.Therefore we have(εC C U ) ◦ (C Uγ C) = C U and( CF ε C) ◦ ( γ C C F ) = C F .Propositi<strong>on</strong> 4.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and letZ, W ∈ C A. Then Z = W if and <strong>on</strong>ly if C U (Z) = C U (W ) and C U ( γ C Z ) =C U ( γ C W ) . In particular, if F, G : X → C A are functors, we haveF = G if and <strong>on</strong>ly if C UF = C UG and C U ( γ C F ) = C U ( γ C G ) .Propositi<strong>on</strong> 4.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let C = ( (C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A.CU, (C Uγ C)) is a left C-comodule functor.ThenProof. We have to prove these two equalities(C C Uγ C) ◦ (C Uγ C) = ( ∆ C C U ) ◦ (C Uγ C)(εC C U ) ◦ (C Uγ C) = C ULet us c<strong>on</strong>sider ( X, C ρ X)∈ C A, we have to show that(C C Uγ C) ( X, C ρ X)◦( CUγ C) ( X, C ρ X)=(∆C C U ) ( X, C ρ X)◦( CUγ C) ( X, C ρ X)and thati.e.(εC C U ) ( X, C ρ X)◦( CUγ C) ( X, C ρ X)= C U ( X, C ρ X)(C C ρ X)◦ C ρ X = ( ∆ C X ) ◦ C ρ X and (ε C X) ◦ C ρ X = Xwhich both hold in view of the definiti<strong>on</strong> of C-comodule.□


Propositi<strong>on</strong> 4.13. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let(X, C ρ X)be a comodule for C. Then we have(X, C ρ X)= EquA(C C ρ X , ∆ C X ) .In particular if ( Q, C ρ Q)is a left C-comodule functor, then(Q, C ρ Q)= EquFun(C C ρ Q , ∆ C Q ) .47Corollary 4.14. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let( CU, C F ) be the associated adjuncti<strong>on</strong>. Then (C U, (C Uγ C)) is a left C-comodulefunctor and( CU, (C Uγ C)) = Equ Fun(C C Uγ C , ∆ C C U ) .Proof. By Propositi<strong>on</strong> 4.12 (C U, (C Uγ C)) is a left C-comodule functor. By Propositi<strong>on</strong>4.13 we get that (C U, (C Uγ C)) (= Equ Fun C C Uγ C , ∆ C C U ) .□Propositi<strong>on</strong> 4.15. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let(P, ρCP)where P : A → B a right C-comodule functor. Then we have(P, ρCP)= EquFun(ρCP C, P ∆ C) .Proof. By definiti<strong>on</strong> we have that(ρCP C ) ◦ ρ C P = ( P ∆ C) ◦ ρ C P .Now, let ζ : Z → P C be a functorial morphism such that ( ρ C P C) ◦ ζ = ( P ∆ C) ◦ ζand c<strong>on</strong>sider ζ := ( P ε C) ◦ ζ : Z → P. Then we haveρ C P ◦ ζ = ρ C P ◦ ( P ε C) ◦ ζ ρC P= ( P Cε C) ◦ ( ρ C P C ) ◦ ζ == ( P Cε C) ◦ ( P ∆ C) ◦ ζ Ccom<strong>on</strong>ad= ζ.Moreover, let ζ ′ : Z → P C be another functorial morphism such that ( ρ C P C) ◦ζ ′ = ζ.Thenζ ′ = ( P ε C) ◦ ρ C P ◦ ζ ′ = ( P ε C) ◦ ζ = ζso that ζ is the unique functorial morphism such that ( ρ C P C) ◦ ζ = ζ.Lemma 4.16. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ( Q, C ρ Q)bea left and ( P, ρ C P)be a right C-comodule functors where Q : Q → A and P : A → P.Let F : X → Q and G : P → B be functors. Then(1) ( QF, C ρ Q F ) is a left C-comodule functor and(2) ( GP, Gρ C P)is a right C-comodule functor.Propositi<strong>on</strong> 4.17. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> A and let (C U, C F ) bethe adjuncti<strong>on</strong> associated. Then C U reflects isomorphisms.Proof. Let f : ( X, C ρ X)→(Y, C ρ Y)be a morphism in C A such that C Uf has atwo-sided inverse f −1 in A. SinceC ρ Y ◦ f = (Cf) ◦ C ρ X□


48we get that(Cf−1 ) ◦ C ρ Y = C ρ X ◦ f −1 .Lemma 4.18. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A, let ( P, ρ C P)be aright C-comodule functor where P : A → B and let ( Q, C ρ Q)be a left C-comodulefunctor. Then any equalizer preserved by P C is also preserved by P and any equalizerpreserved by CQ is also preserved by Q.Proof. C<strong>on</strong>sider the following equalizer□Xx Yfg Zin the category A and assume that P C preserves it. Applying to it functors P Cand P we get the following diagrams in BP ε C XP XP CXρ C P XP xP CxP ε C YP YP CYρ C P YP fP gP CfP CgP ε C ZP ZP CZρ C P ZBy assumpti<strong>on</strong>, the sec<strong>on</strong>d row is an equalizer. Assume that there exists a morphismh : H → P Y such that(P f) ◦ h = (P g) ◦ h.Then, by composing with ρ C P Z we get(ρCP Z ) ◦ (P f) ◦ h = ( ρ C P Z ) ◦ (P g) ◦ hand since ρ C Pis a functorial morphism we obtain(P Cf) ◦ ( ρ C P Y ) ◦ h = (P Cg) ◦ ( ρ C P Y ) ◦ h.Since (P CX, P Cx) = Equ B (P Cf, P Cg), there exists a unique morphism k : H →P CX such that(30) (P Cx) ◦ k = ( ρ C P Y ) ◦ h.By composing with P ε C Y we get(P ε C Y ) ◦ (P Cx) ◦ k = ( P ε C Y ) ◦ ( ρ C P Y ) ◦ hand thus(P x) ◦ ( P ε C X ) ◦ k = h.Let l := ( P ε C X ) ◦ k : H → P X. Then we have(P x) ◦ l = (P x) ◦ ( P ε C X ) ◦ k εC = ( P ε C Y ) ◦ (P Cx) ◦ k(30)= ( P ε C Y ) ◦ ( ρ C P Y ) ◦ h = h.Let l ′ : H → P X be another morphism such that(P x) ◦ l ′ = h.


Then we have(P Cx) ◦ ( ρ C P X ) ◦ l ′ = ( ρ C P Y ) ◦ (P x) ◦ l ′ = ( ρ C P Y ) ◦ h= ( ρ C P Y ) ◦ (P x) ◦ l = (P Cx) ◦ ( ρ C P X ) ◦ l.Since P C preserves equalizers, we have that P Cx is a m<strong>on</strong>omorphism. Since ρ C P X isalso a m<strong>on</strong>omorphism, we deduce that l = l ′ . Therefore we obtain that (P X, P x) =Equ B (P f, P g) . The sec<strong>on</strong>d statement can be proved similarly.□Lemma 4.19. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let f, g :(X, C ρ X)→(Y, C ρ Y)be morphisms in C A. Assume that there exists (E, e) =Equ A( CUf, C Ug ) and assume that CC preserves equalizers. Then there exists (Ξ, ξ) =EquC A (f, g) and C U (Ξ, ξ) = (E, e) .Proof. Since CC preserves equalizers and ( C, ∆ C) is a right C-comodule functor,also C preserves equalizers by Lemma 4.18, in particular, C preserves (E, e) . Since(C C Uf ) ◦ C ρ X ◦ e f∈C A= C ρ Y ◦ (C Uf ) ◦ eeequ= C ρ Y ◦ (C Ug ) ◦ e g∈C A= ( C C Ug ) ◦ C ρ X ◦ eby the universal property of the equalizer (CE, Ce) there exists a unique morphismC ρ E : E → CE such that(Ce) ◦ C ρ E = C ρ X ◦ e.Moreover, by composing with ε C X the first term of this equality we get(ε C X ) ◦ (Ce) ◦ C ρ Eε C = e ◦ ( ε C E ) ◦ C ρ Ewhereas the sec<strong>on</strong>d term becomes(ε C X ) ◦ C ρ X ◦ e = eso that we obtain the following equalitye ◦ ( ε C E ) ◦ C ρ E = e.Since e is a m<strong>on</strong>omorphism we deduce that(ε C E ) ◦ C ρ E = E.Now, c<strong>on</strong>sider the following serially commutative diagram49EC ρ ECE∆ C EC C ρ ECCEeCeCCeXC ρ XCX∆ C XC C ρ XCCXC UfC UgC C UfC C UgCC C UfCC C UgYC ρ Y CY∆ C YC C ρ Y CCY


50Since we already observed that the columns are equalizers and also the sec<strong>on</strong>d andthe third row are equalizers by Propositi<strong>on</strong> 4.13, in view of Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>13 also thefirst row is an equalizer, so that (E, e) has a left C-comodule structure, i.e. thereexists (Ξ, ξ) ∈ C A such that (Ξ, ξ) = EquC A (f, g) and C U (Ξ, ξ) = (E, e) . □Lemma 4.20. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A with equalizers andlet (C U, C F ) be the adjuncti<strong>on</strong> associated. The following statements are equivalent:(i) C : A → A preserves equalizers(ii) CC : A → A preserves equalizers(iii) C A has equalizers and they are preserved by C U : C A → A(iv) C U : C A → A preserves equalizers.Proof. (i) ⇒ (ii) and (iii) ⇒ (iv) are clear.(ii) ⇒ (iii) follows by Lemma 4.19.(iv) ⇒ (i) Note that C F is a right adjoint, so that in particular it preserves equalizers.Then C U C F = C also preserves equalizers.□Lemma 4.2<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A and assumethat C preserves coequalizers. Then C F preserves coequalizers where (C U, C F ) isthe adjuncti<strong>on</strong> associated to the com<strong>on</strong>ad.Proof. Dual to proof of Lemma 3.2<str<strong>on</strong>g>2.</str<strong>on</strong>g> LetXfgbe a coequalizer in A. Let us c<strong>on</strong>sider the fork obtained by applying the functor C Fto the coequalizeri.e.C F XC F fC F g Y C F Yk KC F k C F K(CX, ∆ C X ) Cf (CY, ∆ C Y ) Ck ( CK, ∆ C K )CgNow, let ( Z, C ρ Z)∈ C A and z : ( CY, ∆ C Y ) → ( Z, C ρ Z)be a morphism in C A suchthat z ◦ (Cf) = z ◦ (Cg). Since C preserves coequalizers, we know that (CK, Ck) =Coequ A (Cf, Cg) . By the universal property of the coequalizer (CK, Ck) in A, thereexists a unique morphism z ′ : CK → Z in A such that z ′ ◦ (Ck) = z. We now wantto prove that z ′ is a morphism in C A, i.e. that (Cz ′ ) ◦ ( ∆ C K ) = C ρ Z ◦ z ′ . Since zis a morphism in C A we have that(Cz) ◦ ( ∆ C Y ) = C ρ Z ◦ zand since also Ck is a morphism in C A we have thatThen we have(CCk) ◦ ( ∆ C Y ) = ( ∆ C K ) ◦ (Ck) .(Cz ′ ) ◦ ( ∆ C K ) ◦ (Ck) = (Cz ′ ) ◦ (CCk) ◦ ( ∆ C Y )propz= (Cz) ◦ ( ∆ C Y ) = C ρ Z ◦ z propz= C ρ Z ◦ z ′ ◦ (Ck)


and since C preserves coequalizers, Ck is an epimorphism, so that we get(Cz ′ ) ◦ ( ∆ C K ) = C ρ Z ◦ z ′ .Lemma 4.2<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A, let L, N :B → A be functors and let ρ : L → CL be a coassociative and counital functorialmorphism, that is (L, ρ) is a left C-comodule functor. Let u : N → L and letφ : N → CN be functorial morphisms such that(31) ρ ◦ u = (Cu) ◦ φ.If CCu and u are m<strong>on</strong>omorphisms, then φ is coassociative and counital, that is(N, φ) is a left C-comodule functor.Proof. Let us prove that φ is coassociative(CCu) ◦ (Cφ) ◦ φ (31)= (Cρ) ◦ (Cu) ◦ φ (31)= (Cρ) ◦ ρ ◦ uρcoass= ( ∆ C L ) ◦ ρ ◦ u (31)= ( ∆ C L ) ◦ (Cu) ◦ φ ∆C= (CCu) ◦ ( ∆ C N ) ◦ φ.Since CCu is a m<strong>on</strong>omorphism we get thatLet us prove that φ is counital(Cφ) ◦ φ = ( ∆ C N ) ◦ φ.u ◦ ( ε C N ) ◦ φ εC = ( ε C L ) ◦ (Cu) ◦ φ (31)= ( ε C L ) ◦ ρ ◦ u ρcounit= u.Since u is a m<strong>on</strong>omorphism we c<strong>on</strong>clude.4.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Lifting of comodule functors. This subsecti<strong>on</strong> collects the dual <str<strong>on</strong>g>results</str<strong>on</strong>g> forliftings of module functors so that <strong>on</strong>e can skip reading all the proofs we keep herein order to give details of the <str<strong>on</strong>g>results</str<strong>on</strong>g> we use in the following.Propositi<strong>on</strong> 4.23 ([W] 3.5). Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A,let D = ( D, ∆ D , ε D) be a com<strong>on</strong>ad <strong>on</strong> a category B and let T : A → B be a functor.Then there is a bijecti<strong>on</strong> between the following collecti<strong>on</strong>s of dataF functors ˜T : C A → D B that are liftings of T (i.e. D U ˜T = T C U)M functorial morphisms Ξ : T C → DT such that(∆ D T ) ◦ Ξ = (DΞ) ◦ (ΞC) ◦ ( T ∆ C) (and ε D T ) ◦ Ξ = T ε Cgiven by( )a : F → M where a ˜T = (D U D F T ε C) ◦( )D Uγ D ˜T C Fb : M → F where D Ub (Ξ) = T C U and D Uγ D b (Ξ) = Ξ ◦ ( T C Uγ C) i.e.b (Ξ) (( X, C ρ X))=(T X, (ΞX) ◦(T C ρ X))and b (Ξ) (f) = T (f) .Proof. Let ˜T : C A → D B be a lifting of the functor T : A → B (i.e. D U ˜T = T C U).Define a functorial morphism ξ : ˜T C F → D F T as the compositeξ := (D F T ε C) ( )◦ γ D ˜T C F51□□


52where ε C : C = C U C F → A is also the counit of the adjuncti<strong>on</strong> (C U, C F ) andγ D : D B → D F D U is the unit of the adjuncti<strong>on</strong> (D U, D F ) . Let now definethat isΞ def= D Uξ : D U ˜T C F = T C U C F = T C → D U D F T = DTΞ = D Uξ = (D U D F T ε C) ◦( )D Uγ D ˜T C F .Dually to Propositi<strong>on</strong> 3.24 you can prove that Ξ is a functorial morphism satisfying(∆ D T ) ◦ Ξ = (DΞ) ◦ (ΞC) ◦ ( T ∆ C) and ( ε D T ) ◦ Ξ = T ε C .C<strong>on</strong>versely, let Ξ be a functorial morphism satisfying ( ∆ D T ) ◦ Ξ = (DΞ) ◦ (ΞC) ◦(T ∆C ) and ( ε D T ) ◦ Ξ = T ε C . We define ˜T : C A → D B by setting, for every(X, C ρ X)∈ C A,˜T (( X, C ρ X))=(T X, (ΞX) ◦(T C ρ X))and for every f : ( X, C ρ X)→(Y, C ρ Y)∈ C A,˜T (f) = T (f) .Dually to Propositi<strong>on</strong> 3.24 you can prove that ˜T is a functor between C A → D B whichlifts T and that a : F → M and b : M → F define a bijective corresp<strong>on</strong>dence. □Corollary 4.24. Let X , A be categories and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong>a category A and let F : X → A be a functor. Then there is a bijecti<strong>on</strong> between thefollowing collecti<strong>on</strong>s of data:F Functors C F : X → C A such that C U C F = F ,G Left C-comodule coacti<strong>on</strong>s C ρ F : F → CFgiven byα : F → G where α (C F ) = C Uγ C C F : F → CFβ : G → F where C Uβ (C ρ F)= F and C Uγ C β (C ρ F)= C ρ F i.e.β : G → F where β (C ρ F)(X) =(F X, C ρ F X ) and β (C ρ F)(f) = F (f) .Proof. Apply Propositi<strong>on</strong> 4.23 to the case A = X , B = A, C = Id X , D = C. Then˜T = C F is the lifting of F and Ξ = C ρ F : F → CF satisfies ( ∆ C F ) ◦ C ρ F =(C C ρ F)◦ C ρ F and ( ε C F ) ◦ C ρ F = F that is ( F, C ρ F)is a left C-comodule functor. □Corollary 4.25. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A, R : A → B andlet C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A. Then there exists a bijectivecorresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:K Functors K : B → C A such that C U ◦ K = L,L Functorial morphism β : L → CL such that (L, β) is a left comodule functorfor the com<strong>on</strong>ad Cgiven byΦ : K → L where Φ (K) = C U ( γ C K ) : L → CLΩ : L → K where Ω (β) (Y ) = (LY, βY ) and C UΩ (β) (f) = L (f) .


Proof. Apply Corollary 4.24 to the case ”F ” = L : B → A where (L, R) is anadjuncti<strong>on</strong> and C = ( C, ∆ C , ε C) a com<strong>on</strong>ad <strong>on</strong> A.□Propositi<strong>on</strong> 4.26. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and letD = ( D, ∆ D , ε D) be a com<strong>on</strong>ad <strong>on</strong> a category B. Let T : A → B be a functor,let ˜T : C A → D B be a lifting of T (i.e.D U ˜T = T C U) and let Ξ : T C → DTas in Propositi<strong>on</strong> 4.23. Then Ξ is an isomorphism if and <strong>on</strong>ly if ξ = (D ( )F T ε C) ◦γ D ˜T C F : ˜T C F → D F T is an isomorphism.Proof. By c<strong>on</strong>structi<strong>on</strong> in Propositi<strong>on</strong> 4.23 we have that Ξ = D Uξ. Assume thatΞ is an isomorphism. Since, by Propositi<strong>on</strong> 4.17, D U reflects isomorphisms, ξ :˜T C F → D F T is an isomorphism. C<strong>on</strong>versely, assume that ξ : ˜T C F → D F T is anisomorphism. Then D Uξ is also an isomorphism.□Corollary 4.27. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → Band let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> B. Let K : B → C A be a functor suchthat C U ◦ K = L and let (L, β) be a left C-comodule functor as in Corollary 4.25.Then β is an isomorphism if and <strong>on</strong>ly if γ C K : K → C F L is an isomorphism.Proof. Apply Propositi<strong>on</strong> 4.26 with T = L so that the categories A and B areinterchanged, C = Id B and D = C. Then ˜T = K is the lifting of L and Ξ = β : L →CL, given by β = C Uξ = C Uγ C K.□Lemma 4.28. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A with equalizers.Let Q : B → A be a left C-comodule functor with functorial morphisms C ρ Q : Q →CQ. Then there exists a unique functor C Q : B → C A such thatC U C Q = Q and C Uγ C C Q = C ρ Q .Moreover if ψ : Q → T is a functorial morphism between left C-module functors andψ satisfiesC ρ Q ◦ (Cψ) = ψ ◦ (C ρ T)then there is a unique functorial morphism C ψ : C Q → C T such thatC U C ψ = ψ.Proof. Corollary 4.24 applied to the case where F = Q and C ρ F = C ρ Q gives us thefirst statement. Let B ∈ B. Then we have( Cρ Q B ) ◦ (CψB) = (ψB) ◦ (C ρ T B )which means that ψB yields a morphism C ψB in C A.Propositi<strong>on</strong> 4.29. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A and letD = ( D, ∆ D , ε D) be a com<strong>on</strong>ad over a category B. Assume that both A and B haveequalizers and that C preserves equalizers. Let Q : B → A be a functor and letC ρ Q : Q → CQ and ρ D Q : Q → QD be functorial morphisms. Assume that C ρ Q iscoassociative and counital and that ( CρQ) D ◦ C ρ Q = (C ρ Q D ) ◦ ρ D Q . Set((32)Q D , ι Q) (= Equ Fun ρD DQ U, Q D Uγ D) .53□


54Then Q D : D B → A is a left C-comodule functor where C ρ Q D : Q D → CQ D isuniquely determined by((33)Cρ D Q U ) ◦ ι Q = ( Cι Q) ◦ C ρ Q D.Moreover there exists a unique functor ( C Q D) : D B → C A such that(34)C U C ( Q D) = Q D and C Uγ C C ( Q D) = C ρ Q D.Proof. By Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>8 we can c<strong>on</strong>sider ( Q D , ι Q) = Equ Fun(ρDQ D U, Q D Uγ D) . Since(CρDQ)◦ C ρ Q = (C ρ Q D ) ◦ ρ D Qwe deduce that(35)(CρDQ D U ) ◦ (C ρ Q D U ) = (C ρ Q D D U ) ◦ ( ρ D Q D U ) .Also, in view of the naturality of C ρ Q , we have(36)(CQ D Uγ D) ◦ (C ρ Q D U ) = (C ρ Q D D U ) ◦(Q D Uγ D) .We compute(CQ D Uγ D) ◦ (C ρ D Q U ) ◦ ι Q (36)= (C ρ Q D D U ) (◦ Q D Uγ D) ◦ ι Qι Q equ= (C ρ Q D D U ) ◦ ( ρ D Q D U ) ◦ ι Q (35)= ( Cρ D Q D U ) ◦ (C ρ Q D U ) ◦ ι Q .Since C preserves equalizers, we have(CQ D , Cι Q) = Equ Fun(CρDQ D U, CQ D Uγ D)hence there exists a unique functorial morphism C ρ Q D : Q D → CQ D such that( ) CιQ◦ C ρ Q D = (C ρ D Q U ) ◦ ι Q .Since Q is a left C-comodule functor, by Lemma 4.16, also Q D U is a left C-comodulefunctor. Now ι Q is a m<strong>on</strong>omorphism and hence, since C preserves equalizers, alsoCCι Q is a m<strong>on</strong>omorphism. Therefore we can apply Lemma 4.22 to ”φ” = C ρ Q D,”u” = ι Q and ”ρ” = C ρ D Q U and hence we obtain that ( Q D , C ρ Q D)is a left C-comodule functor that is C ρ Q D is coassociative and counital. By Lemma 4.28 appliedto ( Q D , C ρ Q D) ( there exists a functorCQ D) : D B → C A such that C U ( C Q D) =Q D and C ρ Q D = C Uγ ( C C Q D) . Moreover ( C Q D) is unique with respect to theseproperties.□Propositi<strong>on</strong> 4.30. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A and letD = ( D, ∆ D , ε D) be a com<strong>on</strong>ad over a category B. Assume that both A and B haveequalizers and C preserves them. Let Q : B → A be a C-D-bicomodule functorwith functorial morphisms C ρ Q : Q → CQ and ρ D Q : Q → QD. Then the functorC Q : B → C A is a right D-comodule functor via ρ DC Q : C Q → C QD where ρ DC Q isuniquely determined by(37)C Uρ DC Q = ρD Q.


Let( (CQ ) ()D, ι Q) C = Equ Fun ρ DC C QU, C Q C Uγ D . Then we have( CQ ) D=C ( Q D) : D B → C A.55Proof. Since Q is endowed with a left C-comodule structure, by Lemma 4.28 thereexists a unique functor C Q : B → C A such that C U C Q = Q and C Uγ C C Q = C ρ Q .Note that, since Q is a C-D-bicomodule functor, in particular the compatibilityc<strong>on</strong>diti<strong>on</strong>(Cρ D Q) ◦ C ρ Q = (C ρ Q D ) ◦ ρ D Qholds, that is ρ D Q : Q = C U C Q → QD = C U C QD is a morphism in C A. Thus, thereexists a functorial morphism ρ DC Q : C Q → C QD such thatC Uρ DC Q = ρD Q.By the coassociativity and counitality properties of ρ( )D Q we get that also ρDC Q iscoassociative and counital, so thatC Q, ρ DC Qis a right D-comodule functor. Thuswe can c<strong>on</strong>sider the equalizer(38)( CQ ) D ι C Q C Q D Uρ D C Q D UC Q D Uγ D C QD D Uso that we get a functor (C Q ) D: D B → C A. Since C preserves equalizers, by Lemma4.20 also C U preserves equalizers. Then, by applying the functor C U to (38) we stillget an equalizerC U (C Q ) DC Uι C Q C U C Q D UC Uρ D C Q D UC U C Q D Uγ D C U C QD D Uthat isC U (C Q ) DC Uι C Q Q D Uρ D Q D UQ D Uγ D QD D UBy Propositi<strong>on</strong> 4.29 ( Q D , ι Q) (= Equ Fun ρD DQ U, Q D Uγ D) , then we haveC U (C Q ) D= Q D and C Uι CQ = ι Q .MoreoverC Uγ C ( CQ ) D: C U (C Q ) D= Q D → C C U (C Q ) D= CQDso that, using Propositi<strong>on</strong> 4.29 where we prove that ( Q D , C ρ Q D)is a left C-comodulefunctor and that C Uγ C C ( Q D) = C ρ Q D, we getC Uγ C ( CQ ) D= C ρ Q D = C Uγ C C ( Q D)i.e.( CQ ) D=C ( Q D) .□


56Notati<strong>on</strong> 4.3<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A and letD = ( D, ∆ D , ε D) be a com<strong>on</strong>ad over a category B. Assume that both A and B haveequalizers and A preserves them. Let Q : B → A be a C-D-bicomodule functor. Inview of Propositi<strong>on</strong> 4.30, we setC Q D = (C Q ) D=C ( Q D) .Propositi<strong>on</strong> 4.3<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A and letD = ( D, ∆ D , ε D) be a com<strong>on</strong>ad over a category B. Assume that both A and Bhave equalizers and let Q : B → A be an C-D-bicomodule functor. Then, withnotati<strong>on</strong>s of Propositi<strong>on</strong> 4.29, we can c<strong>on</strong>sider the functor Q D where ( (Q D , ι Q) =Equ Fun ρD DQ U, Q D Uγ D) . Then(39) Q DD F = Q and ι QD F = ρ D Q.Proof. By c<strong>on</strong>structi<strong>on</strong> we have that ( Q D , ι Q) = Equ Fun(ρDQ D U, Q D Uγ D) . By applyingit to the functor D F we get that(Q DD F , ι QD F ) = Equ Fun(ρDQ D U D F , Q D Uγ DD F )= Equ Fun(ρDQ D, Q∆ D) .Since Q is a right D-comodule functor, by Propositi<strong>on</strong> 4.15 we have that(Q, ρDQ)= EquFun(ρDQ D, Q∆ D)so that we get(Q DD F , ι QD F ) (= Equ Fun ρDQ D, Q∆ D) = ( )Q, ρ D Q .□Propositi<strong>on</strong> 4.33. Let D = ( D, ∆ D , ε D) be a com<strong>on</strong>ad over a category B withequalizers such that D preserves equalizers. Let G : D B → A be a functor preservingequalizers. SetQ = G ◦ D F and let ρ D Q = Gγ DD FThen ( Q, ρ D Q)is a right D-comodule functor and(40) Q D = ( G ◦ D F ) D= G.Proof. We compute(ρDQ D ) ◦ ρ D Q = ( Gγ DD F D ) ◦ ( Gγ DD F ) γ D = ( G D F D Uγ DD F ) ◦ ( Gγ DD F )and= ( G D F ∆ D) ◦ ( Gγ DD F ) = ( Q∆ D) ◦ ρ D Q(QεD ) ◦ ρ D Q = ( G D F ε D) ◦ ( Gγ DD F ) adj= G D F = Q.Thus ( Q, ρ D Q)is a right D-comodule functor. Recall that (see Propositi<strong>on</strong> 4.29)(Q D , ι Q) = Equ Fun(ρDQ D U, Q D Uγ D)and by Propositi<strong>on</strong> 4.32 we have Q DD F = Q and ι QD F = ρ D Q . In particular we getQ DD F = Q = G D F .


58F D right D-comodule functors Q : B → A such that QD preserves equalizers.(A ← D B ) functors G : D B → A preserving equalizersgiven byν D : F D → ( A ← D B ) where ν (( )) D Q, ρ D Q = QD(κ D : A ← D B ) → F D where κ D (G) = ( G D F , Gγ DD F )where Q D is uniquely determined by ( Q D , ι Q) = Equ Fun(ρDQ D U, Q D Uγ D) .Proof. Let Q : B → A be a right D-comodule functor. Then we can c<strong>on</strong>siderQ D : D B → A defined by (32) as(Q D , ι Q) (= Equ Fun ρD DQ U, Q D Uγ D) .Since by assumpti<strong>on</strong> QD preserves equalizers, by Lemma 4.18 also Q preservesequalizers. Moreover, since D preserves equalizers, by Lemma 4.20 also the functorD U preserves equalizers. Thus both QD D U and Q D U preserve equalizers. ByCorollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>14 we get that also Q D : D B → A preserves equalizers.C<strong>on</strong>versely, let us c<strong>on</strong>sider a functor G : D B → A that preserves equalizers. ByPropositi<strong>on</strong> 4.33 we can c<strong>on</strong>sider the right D-comodule functor defined as followsQ = G ◦ D F and let ρ D Q = Gγ DD F .Since D F is right adjoint to D U in particular D F preserves equalizers and since byassumpti<strong>on</strong> G preserves equalizers, we get that also Q = G ◦ D F preserves equalizersand so does QD.Now, we want to prove that ν D and κ D determine a bijective corresp<strong>on</strong>dencebetween F D and ( A ← D B ) . Let us start with a right D-comodule functor(Q : B → A, ρDQ). Then we have(κ D ◦ ν D) (( Q, ρ D Q))= κD ( Q D) = ( Q DD F , Q D γ DD F )= ( Q DD F , ρ D Q DD F) (39)= ( Q, ρ D Q).Moreover we have(ν D ◦ κ D) (G) = ν D (( G D F , Gγ DD F )) = ( G D F ) D (40)= G.Theorem 4.36. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A with equalizerssuch that C preserves equalizers. Then there exists a bijective corresp<strong>on</strong>dencebetween the following collecti<strong>on</strong>s of data:C F left C-comodule functors Q : B → A such that CQ preserves equalizers( CA ← B ) functors H : B → C A preserving equalizers□given byC ν :C κ :C F → (C A ← B ) where C ν (( ))Q, C ρ Q = C Q( CA ← B ) → C F where C κ (H) = (C U ◦ H, C Uγ C H )where C Q : B → C A is the functor defined in Lemma 4.28.


Proof. Let ( Q : B → A, C ρ Q)be a left C-comodule functor. Then, by Lemma 4.28,there exists a unique functor C Q : B → C A such thatC U ◦ C Q = Q and C Uγ C C Q = C ρ Q .Note that, since CQ preserves equalizers, by Lemma 4.18, Q = C U ◦ C Q preservesequalizers. Then, by Lemma 4.19, also C Q preserves equalizers. C<strong>on</strong>versely, ifH : B → C A is a functor preserving equalizers, we get that C U ◦ H : B → A.Moreover, by Lemma 4.20, C U preserves equalizers and thus also C U ◦ H preservesequalizers. Now, let us prove that C ν and C κ determine a bijective corresp<strong>on</strong>dencebetween C F and (C A ← B ) . We compute( Cκ ◦ C ν ) (( Q, C ρ Q))= C κ (C Q ) = (C U C Q, C Uγ C C Q ) = ( Q, C ρ Q).On the other hand we have( Cν ◦ C κ ) (H) = C ν ((C U ◦ H, C Uγ C H )) = C (C U ◦ H ) (41)= H.Theorem 4.37. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A with equalizerssuch that C preserves equalizers. Let D = ( D, ∆ D , ε D) be a com<strong>on</strong>ad <strong>on</strong> a categoryB with equalizers such that D preserves equalizers. Then there exists a bijectivecorresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:( C F D C-D-bimodule functors Q : B → A such that CQ and QD preserve equalizersCA ← D B ) functors G : D B → C A preserving equalizersgiven byC ν D :C F D → (C A ← D B ) where C ν D (( Q, C ρ Q , ρ D Q))= C Q D59□C κ D :( CA ← D B ) → C F D where C κ D (G) = (C U ◦ G ◦ D F, C Uγ C G D F, C UGγ DD F ) .Proof. Let us c<strong>on</strong>sider a C-D-bicomodule functor ( Q : B → A, C ρ Q , ρQ) D such thatCQ and QD preserve equalizers. In particular, ( Q, ρQ) D is a right D-comodule functor,so that we can apply the map ν D : F D → ( A ← D B ) of Theorem 4.35 and weget a functor ν (( D Q, ρQ)) D = Q D : D B → A which preserves equalizers. By Propositi<strong>on</strong>4.29, ( Q D , C ρ Q D)is a left C-comodule functor so that we can also apply themap C ν : C F → (C A ← B ) of Theorem 4.36 where the category B is D B. The mapC ν is defined by C ν (( Q D , C ρ Q D)) ( =CQ D) = C Q D : D B → C A and C Q D preservesequalizers. C<strong>on</strong>versely, let us c<strong>on</strong>sider a functor G : D B → C A which preservesequalizers. By Theorem 4.36, we get a left C-comodule functor given byC κ (G) = (C U ◦ G, C Uγ C G )where C U ◦ G : D B → A and C C UG preserves equalizers. By Lemma 4.18, alsoC U ◦ G : D B → A preserves equalizers. Thus, we can apply Theorem 4.35 and weget a right D-comodule functorκ D (C UG ) = (C UG D F , C UGγ DD F )where C UG D F : B → A is such that C UG D F D preserves equalizers. Clearly, sinceC UG preserves equalizers, D F is a right adjoint and C preserves equalizers by assumpti<strong>on</strong>,we deduce that also C C UG D F preserves equalizers. Now, we want to


60prove that C ν D : C F D → (C A ← D B ) and C κ D : (C A ← D B ) → C F D determine abijecti<strong>on</strong>. We have(Cκ D ◦ C ν D) (( ))Q, C ρ Q , ρ D Q = C κ D (C Q D)= (C U ◦ C Q D ◦ D F , C Uγ C C Q DD F , C U C Q D γ DD F ) = ( Q, C Uγ C C Q, Q D γ DD F )= ( ) ( )Q, C ρ Q , ρ D Q DD F = Q, C ρ Q , ρ D Qand( Cν D ◦ C κ D) (G) = C ν D ((C U ◦ G ◦ D F , C Uγ C G D F , C UGγ DD F ))= C (C U ◦ G ◦ D F ) D=C ((C U ◦ G ◦ D F ) D )(40)= C (C U ◦ G ) (41)= G.Propositi<strong>on</strong> 4.38. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A with equalizersand assume that C preserves equalizers. Let D = ( D, ∆ D , ε D) be a com<strong>on</strong>adover a category B with equalizers and let Q : B → A be a C-D-bicomodule functor.Then there exists a unique lifted functor C Q D : D B → C A such thatC U C Q DD F = Q.Proof. By Propositi<strong>on</strong> 4.30 there exists a unique functor C Q D : D B → C A such thatC U C Q D = Q D . Now, by Propositi<strong>on</strong> 4.32 we also get that Q DD F = Q so that weobtainC U C Q DD F = Q.Corollary 4.39. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A with equalizersand assume that C preserves equalizers and let Q : A → A be a C-bicomodulefunctor. Then there exists a unique lifted functor C Q C : C A → C A such thatC U C Q C C F = Q.Proof. We can apply Propositi<strong>on</strong> 4.38 to the case D = C and B = A.Propositi<strong>on</strong> 4.40. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A with equalizersand assume that C preserves equalizers. Let D = ( D, ∆ D , ε D) be a com<strong>on</strong>adover a category B with equalizers and let P, Q : B → A be C-D-bicomodule functors.Let f : P → Q be a functorial morphism of left C-comodule functors and ofright D-comodule functors. Then there exists a unique functorial morphism of leftC-comodule functorsf D : P D → Q Dsatisfyingι Q ◦ f D = ( f D U ) ◦ ι P .Then we can c<strong>on</strong>siderC f D : C P D → C Q Dsuch thatD U C f D = f D .□□□


61Proof. C<strong>on</strong>sider the following diagramP D ιP P D Uf Df D UQ D ιQ Q D Uρ D P D UP D Uγ D ρ D Q D UQ D Uγ DP D D UfD D U QD D USince f is a functorial morphism and it is a functorial morphism of right D-comodulefunctors, the right square serially commutes. Note that(ρDQ D U ) ◦ ( f D U ) ◦ ι P = ( Q D Uγ D) ◦ ( f D U ) ◦ ι Pso that, by the universal property of the equalizer, there exists a unique morphismf D : P D → Q D such that((42)f D U ) ◦ ι P = ι Q ◦ f D .We now want to prove that f D is a functorial morphism of left C-comodule functor.In fact we have(CιQ ) ◦ C ρ Q D ◦ f D (33)= (C ρ Q D U ) ◦ ι Q ◦ f D(42)= (C ρ D Q U ) ◦ ( f D U ) ◦ ι P(Cf D U ) ◦ (C ρ D P U ) ◦ ι PfleftCcolin=(33)= ( Cf D U ) ◦ ( Cι P ) ◦ C ρ P D(42)= ( Cι Q) ◦ ( Cf D) ◦ C ρ P Dand since C preserves equalizers Cι Q is a m<strong>on</strong>omorphism so that we getC ρ Q D ◦ f D = ( Cf D) ◦ C ρ P D.Then there exists a functorial morphism C f D : C P D → C Q D such thatC U C f D = f D .Corollary 4.4<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad over a category A with equalizersand assume that C preserves equalizers and let P, Q : B → A be C-bicomodulefunctors. Let f : P → Q be a functorial morphism of C-bicomodule functors. Thenthere exists a unique functorial morphism of left C-comodule functorssatisfyingThen we can c<strong>on</strong>sidersuch thatf C : P C → Q Cι Q ◦ f C = ( f C U ) ◦ ι P .C f C : C P C → C Q CC U C f C = f C .□Proof. We can apply Propositi<strong>on</strong> 4.40 to the case D = C and B = A.□


624.<str<strong>on</strong>g>2.</str<strong>on</strong>g> The comparis<strong>on</strong> functor for com<strong>on</strong>ads.Propositi<strong>on</strong> 4.42 ([GT, Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>1]). Let (L, R) be an adjuncti<strong>on</strong> where L :B → A and R : A → B and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A.There exists a bijective corresp<strong>on</strong>dence between the following collecti<strong>on</strong>s of data:M com<strong>on</strong>ad morphisms ϕ : LR = (LR, LηR, ɛ) → C = ( C, ∆ C , ε C)R functorial morphism α : R → RC such that (R, α) is a right comodule functorfor the com<strong>on</strong>ad CL functorial morphism β : L → CL such that (L, β) is a left comodule functorfor the com<strong>on</strong>ad Cgiven byProof. For a given ϕ ∈ M, we computeΘ : M → R where Θ (ϕ) = (Rϕ) ◦ (ηR)Ξ : R → M where Ξ (α) = (ɛC) ◦ (Lα)Γ : M → L where Γ (ϕ) = (ϕL) ◦ (Lη)Λ : L → M where Λ (β) = (Cɛ) ◦ (βR) .(Θ (ϕ) C) ◦ Θ (ϕ) = (RϕC) ◦ (ηRC) ◦ (Rϕ) ◦ (ηR)η= (RϕC) ◦ (RLRϕ) ◦ (ηRLR) ◦ (ηR)η,ϕϕmorphcom (= (Rϕϕ) ◦ (RLηR) ◦ (ηR) =) R∆C◦ (Rϕ) ◦ (ηR) = ( R∆ C) ◦ Θ (ϕ)and( ) RεC◦ Θ (ϕ) = ( Rε C) ◦ (Rϕ) ◦ (ηR) ϕmorphcom= (Rɛ) ◦ (ηR) = R.Therefore we deduce that Θ (ϕ) ∈ R. For a given α ∈ R, we compute(Ξ (α) Ξ (α)) ◦ (LηR) Ξ(α)= (Ξ (α) C) ◦ (LRΞ (α)) ◦ (LηR)= (ɛCC) ◦ (LαC) ◦ (LRɛC) ◦ (LRLα) ◦ (LηR)η= (ɛCC) ◦ (LαC) ◦ (Lα) (R,α)= (ɛCC) ◦ ( LR∆ C) ◦ (Lα)ɛ= ∆ C ◦ (ɛC) ◦ (Lα) = ∆ C ◦ Ξ (α)andε C ◦ Ξ (α) = ε C ◦ (ɛC) ◦ (Lα) = ɛ ɛ ◦ ( LRε C) ◦ (Lα) (R,α)= ɛ.Therefore we deduce that Ξ (α) ∈ M. For a given ϕ ∈ M, we computeϕ[CΓ (ϕ)] ◦ Γ (ϕ) = (CϕL) ◦ (CLη) ◦ (ϕL) ◦ (Lη)= (ϕCL) ◦ (LRϕL) ◦ (LRLη) ◦ (Lη) = η (ϕCL) ◦ (LRϕL) ◦ (LηRL) ◦ (Lη)= (ϕϕL) ◦ (LηRL) ◦ (Lη) ϕmorphcom (= ∆ C L ) ◦ (ϕL) ◦ (Lη) = ( ∆ C L ) ◦ Γ (ϕ)and(ε C L ) ◦ Γ (ϕ) = ( ε C L ) ◦ (ϕL) ◦ (Lη) ϕmorphcom= (ɛL) ◦ (Lη) = L.Therefore we deduce that Γ (ϕ) ∈ L. For a given β ∈ L, we compute(Λ (β) Λ (β)) ◦ (LηR) Λ(β)= (CΛ (β)) ◦ (Λ (β) LR) ◦ (LηR)


= (CCɛ) ◦ (CβR) ◦ (CɛLR) ◦ (βRLR) ◦ (LηR)β= (CCɛ) ◦ (CβR) ◦ (CɛLR) ◦ (CLηR) ◦ (βR) = (CCɛ) ◦ (CβR) ◦ (βR)(L,β)= (CCɛ) ◦ ( ∆ C LR ) ◦ (βR) =∆ C= ∆ C ◦ (Cɛ) ◦ (βR) = ∆ C ◦ Λ (β)andε C ◦ Λ (β) = ε C ◦ (Cɛ) ◦ (βR) εC = ɛ ◦ ( ε C LR ) ◦ (βR) (L,β)= ɛ.Therefore we deduce that Λ (β) ∈ M. Let now ϕ ∈ M and let us calculateΞΘ (ϕ) = (ɛC) ◦ (LRϕ) ◦ (LηR) ɛ = ϕ ◦ (ɛLR) ◦ (LηR) = ϕ.Let now α ∈ R and let us calculateΘΞ (α) = (RΞ (α)) ◦ (ηR) = (RɛC) ◦ (RLα) ◦ (ηR) (RɛC) ◦ (ηRC) ◦ α = α.Let now ϕ ∈ M and let us calculateΛΓ (ϕ) = (Cɛ) ◦ (Γ (ϕ) R) = (Cɛ) ◦ (ϕLR) ◦ (LηR) ϕ = ϕ ◦ (LRɛ) ◦ (LηR) = ϕ.Let now β ∈ L and let us calculateΓΛ (β) = (Λ (β) L) ◦ (Lη) = (CɛL) ◦ (βRL) ◦ (Lη) β = (CɛL) ◦ (CLη) ◦ β = β.Theorem 4.43 ([D, Theorem II.<str<strong>on</strong>g>1.</str<strong>on</strong>g>1] and [GT, Theorem <str<strong>on</strong>g>1.</str<strong>on</strong>g>2]). Let (L, R) be an adjuncti<strong>on</strong>where L : B → A and R : A → B and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad<strong>on</strong> a category A. There exists a bijective corresp<strong>on</strong>dence between the following collecti<strong>on</strong>sof data:K Functors K : B → C A such that C U ◦ K = L,M com<strong>on</strong>ad morphisms ϕ : LR = (LR, LηR, ɛ) → C = ( C, ∆ C , ε C)given byΨ : K → M where Ψ (K) = (Cɛ) ◦ ([C U ( γ C K )] R )Υ : M → K where Υ (ϕ) (Y ) = (LY, (ϕLY ) ◦ (LηY )) and Υ (ϕ) (f) = L (f) .Proof. By Corollary 4.25, there exists a bijective corresp<strong>on</strong>dence between K and thecollecti<strong>on</strong> L of functorial morphisms β : L → CL such that (L, β) is a left comodulefunctor for the com<strong>on</strong>ad C given byΦ : K → L where Φ (K) = C U ( γ C K ) : L → CLΩ : L → K where Ω (β) (Y ) = (LY, βY ) and Ω (β) (f) = L (f) .By Propositi<strong>on</strong> 4.42, there exists a bijective corresp<strong>on</strong>dence between L and thecollecti<strong>on</strong> M of com<strong>on</strong>ad morphisms ϕ : LR = (LR, LηR, ɛ) → C = ( C, ∆ C , ε C)given byWe computeΛ : L → M where Λ (β) = (Cɛ) ◦ (βR)Γ : M → L where Γ (ϕ) = (ϕL) ◦ (Lη) .(Λ ◦ Φ) (K) = (Cɛ) ◦ ([C U ( γ C K )] R ) = Ψ (K)63□


64and[(Ω ◦ Γ) (ϕ)] (Y ) = (LY, (ϕLY ) ◦ (LηY )) = Υ (ϕ) (Y ) and [(Ω ◦ Γ) (ϕ)] (f) = Lf.Remark 4.44. When C = LR = (LR, LηR, ɛ) and ϕ = Id LR the functor K =Υ (ϕ) : B → LR A such that LR U ◦ K = L is called the Eilenberg-Moore comparis<strong>on</strong>functor.Corollary 4.45. Let C = ( C, ∆ C , ε C) and D = ( D, ∆ D , ε D) be com<strong>on</strong>ads <strong>on</strong> acategory A. There exists a bijective corresp<strong>on</strong>dence between the following collecti<strong>on</strong>sof data:K Functors K : C A → D A such that D U ◦ K = C U,M com<strong>on</strong>ad morphisms ϕ : C → Dgiven byΨ : K → M where Ψ (K) = (Cɛ) ◦ ([D U ( γ D K )] C F )Υ : M → K where Υ (ϕ) (Y ) = (C UY, ( ϕ C UY ) ◦ (C Uγ C Y )) and Υ (ϕ) (f) = C U (f) .Proof. Apply Theorem 4.43 to the case L = C U : C A → A and R = C F : A → C Aand note that (LR, LηR, ɛ) = (C U C F , C Uγ C C F , ε C) = ( C, ∆ C , ε C) .□Propositi<strong>on</strong> 4.46. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A →B , let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> the category A and let ϕ : LR =(LR, LηR, ɛ) → C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let α = Θ (ϕ) =(Rϕ) ◦ (ηR). Then the isomorphism a X,Y : Hom A (LY, X) → Hom B (Y, RX) of theadjuncti<strong>on</strong> (L, R) induces an isomorphismâ X,Y: HomC A(Kϕ Y, ( X, C ρ X))→ EquSets(HomB (Y, αX) , Hom B(Y, R C ρ X)).Proof. Leta X,Y : Hom A (LY, X) → Hom B (Y, RX)be the isomorphism of the adjuncti<strong>on</strong> (L, R) for every Y ∈ B and for every X ∈ A.Recall that a X,Y (ξ) = (Rξ) ◦ (ηY ) and a −1X,Y(ζ) = (ɛX) ◦ (Lζ) . Let us check thatwe can apply Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>15 to the case Z = Hom A (L−, X) , Z ′ = Hom B (−, RX) ,W = Hom A (L−, CX) , W ′ = Hom( B (−, RCX), ) a = C ρ X ◦ −, b = C − ◦Γ (ϕ) Y,a ′ = Hom( B (−, αX), b ′ = Hom B −, R C ρ X and ϕ = aX,− , ψ = a CX,− , E =Equ CFun ρ X ◦ −, C (−) ◦ Γ (ϕ) Y ) (and( ))E ′ = Equ Fun HomB (−, αX) , Hom B −, R C ρ X(Equ CFun ρ X ◦ −, C (−) ◦ Γ (ϕ) − ) â ( ( ))X,− Equ Fun HomB (−, αX) , Hom B −, R C ρ X□iZ = Hom A (L−, X)a= C ρ X ◦−b=C−◦Γ(ϕ)−W = Hom A (L−, CX)a X,−a CX,−Z ′ = Hom B (−, RX)a ′ =Hom B (−,αX)i ′b ′ =Hom B(−,R C ρ X) W ′ = Hom B (−, RCX)


For every Y ∈ B, X ∈ A and for every ξ ∈ Hom A (LY, X) , let us computeHom B (Y, αX) ◦ a X,Y (ξ) = αX ◦ a X,Y (ξ) = (RϕX) ◦ (ηRX) ◦ a X,Y (ξ)defa= (RϕX) ◦ (ηRX) ◦ (Rξ) ◦ (ηY )η= (RϕX) ◦ (RLRξ) ◦ (RLηY ) ◦ (ηY ) defa= a CX,Y [(ϕX) ◦ (LRξ) ◦ (LηY )] ϕ == a CX,Y [(Cξ) ◦ (ϕLY ) ◦ (LηY )]Since Γ (ϕ) = (ϕL) ◦ (Lη) we have obtained thatLet us calculateHom B (Y, αX) ◦ a X,Y = a CX,Y ◦ [(C−) ◦ (Γ (ϕ) Y )] .( )Hom B Y, R C ρ X ◦ aX,Y (ξ) = ( )R C ρ X ◦ aX,Y (ξ) defa= ( )R C ρ X ◦ (Rξ) ◦ (ηY )defa (= a CCX,Y ρ X ◦ ξ )Therefore we get thatHom B(Y, R C ρ X)◦ aX,Y = a CX,Y ◦ (C ρ X ◦ − )Since K ϕ (Y ) = Υ (ϕ) (Y ) = (LY, (ϕLY ) ◦ (LηY )), for every χ ∈ Hom A (LY , X) wehave65and[C (−) ◦ Γ (ϕ) Y ] (χ) = Γ (ϕ) Y = (Cχ) ◦ (ϕLY ) ◦ (LηY ) = (Cχ) ◦ C ρ LY[ Cρ X ◦ − ] (χ) = C ρ X ◦ χso thatThus we get[C (−) ◦ Γ (ϕ) Y ] (χ) = [C ρ X ◦ − ] (χ) if and <strong>on</strong>ly ifχ ∈ HomC A(((LY ) , (ϕLY ) ◦ (LηY )) ,(X, C ρ X)).Equ HomA (LY ,X)( Cρ X ◦ −, C (−) ◦ Γ (ϕ) Y )= { f ∈ Hom A (LY , X) | C ρ X ◦ f = (Cf) ◦ (Γ (ϕ) Y ) }= { f ∈ Hom A (LY , X) | C ρ X ◦ f = (Cf) ◦ (ϕLY ) ◦ (LηY ) }= { (f ∈ Hom CA U (K ϕ Y ) , C U ( )) }X, C ρ X | C ρ X ◦ f = (Cf) ◦ C ρC U(K ϕY )(= HomC A Kϕ Y, ( ))X, C ρ Xso that Equ Fun( Cρ X ◦ −, C (−) ◦ Γ (ϕ) − ) = HomC A(Kϕ −, ( X, C ρ X)). □Part of the following Propositi<strong>on</strong> is already in [GT], Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>3.Propositi<strong>on</strong> 4.47. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B,let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ϕ : LR = (LR, LηR, ɛ) →C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let α = Θ (ϕ) = (Rϕ) ◦ (ηR). Thenthe functor K ϕ = Υ (ϕ) : B → C A has a right adjoint D ϕ : C A → B if and <strong>on</strong>ly if,


66for every ( X, C ρ X)∈ C A, there exists Equ B(αX, R C ρ X). In this case there exists afunctorial morphism d ϕ : D ϕ → R C U such thatand thus(D ϕ , d ϕ ) = Equ Fun(α C U, R C Uγ C) .[Dϕ((X, C ρ X)), dϕ(X, C ρ X)]= EquB(αX, R( Cρ X)).Proof. Assume first that, for every ( ) ( )X, C ρ X ∈ C A, there exists Equ B αX, R C ρ X .By Propositi<strong>on</strong> 4.46, the isomorphism a X,Y : Hom A (LY, X) → Hom B (Y, RX) ofthe adjuncti<strong>on</strong> (L, R) induces an isomorphismâ X,Y : HomC A(Kϕ Y, ( X, C ρ X))→ EquSets(HomB (Y, αX) , Hom B(Y, R C ρ X)).Let ( D ϕ((X, C ρ X)), dϕ((X, C ρ X)))denote the equalizerD ϕ(X, C ρ X) dϕ RXR C ρ XαX RCXwhere d ϕ(X, C ρ X): Dϕ((X, C ρ X))→ RX is the can<strong>on</strong>ical embedding. Then, byLemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>17 we have(HomB(Y, Dϕ((X, C ρ X))), HomB(Y, dϕ((X, C ρ X))))= Equ Sets(HomB (Y, αX) , Hom B(Y, R C ρ X)).Thus, for every ( )(X, C ρ X ∈ C A and for every Y ∈ B, a X,Y induces an isomorphismâ X,Y : HomC A Kϕ Y, ( )) ( ( ))X, C ρ X → HomB Y, Dϕ X, C ρ X such that the followingdiagram is commutative((43) HomC A Kϕ Y, ( ))X, C â X,Y ( ( ))ρ X Hom B Y, Dϕ X, C ρ XHom A (LY, X)a X,YHom B (Y,d ϕ)Hom B (Y, RX)C ρ X ◦−(C−)◦(βX)Hom A (LY, CX)a CX,YHom B(Y,R C ρ X) HomB (Y, RCX)Hom B (Y,αX)i.e. (K ϕ , D ϕ ) is an adjuncti<strong>on</strong>.C<strong>on</strong>versely, assume now that the functor K ϕ = Υ (ϕ) : B → C A has a right adjointD ϕ : C A → B. Let ̂ɛ : K ϕ D ϕ → IdC A be the counit of the adjuncti<strong>on</strong> (K ϕ , D ϕ ) andletd ϕ = aC U,D ϕ( CÛɛ ) = ( R C Ûɛ ) ◦ (ηD ϕ ) : D ϕ → R C U.We will prove that(D ϕ , d ϕ ) = Equ Fun(α C U, R C Uγ C) .First of all let us compute(α C U ) ◦ d ϕ = ( α C U ) ◦ ( R C Ûɛ ) ◦ (ηD ϕ )= ( Rϕ C U ) ◦ ( ηR C U ) ◦ ( R C Ûɛ ) ◦ (ηD ϕ )η= ( Rϕ C U ) ◦ ( RLR C Ûɛ ) ◦ (RLηD ϕ ) ◦ (ηD ϕ )


67and alsoϕ= ( RC C Ûɛ ) ◦ (RϕLD ϕ ) ◦ (RLηD ϕ ) ◦ (ηD ϕ )(R C Uγ C) ◦ d ϕ = ( R C Uγ C) ◦ ( R C Ûɛ ) ◦ (ηD ϕ )bɛmorph C A=(RC C Ûɛ ) ◦ ( R C Uγ C K ϕ D ϕ)◦ (ηDϕ )so thatdefK ϕ=(RC C Ûɛ ) ◦ (RϕLD ϕ ) ◦ (RLηD ϕ ) ◦ (ηD ϕ )(α C U ) ◦ d ϕ = ( R C Uγ C) ◦ d ϕ .Now, we will prove that the following diagram is commutative( HomC A Kϕ Y, ( ))X, C ba (X, C ρX ),Yρ XC UHom A (LY, X)Hom B(Y, Dϕ(X, C ρ X))a X,Y HomB (Y, RX) .Hom B(Y,d ϕ(X, C ρ X))In fact, for every ζ ∈ HomC A(Kϕ Y, ( X, C ρ X)), we have[HomB(Y, dϕ(X, C ρ X))◦ â(X, C ρ X ),Y](ζ)defba= Hom B(Y, dϕ(X, C ρ X))[(Dϕ ζ) ◦ (̂ηY )]= ( d ϕ(X, C ρ X))◦ (Dϕ ζ) ◦ (̂ηY )defd ϕ=(R C Ûɛ ( X, C ρ X))◦(ηDϕ(X, C ρ X))◦ (Dϕ ζ) ◦ (̂ηY )η= ( R C Ûɛ ( X, C ρ X))◦ (RLDϕ ζ) ◦ (RL̂ηY ) ◦ (ηY )defK ϕ=(R C Ûɛ ( X, C ρ X))◦(R C UK ϕ D ϕ ζ ) ◦ ( R C UK ϕ̂ηY ) ◦ (ηY )bɛ= ( R C Uζ ) ◦ ( R C ÛɛK ϕ Y ) ◦ ( R C UK ) ϕ̂ηY ◦ (ηY ) (Kϕ,Dϕ)= ( R C Uζ ) ◦ (ηY )and <strong>on</strong> the other hand(aX,Y ◦ C U ) (ζ) = a X,Y( CUζ ) defa= ( R C Uζ ) ◦ (ηY )so that, for every ( X, C ρ X)∈ C A we have( ( ))Hom B −, dϕ X, C ρ X ◦ â(X, C ρ X ),− = a X,− ◦ C U.( ( ))Since a X,− and â (X, C ρ X ),− are isomorphisms, we deduce that Hom B −, dϕ X, C ρ Xis ( m<strong>on</strong>o. ) Applying the commutativity of this diagram in the particular case ofX, C ρ X = Kϕ Y, we get that(d ϕ K ϕ Y ) ◦ (̂ηY ) = Hom B (Y, d ϕ K ϕ Y ) (̂ηY )= Hom B (Y, d ϕ K ϕ Y ) ( ( ))â KϕY,Y IdKϕY= [ ] ( )Hom B (Y, d ϕ K ϕ Y ) ◦ â KϕY,Y IdKϕY= [ aC UK ϕY,Y ◦ C U ] ( )Id KϕY = (aLY,Y ) (C )UId KϕY= (a LY,Y ) ( IdC UK ϕY)= aLY,Y (Id LY ) = ηY


68i.e.(44) (d ϕ K ϕ Y ) ◦ (̂ηY ) = ηY.Now, we have to prove the universal property of the equalizer. Let Z ∈ B and letζ : Z → RX be a morphism such that (αX) ◦ ζ = ( R C ρ X)◦ ζ, i.e.(RϕX) ◦ (ηRX) ◦ ζ = ( )R C ρ X ◦ ζ.( ( )) (This means ζ ∈ Equ Sets HomB (Y, αX) , Hom B Y, R C ρ X ≃ HomC A Kϕ Y, ( ))X, C ρ Xby Propositi<strong>on</strong> 4.46. Then,a −1X,Z (ζ) = (ɛX) ◦ (Lζ) ∈ ( ( ))HomC A (LZ, (ϕLZ) ◦ (LηZ)) , X, C ρ X= HomC A(Kϕ Z, ( X, C ρ X)).We want to prove that there exists ζ ′ : Z → D ϕ(X, C ρ X)such that dϕ(X, C ρ X)◦ζ ′ =ζ. By hypothesis the map( HomC A Kϕ Y, ( ))X, C ba (X, C ρX ( ( ))ρ ),Y X Hom B Y, Dϕ X, C ρ Xis bijective. Hence, given (ɛX) ◦ (Lζ) ∈ HomC A(Kϕ Z, ( X, C ρ X)),â (X, C ρ X ),Z ((ɛX) ◦ (Lζ)) = (D ϕ ɛX) ◦ (D ϕ Lζ) ◦ (̂ηZ) ∈ Hom B(Z, Dϕ(X, C ρ X)). Wewant to prove that(dϕ (X, C ρ X))◦ (Dϕ ɛX) ◦ (D ϕ Lζ) ◦ (̂ηZ) = ζ.We compute(dϕ(X, C ρ X))◦ (Dϕ ɛ) ◦ (D ϕ Lζ) ◦ (̂ηZ) dϕ = (RɛX) ◦ (RLζ) ◦ (d ϕ K ϕ Z) ◦ (̂ηZ)(44)= (RɛX) ◦ (RLζ) ◦ (ηZ) η = (RɛX) ◦ (ηRX) ◦ ζ (L,R)= ζ.Let us denote by ζ ′ = (D ϕ ɛX)◦(D ϕ Lζ)◦(̂ηZ) the morphism such that ( d ϕ(X, C ρ X))◦ζ ′ = ζ. We have to prove that ζ ′ is unique with respect to this property. Letζ ′′ : Z → D ϕ(X, C ρ X)be another morphism in B such that(dϕ(X, C ρ X))◦ ζ ′′ = ζ.Then we haveHom B(Z, dϕ(X, C ρ X))(ζ ′′ ) = ( d ϕ(X, C ρ X))◦ ζ ′′ = ζ= ( d ϕ(X, C ρ X))◦ ζ ′ = Hom B(Z, dϕ(X, C ρ X))(ζ ′ )and since Hom B(Z, dϕ(X, C ρ X))is m<strong>on</strong>o we deduce thatζ ′′ = ζ ′ .Corollary 4.48. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B.Let α = Θ (Id LR ) = ηR. Then the functor K = Υ (Id LR ) : B → LR A has a rightadjoint D : LR A → B if and <strong>on</strong>ly if, for every ( X, LR ρ X)∈ LR A, there existsEqu B(ηRX, R LR ρ X). In this case there exists a functorial morphism d : D → R LR Usuch that(D, d) = Equ Fun(ηR LR U, R LR Uγ LR) .□


69and thus[D((X, LR ρ X)), d(X, LR ρ X)]= EquB(ηRX, R( LRρ X)).Proof. We can apply Propositi<strong>on</strong> 4.47 with ”ϕ” = Id LR .Remark 4.49 ([GT]). In the setting of Propositi<strong>on</strong> 4.47, for every Y ∈ B, we notethat the unit of the adjuncti<strong>on</strong> (K ϕ , D ϕ ) is given by( )̂ηY = â KϕY,Y IdKϕY : Y → Dϕ K ϕ (Y ) .We will c<strong>on</strong>sider the diagram (43) in the particular case of ( X, C ρ X)= Kϕ Y. Notethat since K ϕ Y = (LY, (ϕLY ) ◦ (LηY )) = (LY, βY ) we havei.e.(D ϕ K ϕ (Y ) , d ϕ K ϕ (Y )) = (D ϕ ((LY, βY )) , d ϕ K ϕ (Y )) = Equ B (αLY, RβY )(45) (D ϕ K ϕ (Y ) , d ϕ K ϕ (Y )) = Equ B (αLY, RβY )where β = Γ (ϕ) = (ϕL) ◦ (Lη). We compute(d ϕ K ϕ Y ) ◦ (̂ηY ) = Hom B (Y, d ϕ K ϕ Y ) (̂ηY ) = Hom B (Y, d ϕ K ϕ Y ) ( ( ))â KϕY,Y IdKϕY= [ ] ( ) (43)Hom B (Y, d ϕ K ϕ Y ) ◦ â KϕY,Y IdKϕY = a C KϕY,Y U ( )Id KϕY( )= a KϕY,Y IdC UK ϕY = aKϕY,Y (Id RY ) = ηYso that(46) (d ϕ K ϕ Y ) ◦ (̂ηY ) = ηY.On the other hand, for every ( X, C ρ X)∈ C A, the counit of the adjuncti<strong>on</strong> (K ϕ , D ϕ )is given bŷɛ ( X, C ρ X)= â−1X,D ϕ(X, C ρ X )(IdDϕ(X, C ρ X )): Kϕ D ϕ((X, C ρ X))→(X, C ρ X).Then we have thatâ X,Dϕ(X, C ρ X )(̂ɛ(X, C ρ X))= IdDϕ(X, C ρ X ).By commutativity of the diagram (43), we deduce that( ) ( ) ( )))d ϕ X, C ρ X = dϕ X, C ρ X ◦(âX,Dϕ(X, C ρ X )(̂ɛ X, C ρ XThus we obtain that(47)= a X,Dϕ(X, C ρ X )( CÛɛ ( X, C ρ X)).C Ûɛ ( X, C ρ X)= a−1X,D ϕ(X, C ρ X )(dϕ(X, C ρ X))= (ɛX) ◦(Ldϕ(X, C ρ X)).Observe that, for every X ∈ A, we have that C F (X) = ( CX, ∆ C X ) ∈ C A. Moreover(Dϕ C F (X) , d ϕ C F (X) ) = ( D ϕ(CX, ∆ C X ) , d ϕ(CX, ∆ C X )) =□so that we get(48)= Equ B(αCX, R∆ C X ) (4.15)= (RX, αX)(Dϕ C F , d ϕ C F ) = (R, α) .


70In particular(49) d ϕ(CX, ∆ C X ) = αX.Corollary 4.50. In the setting of Propositi<strong>on</strong> 4.47, assume that, for every ( X, C ρ X)∈C A, there exists Equ B(αX, R C ρ X). Then for every X ∈ A we haveC Ûɛ ( CX, ∆ C X ) = ϕXand henceC Ûɛ C F = ϕwhere ̂ɛ is the counit of the adjuncti<strong>on</strong> (K ϕ , D ϕ ).Proof. Let us calculateC Ûɛ ( CX, ∆ C X ) (47)= (ɛCX) ◦ ( Ld ϕ(CX, ∆ C X ))(48)= (ɛCX) ◦ (LαX) = Ξ (α) (X) = ϕX.Corollary 4.5<str<strong>on</strong>g>1.</str<strong>on</strong>g> In the setting of Propositi<strong>on</strong> 4.47, assume that, for every ( X, C ρ X)∈C A, there exists Equ B(αX, R C ρ X). Then, the functor Dϕ is full and faithful if and<strong>on</strong>ly if ̂ɛ is a functorial isomorphism.Proof. By Propositi<strong>on</strong> 4.47, (K ϕ , D ϕ ) is an adjuncti<strong>on</strong> with counit ̂ɛ : K ϕ D ϕ → C A.Then we can apply Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>3<str<strong>on</strong>g>2.</str<strong>on</strong>g>□Lemma 4.52 ([GT, Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>5]). In the setting of Propositi<strong>on</strong> 4.47, assume that, forevery ( X, C ρ X)∈ C A, there exists Equ B(αX, R C ρ X). Then, for every(X, C ρ X)∈C A the following diagram□LD ϕ(X, C ρ X) C Ubɛ(X, C ρ X)C U ( X, C ρ X)Ld ϕ(X, C ρ X) LR C U ( )X, C ϕ C U(X, C ρ X)ρ XC U C γ(X, C ρ X)C C U ( )X, C ρ XLα C U(X, C ρ X) LR C U C γ(X, C ρ X) ∆ C C U(X, C ρ X) C C U C γ(X, C ρ X)LRC C U ( )X, C ϕC C U(X, C ρ X)ρ X CC C U ( )X, C ρ Xserially commutes. Therefore we get( CUγ C) ◦ (C Ûɛ ) = ( ϕ C U ) ◦ (Ld ϕ ) andProof. Let us compute(∆C C U ) ◦ ( ϕ C U ) = ( ϕC C U ) ◦ ( Lα C U ) .C ρ X ◦ C Ûɛ ( X, C ρ X) (47)= C ρ X ◦ (ɛX) ◦ ( Ld ϕ(X, C ρ X))ϕmorphcom<strong>on</strong>ads=C ρ X ◦ ( ε C X ) ◦ (ϕX) ◦ ( Ld ϕ(X, C ρ X))ε C = ( ε C CX ) ◦ ( C C ρ X)◦ (ϕX) ◦(Ldϕ(X, C ρ X))ϕ= ( ε C CX ) ◦ (ϕCX) ◦ ( ) ( ( ))LR C ρ X ◦ Ldϕ X, C ρ X


defd ϕ=(ε C CX ) ◦ (ϕCX) ◦ (LαX) ◦ ( Ld ϕ(X, C ρ X))defα= ( ε C CX ) ◦ (ϕCX) ◦ (LRϕX) ◦ (LηRX) ◦ ( Ld ϕ(X, C ρ X))ϕ= ( ε C CX ) ◦ (ϕϕX) ◦ (LηRX) ◦ ( ( ))Ld ϕ X, C ρ X(ε C CX ) ◦ ( ∆ C X ) ◦ (ϕX) ◦ ( ( ))Ld ϕ X, C ρ Xϕmorphcom<strong>on</strong>ads=so that we deduce thatCcom<strong>on</strong>ad= (ϕX) ◦ ( Ld ϕ(X, C ρ X))C ρ X ◦ (C Ûɛ ( X, C ρ X))= (ϕX) ◦(Ldϕ(X, C ρ X))71and thus( CUγ C) ◦ (C Ûɛ ) = ( ϕ C U ) ◦ Ld ϕ .Let us calculate(∆C C U ) ◦ ( ϕ C U ) ϕcom<strong>on</strong>admorph (= ϕϕ C U ) ◦ ( LηR C U )= ( ϕC C U ) ◦ ( LRϕ C U ) ◦ ( LηR C U ) defα= ( ϕC C U ) ◦ ( Lα C U ) .Theorem 4.53 ([GT] Theorem <str<strong>on</strong>g>2.</str<strong>on</strong>g>6). Let (L, R) be an adjuncti<strong>on</strong> where L : B → Aand R : A → B, let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ϕ : LR =(LR, LηR, ɛ) → C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let α = Θ (ϕ) = (Rϕ) ◦(ηR) and assume that, for every ( ) ( )X, C ρ X ∈ C A, there exists Equ B αX, R C ρ X .Then we can c<strong>on</strong>sider the functor K ϕ = Υ (ϕ) : B → C A and its right adjointD ϕ : C A → B. D ϕ is full and faithful if and <strong>on</strong>ly if1) L preserves the equalizer(D ϕ , d ϕ ) = Equ Fun(α C U, R C Uγ C) .2) ϕ : LR → C is a com<strong>on</strong>ad isomorphism.Proof. Recall that, by Corollary 4.50,(50)C Ûɛ C F = ϕ.By Corollary 4.51, D ϕ is full and faithful if and <strong>on</strong>ly if ̂ɛ is a functorial isomorphism.Let us assume that ̂ɛ is a functorial isomorphism, hence ϕ is an isomorphism too.Recall that, by Lemma4.52, we have((51)CUγ C) ◦ (C Ûɛ ) = ( ϕ C U ) ◦ (Ld ϕ )so that(52)Let us c<strong>on</strong>sider the diagramC Uγ C = ( ϕ C U ) ◦ (Ld ϕ ) ◦ (C Ûɛ −1) .d ϕLD ϕLR C U LRC Uγ C LRC C ULα C U□


72We have to prove that (LD ϕ , Ld ϕ ) = Equ Fun(Lα C U, LR C Uγ C) . Since L is a functor,we clearly have ( Lα C U ) ◦(Ld ϕ ) = ( LR C Uγ C) ◦(Ld ϕ ). Let Z : Z → C A be a functorand let ξ : Z → LR C U be a functorial morphism such that(Lα C U ) ◦ ξ = ( LR C Uγ C) ◦ ξ.Recall that ( ε C C U ) ◦ (C Uγ C) = C U and (C F ε C) ◦ ( γ C C F ) = C F . We compute(ϕ C U ) ◦ ξ = Id C C U ◦ ϕ C U ◦ ξ Ccom<strong>on</strong>ad (= ε C C C U ) ◦ ( ∆ CC U ) ◦ ( ϕ C U ) ◦ ξ =ϕcom<strong>on</strong>admorp (= ε C C C U ) ◦ ( ϕϕ C U ) ◦ ( LηR C U ) ◦ ξ == ( ε C C C U ) ◦ ( ϕC C U ) ◦ ( LRϕ C U ) ◦ ( LηR C U ) ◦ ξ == ( ε C C C U ) ◦ ( ϕC C U ) ◦ ( Lα C U ) ◦ ξ = ( ε C C C U ) ◦ ( ϕC C U ) ◦ ( LR C Uγ C) ◦ ξ =ϕ= ( ε C C C U ) ◦ ( C C Uγ C) ◦ ( ϕ C U ) ◦ ξ εC = (C Uγ C) ◦ ( ε C C U ) ◦ ( ϕ C U ) ◦ ξ =Since ϕ is iso, we get(52)= ( ϕ C U ) ◦ (Ld ϕ ) ◦ (C Ûɛ −1) ◦ ( ε C C U ) ◦ ( ϕ C U ) ◦ ξ.ξ = (Ld ϕ ) ◦ [(C Ûɛ −1) ◦ ( ε C C U ) ◦ ( ϕ C U ) ◦ ξ ] .Let now w : Z → LD ϕ be a functorial morphism such thatWe computeξ = (Ld ϕ ) ◦ w.( CUγ C) ◦ (C Ûɛ ) ◦ [(C Ûɛ −1) ◦ ( ε C C U ) ◦ ( ϕ C U ) ◦ ξ ] =(51)= ( ϕ C U ) ◦ (Ld ϕ ) ◦ [(C Ûɛ −1) ◦ ( ε C C U ) ◦ ( ϕ C U ) ◦ ξ ] == ( ϕ C U ) ◦ ξ = ( ϕ C U ) ◦ (Ld ϕ ) ◦ w (51)= (C Uγ C) ◦ (C Ûɛ ) ◦ wand since C Uγ C is a m<strong>on</strong>omorphism (since it is an equalizer) and ̂ɛ is an isomorphismwe obtain that( CÛɛ −1) ◦ ( ε C C U ) ◦ ( ϕ C U ) ◦ ξ = w.C<strong>on</strong>versely, assume that 1) and 2) hold. Then ϕ is a functorial isomorphism. C<strong>on</strong>siderthe diagramLD ϕ(X, C ρ X) C Ubɛ(X, C ρ X)C U ( X, C ρ X)Ld ϕ(X, C ρ X) LR C U ( )X, C ϕ C U(X, C ρ X)ρ XC U C γ(X, C ρ X)C C U ( )X, C ρ XLα C U(X, C ρ X) LR C U C γ(X, C ρ X) ∆ C C U(X, C ρ X) C C U C γ(X, C ρ X)LRC C U ( )X, C ϕC C U(X, C ρ X)ρ X CC C U ( )X, C ρ Xof Lemma 4.52 where the last row is always an equalizer (see Propositi<strong>on</strong> 4.13) andthe first row is also an equalizer by the assumpti<strong>on</strong> 1). Then we can apply Lemma


<str<strong>on</strong>g>2.</str<strong>on</strong>g>15 and hence we get that C Ûɛ is a functorial isomorphism. Since,by Propositi<strong>on</strong>4.17, C U reflects isomorphism we deduce that ̂ɛ is a functorial isomorphism. □Corollary 4.54. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B.Let α = Θ (Id LR ) = ηR and assume that, for every ( X, LR ρ X)∈ LR A, there existsEqu B(ηRX, R LR ρ X). Then we can c<strong>on</strong>sider the functor K = Υ (IdLR ) : B → LR Aand its right adjoint D : LR A → B. D is full and faithful if and <strong>on</strong>ly if L preservesthe equalizer(D, d) = Equ Fun(ηR LR U, R LR Uγ LR) .Proof. We can apply Theorem 4.53 with ”ϕ” = Id LR .Theorem 4.55 ([GT, Theorem <str<strong>on</strong>g>2.</str<strong>on</strong>g>7]). Let (L, R) be an adjuncti<strong>on</strong> where L : B → Aand R : A → B, let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ϕ : LR =(LR, LηR, ɛ) → C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let α = Θ (ϕ) = (Rϕ) ◦(ηR) and assume that, for every ( ) ( )X, C ρ X ∈ C A, there exists Equ B αX, R C ρ X .Then we can c<strong>on</strong>sider the functor K ϕ = Υ (ϕ) : B → C A and its right adjointD ϕ : C A → B. The functor K ϕ is an equivalence of categories if and <strong>on</strong>ly if1) L preserves the equalizer((D ϕ , d ϕ ) = Equ Fun α C U, R C Uγ C)2) L reflects isomorphisms and3) ϕ : LR → C is a com<strong>on</strong>ad isomorphism.Proof. If K ϕ is an equivalence then, by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>33, D ϕ is an equivalence of categoriesso that, by Theorem 4.53, 1) and 3) hold. By Propositi<strong>on</strong> 4.17, the functorC U reflects isomorphisms. Since L = C UK ϕ we get that 2) holds.C<strong>on</strong>versely assume that 1), 2) and 3) hold. By Theorem 4.53 , D ϕ is full andfaithful and hence by Corollary 4.51 ̂ɛ is a functorial isomorphism. Let us provethat ̂η is an isomorphism as well. Since L reflects isomorphisms, it is enough toprove that L̂η is an isomorphism. As observed in Remark 4.49, by (44), ̂ηY is theunique morphism such thatHence we getso that(d ϕ K ϕ Y ) ◦ (̂ηY ) = ηY.(Ld ϕ K ϕ Y ) ◦ (L̂ηY ) = LηY(ɛLY ) ◦ (Ld ϕ K ϕ Y ) ◦ (L̂ηY ) = (ɛLY ) ◦ (LηY ) = LY.We now want to prove that (ɛLY ) ◦ (Ld ϕ K ϕ Y ) is also a right inverse for L̂ηY . Wecompute(Ld ϕ K ϕ Y ) ◦ (L̂ηY ) ◦ (ɛLY ) ◦ (Ld ϕ K ϕ Y ) (44)= (LηY ) ◦ (ɛLY ) ◦ (Ld ϕ K ϕ Y )Since L preserves the equalizer(L,R)adj= (Ld ϕ K ϕ Y ) .(D ϕ , d ϕ ) = Equ Fun(α C U, R C Uγ C)73□


74we have that Ld ϕ K ϕ Y is m<strong>on</strong>o and hence we obtainso that L̂η is a functorial isomorphism.(L̂ηY ) ◦ (ɛLY ) ◦ (Ld ϕ K ϕ Y ) = LD ϕ K ϕ YDefiniti<strong>on</strong> 4.56. Let ( L, C ρ L)be a left comodule functor for a com<strong>on</strong>ad C =(C, ∆ C , ε C) such that L has a right adjoint R. Then we can c<strong>on</strong>sider a can<strong>on</strong>icalcom<strong>on</strong>ad morphismcan := (Cɛ) ◦ (C ρ L R ) : LR → Cwhere ɛ denotes the counit of the adjuncti<strong>on</strong> (L, R) . A left C-Galois functor is aleft C-comodule functor ( L, C ρ L)with a right adjoint R such that can is a com<strong>on</strong>adisomorphism.Corollary 4.57. Let ( L, C ρ L)be a left C-Galois comodule functor such that Lpreserves equalizers, L reflects isomorphisms and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad<strong>on</strong> A. Assume that, for every ( X, C ρ X)∈ C A, there exists Equ B(αX, R C ρ X)whereα = (Rcan) ◦ (ηR) where R is the right adjoint of L and η is the unit of theadjuncti<strong>on</strong>. Then we can c<strong>on</strong>sider the functor K can : B → C A. Then the functorK can is an equivalence of categories.Proof. We can apply Theorem 4.55 to the case ϕ = can.Theorem 4.58 (Beck’s Theorem). Let (L, R) be an adjuncti<strong>on</strong> where L : B → A andR : A → B. Let α = Θ (Id LR ) = ηR and assume that, for every ( X, LR ρ X)∈ LR A,there exists Equ B(ηRX, R LR ρ X). Then we can c<strong>on</strong>sider the functor K = Υ (IdLR ) :B → LR A and its right adjoint D : LR A → B. The functor K is an equivalence ofcategories if and <strong>on</strong>ly if1) L preserves the equalizer2) L reflects isomorphisms.(D, d) = Equ Fun(ηR LR U, R LR Uγ LR) .Proof. Apply Theorem 4.55 taking ϕ = Id LR and thus α = Θ (Id LR ) = ηR.Definiti<strong>on</strong> 4.59. Let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> the category A and letL : B → A. The functor L is called ϕ-com<strong>on</strong>adic if it has a right adjoint R : A → Bfor which there exists ϕ : LR → C a com<strong>on</strong>ad morphism such that the functorK ϕ = Υ (ϕ) : B → C A is an equivalence of categories with D ϕ : C A → B which isright adjoint.Definiti<strong>on</strong> 4.60. Let L : B → A be a functor. The functor L is called com<strong>on</strong>adicif it has a right adjoint R : A → B such that the functor K = Υ (Id LR ) : B → LR Ais an equivalence of categories with right adjoint D : LR A → B.Lemma 4.6<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let L : B → A be a ϕ-com<strong>on</strong>adic functor and let(53) X ′ d 0 Xd 1□□□


e a L-c<strong>on</strong>tractible equalizer pair in B. Then (53) has an equalizer d : X ′′ → X ′ inB andLX ′′ Ld LX ′ Ld 0 LXLd 1is an equalizer in A.Proof. Since L is a ϕ-com<strong>on</strong>adic functor we know that K ϕ = Υ (ϕ) : B → C A is anequivalence of categories. Then, instead of c<strong>on</strong>sideringin the category B, we can c<strong>on</strong>siderX ′ d 0 Xd 1K ϕ X ′ K ϕd 0 K ϕ XK ϕd 1in C A which is a C U-c<strong>on</strong>tractible equalizer pair. Let us denote by ( Z ′ , C ρ Z ′):= Kϕ X ′and ( )Z, C ρ Z := Kϕ X so that we can rewrite the C U-c<strong>on</strong>tractible equalizer pair asfollows(Z ′ , C K ϕd 0ρ Z ′) ( )Z, C ρ ZK ϕd 1We want to prove that this pair has an equalizer in C A. Since the pair (K ϕ d 0 , K ϕ d 1 )is a C U-c<strong>on</strong>tractible equalizer in C A, we have thatZ ′′ d Z ′sis a c<strong>on</strong>tractible equalizer and thus, by Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>19, an equalizer in A. Let usc<strong>on</strong>sider the following diagramC ρ Z ′′C C ρ Z ′′Ld 0tLd 1Z ′′ d Z ′C ρ Z ′CZ ′′ Cd CZ ′ ∆ C Z ′∆ C Z ′′C C ρ Z ′ ZLd 0Ld 1CLd 0CLd 1CCZ ′′ CCd CCZ ′ CCLd 0 CCLd 1 Z CZC C ρ ZC ρ Z CCZBy Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>20, all the rows are c<strong>on</strong>tractible equalizers. Since Ld 0 = C UK ϕ d 0and Ld 1 = C UK ϕ d 1 where K ϕ d 0 and K ϕ d 1 are morphisms in C A, we have that theupper right square serially commutes. Moreover, since we also have that ∆ C is afunctorial morphism, the lower right square serially commutes. We also have thatC ρ Z ′◦d is a fork for (CLd 0 , CLd 1 ) and, since (CZ ′′ , CZ ′ , CZ, Cd, CLd 0 , CLd 1 , Cs, Ct)is a c<strong>on</strong>tractible equalizer, in particular (CZ ′′ , Cd) = Equ A (CLd 0 , CLd 1 ); by theuniversal property of the equalizer, there exists a unique morphism C ρ Z ′′ : Z ′′ →CZ ′′ such that(54)C ρ Z ′ ◦ d = (Cd) ◦ C ρ Z ′′.∆ C Z75


and since d is m<strong>on</strong>o we get that(ε C Z ′′) ◦ C ρ Z ′′ = Z ′′76Let us prove that ( Z ′′ , C ρ Z ′′)∈ C A and thus formula (54) will say that d is amorphism in C A. Since ∆ C is a functorial morphism and by definiti<strong>on</strong> of C ρ Z ′′, thelower left square serially commutes. We have(CCd) ◦ ( C C ρ Z ′′)◦ C ρ Z ′′(54)= ( C C ρ Z ′)◦ (Cd) ◦ C ρ Z ′′(54)= ( )C C ρ Z ′ ◦ C ρ Z ′ ◦ d C ρ Z ′coass= ( ∆ C Z ′) ◦ C ρ Z ′ ◦ d(54)= ( ∆ C Z ′) ◦ (Cd) ◦ C ∆ρ CZ ′′ = (CCd) ◦ ( ∆ C Z ′′) ◦ C ρ Z ′′and since CCd is a m<strong>on</strong>omorphism we get( )C C ρ Z ′′ ◦ C ρ Z ′′ = ( ∆ C Z ′′) ◦ C ρ Z ′′that is that C ρ Z ′′is coassociative. Moreover we haved ◦ ( ε C Z ′′) ◦ C ρ Z ′′ε C = ( ε C Z ′) ◦ (Cd) ◦ C ρ Z ′′(54)= ( ε C Z ′) ◦ C ρ Z ′ ◦ d C ρ Z ′counit= dso that C ρ Z ′′ is also counital. Therefore ( Z ′′ , C ρ Z ′′)∈ C A and d is a morphism inC A. Now we want to prove that it is an equalizer in C A. Let ( E, C ρ E)∈ C A andf : ( E, C ρ E)→(Z ′ , C ρ Z ′)be a morphism in C A such that (K ϕ d 0 ) ◦ f = (K ϕ d 1 ) ◦ f.Then, by regarding f as a morphism in A we also have that(Ld 0 ) ◦ f = (Ld 1 ) ◦ f.Since (Z ′′ , d) = Equ A (Ld 0 , Ld 1 ) , there exists a unique morphism h : E → Z ′′ suchthatd ◦ h = f.Now we want to prove that h is a morphism in C A. In fact, let us c<strong>on</strong>sider thefollowing diagramEC ρ EhC ρ Z ′′Z ′′ d Z ′C ρ Z ′CE Ch CZ ′′ Cd CZ ′ .Since d ∈ C A, the right square commutes. Since f ∈ C A we haveso that we have(Cd) ◦ (Ch) ◦ C ρ E = (Cf) ◦ C ρ E = C ρ Z ′ ◦ f = C ρ Z ′ ◦ d ◦ h(Cd) ◦ C ρ Z ′′ ◦ h (54)= C ρ Z ′ ◦ d ◦ h = (Cd) ◦ (Ch) ◦ C ρ Eand since Cd is a m<strong>on</strong>omorphism, we deduce thatC ρ Z ′′ ◦ h = (Ch) ◦ C ρ E


i.e. h ∈ C A. Therefore (Z ′′ , d) = EquC A (K ϕ d 0 , K ϕ d 1 ). Now, since K ϕ : B → C A isan equivalence of categories, there exist X ′′ , e ∈ B such thatK ϕ X ′′ = ( Z ′′ , C ρ Z ′′)and Kϕ e = dand thus (X ′′ , e) = Equ B (d 0 , d 1 ). Moreover, sinceZ ′′ d Z ′sis a c<strong>on</strong>tractible coequalizer and (Z ′′ , d) = (C UK ϕ X ′′ , C UK ϕ e ) (, we deduce thatCUK ϕ X ′′ , C UK ϕ e ) (is a c<strong>on</strong>tractible coequalizer of (Ld 0 , Ld 1 ). Then (LX ′′ , Le) =CUK ϕ X ′′ , C UK ϕ e ) is a c<strong>on</strong>tractible coequalizer of (Ld 0 , Ld 1 ) so that (LX ′′ , Le) =Equ A (Ld 0 , Ld 1 ).□The following is a slightly improved versi<strong>on</strong> of Theorem 3.14 p. 101 [BW] for thedual case.Theorem 4.62 (Generalized Beck’s Precise Cotripleability Theorem). Let L : B →A be a functor, let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A. Then L isϕ-com<strong>on</strong>adic if and <strong>on</strong>ly if1) L has a right adjoint R : A → B,2) ϕ : LR → C is a com<strong>on</strong>ads isomorphism where LR = (LR, LηR, ɛ) with ηand ɛ unit and counit of (L, R) ,3) for every ( X, C ρ X)∈ C A, there exist Equ B(αX, R C ρ X), where α = (Rϕ) ◦(ηR), and L preserves the equalizerLd 0tLd 1 ZEqu Fun(α C U, R C Uγ C) ,4) L reflects isomorphisms.In this case in B there exist equalizers of reflexive L-c<strong>on</strong>tractible equalizer pairsand L preserves them.Proof. Assume first that L is ϕ-com<strong>on</strong>adic. Then by definiti<strong>on</strong> L has a right adjointR : A → B and a com<strong>on</strong>ad morphism ϕ : LR → C such that the functor K ϕ =Υ (ϕ) : B → C A is an equivalence of categories. Let K ϕ ′ be an inverse of K ϕ . Thenin particular K ϕ ′ : C A → B is a right adjoint of K ϕ so that by Propositi<strong>on</strong> 4.47 forevery ( ) ( )X, C ρ X ∈ C A, there exists Equ B αX, R C ρ X where α = Θ (ϕ) = (Rϕ) ◦(ηR) and thus ( (K ϕ, ′ k ϕ) ′ = EquFun α C U, R C Uγ C) . Then we can apply Theorem 4.55to get that L preserves the equalizer ( (K ϕ, ′ k ϕ) ′ = EquFun α C U, R C Uγ C) , L reflectsisomorphisms and ϕ : LR → C is a com<strong>on</strong>ads isomorphism.C<strong>on</strong>versely, by assumpti<strong>on</strong> 1) L has a right adjoint R :( A → B so) that (L, R)(is an adjuncti<strong>on</strong>)and by assumpti<strong>on</strong> 2) there exist Equ B αX, R C ρ X , for everyX, C ρ X ∈ C A so that we can apply <strong>on</strong>e directi<strong>on</strong> of Propositi<strong>on</strong> 4.47. Thus thefunctor K ϕ = Υ (ϕ) : B → C A has a right adjoint D ϕ : C A → B. Now, by applyingTheorem 4.55 in the c<strong>on</strong>verse directi<strong>on</strong>, we deduce that K ϕ = Υ (ϕ) : B → C A is anequivalence of categories, i.e. L is ϕ-com<strong>on</strong>adic.In the case L is ϕ-com<strong>on</strong>adic, by Lemma 4.61, in B there exist equalizers ofreflexive L-c<strong>on</strong>tractible equalizer pairs and L preserves them.□77


78Corollary 4.63 (Beck’s Precise Cotripleability Theorem). Let L : B → A be afunctor. Then L is com<strong>on</strong>adic if and <strong>on</strong>ly if1) L has a right adjoint R : A → B,2) for every ( X, LR ρ X)∈ LR A, there exist Equ B(ηRX, R LR ρ X)and L preservesthe equalizerEqu Fun((ηR) ◦( LRU ) , R LR Uγ LR)3) L reflects isomorphisms.In this case in B there exist equalizers of reflexive L-c<strong>on</strong>tractible equalizer pairsand L preserves them.Proof. Apply Theorem 4.62 to the case ϕ = Id LR .Lemma 4.64. Let (L, R) be an adjuncti<strong>on</strong>, where L : B → A and R : A → B, withunit η and counit ɛ. Then for every Y ∈ B,(LY, LRLY, LRLRLY, LηY, LηRLY, LRLηY, ɛLY, ɛLRLY ) is a c<strong>on</strong>tractible equalizerand in particular, for every Y ∈ BProof. C<strong>on</strong>sider the following diagram(LY, LηY ) = Equ A (LηRLY, LRLηY ) .□and let us computeLY LηY LRLYɛLYLηRLYɛLRLYLRLηY LRLRLY(ɛLRLY ) ◦ (LηRLY ) = Id LRLY(ɛLY ) ◦ (LηY ) = Id LY(ɛLRLY ) ◦ (LRLηY ) = (LηY ) ◦ (ɛLY ) = Id LRLY(LηRLY ) ◦ (LηY ) = (LRLηY ) ◦ (LηY ) .Thus (LY, LRLY, LRLRLY, LηY, LηRLY, LRLηY, ɛLY, ɛLRLY ) is a c<strong>on</strong>tractibleequalizer for every Y ∈ B and by Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>19 we get that (LY, LηY ) =Equ A (LηRLY, LRLηY ) .□Lemma 4.65. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B, letC = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ϕ : LR = (LR, LηR, ɛ) →C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let K ϕ = Υ (ϕ) = (L, (ϕL) ◦ (Lη)) andC UK ϕ (f) = L (f) for every morphism f in B. For every Y ∈ B we have(55) (K ϕ Y, K ϕ ηY ) = EquC A (K ϕ ηRLY, K ϕ RLηY ) .Proof. By Lemma 4.64 we have that (LY, LηY ) = Equ A (LηRLY, LRLηY ). Leth : Z → K ϕ RLY = (LRLY, (ϕLRLY ) ◦ (LηRLY )) be a morphism in C A such thatThen(K ϕ RLηY ) ◦ h = (K ϕ ηRLY ) ◦ h.(56) (LRLηY ) ◦ (C Uh ) = (LηRLY ) ◦ (C Uh )


and hence there exists a ζ : C UZ → LY = C UK ϕ Y such that((57)CUh ) = (LηY ) ◦ ζ = (C UK ϕ ηY ) ◦ ζ.Let us prove that ζ gives rise to a morphism in C A. Since h is a morphism in C Awe have that(58) (ϕLRLY ) ◦ (LηRLY ) ◦ (C Uh ) = ( C C Uh ) ◦ (C Uγ C Z ) .Let us computeso that(CLηY ) ◦ (Cζ) ◦ (C Uγ C Z ) (57)= ( C C Uh ) ◦ (C Uγ C Z )(58)= (ϕLRLY ) ◦ (LηRLY ) ◦ (C Uh )(56)= (ϕLRLY ) ◦ (LRLηY ) ◦ (C Uh )(57)= (ϕLRLY ) ◦ (LRLηY ) ◦ (LηY ) ◦ ζϕ= (CLηY ) ◦ (ϕLY ) ◦ (LηY ) ◦ ζ(CLηY ) ◦ (Cζ) ◦ (C Uγ C Z ) = (CLηY ) ◦ (ϕLY ) ◦ (LηY ) ◦ ζ.Since (CɛLY ) ◦ (CLηY ) = CLRLY , CLηY is m<strong>on</strong>o and hence we get(Cζ) ◦ (C Uγ C Z ) = (ϕLY ) ◦ (LηY ) ◦ ζi.e. ζ : C UZ → LY = C UK ϕ Y is a morphism of C-comodules.Propositi<strong>on</strong> 4.66. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B,let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ϕ : LR = (LR, LηR, ɛ) →C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let K ϕ = Υ (ϕ) = (L, (ϕL) ◦ (Lη)) andC UK ϕ (f) = L (f) for every morphism f in B. If ϕX is a m<strong>on</strong>omorphism forevery X ∈ A, the assignment K Y,RLY ′ : Hom B (Y, RLY ′ ) → HomC A (K ϕ Y, K ϕ RLY ′ )defined by settingK Y,RLY ′ (f) = K ϕ (f)is an isomorphism whose inverse is defined byK −1Y,RLY ′ (h) = (RɛLY ′ ) ◦ ( R C Uh ) ◦ (ηY ) .Proof. Let f ∈ Hom B (Y, RLY ′ ). We compute( )˜K −1Y,RLY˜KY,RLY ′ ′ (f) = (RɛLY ′ ) ◦ ( R C UK ϕ f ) ◦ (ηY ) = (RɛLY ′ ) ◦ (RLf) ◦ (ηY )η= (RɛLY ′ ) ◦ (ηRLY ′ ) ◦ f = f.Let h ∈ HomC A (K ϕ Y, K ϕ RLY ′ ). This means that(ϕLRLY ′ ) ◦ (LηRLY ′ ) ◦ (C Uh ) = ( C C Uh ) ◦ (ϕLY ) ◦ (LηY )ϕ= (ϕLRLY ′ ) ◦ ( LR C Uh ) ◦ (LηY ) .Since ϕX is a m<strong>on</strong>omorphism for every X ∈ A, we deduce that(59) (LηRLY ′ ) ◦ (C Uh ) = ( LR C Uh ) ◦ (LηY ) .79□


80We compute(LRɛLY ′ ) ◦ ( LR C Uh ) ◦ (LηY ) (59)= (LRɛLY ′ ) ◦ (LηRLY ′ ) ◦ (C Uh )= C Uhand since L = C UK ϕ and C U reflects, we getThen we deduce thatK Y,RLY ′(K ϕ RɛLY ′ ) ◦ ( K ϕ R C Uh ) ◦ (K ϕ ηY ) = h.(K−1Y,RLY(h) ) (= K ′ Y,RLY ′ (RɛLY ′ ) ◦ ( R C Uh ) ◦ (ηY ) )= (K ϕ RɛLY ′ ) ◦ ( K ϕ R C Uh ) ◦ (K ϕ ηY ) = h.Propositi<strong>on</strong> 4.67. Let (L, R) be an adjuncti<strong>on</strong> where L : B → A and R : A → B,let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A and let ϕ : LR = (LR, LηR, ɛ) →C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad morphism. Let K ϕ = Υ (ϕ) = (L, (ϕL) ◦ (Lη)) andC UK ϕ (f) = L (f) for every morphism f in B. If K ϕ is full and faithful then, forevery Y ∈ B, we haveProof. By Lemma 4.65 we have(Y, ηY ) = Equ B (RLηY, ηRLY ) .(K ϕ Y, K ϕ ηY ) = EquC A (K ϕ RLηY, K ϕ ηRLY ) .Then we can apply Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>16 and deduce that (Y, ηY ) = Equ B (RLηY, ηRLY ) .□Theorem 4.68 (Generalized Beck’s Theorem for com<strong>on</strong>ads). Let (L, R) be an adjuncti<strong>on</strong>where L : B → A and R : A → B, let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad<strong>on</strong> a category A and let ϕ : LR = (LR, LηR, ɛ) → C = ( C, ∆ C , ε C) be a com<strong>on</strong>adsmorphism such that ϕX is a m<strong>on</strong>omorphism for every X ∈ A. Let K ϕ =Υ (ϕ) = (L, (ϕL) ◦ (Lη)) and C UK ϕ (f) = L (f) for every morphism f in B. ThenK ϕ : B → C A is full and faithful if and <strong>on</strong>ly if for every Y ∈ B we have that(Y, ηY ) = Equ B (ηRLY, RLηY ) .Proof. If K ϕ is full and faithful then we can apply Propositi<strong>on</strong> 4.67 to get that forevery Y ∈ B we have that (Y, ηY ) = Equ B (RLηY, ηRLY ) .C<strong>on</strong>versely assume that for every Y ∈ B we have that (Y, ηY ) = Equ B (ηRLY, RLηY ) .We want to prove that K Y,Y ′ is bijective for every Y, Y ′ ∈ B. Let us c<strong>on</strong>sider the□


81following diagram0Hom B (Y, Y ′ )Hom B (Y,ηY ′ )Hom B (Y, RLY ′ )K Y,Y ′K Y,RLY ′0HomC A (K ϕ Y, K ϕ Y ′ )Hom CA (K ϕY,K ϕηY ′ )HomC A (K ϕ Y, K ϕ RLY ′ )Hom B (Y,RLηY ′ )Hom B (Y,ηRLY ′ )Hom B (Y, RLRLY ′ )Hom CA (K ϕY,K ϕRLηY ′ )K Y,RLRLY ′Hom CA (K ϕY,K ϕηRLY ′ ) HomC A (K ϕ Y, K ϕ RLRLY ′ )Since (Y ′ , ηY ′ ) = Equ B (ηRLY ′ , RLηY ′ ) the left column of the diagram is exact byLemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>17. By Lemma 4.65 we have (K ϕ Y, K ϕ ηY ) = EquC A (K ϕ ηRLY, K ϕ RLηY )so that also the right column is also exact by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>17. Let f ∈ Hom B (Y, Y ′ )and g ∈ Hom B (Y, RLY ′ ). SinceK ϕ (ηY ′ ◦ f) = (K ϕ ηY ′ ) ◦ (K ϕ f) ,K ϕ (ηRLY ′ ◦ g) = (K ϕ ηRLY ′ ) ◦ (K ϕ g) and K ϕ (RLηY ′ ◦ g) = (K ϕ RLηY ′ ) ◦ (K ϕ g)the diagram is serially commutative. By Propositi<strong>on</strong> 4.66, K Y,RLY ′ and K Y,RLRLY ′are isomorphisms and so is K Y,Y ′ by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>15. □Corollary 4.69 (Beck’s Theorem for com<strong>on</strong>ads). Let (L, R) be an adjuncti<strong>on</strong>where L : B → A and R : A → B. Then K = Υ (Id LR ) : B → LR A is full andfaithful if and <strong>on</strong>ly if for every Y ∈ B we have that (Y, ηY ) = Equ B (ηRLY, RLηY ) .5.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Distributive laws.5. Liftings and distributive lawsDefiniti<strong>on</strong> 5.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let A = (A, m, u) be a m<strong>on</strong>ad and C = (C, ∆, ε) be a com<strong>on</strong>ad<strong>on</strong> the same category A. A functorial morphism Φ : AC → CA is called a mixeddistributive law (or in some papers an entwining) if• Φ ◦ (mC) = (Cm) ◦ (ΦA) ◦ (AΦ) and Φ ◦ (uC) = Cu• (∆A) ◦ Φ = (CΦ) ◦ (ΦC) ◦ (A∆) and (εA) ◦ Φ = Aε.Definiti<strong>on</strong> 5.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let A = (A, m, u) be a m<strong>on</strong>ad and C = (C, ∆, ε) be a com<strong>on</strong>ad<strong>on</strong> the same category A. A functorial morphism Ψ : CA → AC is called an oppositemixed distributive law if• Ψ ◦ (Cm) = (mC) ◦ (AΨ) ◦ (ΨA) and Ψ ◦ (Cu) = uC• (A∆) ◦ Ψ = (ΨC) ◦ (CΨ) ◦ (∆A) and (Aε) ◦ Ψ = εA.Lemma 5.3. Let A = (A, m A , u A ) be a m<strong>on</strong>ad and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad<strong>on</strong> the category A. Let Q : B → A be a functor such that ( Q, A µ Q)is left A-module functor. Assume that Φ : AC → CA is a mixed distributive law. Then(CQ, A µ CQ)=(CQ,(C A µ Q)◦ (ΦQ))is a left A-module functor.


82Proof. First of all we prove that A µ CQ = ( C A µ Q)◦ (ΦQ) is associative. In fact wehaveA µ CQ ◦ ( )A A defµ A µ CQ( ) ( )CQ = C A µ Q ◦ (ΦQ) ◦ AC A µ Q ◦ (AΦQ)Φ= ( C A µ Q)◦(CA A µ Q)◦ (ΦAQ) ◦ (AΦQ)A µ Q ass= ( C A µ Q)◦ (CmA Q) ◦ (ΦAQ) ◦ (AΦQ)Φmdl= ( C A µ Q)◦ (ΦQ) ◦ (mA CQ) defA µ CQ= A µ CQ ◦ (m A CQ) .Now we prove the unitality c<strong>on</strong>diti<strong>on</strong>. We haveA µ CQ ◦ (u A CQ) defA µ CQ( )= C A µ Q ◦ (ΦQ) ◦ (uA CQ)Φmdl= ( C A µ Q)◦ (CuA Q) A µ CQ uni= CQ.Propositi<strong>on</strong> 5.4. Let A = (A, m A , u A ) be a m<strong>on</strong>ad and let C = ( C, ∆ C , ε C) be acom<strong>on</strong>ad <strong>on</strong> the category A. Assume that Φ : AC → CA is a mixed distributive lawbetween them. Let F, G be left A-module functors and α : F → G be a functorialmorphism between them satisfyingA µ G ◦ (Aα) = α ◦ (A µ F),i.e. there exists a functorial morphism A α : A F → A G such that A U A α = α. Thenalso Cα is a functorial morphism between left A-module functors satisfyingA µ CG ◦ (ACα) = (Cα) ◦ A µ CFi.e. there exists a functorial morphism A (Cα) : A (CF ) → A (CG) such thatAU A (Cα) = Cα. Moreover we haveA (Cα) = ˜C A αwhere ˜C is the lifted com<strong>on</strong>ad <strong>on</strong> the category A A, i.e. A U ˜C = C A U.Proof. By Lemma 3.29 there exists A α : A F → A G such that A U A α = α. Moreover,by Lemma 5.3, we know that ( CF, A µ CF)=(CF,(C A µ F)◦ (ΦF ))and(CG, A µ CG)=(CG,(C A µ G)◦ (ΦG))are left A-module functors. Then we have□A µ CG ◦ (ACα) defA µ=CG( )C A µ G ◦ (ΦG) ◦ (ACα)Φ= ( C A µ G)◦ (CAα) ◦ (ΦG)αmorpAmod= (Cα) ◦ ( C A µ F)◦ (ΦG)def A µ CF= (Cα) ◦ A µ CFi.e. Cα is a functorial morphism between left A-module functors. Then there existsa functorial morphism A (Cα) : A (CF ) → A (CG) such that A U A (Cα) = Cα. Sincewe also haveAU ˜C A α = C A U A α = Cαwe deduce thatAU A (Cα) = A U ˜C A α.


Since A U is faithful, this implies that A (Cα) = ˜C A α.Lemma 5.5. Let A = (A, m A , u A ) be a m<strong>on</strong>ad and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad<strong>on</strong> the category A. Let Q : B → A be a functor such that ( Q, C ρ Q)is a left C-comodule functor. Assume that Φ : AC → CA is a mixed distributive law. Then(AQ, C ρ AQ)=(AQ, (ΦQ) ◦(A C ρ Q))is a left C-comodule functor.Proof. First of all we prove that C ρ AQ = (ΦQ) ◦ ( A C ρ Q)is coassociative. In fact wehave(C C ρ AQ)◦ C ρ AQdef C ρ AQ= (CΦQ) ◦(CA C ρ Q)◦ (ΦQ) ◦(A C ρ Q)Φ= (CΦQ) ◦ (ΦCQ) ◦ ( ) ( )AC C ρ Q ◦ A C ρ QC ρ Q coass= (CΦQ) ◦ (ΦCQ) ◦ ( A∆ C Q ) ◦ ( A C ρ Q)Φmdl= ( ∆ C AQ ) ◦ (ΦQ) ◦ ( A C ρ Q) def C ρ AQ=(∆ C AQ ) ◦ C ρ AQ .Now we prove the counitality c<strong>on</strong>diti<strong>on</strong>. We have(ε C AQ ) ◦ C ρ AQdef C ρ AQ=(ε C AQ ) ◦ (ΦQ) ◦ ( A C ρ Q)Φmdl= ( Aε C Q ) ◦ ( A C ρ Q) C ρ Q couni= AQ.Propositi<strong>on</strong> 5.6. Let A = (A, m A , u A ) be a m<strong>on</strong>ad and let C = ( C, ∆ C , ε C) be acom<strong>on</strong>ad <strong>on</strong> the category A. Assume that Φ : AC → CA is a mixed distributive lawbetween them. Let F, G be left C-comodule functors and α : F → G be a functorialmorphism between them satisfyingC ρ G ◦ α = (Cα) ◦ (C ρ F),i.e. there exists C α : C F → C G such that C U C α = α. Then also Aα is a morphismbetween left C-comodule functors satisfying(CAα) ◦ C ρ AF = C ρ AG ◦ (Aα)i.e. there exists a functorial morphism C (Aα) : C (AF ) → C (AG) such thatC U C (Aα) = Aα. Moreover we haveC (Aα) = ÃC αwhere à is the lifted m<strong>on</strong>ad <strong>on</strong> the category C A, i.e. C Uà = AC U.Proof. Since F, G are left C-comodule functors, by Lemma 5.5 we know that(AF, C ρ AF)=(AF, (ΦF ) ◦(A C ρ F))and(AG, C ρ AG)=(AG, (ΦG) ◦(A C ρ G))areleft C-comodule functors. Then we have(CAα) ◦ C defρ C ρ AF( )AF = (CAα) ◦ (ΦF ) ◦ A C ρ FΦ= (ΦG) ◦ (ACα) ◦ ( )A C ρ FαmorpCcom= (ΦG) ◦ ( A C ρ G)◦ (Aα)def C ρ AG= C ρ AG ◦ (Aα)83□□


84i.e. Aα is a functorial morphism between left C-comodule functors. Then thereexists a functorial morphism C (Aα) : C (AF ) → C (AG) such that C U C (Aα) = Aα.Since we also haveC UÃC α = A C U C α = Aαwe deduce thatC U C (Aα) = C UÃC α.Since C U is faithful, this implies that C (Aα) = ÃC α.□5.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Liftings of m<strong>on</strong>ads and com<strong>on</strong>ads.Theorem 5.7 ([Be, Propositi<strong>on</strong> p. 122] and [Mesa, Theorem <str<strong>on</strong>g>2.</str<strong>on</strong>g>1]). Let A =(A, m A , u A ) be a m<strong>on</strong>ad and let C = ( C, ∆ C , ε C) be a com<strong>on</strong>ad <strong>on</strong> a category A.There is a bijecti<strong>on</strong> between the following collecti<strong>on</strong>s of data:C liftings ( of C to a com<strong>on</strong>ad ˜C <strong>on</strong> the category A A, that is com<strong>on</strong>ads˜C = ˜C, ∆C e, ε e )C<strong>on</strong> A A such thatAU ˜C = C A U, AU∆ eC = ∆ C AU and AUε eC = ε C AUD mixed distributive laws Φ : AC → CAM liftings of A to a)m<strong>on</strong>ad à <strong>on</strong> the category C A, that is m<strong>on</strong>adsà =(Ã, mA e, u A e <strong>on</strong> C A such thatC Uà = AC U,C Um e A= m A C Ugiven by( )a : C → D where a ˜C =andC Uu e A= u A C U( )BUλ B ˜CA F ◦ ( B U B F Cu A )b : D → C where A Ub (Φ) = C A U and A Uλ A b (Φ) = (C A Uλ A ) ◦ Φ i.e.b (Φ) (( )) ( ( ) )X, A µ X = CX, C A µ X ◦ (ΦX) and b (Φ) (f) = C (f))d : M → D where d(à = (C U C F Aε C) ( )◦C Uγ C à C Fm : D → M where C Um (Φ) = A C U and C Uγ C m (Φ) = Φ ◦ ( A C Uγ C) i.e.m (Φ) (( X, C ρ X))=(AX, (ΦX) ◦(A C ρ X))and m (Φ) (f) = A (f) .Proof. In order to prove the bijecti<strong>on</strong> between C and D, we apply Propositi<strong>on</strong> 3.24,to the case (A, m A , u A ) = (B, m B , u B ) m<strong>on</strong>ad <strong>on</strong> A and Q = C. In particular wewill prove that the bijecti<strong>on</strong> a : F → M, b : M → F of Propositi<strong>on</strong> 3.24 induces abijecti<strong>on</strong> between C and D.Let ˜C) ( )∈ C. We have to prove that Φ = a(˜C = AUλ A ˜CA F ◦ ( A U A F Cu A ) ∈ D.We have(CΦ) ◦ (ΦC) ◦ ( A∆ C) =()()C A Uλ A ˜CA F ◦ (C A U A F Cu A ) ◦ AUλ A ˜CA F C ◦ ( A U A F Cu A C) ◦ ( A∆ C)(= AU ˜Cλ)A ˜CA F ◦(AU ˜C) ()A F Cu A ◦ AUλ A ˜CA F C ◦ ( A U A F Cu A CX) ◦ ( A∆ C)


[( ) ( ) ( )= A U ˜CλA ˜CA F ◦ ˜CA F Cu A ◦ λ A ˜CA F C ◦ ( A F Cu A C) ◦ ( AF ∆ C)][( ) (λ=AA U λ A ˜C ˜CA F ◦ AF A U ˜Cλ)A ˜CA F ◦(AF A U ˜C)A F Cu A ◦ ( A F Cu A C) ◦ ( AF ∆ C)][( ) ()= A U λ A ˜C ˜CA F ◦ AF C A Uλ A ˜CA F ◦ ( A F C A U A F Cu A ) ◦ ( A F Cu A C) ◦ ( AF ∆ C)][( ) ()u=AA U λ A ˜C ˜CA F ◦ AF C A Uλ A ˜CA F ◦ ( A F Cu A CA) ◦ ( A F CCu A ) ◦ ( AF ∆ C)][( ) () (= A U λ A ˜C ˜CA F ◦ AF C A Uλ A ˜CA F ◦ AF Cu AA U ˜C)A F ◦ ( A F CCu A ) ◦ ( AF ∆ C)][( )(λ A ,u A )adj,∆= CAU λ A ˜C ˜CA F ◦ ( AF ∆ C A ) ]◦ ( A F Cu A )[( ) (= A U λ A ˜C ˜CA F ◦ AF A U∆ e ) ]CA F ◦ ( A F Cu A )[(λ=AA U ∆ e ) ( ) ]CA F ◦ λ A ˜CA F ◦ ( A F Cu A )(= AU∆ e ) ( )CA F ◦ AUλ A ˜CA F ◦ ( A U A F Cu A ) = ( ∆ C A ) ◦ (Φ)85so thatMoreoverso that(CΦ) ◦ (ΦC) ◦ ( A∆ C) = ( ∆ C A ) ◦ (Φ) .(ε C A ) ◦ (Φ) = ( ε C A ) ( )◦ AUλ A ˜CA F ◦ ( A U A F Cu A )(= AUε e ) ( )CA F ◦ AUλ A ˜CA F ◦ ( A U A F Cu A )[(= A U ε e ) ( ) ]CA F ◦ λ A ˜CA F ◦ ( A F Cu A )[ (λ=AA U (λ AA F ) ◦ AF A Uε e ) ]CA F ◦ ( A F Cu A )= A U [ (λ AA F ) ◦ ( AF ε C AU A F ) ◦ ( A F Cu A ) ]ε C = A U [ (λ AA F ) ◦ ( A F u A ) ◦ ( AF ε C)](λ A ,u A )adj= AU A F ε C = Aε C(ε C A ) ◦ (Φ) = Aε C .Therefore Φ is a mixed distributive law.C<strong>on</strong>versely let Φ ∈ D. Then we know that b (Φ) = ˜C is a functor ˜C : A A → A Athat is a lifting of C (i.e. AU ˜C = C A U). We have to prove that such a ˜C givesrise to a com<strong>on</strong>ad <strong>on</strong> the category A A. Let us prove that ∆ C and ε C are A-modulesmorphisms. Indeed, for every ( X, A µ X)∈ A A, by Lemma 5.3 we haveA µ CX = ( C A µ X)◦ (ΦX)and alsoA µ CCX = ( C A µ CX)◦ (ΦCX) =(CC A µ X)◦ (CΦX) ◦ (ΦCX) .


86Then we haveA µ CCX ◦ ( A∆ C X ) = ( CC A µ X)◦ (CΦX) ◦ (ΦCX) ◦(A∆ C X )andΦm.d.l.= ( CC A µ X)◦(∆ C AX ) ◦ (ΦX) ∆C= ( ∆ C X ) ◦ ( C A µ X)◦ (ΦX)(ε C X ) ◦ (A µ CX)=(ε C X ) ◦ ( C A µ X)◦ (ΦX)ε C = A µ X ◦ ( ε C AX ) ◦ (ΦX) Φm.d.l.= A µ X ◦ ( Aε C X ) .Thus ∆ C and ε C lift to functorial morphisms ∆ eC and ε eC uniquely defined byWe compute(AU ˜C∆ e ) (C◦ AU∆ e ) (C=AU∆ eC = ∆ C AU and AUε eC = ε C AU.C A U∆ e )C◦ ( ∆ C AU ) = ( C∆ C AU ) ◦ ( ∆ C AU )= [( C∆ C) ◦ ∆ C] AU Ccom<strong>on</strong>ad [(= ∆ C C ) ◦ ∆ C] AU = ( ∆ C C A U ) ◦ ( ∆ C AU )(= ∆ C AU ˜C) (◦ AU∆ e ) (C= AU∆ e ) (C ˜C ◦ AU∆ e )Cand since A U is faithful , we deduce( ) (˜C∆C e◦ ∆ eC = ∆ e )C ˜C ◦ ∆ eC .We compute(AU ˜Cε e ) (C◦ AU∆ e ) (C= C A Uε e )C◦ ( ∆ C AU ) = ( Cε C AU ) ◦ ( ∆ C AU )= [( Cε C) ◦ ∆ C] AU Ccom<strong>on</strong>ad= C A U = A U ˜Cand since A U is faithful, we obtain(˜Cεe C)◦ ∆ eC = ˜C.Similarly we compute(AUε e ) (C ˜C ◦ AU∆ e )Cand since A U is faithful, we obtain(ε e C ˜C)=(ε C AU ˜C)◦ ( ∆ C AU ) = ( ε C C A U ) ◦ ( ∆ C AU )= [( ε C C ) ◦ ∆ C] AU Ccom<strong>on</strong>ad= C A U = A U ˜C◦ ∆ eC = ˜C.Therefore ˜C =(˜C, ∆e C, ε e C)is a com<strong>on</strong>ad <strong>on</strong> A A.Similarly, in order to prove the bijecti<strong>on</strong> between D and M, we apply Propositi<strong>on</strong>4.23, taking both ( C, ∆ C , ε C) , ( D, ∆ D , ε D) = ( C, ∆ C , ε C) com<strong>on</strong>ad <strong>on</strong> A and T =A. In particular we will prove that the bijecti<strong>on</strong> a : F → M, b : M → F ofPropositi<strong>on</strong> 4.23 induces a bijecti<strong>on</strong> between M and D.


)Let(Ãà ∈ M. We have to prove that Φ = a = (C U C F Aε C) ( )◦C Uγ C à C F ∈ D.We have(Cm A ) ◦ (ΦA) ◦ (AΦ) =(Cm A ) ◦ (C U C F Aε C A ) ()◦C Uγ C à C F A ◦ ( A C U C F Aε C) ()◦ A C Uγ C à C FAlift= (C ) (U C F m A ◦ CU C F Aε C A ) () (C ) ()◦C Uγ C à C F A ◦ UÃC F Aε C ◦C UÃγC à C F[ (C ) (= C U F m A ◦ CF Aε C A ) ( ) (ÃC ))]◦ γ C à C F A ◦ F Aε C ◦(Ãγ C à C F[γ= C (C ) ( C U F m A ◦ CF Aε C A ) (C ) () ( )]◦ F C UÃC F Aε C ◦C F C UÃγC à C F ◦ γ C ÃÃC F[Alift (C ) (= C U F m A ◦ CF Aε C A ) ◦ (C F A C U C F Aε C) () ( )]◦ C F A C Uγ C à C F ◦ γ C ÃÃC F[ε= C (C ) ( C U F m A ◦ CF AAε C) ◦ (C F Aε C AC ) () ( )]◦ C F A C Uγ C à C F ◦ γ C ÃÃC F[Alift (C ) (= C U F m A ◦ CF AAε C) () () ( )]◦ C F Aε C C UÃC F ◦C F A C Uγ C à C F ◦ γ C ÃÃC Fso that we get(ε C ,γ C )adj,m A[ (C=C U F Aε C) ◦ (C F m A C ) ( )]◦ γ C ÃÃC F[Alift (C= C U F Aε C) ◦ (C F C Um A e C F ) ( )]◦ γ C ÃÃC F[γ= C (C C U F Aε C) ( )◦ γ C à C F ◦ ( m A e C F )]= (C U C F Aε C) ( )◦C Uγ C à C F ◦ (C Um A e C F ) Alift= Φ ◦ (m A C)(Cm A ) ◦ (ΦA) ◦ (AΦ) = Φ ◦ (m A C) .Moreover we haveΦ ◦ (u A C) = (C U C F Aε C) ( )◦C Uγ C à C F ◦ (u A C)Alift= (C U C F Aε C) ( )◦C Uγ C à C F ◦ (C Uu A e C F )[ (C= C U F Aε C) ( )◦ γ C à C F ◦ ( u A e C F )]γ C = C U [(C F Aε C) ◦ (C F C Uu e A C F ) ◦ ( γ C C F )]Alift= C U [(C F Aε C) ◦ (C F u A C ) ◦ ( γ C C F )]u A= C U [(C F u A)◦( CF ε C) ◦ ( γ C C F )]87so that we get(ε C ,γ C )adj=C U C F u A = Cu AΦ ◦ (u A C) = Cu A .Therefore Φ is a mixed distributive law.C<strong>on</strong>versely let Φ ∈ D. Then we know that à = b (Φ) (with notati<strong>on</strong>s of Propositi<strong>on</strong>


884.23) is a functor à : C A → C A that is a lifting of A (i.e. C Uà = AC U). We have toprove that such a à gives rise to a m<strong>on</strong>ad <strong>on</strong> the category C A. Let us prove that m Aand u A are C-comodule morphisms. Indeed, for every ( X, C ρ X)∈ C A, by Lemma5.5 we haveC ρ AX = (ΦX) ◦ ( A C ρ X)and alsoC ρ AAX = (ΦAX) ◦ ( A C ρ AX)= (ΦAX) ◦ (AΦX) ◦(AA C ρ X).Then we haveand(Cm A X) ◦ C ρ AAX = (Cm A X) ◦ (ΦAX) ◦ (AΦX) ◦ ( AA C ρ X)Φm.d.l.= (ΦX) ◦ (m A CX) ◦ ( AA C ρ X)m A= (ΦX) ◦ ( A C ρ X)◦ (mA X) = C ρ AX ◦ (m A X)C ρ AX ◦ (u A X) = (ΦX) ◦ ( A C ρ X)◦ (uA X)u A= (ΦX) ◦ (u A CX) ◦ C ρ XΦm.d.l.= (Cu A X) ◦ C ρ XThus m A and u A lift to functorial morphisms m e Aand u e Auniquely defined byC Um e A= m A C UandC Uu e A= u A C U.We compute( C) (Um A e ◦ C AliftUm A eÃ) = ( m C A U ) ( )◦ m C AliftA Uà = ( m C A U ) ◦ ( m A A C U )Am<strong>on</strong>ad= ( m C A U ) ◦ ( Am C A U ) Alift= (C ) ( )Um A e ◦ A C AliftUm A e = (C ) ( )Um A e ◦ C UÃm A eand since C U is faithful , we deduce( )m A e ◦ m A eÃ= m A e ◦We computeand since C U is faithful, we obtain(Ãm e A).( C) (Um A e ◦ C AliftUu A eÃ) = ( m C A U ) ( )◦ u C A UÃAlift= ( m A C U ) ◦ ( u A A C U ) Am<strong>on</strong>ad= A C U Alift= C UÃm e A◦( )u A eÃ= Ã.Similarly we compute( CUm e A)◦ (C UÃu e A)Alift= ( m A C U ) ◦ ( A C Uu e A) Alift= ( m A C U ) ◦ ( Au A C U )Am<strong>on</strong>ad= A C U Alift= C UÃand since C U is faithful, we obtain)m A e ◦(ÃuA e = Ã.


Therefore à = (Ã, m e A, u e A)is a m<strong>on</strong>ad <strong>on</strong> C A.89□6. (Co)Pretorsors and (co)herdsIn this secti<strong>on</strong> we collect the material we need in the following or we want tointroduce in this thesis about them, starting from pretorsor and copretorsor, throughherds and coherds, c<strong>on</strong>cluding with the tame and cotame case. From time to timewe decide whether or not include the details of the <str<strong>on</strong>g>results</str<strong>on</strong>g>, proving at least <strong>on</strong>e ofthe two cases and having in mind that the other could also be obtained by dualizingit. In general we give the proof <strong>on</strong>ly for the less-known case even if it is not the firstpresented.6.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Pretorsors.Propositi<strong>on</strong> 6.1 ([BM, Lemma 4.8]). Let A and B be categories with equalizersand let P : A → B, Q : B → A and A : A → A be functors. Assume thatall the functors P, Q and A preserve equalizers. Let u A : A → A be a functorialm<strong>on</strong>omorphism and assume that (A, u A ) = Equ Fun (u A A, Au A ). Let τ : Q → QP Qbe a functorial morphism such that(QP τ) ◦ τ = (τP Q) ◦ τ.and let σ A : QP → A be a functorial morphism such that(σ A Q ) ◦ τ = u A Q.Let ω l = ( QP σ A) ◦ (τP ) and ω r = QP u A : QP → QP A. Set(60) (C, i) = Equ Fun(ω l , ω r) .There exists a functorial morphism C ρ Q : Q → CQ such that(61) (iQ) ◦ C ρ Q = τ.There exist functorial morphisms ∆ C : C → CC and ε C : C → A such thatC = ( C, ∆ C , ε C) is a com<strong>on</strong>ad over A and C preserves equalizers. The functorialmorphisms ∆ C and ε C are uniquely determined by((62)Cρ Q P ) ◦ i = (Ci) ◦ ∆ C and σ A ◦ i = u A ◦ ε Cor equivalently(63) (τP ) ◦ i = (ii) ◦ ∆ C and σ A ◦ i = u A ◦ ε C .Moreover (Q, C ρ Q ) is a left C-comodule functor.Propositi<strong>on</strong> 6.2 ([BM, Lemma 4.8]). Let A and B be categories with equalizersand let P : A → B, Q : B → A, and B : B → B be functors. Assume thatall the functors P, Q and B preserve equalizers. Let u B : B → B be a functorialm<strong>on</strong>omorphism and assume that (B, u B ) = Equ Fun (u B B, Bu B ). Let τ : Q → QP Qbe a functorial morphism such that(QP τ) ◦ τ = (τP Q) ◦ τLet σ B : P Q → B be a functorial morphism such that(QσB ) ◦ τ = Qu B .


90Let θ l = ( σ B P Q ) ◦ (P τ) and θ r = u B P Q : P Q → BP Q. Set(64) (D, j) = Equ Fun(θ l , θ r) .There exists a functorial morphism ρ D Q : Q → QD such that(65) (Qj) ◦ ρ D Q = τ.There exist functorial morphisms ∆ D : D → DD and ε D : D → B such thatD = ( D, ∆ D , ε D) is a com<strong>on</strong>ad over B and D preserves equalizers. The functorialmorphisms ∆ D and ε D are uniquely determined by(66) (jD) ◦ ∆ D = ( )P ρ D Q ◦ j and σ B ◦ j = u B ◦ ε Dor equivalently(67) (P τ) ◦ j = (jj) ◦ ∆ D and σ B ◦ j = u B ◦ ε D .Moreover ( Q, ρ D Q)is a right D-comodule functor.Definiti<strong>on</strong> 6.3. Let A and B be categories. A preformal dual structure is a eightupleΞ = ( A, B, P, Q, σ A , σ B , u A , u B)where A : A → A, B : B → B, P : A → B andQ : B → A are functors, σ A : QP → A, σ B : P Q → B, u A : A → A, u B : B → B arefunctorial morphisms. A pretorsor τ for Ξ is a functorial morphism τ : Q → QP Qsatisfying the following c<strong>on</strong>diti<strong>on</strong>s.1) Associativity, in the sense that(68) (QP τ) ◦ τ = (τP Q) ◦ τ2) Unitality, in the sense that(69) (σ A Q) ◦ τ = u A Qand(70) (Qσ B ) ◦ τ = Qu B .Definiti<strong>on</strong> 6.4. A preformal dual structure Ξ = ( P, Q, A, B, σ A , σ B , u A , u B , ) willbe called regular whenever (A, u A ) = Equ Fun (u A A, Au A ) and(B, u B ) = Equ Fun (u B B, Bu B ). In this case a pretorsor for Ξ will be called a regularpretorsor.Theorem 6.5 ([BM, Lemma 4.8]). Let A and B be categories with equalizers and letτ : Q → QP Q be a regular pretorsor for Ξ = ( A, B, P, Q, σ A , σ B , u A , u B). Assumethat the underlying functors P, Q, A and B preserve equalizers. Let ω l = ( QP σ A) ◦(τP ) and ω r = QP u A : QP → QP A. Set(71) (C, i) = Equ Fun(ω l , ω r) .Then there exists a functorial morphism C ρ Q : Q → CQ such that(72) (iQ) ◦ C ρ Q = τ.There exist functorial morphisms ∆ C : C → CC and ε C : C → A such thatC = ( C, ∆ C , ε C) is a com<strong>on</strong>ad over A and C preserves equalizers. The functorialmorphisms ∆ C and ε C are uniquely determined by(73) (τP ) ◦ i = (ii) ◦ ∆ C and σ A ◦ i = u A ◦ ε C .


Moreover (Q, C ρ Q ) is a left C-comodule functor.Let θ l = ( σ B P Q ) ◦ (P τ) and θ r = u B P Q : P Q → BP Q. Set(74) (D, j) = Equ Fun(θ l , θ r) .There exists a functorial morphism ρ D Q : Q → QD such that(75) (Qj) ◦ ρ D Q = τ.There exist functorial morphisms ∆ D : D → DD and ε D : D → B such thatD = ( D, ∆ D , ε D) is a com<strong>on</strong>ad over B and D preserves equalizers. The functorialmorphisms ∆ D and ε D are uniquely determined by(76) (P τ) ◦ j = (jj) ◦ ∆ D and σ B ◦ j = u B ◦ ε D .Moreover ( Q, ρ D Q)is a right D-comodule functor.Finally ( Q, C ρ Q , ρ D Q)is a C-D-bicomodule functor.Proof. See the dual Theorem 6.29.Theorem 6.6. Let Ξ = ( P, Q, A, B, σ A , σ B , u A , u B , ) be a regular preformal dualstructure <strong>on</strong> categories A and B such that the functors P, Q, A, B preserve equalizersand let τ : Q → QP Q be a pretorsor for Ξ. Assume that A and B arem<strong>on</strong>ads, ( ) ( )P, B µ P is a left B-module functor and P, µAP is a right A-module functor.Moreover assume that the functorial morphism σ A is right A-linear, that isσ A ◦ ( )Qµ A P = mA ◦ ( σ A A ) and the functorial morphism σ B is left B-linear that isσ B ◦ (B µ P Q ) = m B ◦ ( Bσ B) and that they are compatible in the sense that(77)B µ P ◦ ( σ B P ) = µ A P ◦ ( P σ A) .Then there exists a com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> the category A together with afunctorial morphism C ρ Q : Q → CQ such that ( Q, C ρ Q)is a left C-comodule functorand a com<strong>on</strong>ad D = ( D, ∆ D , ε D) together with a functorial morphism ρ D Q : Q → QDsuch that ( Q, ρ D Q)is a right D-comodule functor. The underlying functors are definedas follows(C, i) = Equ Fun((QP σA ) ◦ (τP ) , QP u A)and(D, j) = Equ Fun((σ B P Q ) ◦ (P τ) , u B P Q ) .satisfying(iQ) ◦ C ρ Q = τ and (Qj) ◦ ρ D Q = τ.Furthermore1) The morphism can 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CA is an isomorphism.2) The morphism can 1 := ( σ B D ) ◦ ( P ρ D Q): P Q → BD is an isomorphisms.3)(QP σA ) ◦ (τP ) = (iA) ◦ can 1 and ( σ B P Q ) ◦ (P τ) = (Bj) ◦ can 191□(78)(79)4)i = can −11 ◦ (Cu A )j = (can 1 ) −1 ◦ (u B D)


925)σ A = ( ε C A ) ◦ ( Cσ A) ◦ (C ρ Q P )6)σ B = ( Bε D) ◦ ( σ B D ) ◦ ( )P ρ D QFrom the last equalities, we deduce that, σ A is a regular epimorphism if and <strong>on</strong>lyif so is ε C A and σ B is a regular epimorphism if and <strong>on</strong>ly if so is Bε D .Proof. See the dual Theorem 6.30.6.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Herds. Following [BV], we recall some definiti<strong>on</strong> about herds.Definiti<strong>on</strong> 6.7. A formal dual structure <strong>on</strong> two categories A and B is a sextupleM = (A, B, P, Q, σ A , σ B ) where A = (A, m A , u A ) and B = (B, m B , u B ) are m<strong>on</strong>ads<strong>on</strong> A and B respectively and ( )A, B, P, Q, σ A , σ B , u A , u B is a preformal dual structure.Moreover ( P : A → B, B µ P : BP → P, µ A P : P A → P ) (andQ : B → A, A µ Q : AQ → Q, µ B Q : QB → Q) are bimodule functors; σ A : QP →A, σ B : P Q → B are subject to the following c<strong>on</strong>diti<strong>on</strong>s: σ A is A-bilinear andσ B is B-bilinear(80) σ A ◦ (A µ Q P ) = m A ◦ ( Aσ A) and σ A ◦ ( )Qµ A P = mA ◦ ( σ A A )(81) σ B ◦ (B µ P Q ) = m B ◦ ( Bσ B) and σ B ◦ ( )P µ B Q = mB ◦ ( σ B B )and the associative c<strong>on</strong>diti<strong>on</strong>s hold(82)A µ Q ◦ ( σ A Q ) = µ B Q ◦ ( Qσ B) and B µ P ◦ ( σ B P ) = µ A P ◦ ( P σ A) .Definiti<strong>on</strong> 6.8. C<strong>on</strong>sider a formal dual structure M = (A, B, P, Q, σ A , σ B ) in thesense of the previous definiti<strong>on</strong>. A herd for M is a pretorsor τ : Q → QP Q i.e.(83) (QP τ) ◦ τ = (τP Q) ◦ τ,(84) (σ A Q) ◦ τ = u A Qand(85) (Qσ B ) ◦ τ = Qu B .Definiti<strong>on</strong> 6.9. A formal dual structure M = (A, B, P, Q, σ A , σ B ) will be calledregular whenever ( A, B, P, Q, σ A , σ B , u A , u B)is a regular preformal dual structure.In this case a herd for M will be called a regular herd.Lemma 6.10. Let M = (A, B, P, Q, σ A , σ B ) be a formal dual structure and let τ :Q → QP Q be a herd for M. Assume that the underlying functors A and B reflectequalizers. Then τ is a regular herd.Proof. Since A and B are m<strong>on</strong>ads, we have m A ◦(Au A ) = Id A and m B ◦(Bu B ) = Id B .Thus, Au A and Bu B are split m<strong>on</strong>omorphisms and thus m<strong>on</strong>omorphisms. Since Aand B reflect equalizers, we deduce that also u A and u B are m<strong>on</strong>omorphisms andthus (A, u A ) = Equ Fun (u A A, Au A ) and (B, u B ) = Equ Fun (u B B, Bu B ), i.e. τ is aregular herd.□□


Propositi<strong>on</strong> 6.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let M = (A, B, P, Q, σ A , σ B ) be a formal dual structure suchthat the lifted functors A Q B : B B → A A and B P A : A A → B B determine an equivalenceof categories. Then ( A Q, P A ) and ( B P , Q B ) are adjuncti<strong>on</strong>s.Proof. Since ( A F , A U) and ( B F , B U) are adjuncti<strong>on</strong>s, ( A Q BB F , B U B P A ) = ( A Q, P A )and ( B P AA F , A U A Q B ) = ( B P , Q B ) are also adjuncti<strong>on</strong>s.□6.3. Herds and com<strong>on</strong>ads.Theorem 6.12 ([Bo]). Let A and B be categories in both of which the equalizer ofany pair of parallel morphisms exists. Let M = (A, B, P, Q, σ A , σ B ) be a formal dualstructure <strong>on</strong> two categories A and B. Then we have(1) If C = ( C, ∆ C , ε C) is a com<strong>on</strong>ad <strong>on</strong> the category A and ( Q, C ρ Q : Q → CQ )is a left C-comodule functor such that(i) the functorial morphism can 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CA is anisomorphism(ii) the functorial morphism can 2 := ( (Cµ Q) B ◦ Cρ Q B ) : QB → CQ is anisomorphismthen τ := ( can −11 Q ) ◦ (Cu A Q) ◦ C ρ Q : Q → QP Q is a pretorsor and thusa herd.(2) If D = ( D, ∆ D , ε D) is a com<strong>on</strong>ad <strong>on</strong> the category B and ( Q, ρ D Q : Q → QD)is a right D-comodule functor such that(i) the functorial morphism can 1 := ( σ B D ) ◦ ( P ρQ) D : P Q → BD is anisomorphism(ii) the functorial morphism can 2 := (A µ Q D ) ◦ ( AρQ) D : AQ → QD is anisomorphismthen τ := (Qcan −1 1 ) ◦ (Qu B D) ◦ ρ D Q : Q → QP Q is a pretorsor and thus aherd.Proof. See the dual Theorem 6.36.Theorem 6.13 ([Bo]). Let A and B be categories in both of which the equalizerof any pair of parallel morphisms exists. Let M = (A, B, P, Q, σ A , σ B ) be a regularformal dual structure such that the underlying functors A, B, P and Q preserveequalizers, then the existence of the following structures are equivalent:(a) A herd τ : Q → QP Q in M;(b) A com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> the category A such that the functor Cpreserves equalizers and ( Q, C ρ Q : Q → CQ ) is a left C-comodule functorsubject to the following c<strong>on</strong>diti<strong>on</strong>s(i) the functorial morphism can 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CA is anisomorphism(ii) the functorial morphism can 2 := ( Cµ B Q)◦( Cρ Q B ) : QB → CQ is anisomorphism;(c) A com<strong>on</strong>ad D = ( D, ∆ D , ε D) <strong>on</strong> the category B such that the functor Dpreserves equalizers and ( Q, ρ D Q : Q → QD) is a right D-comodule functorsubject to the following c<strong>on</strong>diti<strong>on</strong>s(i) the functorial morphism can 1 := ( σ B D ) ◦ ( P ρ D Q): P Q → BD is anisomorphism93□


94(ii) the functorial morphism can 2 := (A µ Q D ) ◦ ( Aρ D Q): AQ → QD is anisomorphism.Proof. See the dual Theorem 6.37.6.4. Herds and distributive laws.Propositi<strong>on</strong> 6.14 ([Bo]). Let A and B be categories with equalizers and let τ : Q →QP Q be a regular herd for M = (A, B, P, Q, σ A , σ B ) where the underlying functorsP : A → B, Q : B → A, A : A → A and B : B → B preserve equalizers. LetC = ( C, ∆ C , ε C) and D = ( D, ∆ D , ε D) be the associated com<strong>on</strong>ads c<strong>on</strong>structed inPropositi<strong>on</strong> 6.1 and in Propositi<strong>on</strong> 6.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Then1) There exists a mixed distributive law between the com<strong>on</strong>ad C and the m<strong>on</strong>adA, Φ : AC → CA such that(iA) ◦ Φ = φ = ( QP σ A) ◦ (τP ) ◦ (A µ Q P ) ◦ (Ai) .2) There exists an opposite mixed distributive law between the com<strong>on</strong>ad D andthe m<strong>on</strong>ad B, Ψ : DB → BD such that(Bj) ◦ Ψ = ψ = ( σ B P Q ) ◦ (P τ) ◦ ( P µ B Q)◦ (jB) .Proof. See the dual Propositi<strong>on</strong> 6.38.6.5. Herds and Galois functors.Lemma 6.15. Let M = ( A, B, P, Q, σ A , σ B) be a formal dual structure where Q :B → A, P : A → B and A = (A, m A , u A ) is a m<strong>on</strong>ad <strong>on</strong> the category A andB = (B, m B , u B ) is a m<strong>on</strong>ad <strong>on</strong> B. Assume that both A and B have coequalizers andthat A, QB preserve them. Then σ A : QP → A induces a morphism σ A A : QP A → A Uin A A and hence there exists a morphism A σ A A : AQP A → Id A A such that(86) AU A σ A A = σ A A.Moreover σ A AAF = σ A : QP AA F = QP → A U A F = A.Proof. Let us c<strong>on</strong>sider the following diagram with notati<strong>on</strong>s of Propositi<strong>on</strong> 3.30QP A A UAA A Uσ A A A UQµ A P AUQP A Uλ Am AA UA A Uλ A QP A U A A Uσ AA UQp P QPAσ A ′AUλ ASince by assumpti<strong>on</strong> QB preserves coequalizers, by Lemma 3.19 also Q preservescoequalizers. Since ( A Uλ A ) ◦ ( σ A AU ) coequalizes the pair ( Qµ A P AU, QP A Uλ A)and(QP A , Qp P ) = Coequ Fun(QµAP AU, QP A Uλ A), by the universal property of the coequalizer,there exists a unique morphism σ A A : QP A → A U such thatσ A A ◦ (Qp P ) = ( A Uλ A ) ◦ ( σ A AU ) .We now want to prove that σ A A : QP A = A U A QP A → A U is a morphism between leftA-module functors which satisfies( A Uλ A ) ◦ ( Aσ A A)= σAA ◦ (A µ Q P A).AU□□


95We have( A Uλ A ) ◦ ( Aσ A A)◦ (AQpP ) defσA A= ( A Uλ A ) ◦ (A A Uλ A ) ◦ ( Aσ A AAU )AUλ A coequ= ( A Uλ A ) ◦ (m AA U) ◦ ( Aσ A AU ) (80)= ( A Uλ A ) ◦ ( σ A AU ) ◦ (A µ Q P A U )defσA= A σA A ◦ (Qp P ) ◦ (A µ Q P A U ) A µ Q= σAA ◦ (A )µ Q P A ◦ (AQpP )and since A, Q preserve coequalizers, AQp P is an epimorphism, so that we get( A Uλ A ) ◦ ( Aσ A A)= σAA ◦ (A µ Q P A).Hence, by Lemma 3.29, there exists a unique morphism A σA A: AQP A → Id A A suchthatAU A σA A = σA.ANow, note that, by definiti<strong>on</strong> of σA A , we haveσA A ◦ (Qp P ) = ( A Uλ A ) ◦ ( σ A AU )so that by applying it to A F we get(σAA AF ) ◦ (Qp P A F ) = ( A Uλ AA F ) ◦ ( σ A AU A F ) .Hence, by Propositi<strong>on</strong> 3.34, we obtain that(σAA AF ) ◦ ( Qµ A P)= mA ◦ ( σ A A ) (80)= σ A ◦ ( Qµ A P).Since Qµ A P is an epimorphism, we deduce that σA AAF = σ A .Propositi<strong>on</strong> 6.16. Let A and B be categories with equalizers and let τ : Q → QP Qbe a regular herd for a formal dual structure M = (A, B, P, Q, σ A , σ B ) where theunderlying functors P : A → B, Q : B → A and A : A → A preserve equalizers.Let• C = ( C, ∆ C , ε C) be the com<strong>on</strong>ad <strong>on</strong> the category A c<strong>on</strong>structed in Propositi<strong>on</strong>6.1;• ( Q, C ρ Q)be the left C-comodule functor c<strong>on</strong>structed in Propositi<strong>on</strong> 6.1;• A Q : B → A A be the functor defined in Lemma 3.29;• Φ : AC → CA be the mixed distributive law between the com<strong>on</strong>ad C and them<strong>on</strong>ad A c<strong>on</strong>structed in Propositi<strong>on</strong> 6.14;• ˜C be the lifting of C <strong>on</strong> the category A A c<strong>on</strong>structed in Theorem 5.7.Then there exists a functorial morphism eC ρ A Q : A Q → ˜C A Q such thatAU eC ρ A Q = C ρ Q .( )Moreover, AQ, eC ρ A Q is a left ˜C-comodule functor.Proof. Since τ : Q → QP Q is a regular herd for M = (A, B, P, Q, σ A , σ B ), byPropositi<strong>on</strong> 6.14, the mixed distributive law Φ : AC → CA is uniquely defined by(iA) ◦ Φ = ( QP σ A) ◦ (τP ) ◦ (A µ Q P ) ◦ (Ai) .Now we prove that C ρ Q yields a functorial morphism eC ρ A Q. In fact we have(iQ) ◦ ( C A µ Q)◦ (ΦQ) ◦(A C ρ Q) i= ( QP A µ Q)◦ (iAQ) ◦ (ΦQ) ◦(A C ρ Q)□


96defΦ= ( QP A µ Q)◦(QP σ A Q ) ◦ (τP Q) ◦ (A µ Q P Q ) ◦ (AiQ) ◦ ( A C ρ Q)(61),(82)= ( QP µ B Q)◦(QP QσB ) ◦ (τP Q) ◦ (A µ Q P Q ) ◦ (Aτ)τ= ( QP µ B Q)◦ (τB) ◦(QσB ) ◦ (A µ Q P Q ) ◦ (Aτ)A µ Q=(QP µBQ)◦ (τB) ◦( Aµ Q B ) ◦ ( AQσ B) ◦ (Aτ)(70)= ( QP µ B Q)◦ (τB) ◦( Aµ Q B ) ◦ (AQu B )A µ Q=(QP µBQ)◦ (τB) ◦ (QuB ) ◦ A µ Q τ = ( QP µ B Q)◦ (QP QuB ) ◦ τ ◦ A µ QQmodfun= τ ◦ A µ Q(61)= (iQ) ◦ C ρ Q ◦ A µ Qand since by c<strong>on</strong>structi<strong>on</strong> iQ is a m<strong>on</strong>omorphism we get that(C A µ Q)◦ (ΦQ) ◦(A C ρ Q)= C ρ Q ◦ A µ Q .By Lemma 5.3 we know that( )C A µ Q ◦ (ΦQ) = A µ CQso that we getA µ CQ ◦ ( A C ρ Q)=(C A µ Q)◦ (ΦQ) ◦(A C ρ Q)= C ρ Q ◦ A µ Q .Hence there exists a morphism eC ρ A Q : A Q → ˜C A Q such thatAU eC ρ A Q = C ρ Q .By the coassociativity and counitality(properties)of C ρ Q , we deduce that eC ρ A Q isalso coassociative and counital so that AQ, eC ρ A Q is a left ˜C-comodule functor. □Lemma 6.17. Let M = (A, B, P, Q, σ A , σ B ) be a formal dual structure where theunderlying functors are A : A → A, B : B → B, P : A → B and Q : B → A.Assume that both categories A and B have coequalizers and the functors A, QBpreserve them. Assume thatand• C = ( C, ∆ C , ε C) is a com<strong>on</strong>ad <strong>on</strong> the category A such that C preservescoequalizers• ˜C(= ˜C, ∆C e, ε e )Cis a lifting of the com<strong>on</strong>ad of C to the category A A( )• AQ, eC ρ A Q is a left ˜C-comodule functor where A U eC ρ A Q = C ρ Q .C<strong>on</strong>sider the functorial morphismscan 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CA( ) ( )Acan A := ˜CA σAA eC◦ ρ A QP A : A QP A → ˜CThen can 1 is an isomorphism if and <strong>on</strong>ly if A can A is an isomorphism.


Proof. Note that, since( )AQ, eC ρ A Q is a left ˜C-comodule functor, then ( )Q, C ρ Q isa left C-comodule functor where C ρ Q = A U eC ρ A Q. Let (P A , p P ) be the coequalizerdefined in (6). Now, by Lemma 6.15, σ A induces a morphism σ A A : QP A → A U suchthatσ A A ◦ (Qp P ) = ( A Uλ A ) ◦ ( σ A AU ) . Then, we can c<strong>on</strong>sider the morphism(87) can A := ( Cσ A A)◦( Cρ Q P A): QPA = A U A QP A → C A U = A U ˜C.Then, by using the naturality of C ρ Q and the definiti<strong>on</strong> of σA A , we obtain(88) can A ◦ (Qp P ) = (C A Uλ A ) ◦ (can 1A U) .Moreover, by Lemma 6.15, there exists a morphism A σA A : AQP A → Id A A suchthat A U A σA A = σA A . Since ˜C is a lifting of the com<strong>on</strong>ad C, we know that CσA A =C A U A σA A = AU ˜C A σA A . Let us set( ) ( )Acan A := ˜CA σAA eC◦ ρ A QP A : A QP A → ˜Cso that we get(89) AU A can A =(AU ˜C))A σAA ◦(AU eC ρ A QP A = ( (CσA) A ◦ C)ρ Q P A = canA .By using the naturality of C ρ Q , we calculate(can 1A U) ◦ ( Qµ A P AU ) = ( Cσ A AU ) ◦ (C ρ Q P A U ) ◦ ( Qµ A P AU )so that we get= ( Cσ A AU ) ◦ ( CQµ A P AU ) ◦ (C ρ Q P A A U )(80)= (Cm AA U) ◦ ( Cσ A A A U ) ◦ (C ρ Q P A A U ) = (Cm AA U) ◦ (can 1 A A U)(90) (can 1A U) ◦ ( Qµ A P AU ) = (Cm AA U) ◦ (can 1 A A U) .Let us c<strong>on</strong>sider the following diagramQP A A Ucan 1 A A UCAA A UQµ A P AUQP A Uλ A Cm AA UCA A Uλ Acan 1A UQP A UQp PQP Acan A CA A U C AUλ AC A U = A U ˜C = CA A 0.Now, since can 1 : QP → CA is a functorial morphism and by formula (90), theleft square serially commutes. By formula (88) also the right square commutes.Moreover, by definiti<strong>on</strong>, p P and A Uλ A are coequalizers. Since Q and C preservecoequalizers, both the rows are coequalizers .Assume now that can 1 is a functorial isomorphism. Then both can 1 A A U andcan 1A U are isomorphism and we deduce that also can A is an isomorphism. SinceAU A can A = can A and A U reflects isomorphisms, we get that also A can A is an isomorphism.C<strong>on</strong>versely, assume that A can A is an isomorphism. Then also can A = A U A can Ais an isomorphism. Then, by using (89), (87), Lemma 6.15 and (15), we obtain097


98AU A can AA F = can AA F = ( CσAAF ) A ◦ (C ρ Q P AA F ) = ( Cσ A) ◦ (C ρ Q P ) = can 1 sothat also can 1 is an isomorphism.□6.6. The tame case.Definiti<strong>on</strong> 6.18. A formal dual structure M = (A, B, P, Q, σ A , σ B ) is called aMorita c<strong>on</strong>text <strong>on</strong> the categories A and B if it satisfies also the balanced c<strong>on</strong>diti<strong>on</strong>s(91) σ A ◦ ( µ B QP ) = σ A ◦ ( Q B µ P)and σ B ◦ ( P A µ Q)= σ B ◦ ( µ A P Q ) .Lemma 6.19. Let M = (A, B, P, Q, σ A , σ B ) be a Morita c<strong>on</strong>text <strong>on</strong> the categories Aand B and assume that A, B, P, Q preserve coequalizers. Hence, there exist functorialmorphisms• AB σ A BA : AQ BB P A → Id A A such that(92) AU AB σ A BA = B σ A BAwhere B σ A BA is uniquely determined by Bσ A BA ◦(Q Bp B P ) = ( A Uλ A )◦ ( Bσ A BAU )and(93) Bσ A B ◦ (p QB P ) = σ A• BA σ B AB : BP AA Q B → Id B B such that(94) BU BA σ B AB = A σ B ABwhere A σ B AB is uniquely determined by Aσ B AB ◦ (P Ap A Q) = ( B Uλ B ) ◦ ( Aσ B A BU )and(95) Aσ B A ◦ (p P A Q) = σ B .Moreover we have that(96) Bσ A BAAF = B σ A B and Aσ B ABBF = A σ B A.Proof. By definiti<strong>on</strong>, (Q BB P , p QB P ) = Coequ Fun(µBQ P, Q B µ P)and by assumpti<strong>on</strong>σ A is balanced, so that, by the universal property of the coequalizer, there exists aunique functorial morphism B σ A B : Q BBP → A such that B σ A B ◦ (p QBP ) = σ A . Now,let us c<strong>on</strong>sider the following diagramQ BB P A A UQ B µ A B P AU Q B B P A Uλ AQ BB P A UQ B p B PQ BB P ABσ A B A AUBσ A B AUBσ A BAA A Um AA UA A Uλ A A A UAUλ A AUNote that, by naturality of p Q and definiti<strong>on</strong> of B σB A we have(Bσ BAU ) A ◦ ( Q B µ A BP AU ) ◦ (p QB P A A U) = ( BσBAU ) A ◦ (p QB P A U) ◦ ( Q B Uµ A BP AU )= ( σ A AU ) ◦ ( Qµ A P AU ) (80)= (m AA U) ◦ ( σ A A A U ) = (m AA U) ◦ ( Bσ A BA A U ) ◦ (p QB P A A U)


and since p QB P A A U is an epimorphism, we get that ( Bσ A BAU ) ◦ ( Q B µ A BP AU ) =(m AA U) ◦ ( Bσ A B A AU ) . Moreover, by using naturality of p Q , definiti<strong>on</strong> of B σ A B , naturalityof σ A we have(Bσ A BAU ) ◦ (Q BB P A Uλ A ) ◦ (p QB P A A U) = ( Bσ A BAU ) ◦ (p QB P A U) ◦ (Q B U B P A Uλ A )= ( σ A AU ) ◦ (Q B U B P A Uλ A ) = (A A Uλ A ) ◦ ( σ A AU A F A U )= (A A Uλ A ) ◦ ( Bσ A BA A U ) ◦ (p QB P A A U)and since p QB P A A U is an epimorphism, we get that ( Bσ A BAU ) ◦ (Q BB P A Uλ A ) =(A A Uλ A ) ◦ ( Bσ A B A AU ) so that the left square serially commutes. Since B, P, Q preservecoequalizers, by Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>12, also Q BB P = Coequ Fun(µBQ BU B P, Q B Uλ BB P )preserves them so that both the rows are coequalizers. Hence, there exists a uniquefunctorial morphism B σ A BA : Q BBP A → A U such that(97) Bσ A BA ◦ (Q B p B P ) = ( A Uλ A ) ◦ ( Bσ A BAU ) .Now, by using naturality of A µ QB , definiti<strong>on</strong> of B σ A BA , definiti<strong>on</strong> of Bσ A B , coequalizingproperty of A Uλ A , we computeBσ A BA ◦ (A µ QB BP A)◦ (AQB p B P ) ◦ (Ap QB P A U)= B σBA A ◦ (Q B p B P ) ◦ (A µ QB BP A U ) ◦ (Ap QB P A U)(7)= ( A Uλ A ) ◦ ( BσBAU ) A ◦ (p QB P A U) ◦ (A µ QB U B P A U )= ( A Uλ A ) ◦ ( σ A AU ) ◦ (A µ QB U B P A U )(80)= ( A Uλ A ) ◦ (m AA U) ◦ ( Aσ A AU ) = ( A Uλ A ) ◦ (A A Uλ A ) ◦ ( Aσ A AU )= ( A Uλ A ) ◦ (A A Uλ A ) ◦ ( A B σ A BAU ) ◦ (Ap QB P A U)= ( A Uλ A ) ◦ ( A B σ A BA)◦ (AQB p B P ) ◦ (Ap QB P A U)and since (AQ B p B P ) ◦ (Ap QB P A U) is an epimorphism, we get B σBA A ◦ (A )µ QB BP A =( A Uλ A )◦ ( A B σBA) A so that B σBA A induces a functorial morphism ABσBA A : AQ BB P A →Id A A such that A U AB σBA A = BσBA A . Similarly, <strong>on</strong>e can prove that there exists a uniquefunctorial morphism A σA B : P AAQ → B such that A σA B ◦ (p P AQ) = σ B and it inducesa unique functorial morphism BA σAB B : BP AA Q B → Id B B such that B U BA σAB B = AσABBwhere A σAB B is uniquely determined by AσAB B ◦ (P Ap A Q) = ( B Uλ B ) ◦ ( AσA B BU ) .Finally we compute(Bσ BAAF ) A ◦ (Q B p B P AF ) ◦ (p QB P A) (97)= ( A Uλ AA F ) ◦ ( BσBAU A A F ) ◦ (p QB P A)= m A ◦ ( BσBA ) A ◦ (p QB P A) (93)= m A ◦ ( σ A A ) (80)= σ A ◦ ( )Qµ A P(93)= B σB A ◦ (p QB P ) ◦ ( )Qµ A (11)P = B σB A ◦ (p QB P ) ◦ ( )Q B Uµ A BPp Q=B σ A B ◦ ( Q B µ A BP)◦ (pQB P A) (13),(14)= B σ A B ◦ (Q B p B P AF ) ◦ (p QB P A) .Since B and Q preserve coequalizers, by Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>12, also Q B preserves them sothat ( Q B µ A BP)◦ (pQB P A) is epi and we deduce thatBσ A BAAF = B σ A B.99


100Similarly, <strong>on</strong>e can prove the statement for A σ B ABBF = A σ B A .Definiti<strong>on</strong>s 6.20. Let M = (A, B, P, Q, σ A , σ B ) be a Morita c<strong>on</strong>text. We will saythat M is tame if the lifted functorial morphisms AB σ A BA : AQ BB P A → Id A A andBAσ B AB : BP AA Q B → Id B B are isomorphisms so that the lifted functors A Q B : B B →AA and B P A : A A → B B yield a category equivalence. In this case, if τ : Q → QP Qis a herd for M, we will say that τ is a tame herd.Propositi<strong>on</strong> 6.2<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let M = ( A, B, P, Q, σ A , σ B) be a tame Morita c<strong>on</strong>text. Thenunit and counit of the adjuncti<strong>on</strong> ( A Q B , B P A ) are given byη (A Q B , B P A ) = ( ) () )BAσABBP B AA Q B ◦ BP A(ABσ BAA −1AQ B ◦ ( BAσAB) B −1and ɛ(A Q B , B P A ) =ABσBA A so thatη (A Q,P A ) = ( BU BA σABBP B AA Q BB F ) () (◦(BU B P A ABσBA) A −1AQ BB F ◦ BU ( )BAσAB) B −1BF ◦u B and ɛ (A Q,P A ) = AB σBA A ◦ ( AQ B λ BB P A ).Proof. It is a well-known fact that, given the two functorial isomorphisms σ : Id →RL and ɛ : LR → Id associated to an equivalence of categories, the unit of an adjuncti<strong>on</strong>is given by η = (σ −1 RL) ◦ (Rɛ −1 L) ◦ σ and the counit is ɛ. Hence, since the isomorphismsare ɛ = AB σBA A : AQ BB P A → Id A A and σ −1 = BA σAB B : BP AA Q B → Id B Bthe unit is η (A Q B , B P A ) = ( ) () )BAσABBP B AA Q B ◦ BP A(ABσ BAA −1AQ B ◦ ( )BAσABB −1and the counit is ɛ (A Q B , B P A ) = AB σBA A . Note that, by Propositi<strong>on</strong> 6.11, ( AQ, P A ) =( A Q BB F , B U B P A ) and ( B P , Q B ) = ( B P AA F , A U A Q B ) are adjuncti<strong>on</strong>s. Hence, theunit of the adjuncti<strong>on</strong> ( A Q, P A ) is η (A Q,P A ) = ( BUη (A Q B , B P A )BF ) ◦ η (B F , B U) and thusη (A Q,P A ) = ( BU BA σABBP B AA Q BB F ) () (◦(BU B P A ABσBA) A −1AQ BB F ◦ BU ( )BAσAB) B −1BF ◦u B . The counit of the adjuncti<strong>on</strong> ( A Q BB F , B U B P A ) = ( A Q, P A ) is given by ɛ (A Q,P A ) =ɛ (A Q B , B P A ) ◦ ( )AQ B ɛ (B F , B U)BP A = AB σBA A ◦ ( AQ B λ BB P A ). A similar result holds forthe other adjuncti<strong>on</strong>.□Corollary 6.2<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let M = (A, B, P, Q, σ A , σ B ) be a tame Morita c<strong>on</strong>text. Assumethat the functors A, B, P, Q preserve coequalizers. Then the counits of the adjuncti<strong>on</strong>s( A Q, P A ) and ( B P , Q B ) are given by ɛ (A Q,P A ) = A σ A A and ɛ ( B P ,Q B ) = B σ B B .Proof. By Propositi<strong>on</strong> 6.11 ( A Q, P A ) and ( B P , Q B ) are adjuncti<strong>on</strong>s. Let us c<strong>on</strong>siderthe functorial morphism A σA A : AQP A → Id A A c<strong>on</strong>structed in Lemma 6.15 satisfyingAU A σAAF A = σAAF A = σ A . By using naturality of µ B Q , definiti<strong>on</strong> of σA A , the balancedproperty of σ A , we computeσA A ◦ ( )µ B QP A ◦ (QBpP ) = σA A ◦ (Qp P ) ◦ ( µ B QP A U )= ( A Uλ A ) ◦ ( σ A AU ) ◦ ( µ B QP A U ) = ( A Uλ A ) ◦ ( σ A AU ) ◦ ( Q B µ P A U )= σ A A ◦ (Qp P ) ◦ ( Q B µ P A U ) (7)= σ A A ◦ ( Q B µ PA)◦ (QBpP )and since QBp P is an epimorphism, we get thatσ A A ◦ ( µ B QP A)= σAA ◦ ( Q B µ PA)i.e.( ) ) ( ) ( )AU A σAA ◦(AUµ B AQP A = AU A σAA ◦ AU A Q B µ PA .□


Since A U reflects and ( A Q BB P A , p A QBP A ) = Coequ Fun(µBQ P A , A Q B µ PA), there existsa unique functorial morphism AB σ A BA : A Q BB P A → Id A A such thatABσ A BA ◦ (p A QBP A ) = A σ A A.Using definiti<strong>on</strong> of σ A A , Bσ A B and Bσ A BA , naturality of λ B we compute(AU AB σ A BA)◦ (A Up A QBP A ) ◦ (Qp P ) = A U [ ABσ A BA ◦ (p A QBP A ) ] ◦ (Qp P )= ( AU A σ A A)◦ (QpP ) = ( A Uλ A ) ◦ ( σ A AU ) = ( A Uλ A ) ◦ ( Bσ A BAU ) ◦ (p QB P A U)(14)= ( A Uλ A ) ◦ ( Bσ A BAU ) ◦ (Q B λ BB P A U)= B σ A BA ◦ (Q B p B P ) ◦ (Q B λ BB P A U) = B σ A BA ◦ (Q B λ BB P A ) ◦ (Q BB F B Up B P )= B σ A BA ◦ (Q B λ BB P A ) ◦ (Qp P ) = ( AU AB σ A BA)◦ (A U A Q B λ BB P A ) ◦ (Qp P )and since Qp P is an epimorphism and A U reflects and by definiti<strong>on</strong> of AB σ A BA we getABσ A BA ◦ ( A Q B λ BB P A ) = AB σ A BA ◦ (p A QBP A ) = A σ A Aso that ɛ (A Q,P A ) = AB σ A BA ◦ ( AQ B λ BB P A ) = A σ A A .Lemma 6.23. Let M = (A, B, P, Q, σ A , σ B ) be a formal dual structure where theunderlying functors are A : A → A, B : B → B, P : A → B and Q : B → A.Assume that both categories A and B have coequalizers and the functors A, QBpreserve them. Assume that• C = ( C, ∆ C , ε C) is a com<strong>on</strong>ad <strong>on</strong> the category A such that C preservescoequalizers• ˜C(= ˜C, ∆C e, ε e )Cis a lifting of the com<strong>on</strong>ad C to the category A A( )• AQ, eC ρ A Q is a left ˜C-comodule functor• M is a tame Morita c<strong>on</strong>text.Then can 1 is an isomorphism if and <strong>on</strong>ly if A can A is an isomorphism if and <strong>on</strong>lyif A Q is a left ˜C-Galois functor.Proof. Assume that M is a tame Morita c<strong>on</strong>text. Then, by Corollary 6.22, ( A Q, P A )is an adjuncti<strong>on</strong> with counit ɛ := A σA A : AQP ( A → Id A ( A. Then, ) A Q is a left ˜C-Galois functor if and <strong>on</strong>ly if the morphism ˜CA σA)A eC◦ ρ A QP A = A can A is anisomorphism. By using Lemma 6.17 we deduce that can 1 is an isomorphism if and<strong>on</strong>ly if A can A is an isomorphism if and <strong>on</strong>ly if A Q is a left ˜C-Galois functor. □The following Theorem is a formulati<strong>on</strong>, in pure categorical terms, of [BV, Theorem<str<strong>on</strong>g>2.</str<strong>on</strong>g>18].Theorem 6.24. Let M = (A, B, P, Q, σ A , σ B ) be a regular tame Morita c<strong>on</strong>text.Assume that• both categories A and B have equalizers and coequalizers,• the functors A and B preserve equalizers,• the functors A, B, P, Q preserve coequalizers.Then the existence of the following structures are equivalent:(a) A herd τ : Q → QP Q for M101□


102(b) A com<strong>on</strong>ad C = ( C, ∆ C , ε C) <strong>on</strong> the category A such that the functor Cpreserves equalizers and a mixed distributive law Φ : AC → CA such thatAQ is a Galois comodule functor over ˜C (where ˜C is the lifting of C)(c) A com<strong>on</strong>ad D = ( D, ∆ D , ε D) <strong>on</strong> the category B such that the functor Dpreserves equalizers and an opposite mixed distributive law Ψ : DB → BDsuch that B P is a Galois comodule functor over ˜D (where ˜D is the lifting ofD).Proof. By Propositi<strong>on</strong> 6.11 the pairs ( A Q, P A ) and ( B P , Q B ) are adjuncti<strong>on</strong>s andhence P A and Q B preserve equalizers. Since A = A U A F and B = B U B F preserveequalizers, by Lemma 3.22 also A F and B F preserve them so that, in view of (15),we get that P = P AA F and Q = Q BB F preserve equalizers.(a) ⇒ (b) Assume that τ : Q → QP Q is a herd for M = ( A, B, P, Q, σ A , σ B) . ByPropositi<strong>on</strong> 6.14 there exists a mixed distributive law Φ : AC → CA such that(iA) ◦ Φ = ( QP σ A) ◦ (τP ) ◦ (A µ Q P ) ◦ (Ai) .Then, by Theorem 5.7, there exists a lifting com<strong>on</strong>ad ˜C =(˜C, ∆e C, ε e C)<strong>on</strong> the categoryA A. By Propositi<strong>on</strong> 6.16, there(exists)a functorial morphism eC ρ A Q : A Q → ˜C A Qsuch that A U eC ρ A Q = C ρ Q and AQ, eC ρ A Q is a left ˜C-comodule functor. Since byassumpti<strong>on</strong> we have a regular formal dual structure, by Theorem 6.6, the functorialmorphism can 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CA is an isomorphism and so, byLemma 6.23, A Q is a left ˜C-Galois functor.(b) ⇒ (a) Follows by [BM, Theorem 4.4 (1)] where(T , (N A , R A ), (N B , R B ), C, ξ) = ( A A, ( A F , A U), ( A Q, P A ), C, A U A can A ) noting that apretorsor for a formal dual structure is a herd.□6.7. Copretorsors.Propositi<strong>on</strong> 6.25. Let A and B be categories with coequalizers and let P : A →B, Q : B → A, and C : A → A be functors. Assume that all the functors P, Q andC preserve coequalizers. Let ε C : C → A be a functorial morphism and assume that(A, εC ) = Coequ Fun(Cε C , ε C C ) . Let χ : QP Q → Q be a functorial morphism suchthat(98) χ ◦ (QP χ) = χ ◦ (χP Q)and let δ C : C → QP be a functorial morphism such that(99) χ ◦ (δ C Q) = ε C Q.Let w l = (χP ) ◦ (QP δ C ) and w r = QP ε C : QP C → QP . Set(100) (A, x) = Coequ Fun(w l , w r) .There exists a functorial morphism A µ Q : AQ → Q such that(101)A µ Q ◦ (xQ) = χ.There exist functorial morphisms m A : AA → A and u A : A → A such that A =(A, m A , u A ) is a m<strong>on</strong>ad over A that preserves coequalizers. Moreover m A and u A


are uniquely determined by(102) x ◦ (χP ) = m A ◦ (xx)and(103) u A ◦ ε C = x ◦ δ C .Finally ( Q, A µ Q)is a left A-module functor.Proof. We haveHenceχ ◦ ( w l Q ) = χ ◦ (χP Q) ◦ (QP δ C Q) (98)= χ ◦ (QP χ) ◦ (QP δ C Q)By Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>9, we have that99= χ ◦ ( QP ε C Q ) = χ ◦ (w r Q) .χ ◦ ( w l Q ) = χ ◦ (w r Q) .(AQ, xQ) = Coequ Fun(w l Q, w r Q )and hence there exists a unique functorial morphism A µ Q : AQ → Q which fulfils(101). We computex ◦ ( A µ Q P ) ◦ (Aw l ) ◦ (xQP C) x = x ◦ ( A µ Q P ) ◦ (xQP ) ◦ ( QP w l)(101)= x ◦ (χP ) ◦ ( QP w l) = x ◦ (χP ) ◦ (QP χP ) ◦ (QP QP δ C )(98)= x ◦ (χP ) ◦ (χP QP ) ◦ (QP QP δ C )χ= x ◦ (χP ) ◦ (QP δ C ) ◦ (χP C) = x ◦ w l ◦ (χP C)xcoequ= x ◦ w r ◦ (χP C) = x ◦ ( QP ε C) ◦ (χP C)χ= x ◦ (χP ) ◦ ( QP QP ε C) (101)= x ◦ ( A µ Q P ) ◦ (xQP ) ◦ ( QP QP ε C)x= x ◦ ( A µ Q P ) ◦ ( AQP ε C) ◦ (xQP C) = x ◦ ( A µ Q P ) ◦ (Aw r ) ◦ (xQP C)so that we getx ◦ ( A µ Q P ) ◦ (Aw l ) ◦ (xQP C) = x ◦ ( A µ Q P ) ◦ (Aw r ) ◦ (xQP C)and since xQP C is an epimorphism we deduce thatx ◦ ( A µ Q P ) ◦ (Aw l ) = x ◦ ( A µ Q P ) ◦ (Aw r ).By Corollary <str<strong>on</strong>g>2.</str<strong>on</strong>g>12, A preserves coequalizers so that we get(AA, Ax) = Coequ Fun(Aw l , Aw r) .Hence there exists a unique functorial morphism m A : AA → A such that(104) m A ◦ (Ax) = x ◦ ( A µ Q P )or equivalentlym A ◦ (xx) = m A ◦ (Ax) ◦ (xQP ) = x ◦ ( A µ Q P ) ◦ (xQP ) (101)= x ◦ (χP ) .103


104We calculateso that we getx ◦ δ C ◦ ( Cε C) δ C= x ◦ ( QP ε C) ◦ (δ C C) = x ◦ w r ◦ (δ C C)xcoequ= x ◦ w l ◦ (δ C C) = x ◦ (χP ) ◦ (QP δ C ) ◦ (δ C C)δ C= x ◦ (χP ) ◦ (δ C QP ) ◦ (Cδ C ) (99)= x ◦ ( ε C QP ) ◦ (Cδ C )ε C = x ◦ δ C ◦ (ε C C)x ◦ δ C ◦ (Cε C ) = x ◦ δ C ◦ (ε C C).Since ( A, ε C) = Coequ Fun(Cε C , ε C C ) there exists a unique functorial morphismu A : A → A such that (103) is fulfilled. Now we want to show that A = (A, m A , u A )is a m<strong>on</strong>ad over A that isWe calculatem A ◦ (m A A) = m A ◦ (Am A )m A ◦ (Au A ) = A = m A ◦ (u A A) .m A ◦ (m A A) ◦ (xxx) = m A ◦ (m A A) ◦ (xxA) ◦ (QP QP x)(102)= m A ◦ (xA) ◦ (χP A) ◦ (QP QP x)χ= m A ◦ (xA) ◦ (QP x) ◦ (χP QP ) = m A ◦ (xx) ◦ (χP QP )(102)= x ◦ (χP ) ◦ (χP QP ) (98)= x ◦ (χP ) ◦ (QP χP )(102)= m A ◦ (xx) ◦ (QP χP ) = m A ◦ (xA) ◦ (QP x) ◦ (QP χP )(102)= m A ◦ (xA) ◦ (QP m A ) ◦ (QP xx) x = m A ◦ (Am A ) ◦ (xAA) ◦ (QP xx)Thus we get that= m A ◦ (Am A ) ◦ (xxx) .m A ◦ (m A A) ◦ (xxx) = m A ◦ (Am A ) ◦ (xxx)and since xxx is an epimorphism, we deduce that m A is associative. We computeThus we get thatm A ◦ (Au A ) ◦ ( Aε C) ◦ (xC) (103)= m A ◦ (Ax) ◦ (Aδ C ) ◦ (xC)x= m A ◦ (Ax) ◦ (xQP ) ◦ (QP δ C ) = m A ◦ (xx) ◦ (QP δ C )(102)= x ◦ (χP ) ◦ (QP δ C ) = x ◦ w l= x ◦ w r = x ◦ (QP ε C ) x = ( Aε C) ◦ (xC) .m A ◦ (Au A ) ◦ ( Aε C) ◦ (xC) = ( Aε C) ◦ (xC) .and since ( Aε C) ◦ (xC) is epimorphism we deduce thatm A ◦ (Au A ) = A.


105We computeso that we getm A ◦ (u A A) ◦ ( ε C A ) ◦ (Cx) (103)= m A ◦ (xA) ◦ (δ C A) ◦ (Cx)δ C= m A ◦ (xA) ◦ (QP x) ◦ (δ C QP ) = m A ◦ (xx) ◦ (δ C QP )(102)= x ◦ (χP ) ◦ (δ C QP ) (99)= x ◦ (ε C QP ) εC = ( ε C A ) ◦ (Cx)m A ◦ (u A A) ◦ ( ε C A ) ◦ (Cx) = ( ε C A ) ◦ (Cx)and since ( ε C A ) ◦ (Cx) is an epimorphism we deduce thatm A ◦ (u A A) = A.Therefore we obtain that m A is unital. We computeA µ Q ◦ ( A A µ Q)◦ (AxQ) ◦ (xQP Q)(101)= A µ Q ◦ (Aχ) ◦ (xQP Q) x = A µ Q ◦ (xQ) ◦ (QP χ)(101)= χ ◦ (QP χ) (98)= χ ◦ (χP Q) (101)= A µ Q ◦ (xQ) ◦ (χP Q)(102)= A µ Q ◦ (m A Q) ◦ (xxQ) = A µ Q ◦ (m A Q) ◦ (AxQ) ◦ (xQP Q) .Since (AxQ) ◦ (xQP Q) is an epimorphism we getWe calculateA µ Q ◦ ( A A µ Q)= A µ Q ◦ (m A Q) .A µ Q ◦ (u A Q) ◦ ( ε C Q ) (103)= A µ Q ◦ (xQ) ◦ (δ C Q)(101)= χ ◦ (δ C Q) (99)= ( ε C Q ) .Since ( ε C Q ) is an epimorphism we obtainA µ Q ◦ (u A Q) = Q.Propositi<strong>on</strong> 6.26. Let A and B be categories with coequalizers and let P : A → B,Q : B → A, and D : B → B be functors. Assume that all the functors P, Q and Dpreserve coequalizers. Let ε D : D → B be a functorial morphism and assume that(B, εD ) = Coequ Fun(Dε D , ε D D ) . Let χ : QP Q → Q be a functorial morphism suchthatχ ◦ (QP χ) = χ ◦ (χP Q) .Let δ D : D → P Q be a functorial morphism such that(105) χ ◦ (Qδ D ) = Qε D .Let z l = (P χ) ◦ (δ D P Q) and z r = ε D P Q : DP Q → P Q. Set(106) (B, y) = Coequ Fun(z l , z r) .There exists a functorial morphism µ B Q : QB → Q such that(107) µ B Q ◦ (Qy) = χ.□


106There exist functorial morphisms m B : BB → B and u B : B → B such thatB = (B, m B , u B ) is a m<strong>on</strong>ad over B that preserves coequalizers. Moreover m B andu B are uniquely determined by(108) m B ◦ (yB) = y ◦ ( )P µ B Qor equivalently(109) m B ◦ (yy) = y ◦ (P χ)and(110) y ◦ δ D = u B ◦ ε D .Moreover ( Q, µ B Q)is a right B-module functor.Proof. By left-right symmetric argument of those used in proof of Propositi<strong>on</strong> 6.25,<strong>on</strong>e can prove this Propositi<strong>on</strong>.□Definiti<strong>on</strong> 6.27. Let A and B be categories. A preformal codual structure is aeightuple Θ = ( C, D, P, Q, δ C , δ D , ε C , ε D) where C : A → A, D : B → B, P : A → Band Q : B → A are functors, δ C : C → QP, δ D : D → P Q, ε C : C → A, ε D : D → Bare functorial morphisms. A copretorsor χ for Θ is a functorial morphism χ :QP Q → Q satisfying the following c<strong>on</strong>diti<strong>on</strong>s:1) Coassociativity, in the sense that(111) χ ◦ (χP Q) = χ ◦ (QP χ)2) Counitality, in the sense that(112) χ ◦ (δ C Q) = ε C Qand(113) χ ◦ (Qδ D ) = Qε D .Definiti<strong>on</strong> 6.28. A preformal codual structure Θ = ( C, D, P, Q, δ C , δ D , ε C , ε D)will be called regular whenever ( A, ε C) (= Coequ Fun Cε C , ε C C ) and ( (B, ε D) =Coequ Fun Dε D , ε D D ) . In this case a copretorsor for Θ will be called a regularcopretorsor.Theorem 6.29. Let A and B be categories with coequalizers and let χ : QP Q →Q be a regular copretorsor for Θ = ( C, D, P, Q, δ C , δ D , ε C , ε D) . Assume that theunderlying functors P, Q, C and D preserve coequalizers. Let w l = (χP ) ◦ (QP δ C )and w r = QP ε C : QP C → QP . Set(114) (A, x) = Coequ Fun(w l , w r) .There exists a functorial morphism A µ Q : AQ → Q such that(115)A µ Q ◦ (xQ) = χ.There exist functorial morphisms m A : AA → A and u A : A → A such that A =(A, m A , u A ) is a m<strong>on</strong>ad over A that preserves coequalizers. Moreover m A and u Aare uniquely determined byx ◦ (χP ) = m A ◦ (xx) and x ◦ δ C = u A ◦ ε C .


Moreover ( Q, A µ Q)is a left A-module functor.Let z l = (P χ) ◦ (δ D P Q) and z r = ε D P Q : DP Q → P Q. Set(116) (B, y) = Coequ Fun(z l , z r) .There exists a functorial morphism µ B Q : QB → Q such that(117) µ B Q ◦ (Qy) = χ.There exist functorial morphisms m B : BB → B and u B : B → B such thatB = (B, m B , u B ) is a m<strong>on</strong>ad over B that preserves coequalizers. Moreover m B andu B are uniquely determined bym B ◦ (yy) = y ◦ (P χ) and y ◦ δ D = u B ◦ ε D .Moreover ( Q, µ B Q)is a right B-module functor.Finally ( Q, A µ Q , µ B Q)is an A-B-module functor.Proof. Within these assumpti<strong>on</strong>, we can apply Propositi<strong>on</strong> 6.25 to get the m<strong>on</strong>ad Aand the functorial morphism A µ Q : AQ → Q satisfying 115 such that ( )Q, A µ Q is aleft A-module functor and Propositi<strong>on</strong> 6.26 to get the m<strong>on</strong>ad B and the functorialmorphism µ B Q : QB → Q satisfying 117 such that ( Q, µ Q) B is a right B-modulefunctor. Let us check the compatibility c<strong>on</strong>diti<strong>on</strong>. We calculateA µ Q ◦ ( )Aµ B Q ◦ (AQy) ◦ (xQP Q) = x A µ Q ◦ (xQ) ◦ ( )QP µ B Q ◦ (QP Qy)(115),(117)= χ ◦ (QP χ) (98)= χ ◦ (χP Q)(117),(115)= µ B Q ◦ (Qy) ◦ (A µ Q P Q ) ◦ (xQP Q)A µ Q= µBQ ◦ (A µ Q B ) ◦ (AQy) ◦ (xQP Q) .Since (AQy) ◦ (xQP Q) is an epimorphism we get thatA µ Q ◦ ( )Aµ B Q = µBQ ◦ (A µ Q B ) .Therefore (Q, A µ Q , µ B Q ) is an A-B-bimodule functor.□Theorem 6.30. Let χ : QP Q → Q be a regular copretorsor for a preformal codualstructure Θ = ( C, D, P, Q, δ C , δ D , ε C , ε D) <strong>on</strong> categories A and B such that the underlyingfunctors P, Q, C and D preserve coequalizers. Assume that C and D arecom<strong>on</strong>ads, ( P, D ρ P)is a left D-comodule functor and(P, ρCP)is a right C-comodulefunctor. Moreover assume that the functorial morphism δ C is right C-colinear, thatis ( Qρ C P)◦ δC = (δ C C) ◦ ∆ C and the functorial morphism δ D is left D-colinear thatis (D ρ P Q ) ◦ δ D = (Dδ D ) ◦ ∆ D and that they are compatible in the sense that(118) (δ D P ) ◦ D ρ P = (P δ C ) ◦ ρ C P .Then there exists a m<strong>on</strong>ad A = (A, m A , u A ) <strong>on</strong> the category A together with afunctorial morphism A µ Q : AQ → Q such that ( Q, A µ Q)is a left A-module functorand a m<strong>on</strong>ad B = (B, m B , u B ) together with a functorial morphism µ B Q : QB → Qsuch that ( Q, µ B Q)is a right B-module functor. The underlying functors are definedas follows(A, x) = Coequ Fun((χP ) ◦ (QP δC ) , QP ε C) .107


108andsatisfying(B, y) = Coequ Fun((P χ) ◦ (δD P Q) , ε D P Q ) .A µ Q ◦ (xQ) = χ and µ B Q ◦ (Qy) = χ.Furthermore1) The morphisms cocan 1 := (A µ Q P ) ◦ (Aδ C ) : AC → QP is an isomorphism.2) The morphism cocan 1 := ( P µ B Q)◦ (δD B) : DB → P Q is an isomorphisms.3)4)5)6)(χP ) ◦ (QP δ C ) = cocan 1 ◦ (xC) and (P χ) ◦ (δ D P Q) = cocan 1 ◦ (Dy)x = ( Aε C) ◦ (cocan 1 ) −1y = ( ε D B ) ◦ (cocan 1 ) −1δ C = (A µ Q P ) ◦ (Aδ C ) ◦ (u A C)δ D = ( P µ B Q)◦ (δD B) ◦ (Du B ) .From the last equalities, we deduce that if ε C A is a regular epimorphism, so is σ Aand if Bε D is a regular epimorphism, so is σ B .Proof. Note that we are in the setting of Theorem 6.29.1) Let us check that cocan 1 is an isomorphism.( The) inverse of the functorial morphism cocan 1 is given by cocan −11 = (xC) ◦QρCP : QP → AC. Indeed we compute(xC) ◦ ( Qρ C P)◦ cocan1 ◦ (xC) = (xC) ◦ ( Qρ C P)◦( Aµ Q P ) ◦ (Aδ C ) ◦ (xC)= (xC) ◦ ( Qρ C P)◦( Aµ Q P ) ◦ (xQP ) ◦ (QP δ C )(115)= (xC) ◦ ( Qρ C P)◦ (χP ) ◦ (QP δC ) = (xC) ◦ (χP C) ◦ ( QP Qρ C P)◦ (QP δC )P rightCcol= (xC) ◦ (χP C) ◦ (QP δ C C) ◦ ( QP ∆ C) = (xC) ◦ ( w l C ) ◦ ( QP ∆ C)x coequ= (xC) ◦ (w r C) ◦ ( QP ∆ C) = (xC) ◦ ( QP ε C C ) ◦ ( QP ∆ C) C com<strong>on</strong>ad= (xC) .Since xC is an epimorphism, we obtain that(xC) ◦ ( Qρ C P)◦ cocan1 = AC.On the other hand, we havecocan 1 ◦ (xC) ◦ ( ) (Qρ C P = Aµ Q P ) ◦ (Aδ C ) ◦ (xC) ◦ ( )Qρ C P= (A µ Q P ) ◦ (xQP ) ◦ (QP δ C ) ◦ ( )Qρ C (115)P = (χP ) ◦ (QP δ C ) ◦ ( )Qρ C P(118)= (χP ) ◦ (Qδ D P ) ◦ ( )Q D ρ P(113)= ( Qε D P ) ◦ ( Q D ρ P) D ρ P counital= QP


so we obtain thatcocan −11 = (xC) ◦ ( Qρ C P).2) Similarly we prove that we prove that cocan 1 := ( P µ B Q)◦ (δD B) : DB → P Q isan isomorphism with (Dy) ◦ (D ρ P Q ) its inverse. In fact we have(Dy) ◦ (D ρ P Q ) ◦ cocan 1 ◦ (Dy) = (Dy) ◦ (D ρ P Q ) ◦ ( P µ B Q)◦ (δD B) ◦ (Dy)D ρ P= (Dy) ◦(DP µBQ)◦( Dρ P QB ) ◦ (δ D B) ◦ (Dy)δ D leftDcol= (Dy) ◦ ( DP µ Q) B ◦ (DδD B) ◦ ( ∆ D B ) ◦ (Dy)∆= D(Dy) ◦ ( )DP µ B Q ◦ (DδD B) ◦ (DDy) ◦ ( ∆ D P Q )δ=D(Dy) ◦ ( DP µ Q) B ◦ (DP Qy) ◦ (DδD P Q) ◦ ( ∆ D P Q )(117)= (Dy) ◦ (DP χ) ◦ (Dδ D P Q) ◦ ( ∆ D P Q )ycoequ= (Dy) ◦ ( Dε D P Q ) ◦ ( ∆ D P Q ) Dcom<strong>on</strong>ad= Dyand since D preserves coequalizers, Dy is an epimorphism, so that we get(Dy) ◦ (D ρ P Q ) ◦ cocan 1 = DB.On the other hand we havecocan 1 ◦ (Dy) ◦ (D ρ P Q ) = ( )P µ B Q ◦ (δD B) ◦ (Dy) ◦ (D ρ P Q )δ= ( DP µ Q) B ◦ (P Qy) ◦ (δD P Q) ◦ (D ρ P Q ) (117)= (P χ) ◦ (δ D P Q) ◦ (D ρ P Q )so that we get3) We haveso that(118)= (P χ) ◦ (P δ C Q) ◦ ( ρ C P Q ) (112)= ( P ε C Q ) ◦ ( ρ C P Q )P com= P Qcocan 1 ◦ (Dy) ◦ (D ρ P Q ) = P Q.(χP ) ◦ (QP δ C ) (115)= (A µ Q P ) ◦ (xQP ) ◦ (QP δ C )x= (A µ Q P ) ◦ (Aδ C ) ◦ (xC) defcocan 1= cocan 1 ◦ (xC)(119) (χP ) ◦ (QP δ C ) = cocan 1 ◦ (xC) .Similarly we haveso that(P χ) ◦ (δ D P Q) (117)= ( P µ B Q)◦ (P Qy) ◦ (δD P Q)δ= ( DP µ Q) B ◦ (δD B) ◦ (Dy) defcocan 1= cocan 1 ◦ (Dy)(120) (P χ) ◦ (δ D P Q) = cocan 1 ◦ (Dy) .109


1104) With notati<strong>on</strong>s of Theorem 6.29, we havex ◦ cocan 1 ◦ (xC) (119)= x ◦ (χP ) ◦ (QP δ C )= x ◦ w l xcoequ= x ◦ w r = x ◦ ( QP ε C) x = ( Aε C) ◦ (xC) .Since xC is an epimorphism, we deduce thatand henceSimilarly, we havex ◦ cocan 1 = Aε Cx = ( Aε C) ◦ (cocan 1 ) −1 .y ◦ cocan 1 ◦ (Dy) (120)= y ◦ (P χ) ◦ (δ D P Q)= y ◦ z l ycoequ= y ◦ z r = y ◦ ( ε D P Q ) ε D = ( ε D B ) ◦ (Dy) .Since Dy is an epimorphism, we deduce thatand hence5) We have thatso thaty ◦ cocan 1 = ε D By = ( ε D B ) ◦ (cocan 1 ) −1 .δ C = (A µ Q P ) ◦ (u A QP ) ◦ δ Cu A= (A µ Q P ) ◦ (Aδ C ) ◦ (u A C)(121) δ C = (A µ Q P ) ◦ (Aδ C ) ◦ (u A C) .Since (A µ Q P ) ◦ (Aδ C ) = cocan 1 is an isomorphism, we will prove that if u A C isa regular m<strong>on</strong>omorphism, so is δ C . In fact, let (C, u A C) = Equ Fun (υ, ϖ) whereυ, ϖ : AC → T. We know that (A µ Q P ) ◦ (Aδ C ) = cocan 1 is an isomorphism withinverse (xC) ◦ ( )Qρ C P so that we haveso thati.e.υ ◦ (cocan 1 ) −1 ◦ δ C(121)= υ ◦ (cocan 1 ) −1 ◦ (A µ Q P ) ◦ (Aδ C ) ◦ (u A C)cocan 1 iso= υ ◦ (u A C) u ACequ= ϖ ◦ (u A C)cocan 1 iso= ϖ ◦ (cocan 1 ) −1 ◦ (A µ Q P ) ◦ (Aδ C ) ◦ (u A C)(121)= ϖ ◦ (cocan 1 ) −1 ◦ δ Cυ ◦ (cocan 1 ) −1 ◦ δ C = ϖ ◦ (cocan 1 ) −1 ◦ δ Cυ ◦ (xC) ◦ ( Qρ C P)◦ δC = ϖ ◦ (xC) ◦ ( Qρ C P)◦ δC .Moreover, for every ξ : X → QP such thatυ ◦ (xC) ◦ ( Qρ C P)◦ ξ = ϖ ◦ (xC) ◦(QρCP)◦ ξ,


since (C, u A C) = Equ Fun (υ, ϖ) , there exists a unique functorial morphism ξ : X →C such that(u A C) ◦ ξ = (xC) ◦ ( Qρ C P)◦ ξ.Then, by composing to the left with the isomorphism cocan 1 := (A µ Q P ) ◦ (Aδ C ) weget ( Aµ Q P ) ◦ (Aδ C ) ◦ (u A C) ◦ ξ = (A µ Q P ) ◦ (Aδ C ) ◦ (xC) ◦ ( )Qρ C P ◦ ξi.e. by (121) we have(122) δ C ◦ ξ = ξ.Then ξ : X → C is the unique morphism satisfying c<strong>on</strong>diti<strong>on</strong> (122) so that(C, δ C ) = Equ Fun(υ ◦ (xC) ◦(QρCP), ϖ ◦ (xC) ◦(QρCP))i.e. also δ C is a regular m<strong>on</strong>omorphism.6) We have thatso thatδ D = ( P µ B Q)◦ (P QuB ) ◦ δ Du B= ( P µ B Q)◦ (δD B) ◦ (Du B )(123) δ D = ( P µ B Q)◦ (δD B) ◦ (Du B ) .Since ( P µ Q) B ◦ (δD B) = cocan 1 is an isomorphism, we will prove that if Du B isa regular m<strong>on</strong>omorphism, so is δ D . In fact, let (D, Du B ) = Equ Fun (ζ, θ) whereζ, θ : DB → L. We know that ( P µ Q) B ◦ (δD B) = cocan 1 is an isomorphism withinverse (Dy) ◦ (D ρ P Q ) so that we haveζ ◦ (cocan 1 ) −1 ◦ δ D(123)= ζ ◦ (cocan 1 ) −1 ◦ ( P µ B Q)◦ (δD B) ◦ (Du B )cocan 1 iso= ζ ◦ (Du B ) Du Bequ= θ ◦ (Du B )cocan 1 iso= θ ◦ (cocan 1 ) −1 ◦ ( P µ B Q)◦ (δD B) ◦ (Du B )(123)= θ ◦ (cocan 1 ) −1 ◦ δ Dso thatζ ◦ (cocan 1 ) −1 ◦ δ D = θ ◦ (cocan 1 ) −1 ◦ δ Di.e.ζ ◦ (Dy) ◦ (D ρ P Q ) ◦ δ D = θ ◦ (Dy) ◦ (D ρ P Q ) ◦ δ D .Moreover, for every ν : Y → P Q such thatζ ◦ (Dy) ◦ (D ρ P Q ) ◦ ν = θ ◦ (Dy) ◦ (D ρ P Q ) ◦ ν,since (D, Du B ) = Equ Fun (ζ, θ) , there exists a unique functorial morphism ν : Y →D such that(Du B ) ◦ ν = (Dy) ◦ (D ρ P Q ) ◦ ν.Then, by composing to the left with the isomorphism cocan 1 := we get( )P µBQ ◦ (δD B) ◦ (Du B ) ◦ ν = ( )P µ B Q ◦ (δD B) ◦ (Dy) ◦ (D ρ P Q ) ◦ νi.e. by (123) we have(124) δ D ◦ ν = ν.111


112Then ν : Y → D is the unique morphism satisfying c<strong>on</strong>diti<strong>on</strong> (124) so that(D, δ D ) = Equ Fun(ζ ◦ (Dy) ◦( Dρ P Q ) , θ ◦ (Dy) ◦ (D ρ P Q ))i.e. also δ D is a regular m<strong>on</strong>omorphism.6.8. Coherds. Following [BV], by formally dualizing definiti<strong>on</strong>s of formal dualstructure and herd, the noti<strong>on</strong>s of formal codual structure and of coherd are introduced.Definiti<strong>on</strong> 6.3<str<strong>on</strong>g>1.</str<strong>on</strong>g> A formal codual structure <strong>on</strong> two categories A and B is a sextupleX = (C, D, P, Q, δ C , δ D ) where C = ( C, ∆ C , ε C) and D = ( D, ∆ D , ε D) arecom<strong>on</strong>ads <strong>on</strong> <strong>on</strong> A and B respectively and ( C, D, P, Q, δ C , δ D , ε C , ε D) is a preformalcodual structure. Moreover ( (P : A → B, D ρ P : P → DP, ρ C P : P → P C) andQ : B → A, C ρ Q : Q → CQ, ρ D Q : Q → QD) are bicomodule functors; δ C : C →QP, δ D : D → P Q are subject to the following c<strong>on</strong>diti<strong>on</strong>s: δ C is C-bicolinear andδ D is D-bicolinear(125) ( C ρ Q P ) ◦ δ C = (Cδ C ) ◦ ∆ C and ( )Qρ C P ◦ δC = (δ C C) ◦ ∆ C( )(126) P ρDQ ◦ δD = (δ D D) ◦ ∆ D and (D ρ P Q ) ◦ δ D = (Dδ D ) ◦ ∆ Dand the coassociative c<strong>on</strong>diti<strong>on</strong>s hold(127) (δ C Q) ◦ C ρ Q = (Qδ D ) ◦ ρ D Q and (δ D P ) ◦ D ρ P = (P δ C ) ◦ ρ C P .Definiti<strong>on</strong> 6.3<str<strong>on</strong>g>2.</str<strong>on</strong>g> C<strong>on</strong>sider a formal codual structure X = (C, D, P, Q, δ C , δ D ) inthe sense of the previous definiti<strong>on</strong>. A coherd for X is a copretorsor χ : QP Q → Qi.e.(128) χ ◦ (χP Q) = χ ◦ (QP χ)(129) χ ◦ (δ C Q) = ε C Qand(130) χ ◦ (Qδ D ) = Qε D .Definiti<strong>on</strong> 6.33. A formal codual structure X = (C, D, P, Q, δ C , δ D ) will be calledregular whenever ( C, D, P, Q, δ C , δ D , ε C , ε D) is a regular preformal codual structure.In this case a coherd for X will be called a regular coherd.Lemma 6.34. Let X = (C, D, P, Q, δ C , δ D ) be a formal codual structure and let χ :QP Q → QQ be a coherd for X. Assume that the underlying functors C and D reflectcoequalizers. Then χ is a regular coherd.Proof. Since C and D are com<strong>on</strong>ads, we have ( Cε C) ◦ ∆ C = Id C and ( Dε D) ◦ ∆ D =Id D . Thus, Cε C and Dε D are split epimorphisms and thus epimorphisms. Since Cand D reflect coequalizers, we deduce that also ε C and ε D are epimorphisms andthus ( A, ε C) (= Coequ Fun ε C C, Cε C) and ( B, ε D) (= Coequ Fun ε D D, Dε D) , i.e. χ isa regular coherd.□Propositi<strong>on</strong> 6.35. Let X = (C, D, P, Q, δ C , δ D ) be a formal codual structure suchthat the lifted functors C Q D : D B → C A and D P C : C A → D B determine an equivalenceof categories. Then ( Q D , D P ) and ( P C , C Q ) are adjuncti<strong>on</strong>s.□


113Proof. Since (C U, ) and (D U, D F ) are adjuncti<strong>on</strong>s, (C U C Q D , D P CC F ) = ( Q D , D P )and (D U D P C , C Q DD F ) = ( P C , C Q ) are also adjuncti<strong>on</strong>s.□6.9. Coherds and M<strong>on</strong>ads. In this subsecti<strong>on</strong> we prove that in the case whenthere exist coequalizers in the base categories and all functors occurring in a formalcodual structure preserve them, we establish an equivalence between coherds <strong>on</strong><strong>on</strong>e hand, and m<strong>on</strong>ads <strong>on</strong> the other hand, together with two natural isomorphismgenerating a Galois map.Theorem 6.36. Let A and B be categories in both of which the coequalizer of anypair of parallel morphisms exists. Let X = (C, D, P, Q, δ C , δ D ) be a formal codualstructure <strong>on</strong> A and B. Then we have(1) If A = (A, m A , u A ) is a m<strong>on</strong>ad <strong>on</strong> the category A and ( Q, A µ Q : AQ → Q )is a left A-module functor such that(i) the functorial morphism cocan 1 := (A µ Q P ) ◦ (Aδ C ) : AC → QP is anisomorphism(ii) the functorial morphism cocan 2 := (A µ Q D ) ◦ ( AρQ) D : AQ → QD is anisomorphismthen χ := A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) : QP Q → Q is a copretorsor andthus a coherd.(2) If B = (B, m B , u B ) is a m<strong>on</strong>ad <strong>on</strong> the category B and ( Q, µ B Q : QB → Q) isa right B-module functor such that(i) the functorial morphism cocan 1 := ( P µ Q) B ◦ (δD B) : DB → P Q is anisomorphism(ii) the functorial morphism cocan 2 := ( (Cµ Q) B ◦ Cρ Q B ) : QB → CQ is anisomorphismthen χ := µ B Q ◦ ( Qε D B ) ◦ (Qcocan −1 1 ) : QP Q → Q is a copretorsor andthus a coherd.Proof. Let us prove 1), the other is similar. We have to prove thatχ := A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q )satisfies (111) , (112) , (113) . We compute( A µ Q ass)=cocan 1 ◦ (m A C) = (A µ Q P ) ◦ (Aδ C ) ◦ (m A C)= (A µ Q P ) ◦ (m A QP ) ◦ (AAδ C )( Aµ Q P ) ◦ ( A A µ Q P ) ◦ (AAδ C ) = (A µ Q P ) ◦ (Acocan 1 )so we obtaincocan 1 ◦ (m A C) = (A µ Q P ) ◦ (Acocan 1 )i.e.(131) (m A C) ◦ Acocan −11 = ( ) (cocan −11 ◦ Aµ Q P ) .We computeχ ◦ (QP χ)= A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (QP A µ Q )◦ ( QP Aε C Q ) ◦ ( QP cocan −11 Q )


114= A µ Q ◦ ( Aε C Q ) ◦ (AC A µ Q )◦ ( ACAε C Q ) ◦ ( ACcocan −11 Q ) ◦ ( cocan −11 QP Q )= A µ Q ◦ (A A µ Q )◦ ( Aε C AQ ) ◦ ( ACAε C Q ) ◦ ( ACcocan −11 Q ) ◦ ( cocan −11 QP Q )= A µ Q ◦ (m A Q)◦ ( Aε C AQ ) ◦ ( ACAε C Q ) ◦ ( ACcocan −11 Q ) ◦ ( cocan −11 QP Q )= A µ Q ◦ (m A Q)◦ ( AAε C Q ) ◦ ( Aε C CAQ ) ◦ ( ACcocan −11 Q ) ◦ ( cocan −11 QP Q )= A µ Q ◦ ( Aε C Q ) ◦ (m A CQ) ◦ ( Acocan −11 Q ) ◦ ( Aε C QP Q ) ◦ ( cocan −11 QP Q )(131)= A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ ( A µ Q P Q)◦ ( Aε C QP Q ) ◦ ( cocan −11 QP Q )Note that we haveso we have= χ ◦ (χP Q) .(cocan 1 ) ◦ (u A C) = (A µ Q P ) ◦ (Aδ C ) ◦ (u A C)= (A µ Q P ) ◦ (u A QP ) ◦ δ C A µ Q unital= δ C(132) (cocan 1 ) ◦ (u A C) = δ C .Now we computeand so we getWe haveχ ◦ (δ C Q) = A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (δ C Q)(132)= A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (cocan 1 Q) ◦ (u A CQ)= A µ Q ◦ ( Aε C Q ) ◦ (u A CQ) = A µ Q ◦ (u A Q) ◦ ( ε C Q ) ( A µ Q unital)=χ ◦ (δ C Q) = ( ε C Q ) .(Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) ◦ cocan 2= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) ◦ (A µ Q D ) ◦ ( Aρ D Q= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (A µ Q P Q ) ◦ (AQδ D ) ◦ ( Aρ D Q(127)= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (A µ Q P Q ) ◦ (Aδ C Q) ◦ ( A C ρ Q)= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (cocan 1 Q) ◦ ( A C ρ Q)= ( Aε C Q ) ◦ ( A C ρ Q) C ρ Q counital= AQSince cocan 2 is an isomorphism, we have that(133) cocan 2 ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) = QD.Finally we computeρ D Q counital=χ ◦ (Qδ D ) = A µ Q ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D )))(ε C Q )A µ Q ◦ ( AQε D) ◦ ( (AρQ) D ◦ Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D )= ( Qε D) ◦ ( A µ Q D) ◦ ( ) (Aρ D Q ◦ Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D )


so that we obtain= ( Qε D) ◦ cocan 2◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) (133)= ( Qε D)χ ◦ (Qδ D ) = ( Qε D) .Theorem 6.37. Let A and B be categories in both of which the coequalizer of anypair of parallel morphisms exist. Let X = (C, D, P, Q, δ C , δ D ) be a regular formal codualstructure <strong>on</strong> A and B such that the underlying functors C, D, P and Q preservecoequalizers, then the existence of the following structures are equivalent:(a) A coherd χ : QP Q → Q in X.(b) A m<strong>on</strong>ad A = (A : A → A, m A : AA → A, u A : A → A) , such that the functorA preserves coequalizers, together with a left acti<strong>on</strong> A µ Q : AQ → Q,subject to the following c<strong>on</strong>diti<strong>on</strong>s:(i) The natural transformati<strong>on</strong> cocan 1 := (A µ Q P ) ◦ (Aδ C ) : AC → QP isan isomorphism.(ii) The natural transformati<strong>on</strong> cocan 2 := (A µ Q D ) ◦ ( AρQ) D : AQ → QD isan isomorphism.(c) A m<strong>on</strong>ad B = (B : B → B, m B : BB → B, u B : B → B) , such that the functorB preserves coequalizers, together with a right acti<strong>on</strong> µ B Q : QB → Q,subject to the following c<strong>on</strong>diti<strong>on</strong>s:(i) The natural transformati<strong>on</strong> cocan 1 := ( P µ Q) B ◦ (δD B) : DB → P Q isan isomorphism.(ii) The natural transformati<strong>on</strong> cocan 2 := ( (Cµ Q) B ◦ Cρ Q B ) : QB → CQ isan isomorphism.Proof. (a) ⇒ (b) Under weaker assumpti<strong>on</strong>s, the m<strong>on</strong>ad A = (A, m A , u A ) and theacti<strong>on</strong> A µ Q have been c<strong>on</strong>structed in Propositi<strong>on</strong> 6.25. Moreover, by Theorem 6.301) we already proved that cocan 1 is an isomorphism with (xC) ◦ ( Qρ C P)its inverse.Now we prove that ( Aε C Q ) ◦ ( cocan −11 Q ) ◦(Qδ D ) is the inverse of cocan 2 . We computeρ C P counital=cocan 2 ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D )= (A µ Q D ) ◦ ( ) (Aρ D Q ◦ Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D )= (A µ Q D ) ◦ ( Aρ D Q)◦(Aε C Q ) ◦ (xCQ) ◦ ( Qρ C P Q ) ◦ (Qδ D )= (A µ Q D ) ◦ ( (AρQ) D ◦ (xQ) ◦ QP ε C Q ) ◦ ( Qρ C P Q ) ◦ (Qδ D )( Aµ Q D ) ◦ ( )Aρ D Q ◦ (xQ) ◦ (QδD ) = (A µ Q D ) ◦ (xQD) ◦ ( )QP ρ D Q ◦ (QδD )(101)= (χD) ◦ ( )QP ρ D Q ◦ (QδD ) (126)= (χD) ◦ (Qδ D D) ◦ ( Q∆ D)(113)= ( Qε D D ) ◦ ( Q∆ D) (D com<strong>on</strong>ad)= QDso we obtaincocan 2 ◦ ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) = QD.On the other hand, we have(Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) ◦ cocan 2115□


116= ( Aε C Q ) ◦ ( cocan1 −1 Q ) ◦ (Qδ D ) ◦ (A µ Q D ) ◦ ( )Aρ D Q= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (A µ Q P Q ) ◦ (AQδ D ) ◦ ( )Aρ D Q(127)= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (A µ Q P Q ) ◦ (Aδ C Q) ◦ ( A C ρ Q)= ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (cocan 1 Q) ◦ ( A C ρ Q)= ( Aε C Q ) ◦ ( A C ρ Q) C ρ Q counital= AQso we obtaincocan −12 = ( Aε C Q ) ◦ ( cocan −11 Q ) ◦ (Qδ D ) .(b) ⇒ (a) Follows from Theorem 6.36. (a) ⇔ (c) follows by similar computati<strong>on</strong>s.□6.10. Coherds and distributive laws. The following result is a reformulati<strong>on</strong> ofTheorem <str<strong>on</strong>g>2.</str<strong>on</strong>g>16 in [BV] in our categorical setting.Propositi<strong>on</strong> 6.38. Let A and B be categories with equalizers and let χ : QP Q →Q be a regular coherd for X = (C, D, P, Q, δ C , δ D ) where the underlying functorsP : A → B, Q : B → A, C : A → A and D : B → B preserve coequalizers.Let A = (A, m A , u A ) and B = (B, m B , u B ) be the associated m<strong>on</strong>ads c<strong>on</strong>structed inPropositi<strong>on</strong> 6.25 and in Propositi<strong>on</strong> 6.26. Then1) There exists a mixed distributive law between the m<strong>on</strong>ad A and the com<strong>on</strong>adC, Λ : AC → CA such thatΛ ◦ (xC) = λ = (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) .2) There exists an opposite mixed distributive law between the m<strong>on</strong>ad B and thecom<strong>on</strong>ad D, Γ : DB → BD such thatΓ ◦ (Dy) = γ = (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q) .Proof. 1) C<strong>on</strong>sider the functorial morphism given byQP C QP δ C−→ QP QP −→ χPQP C ρ Q P−→ CQP −→ CxCAλ = (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C )Recall that w l = (χP ) ◦ (QP δ C ) and w r = QP ε C : QP C → QP and let us provethatλ ◦ ( w l C ) ? = λ ◦ (w r C)that isLet us compute(Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) ◦ (χP C) ◦ (QP δ C C)?= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) ◦ ( QP ε C C ) .(Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) ◦ (χP C) ◦ (QP δ C C)χ= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (χP QP ) ◦ (QP QP δ C ) ◦ (QP δ C C)δ C ,(111)= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP χP ) ◦ (QP δ C QP ) ◦ (QP Cδ C )


117(112)= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ ( QP ε C QP ) ◦ (QP Cδ C )ε C = (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) ◦ ( QP ε C C )Since (AC, xC) = Coequ Fun(w l C, w r C ) ,by the universal property of coequalizers,there exists a unique functorial morphism Λ : AC → CA such thatΛ ◦ (xC) = λ = (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) .We want to prove that Λ is a mixed distributive law. We compute(Cm A ) ◦ (ΛA) ◦ (AΛ) ◦ (xxC) x = (Cm A ) ◦ (ΛA) ◦ (AΛ) ◦ (xAC) ◦ (QP xC)x= (Cm A ) ◦ (ΛA) ◦ (xCA) ◦ (QP Λ) ◦ (QP xC)defλ= (Cm A ) ◦ (CxA) ◦ (C ρ Q P A ) ◦ (χP A) ◦ (QP δ C A) ◦ (QP Cx)◦ ( QP C ρ Q P ) ◦ (QP χP ) ◦ (QP QP δ C )δ C= (Cm A ) ◦ (CxA) ◦ (C ρ Q P A ) ◦ (χP A) ◦ (QP QP x) ◦ (QP δ C QP )◦ ( QP C ρ Q P ) ◦ (QP χP ) ◦ (QP QP δ C )χ= (Cm A ) ◦ (CxA) ◦ (C ρ Q P A ) ◦ (QP x) ◦ (χP QP ) ◦ (QP δ C QP )◦ ( QP C ρ Q P ) ◦ (QP χP ) ◦ (QP QP δ C )C ρ Q= (CmA ) ◦ (CxA) ◦ (CQP x) ◦ (C ρ Q P QP ) ◦ (χP QP ) ◦ (QP δ C QP )◦ ( QP C ρ Q P ) ◦ (QP χP ) ◦ (QP QP δ C )x,(127)= (Cm A ) ◦ (Cxx) ◦ (C ρ Q P QP ) ◦ (χP QP ) ◦ (QP Qδ D P )◦ ( QP ρ D QP ) ◦ (QP χP ) ◦ (QP QP δ C )(102)= (Cx) ◦ (CχP ) ◦ (C ρ Q P QP ) ◦ (χP QP ) ◦ (QP Qδ D P )◦ ( QP ρ D QP ) ◦ (QP χP ) ◦ (QP QP δ C )χ= (Cx) ◦ (CχP ) ◦ (C ρ Q P QP ) ◦ (Qδ D P ) ◦ (χDP ) ◦ ( QP ρ D QP ) ◦ (QP χP )◦ (QP QP δ C )C ρ Q= (Cx) ◦ (CχP ) ◦ (CQδD P ) ◦ (C ρ Q DP ) ◦ (χDP ) ◦ ( QP ρ D QP ) ◦ (QP χP )◦ (QP QP δ C )(113)= (Cx) ◦ ( CQε D P ) ◦ (C ρ Q DP ) ◦ (χDP ) ◦ ( QP ρ D QP ) ◦ (QP χP )◦ (QP QP δ C )C ρ Q= (Cx) ◦( Cρ Q P ) ◦ ( Qε D P ) ◦ (χDP ) ◦ ( QP ρ D QP ) ◦ (QP χP ) ◦ (QP QP δ C )χ= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ ( QP Qε D P ) ◦ ( QP ρ D QP ) ◦ (QP χP ) ◦ (QP QP δ C )Qcomfun= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP χP ) ◦ (QP QP δ C )(111)= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (χP QP ) ◦ (QP QP δ C )


118so that we getχ= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) ◦ (χP C)defλ= Λ ◦ (xC) ◦ (χP C) (102)= Λ ◦ (m A C) ◦ (xxC)(Cm A ) ◦ (ΛA) ◦ (AΛ) ◦ (xxC) = Λ ◦ (m A C) ◦ (xxC)and since xxC is an epimorphism we obtainLet now compute(Cm A ) ◦ (ΛA) ◦ (AΛ) = Λ ◦ (m A C) .(CΛ) ◦ (ΛC) ◦ ( A∆ C) ◦ (xC) x = (CΛ) ◦ (ΛC) ◦ (xCC) ◦ ( QP ∆ C)defλ= (CΛ) ◦ (CxC) ◦ (C ρ Q P C ) ◦ (χP C) ◦ (QP δ C C) ◦ ( QP ∆ C)defλ= (CCx) ◦ ( C C ρ Q P ) ◦ (CχP ) ◦ (CQP δ C ) ◦ (C ρ Q P C ) ◦ (χP C) ◦ (QP δ C C)◦ ( QP ∆ C)C ρ Q ,(125)= (CCx) ◦ ( C C ρ Q P ) ◦ (CχP ) ◦ (C ρ Q P QP ) ◦ (QP δ C ) ◦ (χP C)◦ ( QP Qρ C P)◦ (QP δC )χ= (CCx) ◦ ( C C ρ Q P ) ◦ (CχP ) ◦ (C ρ Q P QP ) ◦ (QP δ C ) ◦ ( Qρ C P)◦ (χP ) ◦ (QP δC )C ρ Q= (CCx) ◦(C C ρ Q P ) ◦ (CχP ) ◦ (CQP δ C ) ◦ ( CQρ C P)◦( Cρ Q P ) ◦ (χP ) ◦ (QP δ C )(127)= (CCx) ◦ ( C C ρ Q P ) ◦ (CχP ) ◦ (CQδ D P ) ◦ ( CQ D ρ P)◦( Cρ Q P ) ◦ (χP )◦ (QP δ C )(113)= (CCx) ◦ ( C C ρ Q P ) ◦ ( CQε D P ) ◦ ( CQ D ρ P)◦( Cρ Q P ) ◦ (χP ) ◦ (QP δ C )so that we getQcomfun= (CCx) ◦ ( C C ρ Q P ) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C )Qcomfun= (CCx) ◦ ( ∆ C QP ) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C )∆ C= ( ∆ C A ) ◦ (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) defλ= ( ∆ C A ) ◦ Λ ◦ (xC)(CΛ) ◦ (ΛC) ◦ ( A∆ C) ◦ (xC) = ( ∆ C A ) ◦ Λ ◦ (xC)and since xC is an epimorphism we deduce thatNow we compute(CΛ) ◦ (ΛC) ◦ ( A∆ C) = ( ∆ C A ) ◦ Λ.Λ ◦ (u A C) ◦ ( ε C C ) (103)= Λ ◦ (xC) ◦ (δ C C)= (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) ◦ (δ C C)δ=C(Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (δ C QP ) ◦ (Cδ C )(112)= (Cx) ◦ (C ρ Q P ) ◦ ( ε C QP ) ◦ (Cδ C ) = (Cx) ◦ (C ρ Q P ) ◦ δ C ◦ ( ε C C )


(112)= (Cx) ◦ (Cδ C ) ◦ ∆ C ◦ ( ε C C ) (103)= (Cu A ) ◦ ( Cε C) ◦ ∆ C ◦ ( ε C C )Ccom<strong>on</strong>ad= (Cu A ) ◦ ( ε C C )and since ε C C is an epimorphism we get thatΛ ◦ (u A C) = (Cu A ) .Finally we compute(ε C A ) ◦ Λ ◦ (xC) defλ= ( ε C A ) ◦ (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C )119ε C = x ◦ ( ε C QP ) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C )Qcomfun= x ◦ (χP ) ◦ (QP δ C ) (102)= m A ◦ (xx) ◦ (QP δ C )x= m A ◦ (xA) ◦ (QP x) ◦ (QP δ C ) (103)= m A ◦ (xA) ◦ (QP u A ) ◦ ( QP ε C)x= m A ◦ (Au A ) ◦ x ◦ ( QP ε C) Acom<strong>on</strong>ad,x=and since xC is an epimorphism we get that(ε C A ) ◦ Λ = Aε C .2) C<strong>on</strong>sider the functorial morphism given by(AεC ) ◦ (xC)DP Q δ DP Q−→ P QP Q P χ−→ P Q P ρD Q−→ P QD yD−→ BDγ = (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q) .Recall that z l = (P χ) ◦ (δ D P Q) and z r = ε D P Q : DP Q → P Q and let us computethat isLet us computeγ ◦ ( Dz l) ? = γ ◦ (Dz r )(yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q) ◦ (DP χ) ◦ (Dδ D P Q)?= (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q) ◦ ( Dε D P Q ) .(yD) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q) ◦ (DP χ) ◦ (Dδ D P Q)δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (P QP χ) ◦ (δD P QP Q) ◦ (Dδ D P Q)δ D ,(111)= (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (P χP Q) ◦ (P QδD P Q) ◦ (δ D DP Q)(113)= (yD) ◦ ( (P ρQ) D ◦ (P χ) ◦ P Qε D P Q ) ◦ (δ D DP Q)δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) ◦ ( Dε D P Q ) .Since (DB, Dy) = Coequ Fun(Dz l , Dz r) , there exists a functorial morphism Γ :DB → BD such thatΓ ◦ (Dy) = γ = (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q) .


120We want to prove that Γ is an opposite mixed distributive law. We compute(m B D) ◦ (BΓ) ◦ (ΓB) ◦ (Dyy) y = (m B D) ◦ (BΓ) ◦ (ΓB) ◦ (DyB) ◦ (DP Qy)defγ= (m B D) ◦ (BΓ) ◦ (yDB) ◦ ( P ρ D QB ) ◦ (P χB) ◦ (δ D P QB) ◦ (DP Qy)δ D= (m B D) ◦ (BΓ) ◦ (yDB) ◦ ( P ρ D QB ) ◦ (P χB) ◦ (P QP Qy) ◦ (δ D P QP Q)χ= (m B D) ◦ (BΓ) ◦ (yDB) ◦ ( P ρ D QB ) ◦ (P Qy) ◦ (P χP Q) ◦ (δ D P QP Q)ρ D Q= (m B D) ◦ (BΓ) ◦ (yDB) ◦ (P QDy) ◦ ( P ρ D QP Q ) ◦ (P χP Q) ◦ (δ D P QP Q)y= (m B D) ◦ (BΓ) ◦ (BDy) ◦ (yDP Q) ◦ ( P ρ D QP Q ) ◦ (P χP Q) ◦ (δ D P QP Q)defγ= (m B D) ◦ (ByD) ◦ ( )BP ρ D Q ◦ (BP χ) ◦ (BδD P Q) ◦ (yDP Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)y= (m B D) ◦ (yDP Q) ◦ (P QyD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)y= (m B D) ◦ (yyD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)(109)= (yD) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q) ◦ ( P ρ D QP Q )◦ (P χP Q) ◦ (δ D P QP Q)(127)= (yD) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P δC QP Q) ◦ ( P C ρ Q P Q )◦ (P χP Q) ◦ (δ D P QP Q)δ=C(yD) ◦ (P χD) ◦ (P δ C QD) ◦ ( (P CρQ) D ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (P χP Q) ◦ (δ D P QP Q)(112)= (yD) ◦ ( P ε C QD ) ◦ ( ) (P Cρ D Q ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (P χP Q) ◦ (δ D P QP Q)ε= C (yD) ◦ ( ) (P ρ D Q ◦ (P χ) ◦ P ε C QP Q ) ◦ ( P C ρ Q P Q ) ◦ (P χP Q) ◦ (δ D P QP Q)Qcomfun= (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (P χP Q) ◦ (δD P QP Q)(111)= (yD) ◦ ( P ρQ) D ◦ (P χ) ◦ (P QP χ) ◦ (δD P QP Q)δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) ◦ (DP χ)defγ= Γ ◦ (Dy) ◦ (DP χ) (109)= Γ ◦ (Dm B ) ◦ (Dyy)and since Dyy is an epimorphism we deduce thatLet us compute(m B D) ◦ (BΓ) ◦ (ΓB) = Γ ◦ (Dm B ) .(ΓD) ◦ (DΓ) ◦ ( ∆ D B ) ◦ (Dy) ∆D= (ΓD) ◦ (DΓ) ◦ (DDy) ◦ ( ∆ D P Q )


defγ= (ΓD) ◦ (DyD) ◦ ( )DP ρ D Q ◦ (DP χ) ◦ (DδD P Q) ◦ ( ∆ D P Q )defγ= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ (δ D P QD) ◦ ( DP ρ D Q)◦ (DP χ)◦ (Dδ D P Q) ◦ ( ∆ D P Q )121δ=D(yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( )P QP ρ D Q ◦ (P QP χ) ◦ (P QδD P Q)◦ (δ D DP Q) ◦ ( ∆ D P Q )(126)= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( P QP ρ D Q)◦ (P QP χ) ◦ (P QδD P Q)◦ ( P ρ D QP Q ) ◦ (δ D P Q)(127)= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ ( P QP ρ D Q)◦ (P QP χ) ◦ (P δC QP Q)◦ ( P C ρ Q P Q ) ◦ (δ D P Q)δ C= (yDD) ◦ ( P ρ D QD ) ◦ (P χD) ◦ (P δ C QD) ◦ ( P Cρ D Q)◦ (P Cχ) ◦(P C ρ Q P Q )◦ (δ D P Q)(112)= (yDD) ◦ ( P ρ D QD ) ◦ ( P ε C QD ) ◦ ( ) (P Cρ D Q ◦ (P Cχ) ◦ P C ρ Q P Q )◦ (δ D P Q)ε= C (yDD) ◦ ( P ρ D QD ) ◦ ( ) (P ρ D Q ◦ (P χ) ◦ P ε C QP Q ) ◦ ( P C ρ Q P Q ) ◦ (δ D P Q)Qcomfun= (yDD) ◦ ( P ρ D QD ) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q)Qcomfun= (yDD) ◦ ( P Q∆ D) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q)y= ( B∆ D) ◦ (yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) defγ= ( B∆ D) ◦ Γ ◦ (Dy)and since Dy is an epimorphism we get thatNow we compute(ΓD) ◦ (DΓ) ◦ ( ∆ D B ) = ( B∆ D) ◦ Γ.Γ ◦ (Du B ) ◦ ( Dε D) (110)= Γ ◦ (Dy) ◦ (Dδ D )defγ= (yD) ◦ ( P ρQ) D ◦ (P χ) ◦ (δD P Q) ◦ (Dδ D )δ=D(yD) ◦ ( )P ρ D Q ◦ (P χ) ◦ (P QδD ) ◦ (δ D D)(113)= (yD) ◦ ( P ρ D Q)◦(P QεD ) ◦ (δ D D)ρ D Q= (yD) ◦ ( P QDε D) ◦ ( P ρ D QD ) ◦ (δ D D)(126)= (yD) ◦ ( P QDε D) ◦ (δ D DD) ◦ ( ∆ D D )δ D= (yD) ◦ (δ D D) ◦ ( DDε D) ◦ ( ∆ D D ) ∆ D= (yD) ◦ (δ D D) ◦ ∆ D ◦ ( Dε D)(110)= (u B D) ◦ ( ε D D ) ◦ ∆ D ◦ ( Dε D) Dcom<strong>on</strong>ad= (u B D) ◦ ( Dε D)


122and since Dε D is an epimorphism we deduce thatFinally we compute(BεD ) ◦ Γ ◦ (Dy) defγΓ ◦ (Du B ) = u B D.= ( Bε D) ◦ (yD) ◦ ( P ρ D Q)◦ (P χ) ◦ (δD P Q)y= y ◦ ( P Qε D) ◦ ( )P ρ D Q ◦ (P χ) ◦ (δD P Q) Qcomfun= y ◦ (P χ) ◦ (δ D P Q)(106)= y ◦ ( ε D P Q ) ε D = ( ε D B ) ◦ (Dy)and since Dy is an epimorphism we get that(BεD ) ◦ Γ = ε D B.6.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Coherds and coGalois functors. We keep the details of this subsecti<strong>on</strong>because the coGalois case is not as comm<strong>on</strong> as the Galois noti<strong>on</strong> in the literature.Lemma 6.39. Let X = (C, D, P, Q, δ C , δ D ) be a formal codual structure where Q :B → A, P : A → B and C = ( C, ∆ C , ε C) is a com<strong>on</strong>ad <strong>on</strong> the category A, D =(D, ∆ D , ε D) is a com<strong>on</strong>ad <strong>on</strong> B. Assume that both A and B have equalizers and thatC, QD preserve them. Then, δ C : C → QP induces a morphism δ C : C U → QP C inC A so that there exists a morphism C δ C C : C A → C QP C such that(134)C U C δ C C = δ C C .Moreover δCCCF= δ C : C U C F = C → QP C C F = QP.Proof. Let us c<strong>on</strong>sider the following diagram with notati<strong>on</strong>s of Propositi<strong>on</strong> 4.29C Uδ C CC Uγ CC C Uδ C C UQP C Qι P QP C U∆ C C UC C Uγ CQρ C P C UQP C Uγ CCC C Uδ C C C U QP C C USince QD preserves equalizers, by Lemma 4.18, also the functor Q preserves equalizers.Since ( δC CU) ◦ (C Uγ C) (equalizes the pair Qρ C P C U, QP C Uγ C) and ( QP C , Qι ) P =Equ Fun(Qρ C P C U, QP C Uγ C) , by the universal property of the equalizer, there existsa unique morphism δC C : C U → QP C such that((135)) QιP◦ δC C = ( δ C C U ) ◦ (C Uγ C) .We now want to prove that δ C C : C U → QP C = C U C QP C is a morphism betweenleft C-comodule functors which satisfies(CδCC)◦( CUγ C) = ( C ρ Q P C ) ◦ δ C C .□We have(CQιP ) ◦ ( Cδ C C)◦( CUγ C) (135)= ( Cδ C C U ) ◦ ( C C Uγ C) ◦ (C Uγ C)C Uγ C equ= ( Cδ C C U ) ◦ ( ∆ C C U ) ◦ (C Uγ C) (125)= ( C ρ Q P C U) ◦ ( δ C C U ) ◦ (C Uγ C)


123(135)= ( C ρ Q P C U) ◦ ( Qι P ) ◦ δ C CC ρ Q=(CQιP ) ◦ ( C ρ Q P C ) ◦ δ C Cand since C, Q preserve equalizers, CQι P is a m<strong>on</strong>omorphism, so that we get(CδCC)◦( CUγ C) = ( C ρ Q P C ) ◦ δ C C .Hence, by Lemma 4.28, there exists a unique morphism there exists a unique morphismC δ C C : C A → C QP C such thatC U C δ C C = δ C C .Moreover, note that by definiti<strong>on</strong> of δC C we have( ) QιP◦ δC C = ( δ C C U ) ◦ (C Uγ C)so that by applying it to C F we get(QιP C F ) ◦ ( δ C C C F ) = ( δ C C U C F ) ◦ (C Uγ C C F ) .Hence, by Propositi<strong>on</strong> 4.32, we obtain that(QρDQ)◦(δCC C F ) = (δ C C) ◦ ∆ C (125)= ( Qρ C P)◦ δC .Since Qρ D Q is a m<strong>on</strong>omorphism, we deduce that δC C C F = δ C .Propositi<strong>on</strong> 6.40. Let A and B be categories with coequalizers and let χ : QP Q →Q be a regular coherd for a formal codual structure X = (C, D, P, Q, δ C , δ D ) where theunderlying functors P : A → B, Q : B → A and C : A → A preserve coequalizers.Let• A = (A, m A , u A ) be the m<strong>on</strong>ad <strong>on</strong> the category A c<strong>on</strong>structed in Propositi<strong>on</strong>6.25;• ( Q, A µ Q)be the left A-module functor c<strong>on</strong>structed in Propositi<strong>on</strong> 6.25;• C Q : B → C A be the functor defined in Lemma 4.28;• Λ : AC → CA be the mixed distributive law between the com<strong>on</strong>ad C and them<strong>on</strong>ad A c<strong>on</strong>structed in Propositi<strong>on</strong> 6.38;• Ã be the lifting of A <strong>on</strong> the category C A c<strong>on</strong>structed in Theorem 5.7.Then there exists a functorial morphism eA µC Q : ÃC Q → C Q such that□Moreover,C U eA µC Q = A µ Q .( )C Q, eA µC Q is a left Ã-module functor.Proof. Since χ : QP Q → Q is a regular coherd for X = (C, D, P, Q, δ C , δ D ), byPropositi<strong>on</strong> 6.38 the mixed distributive law Λ : AC → CA is uniquely defined byΛ ◦ (xC) = (Cx) ◦ (C ρ Q P ) ◦ (χP ) ◦ (QP δ C ) .Now we prove that A µ Q yields a functorial morphism eA µC Q. In fact we have(C A µ Q)◦ (ΛQ) ◦(A C ρ Q)◦ (xQ) x = ( C A µ Q)◦ (ΛQ) ◦ (xCQ) ◦(QP C ρ Q)defΛ= ( C A µ Q)◦ (CxQ) ◦( Cρ Q P Q ) ◦ (χP Q) ◦ (QP δ C Q) ◦ ( QP C ρ Q)(101),(127)= (Cχ) ◦ (C ρ Q P Q ) ◦ (χP Q) ◦ (QP Qδ D ) ◦ ( QP ρ D Q)


124χ= (Cχ) ◦ (C ρ Q P Q ) ◦ (Qδ D ) ◦ (χD) ◦ ( )QP ρ D Q= (Cχ) ◦ (CQδD ) ◦ (C ρ Q D ) ◦ (χD) ◦ ( )QP ρ D QC ρ Q(130)= ( CQε D) ◦ (C ρ Q D ) ◦ (χD) ◦ ( QP ρ D QC ρ Q= C ρ Q ◦ ( Qε D) ◦ (χD) ◦ ( QP ρ D Q) χ= C ρ Q ◦ χ ◦ ( QP Qε D) ◦ ( QP ρ D QQcomfun= C ρ Q ◦ χ (101)= C ρ Q ◦ A µ Q ◦ (xQ)and since by c<strong>on</strong>structi<strong>on</strong> xQ is an epimorphism we get that(C A µ Q)◦ (ΛQ) ◦(A C ρ Q)= C ρ Q ◦ A µ Q .By Lemma 5.5 we know that(ΛQ) ◦ ( A C ρ Q)= C ρ AQ))so that (C A µ Q)◦ C ρ AQ = ( C A µ Q)◦ (ΛQ) ◦(A C ρ Q)= C ρ Q ◦ A µ Q .Hence there exists a morphism eA µC Q : ÃC Q → C Q such thatC U eA µC Q = A µ Q .By the associativity and unitality(properties)of A µ Q , we deduce that eA µC Q is alsoassociative and unital so thatC Q, eA µC Q is a left Ã-module functor. □Lemma 6.4<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let X = (C, D, P, Q, δ C , δ D ) be a formal codual structure with underlyingfunctors P : A → B, Q : B → A, C : A → A and D : B → B. Assume that Aand B are categories with equalizers and C, QD preserves them. Assume that• A = (A, m A , u A ) is a m<strong>on</strong>ad <strong>on</strong> the category A such that A preserves equalizers• ( Q, A µ Q)is a left A-module functorandis a lifting of the m<strong>on</strong>ad of A to the category C A( )•C Q, eA µC Q is a left Ã-module functor where C U eA µC Q = A µ Q .• Ã = (Ã, m e A, u e A)C<strong>on</strong>sider the functorial morphismscocan 1 := (A µ Q P ) ◦ (Aδ C ) : AC → QP( ) (ÃC )C cocan C eA:= µC QP C ◦ δCC : Ã → C QP C .Then cocan 1 is an isomorphism if and <strong>on</strong>ly if C cocan C is an isomorphism.Proof. Let us c<strong>on</strong>sider cocan 1 := (A µ Q P ) ◦ (Aδ C ) : AC → QP. Let ( Q D , ι Q) bethe equalizer described in Propositi<strong>on</strong> 4.29. Since A µ Q is a functorial morphism, wehave that (QιP ) ◦ (A µ Q P C) = (A µ Q P C U ) ◦ ( AQι P ) .Now, by Lemma 6.39, δ C induces a morphism δ C C : C U → QP C such that(QιP ) ◦ δ C C = ( δ C C U ) ◦ (C Uγ C) .


Then, we can c<strong>on</strong>sider the morphism(136) cocan C := (A µ Q P C) ◦ ( Aδ C C): A C U = C Uà → QP C = C U C QP C .Then we have( ) QιP◦ cocan C = ( Qι ) P ◦ (A µ Q P C) ◦ ( )AδC C A µ Q(=Aµ Q P C U ) ◦ ( AQι ) P ◦ ( )AδCC(135)= (A µ Q P C U ) ◦ ( Aδ C C U ) ◦ ( A C Uγ C) = ( cocan C 1 U ) ◦ ( A C Uγ C)i.e.(137)Now, by assumpti<strong>on</strong> we have(QιP ) ◦ cocan C = ( cocan 1 C U ) ◦ ( A C Uγ C) .C U eA µC Q = A µ Q125so thatC U eA µC QP C = A µ Q P C .Moreover, by Lemma 6.39, there exists a morphism C δ C : C A → C QP C such thatC U C δ C C = δ C C .Since à is a lifting of the m<strong>on</strong>ad A, by Theorem 5.7 we have a mixed distributivelaw Φ : AC → CA so that we can apply Propositi<strong>on</strong> 5.6 and we get thatAδ C C = A C U C δ C C = C UÃC δ C Cwhere ÃC δ C : à → ÃC QP C is a functorial morphism. Then we can c<strong>on</strong>sider themorphism( ) (ÃC )C cocan C eA:= µC QP C ◦ δCC : à → C QP Cand we get that(C ) ( )C U C cocan C = U eA µC QP C ◦C UÃC δCC= (A µ Q P C) ◦ ( A C U C δ C C)=( Aµ Q P C) ◦ ( Aδ C C)= cocan C .We compute(cocan1 C C U ) ◦ ( A∆ C C U ) = (A µ Q P C C U ) ◦ ( Aδ C C C U ) ◦ ( A∆ C C U )(125)= (A µ Q P C C U ) ◦ ( AQρ C P C U ) ◦ ( Aδ C C U )A µ Q=(QρCP C U ) ◦ (A µ Q P C U ) ◦ ( Aδ C C U ) = ( Qρ C P C U ) ◦ ( cocan 1 C U )so that we get((138) cocan1 C C U ) ◦ ( A∆ C C U ) = ( Qρ C P C U ) ◦ ( cocan C 1 U ) .Let us c<strong>on</strong>sider the following commutative diagram0 A C U AC Uγ C AC C Ucocan C cocan 1 C U0 QP C QιP QP C UA∆ C C UAC C Uγ CQρ C P C UQP C Uγ CACC C U QP C C Ucocan 1 C C U


126Now, since cocan 1 : AC → QP is a functorial morphism and by formula (138) , theright square serially commutes. By formula (137) also the left square commutes.Moreover, by definiti<strong>on</strong>, ι P and C Uγ C are m<strong>on</strong>omorphisms. Since QD preservesequalizers, by Lemma 4.18 also Q preserves equalizers. Since C, Q preserve equalizers,Qι P and A C Uγ C are also m<strong>on</strong>omorphisms. Then, if cocan 1A U is an isomorphism,also cocan C is an isomorphism. Since C U C cocan C = cocan C , by 4.17, also C cocan Cis an isomorphism.C<strong>on</strong>versely, assume that C cocan C is an isomorphism. Then alsococan C = C U C cocan C is an isomorphism. Then we haveC U C cocan C C F = cocan C C F = (A µ Q P C C F ) ◦ ( Aδ C C C F )Pro4.32,Lem6.39=( Aµ Q P ) ◦ (Aδ C ) = cocan 1so that also cocan 1 is an isomorphism.□6.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> The cotame case. The following subsecti<strong>on</strong> is presented without proofs,which can be obtained as the dual versi<strong>on</strong>s of <str<strong>on</strong>g>results</str<strong>on</strong>g> of the tame case (see Subsecti<strong>on</strong>6.6).Definiti<strong>on</strong> 6.4<str<strong>on</strong>g>2.</str<strong>on</strong>g> A formal codual structure X = (C, D, P, Q, δ C , δ D ) is called acoMorita c<strong>on</strong>text <strong>on</strong> the categories A and B if it satisfies also the balanced c<strong>on</strong>diti<strong>on</strong>s((139) ρDQ P ) ◦ δ C = ( )Q D ρ P ◦ δC and ( ρ C P Q ) ◦ δ D = (P C ρ Q ) ◦ δ D .Lemma 6.43. Let X = (C, D, P, Q, δ C , δ D ) be a coMorita c<strong>on</strong>text <strong>on</strong> the categories Aand B and assume that C, D, P, Q preserve equalizers. Hence, there exist functorialmorphisms(140)(141)(142)(143)• CD δ DCC: IdC A → C Q DD P C such thatC U CD δCDC = D δCDC( )where D δC DC is uniquely determined by Q D ι D P◦ D δC DC = (D δC DC U ) ◦ (C Uγ C)and(ι QD P ) ◦ D δC D = δ C• DC δ CDD: IdD B → D P C C Q D such thatD U DC δDCD = C δDCD( )where C δD CD is uniquely determined by P C ι C Q◦ C δD CD = (C δD C D U ) ◦ (D Uγ D)and(ιP C Q ) ◦ C δD C = δ DDefiniti<strong>on</strong>s 6.44. Let X = (C, D, P, Q, δ C , δ D ) be a coMorita c<strong>on</strong>text. We will saythat X is cotame if the lifted functorial morphisms CD δCDC : IdC A → C Q DD P C andDC δDCD : IdD B → D P C C Q D are isomorphisms so that the lifted functors C Q D : D B →C A and D P C : C A → D B yield a category equivalence. In this case, if χ : QP Q → Qis a coherd for X, we will say that χ is a cotame coherd.


Propositi<strong>on</strong> 6.45. Let X = (C, D, P, Q, δ C , δ D ) be a cotame coMorita c<strong>on</strong>text.Then unit and counit of the adjuncti<strong>on</strong> (D P C , C Q D) are given byη ( D P C , C Q D ) = CD δC DC and ɛ ( D P C , C Q D ) = ( ) (DC δDCD −1◦ D P ( ) )C CD δCDC −1 CQ D ◦( DCδDCDDP C C Q D) so that(C )(η (P C , C Q) = Q D γ DD P C ◦ CD δC DC and ɛ (P C , C Q) = ε D ◦D U ( ) )DC δDCD −1 DF ◦(D U D P ( ) )C CD δCDC −1 CQ DD F ◦ (D U DC δD CDDP C C Q DD F ) .Corollary 6.46. Let X = (C, D, P, Q, δ C , δ D ) be a cotame coMorita c<strong>on</strong>text. Assumethat the functors A, B, P, Q preserve equalizers. Then the units of the adjuncti<strong>on</strong>s( P C , C Q ) and ( Q D , D P ) are given by ɛ (P C , C Q) = C δ C C and ɛ (Q D , D P ) = D δ D D .Lemma 6.47. Let X = (C, D, P, Q, δ C , δ D ) be a formal codual structure where theunderlying functors are C : A → A, D : B → B, P : A → B and Q : B →A. Assume that both categories A and B have equalizers and the functors C, QDpreserve them. Assume that• A = (A, m A , u A ) is a m<strong>on</strong>ad <strong>on</strong> the category A such that A preserves equalizers)•(Ã, à = mA e, u A e is a lifting of the m<strong>on</strong>ad A to the category C A( )•C Q, eA µC Q is a left Ã-module functor• X is a cotame coMorita c<strong>on</strong>text.Then cocan 1 is an isomorphism if and <strong>on</strong>ly if C cocan C is an isomorphism if and<strong>on</strong>ly if C Q is a left Ã-coGalois functor.The following Theorem is a formulati<strong>on</strong>, in pure categorical terms, for the coherdversi<strong>on</strong> of [BV, Theorem <str<strong>on</strong>g>2.</str<strong>on</strong>g>18].Theorem 6.48. Let X = (C, D, P, Q, δ C , δ D ) be a regular cotame coMorita c<strong>on</strong>text.Assume that• both categories A and B have equalizers and coequalizers,• the functors C and D preserve coequalizers,• the functors C, D, P, Q preserve equalizers.Then the existence of the following structures are equivalent:(a) A coherd χ : QP Q → Q for X(b) A m<strong>on</strong>ad A = (A, m A , u A ) <strong>on</strong> the category A such that the functor A preservescoequalizers and a mixed distributive law Λ : AC → CA such that C Qis a coGalois module functor over à (where à is the lifting of A)(c) A m<strong>on</strong>ad B = (B, m B , u B ) <strong>on</strong> the category B such that the functor B preservescoequalizers and an opposite mixed distributive law Γ : DB → BDsuch that D P is a coGalois module functor over ˜B (where ˜B is the lifting ofB).127


1287. Herds and Coherds7.<str<strong>on</strong>g>1.</str<strong>on</strong>g> C<strong>on</strong>structing the functor Q. Our next task is to c<strong>on</strong>struct a D-C-bicomodulefunctor Q. Such a functor appears in [BM, Secti<strong>on</strong> 5], but we give here new notati<strong>on</strong>s.For the details of the proofs, see the dual <str<strong>on</strong>g>results</str<strong>on</strong>g> in the following.Propositi<strong>on</strong> 7.<str<strong>on</strong>g>1.</str<strong>on</strong>g> In the setting of Theorem 6.5, we define functors Q : A → B viathe equalizerQ q P C (θl P )◦(P i)(θ r P )◦(P i) BP QPThen there exists a unique functorial morphism κ ′ 0 : Q → DP such that(144) (P i) ◦ q = (jP ) ◦ κ ′ 0Moreover(Q,κ′0)= EquFun((P ωl ) ◦ (jP ) , (P ω r ) ◦ (jP ) ) .( The functor)Q can be equipped with the structure of a D-C-bicomodule functorQ, D ρ Q , ρ C where ρ C and D ρQQ Q are uniquely determined by(145) (qC) ◦ ρ C Q = ( P ∆ C) ◦ qand(146) (Dκ ′ 0) ◦ D ρ Q = ( ∆ D P ) ◦ κ ′ 0.Propositi<strong>on</strong> 7.<str<strong>on</strong>g>2.</str<strong>on</strong>g> In the setting of Theorem 6.5 and Propositi<strong>on</strong> 7.1, there existtwo functorial morphisms δ C : C → QQ and δ D : D → QQ where δ C is C-bicolinearand δ D is D-bicolinear and they fulfill(147) (Qq) ◦ δ C = (iC) ◦ ∆ Cand(148) (κ ′ 0Q) ◦ δ D = (Dj) ◦ ∆ D .Moreover the coassociative c<strong>on</strong>diti<strong>on</strong>s hold, that is(δ C Q) ◦ C ρ Q = (Qδ D ) ◦ ρ D Q and ( δ D Q ) ◦ D ρ Q = ( Qδ C)◦ ρCQ .7.<str<strong>on</strong>g>2.</str<strong>on</strong>g> From herds to coherds.7.3. Given an herd τ : Q → QP Q in a formal dual structure M = (A, B, P, Q, σ A , σ B ),our purpose is to build the formal codual structure X = (C, D, Q, Q, δ C , δ D ) and thena coherd χ : QQQ → Q in X.Theorem 7.4. Let A and B be categories with equalizers and let P : A → B,Q : B → A, A : A → A and B : B → B be functors. Assume that all thefunctors P, Q, A and B preserve equalizers. Let u A : A → A and u B : B → Bbe functorial m<strong>on</strong>omorphisms and assume that (A, u A ) = Equ Fun (u A A, Au A ) and(B, u B ) = Equ Fun (u B B, Bu B ).Let τ : Q → QP Q be a functorial morphism such that(QP τ) ◦ τ = (τP Q) ◦ τ


129Let σ B : P Q → B be a functorial morphism such that(Qσ B ) ◦ τ = Qu Band let σ A : QP → A be a functorial morphism such that(σ A Q) ◦ τ = u A Q.Then there is a formal codual structure X = (C, D, Q, Q, δ C , δ D ).Proof. In view of Theorem 6.5 and Propositi<strong>on</strong>s 7.1, 7.2 a formal codual structureX = (C, D, Q, Q, δ C , δ D ) has been c<strong>on</strong>structed.□Theorem 7.5. Let A and B be categories with equalizers and letM = (A, B, P, Q, σ A , σ B ) be a regular formal dual structure where P : A → B,Q : B → A, A : A → A and B : B → B are functors that preserve equalizers.Let τ : Q → QP Q be a pretorsor. Then there is a formal codual structure X =(C, D, Q, Q, δ C , δ D ). Define χ : QQQ → Q by settingχ := µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) .Then χ is a coherd in X.Proof. By Theorem 7.4 X = (C, D, Q, Q, δ C , δ D ) is a formal codual structure. Toshow that χ is a coherd in X, we have to prove that it satisfies the following c<strong>on</strong>diti<strong>on</strong>s.1) Coassociativity, in the sense that χ ◦ ( χQQ ) = χ ◦ ( QQχ ) . Let us computeχ ◦ ( QQχ )= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) ◦ ( QQχ )q= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QP Cχ) ◦ ( QqQQQ )i= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP QP χ) ◦ ( QP iQQQ ) ◦ ( QqQQQ )σ A = µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ (AQP χ) ◦ ( σ A QP QQQ ) ◦ ( QP iQQQ ) ◦ ( QqQQQ )A µ Q= µBQ ◦ ( Qσ B) ◦ (QP χ) ◦ (A µ Q P QQQ ) ◦ ( σ A QP QQQ ) ◦ ( QP iQQQ ) ◦ ( QqQQQ )(82)= A µ Q ◦ ( σ A Q ) ◦ (QP χ) ◦ (A µ Q P QQQ ) ◦ ( σ A QP QQQ ) ◦ ( QP iQQQ ) ◦ ( QqQQQ )σ A = A µ Q ◦ (Aχ) ◦ ( σ A QQQ ) ◦ (A µ Q P QQQ ) ◦ ( σ A QP QQQ ) ◦ ( QP iQQQ ) ◦ ( QqQQQ ) .We haveA µ Q ◦ (Aχ) ◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )= A µ Q ◦ ( Aµ B Q)◦(A A µ Q B ) ◦ ( AAQσ B) ◦ ( Aσ A QP Q ) ◦ (AQP iQ) ◦ (AQqQ)◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )Qbimod,σ A=A µ Q ◦ ( A A µ Q)◦(AAµBQ)◦(Aσ A QB ) ◦ ( AQP Qσ B) ◦ (AQP iQ) ◦ (AQqQ)◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )A µ Q ass= A µ Q ◦ (m A Q) ◦ ( AAµ B Q)◦(Aσ A QB ) ◦ ( AQP Qσ B) ◦ (AQP iQ) ◦ (AQqQ)


130◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )m=A A µ Q ◦ ( )Aµ B Q ◦ (mA QB) ◦ [( Aσ A QB ) ◦ ( AQP Qσ B) ◦ (AQP iQ) ◦ (AQqQ) ]◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )Qis a bim= µ B Q ◦ (A µ Q B ) ◦ (m A QB) ◦ [( Aσ A QB ) ◦ ( AQP Qσ B) ◦ (AQP iQ) ◦ (AQqQ) ]◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )A µ Q ass= µ B Q ◦ (A µ Q B ) ◦ [( A A µ Q B ) ◦ ( Aσ A QB ) ◦ ( AQP Qσ B) ◦ (AQP iQ) ◦ (AQqQ) ]◦ ( σ A QQQ ) ◦ (A µ Q P QQQ )(80)= µ B Q ◦ (A µ Q B ) ◦ [( A A µ Q B ) ◦ ( Aσ A QB ) ◦ ( AQP Qσ B) ◦ (AQP iQ) ◦ (AQqQ) ]◦ ( m A QQQ ) ◦ ( Aσ A QQQ )m A= µ B Q ◦ (A µ Q B ) ◦ (m A QB) ◦ [ ( AA A µ Q B ) ◦ ( AAσ A QB ) ◦ ( AAQP Qσ B) ◦ (AAQP iQ)◦ (AAQqQ)] ◦ ( Aσ A QQQ )A µ Q ass= µ B Q ◦ (A µ Q B ) ◦ ( A A µ Q B ) ◦ [ ( AA A µ Q B ) ◦ ( AAσ A QB ) ◦ ( AAQP Qσ B)◦ (AAQP iQ) ◦ (AAQqQ)] ◦ ( Aσ A QQQ )Qis a bim= A µ Q ◦ ( Aµ B Q)◦(A A µ Q B ) ◦ ( AA A µ Q B ) ◦ ( AAσ A QB ) ◦ ( AAQP Qσ B)◦ (AAQP iQ) ◦ (AAQqQ) ◦ ( Aσ A QQQ )Qis a bim= A µ Q ◦ ( A A µ Q)◦(AAµBQ)◦(AA A µ Q B ) ◦ ( AAσ A QB ) ◦ ( AAQP Qσ B)◦ (AAQP iQ) ◦ (AAQqQ) ◦ ( Aσ A QQQ )(82)= A µ Q ◦ ( A A µ Q)◦(AAµBQ)◦(AAµBQ B ) ◦ ( AAQσ B B ) ◦ ( AAQP Qσ B)◦ (AAQP iQ) ◦ (AAQqQ) ◦ ( Aσ A QQQ )σ A = A µ Q ◦ ( A A µ Q)◦(Aσ A Q ) ◦ ( AQP µ B Q)◦(AQP µBQ B ) ◦ ( AQP Qσ B B )◦ ( AQP QP Qσ B) ◦ (AQP QP iQ) ◦ (AQP QqQ)(82)= A µ Q ◦ ( (Aµ Q) ) B ◦ AQσB◦ ( ) (AQP µ B Q ◦ AQP µBQ B ) ◦ ( AQP Qσ B B )◦ ( AQP QP Qσ B) ◦ (AQP QP iQ) ◦ (AQP QqQ)Qis a bim= µ B Q◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( ) (AQP µ B Q ◦ AQP µBQ B ) ◦ ( AQP Qσ B B )◦ ( AQP QP Qσ B) ◦ (AQP QP iQ) ◦ (AQP QqQ)µ B Q= assµ B Q◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( ) [AQP µ B Q ◦ (AQP QmB ) ◦ ( AQP Qσ B B )]◦ ( AQP QP Qσ B) ◦ (AQP QP iQ) ◦ (AQP QqQ)(81)= µ B Q◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( (AQP µ Q) ) B ◦ AQP QσB◦ ( )AQP QP µ B Q◦ ( AQP QP Qσ B) ◦ (AQP QP iQ) ◦ (AQP QqQ)


131A µ Q= µBQ ◦ [( Qσ B) ◦ ( (QP µ Q)] ) B ◦ QP QσB◦ ( ) (QP QP µ )B Q ◦ QP QP QσB◦ (QP QP iQ) ◦ (QP QqQ) ◦ (A µ Q P QQQ )(81)= µ B Q ◦ (Qm B ) ◦ ( Qσ B B ) ◦ ( QP Qσ B) ◦ ( QP QP µ B Q◦ (QP QP iQ) ◦ (QP QqQ) ◦ (A µ Q P QQQ )σ B = µ B Q ◦ (Qm B ) ◦ ( QBσ B) ◦ ( QBP µ B Q)◦(QP QP QσB ))◦(QBP QσB ) ◦ (QBP iQ) ◦ (QBqQ)◦ ( Qσ B QQ ) ◦ (A µ Q P QQQ )µ B Q ass= µ B Q ◦ ( µ B QB ) ◦ ( QBσ B) ◦ ( QBP µ B Q)◦(QBP QσB ) ◦ (QBP iQ) ◦ (QBqQ)◦ ( Qσ B QQ ) ◦ (A µ Q P QQQ )µ B Q= µ B Q ◦ ( Qσ B) ◦ ( ) (QP µ ) B Q ◦ QP QσB◦ (QP iQ) ◦ (QqQ) ◦ ( µ B QQQ )◦ ( Qσ B QQ ) ◦ (A µ Q P QQQ )A µ Q= µBQ ◦ ( Qσ B) ◦ ( ) (QP µ ) B Q ◦ QP QσB◦ (QP iQ) ◦ (QqQ) ◦ ( µ B QQQ )◦ (A µ Q BQQ ) ◦ ( AQσ B QQ ))◦(QP QσB ) ◦ (QP iQ) ◦ (QqQ) ◦ ( µ B QQQ )(82)= A µ Q ◦ ( σ A Q ) ◦ ( QP µ B Q◦ (A µ Q BQQ ) ◦ ( AQσ B QQ )σ A = A µ Q ◦ ( Aµ B Q)◦(AQσB ) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) ◦ ( µ B QQQ )◦ (A µ Q BQQ ) ◦ ( AQσ B QQ )Qis a bim= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) ◦ ( µ B QQQ )◦ (A µ Q BQQ ) ◦ ( AQσ B QQ )and thus we getχ ◦ ( QQχ ) == A µ Q ◦ (Aχ) ◦ ( σ A QQQ ) ◦ (A µ Q P QQQ ) ◦ ( σ A QP QQQ ) ◦ ( QP iQQQ )◦ ( QqQQQ )= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) ◦ ( µ B QQQ )◦ (A µ Q BQQ ) ◦ ( AQσ B QQ ) ◦ ( σ A QP QQQ ) ◦ ( QP iQQQ ) ◦ ( QqQQQ )= χ ◦ ( χQQ )2) Counitality, in the sense that χ ◦ (Qδ D ) = Qε D and χ ◦ (δ C Q) = ε C Q. We haveχ ◦ (Qδ D ) == µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) ◦ (Qδ D )(144)= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QjP Q) ◦ (Qκ ′ 0Q) ◦ (Qδ D )(148)= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QjP Q) ◦ (QDj) ◦ ( Q∆ D)


132= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (Qjj) ◦ ( Q∆ D)(67)= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP τ) ◦ (Qj)We computeσ A = µ B Q ◦ (A µ Q B ) ◦ ( σ A QB ) ◦ ( QP Qσ B) ◦ (QP τ) ◦ (Qj)(70)= µ B Q ◦ (A µ Q B ) ◦ ( σ A QB ) ◦ (QP Qu B ) ◦ (Qj)σ A = µ B Q ◦ (A µ Q B ) ◦ (AQu B ) ◦ ( σ A Q ) ◦ (Qj)Qis a bim= A µ Q ◦ ( Aµ B Q)◦ (AQuB ) ◦ ( σ A Q ) ◦ (Qj)Qis a mod= A µ Q ◦ ( σ A Q ) ◦ (Qj) (82)= µ B Q ◦ ( Qσ B) ◦ (Qj)(67)= µ B Q ◦ (Qu B ) ◦ ( Qε D) Qis a mod= Qε D .χ ◦ (δ C Q) =µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (QqQ) ◦ (δ C Q)(147)= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (QP iQ) ◦ (iCQ) ◦ ( ∆ C Q )= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (iiQ) ◦ ( ∆ C Q )(63)= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ (τP Q) ◦ (iQ)(69)= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ (u A QP Q) ◦ (iQ)u A= µ B Q ◦ (A µ Q B ) ◦ (u A QB) ◦ ( Qσ B) ◦ (iQ)Qis a bim= A µ Q ◦ ( Aµ B Q)◦ (uA QB) ◦ ( Qσ B) ◦ (iQ)u A= A µ Q ◦ (u A Q) ◦ µ B Q ◦ ( Qσ B) ◦ (iQ)Qis a mod= µ B Q ◦ ( Qσ B) ◦ (iQ) (82)= A µ Q ◦ ( σ A Q ) ◦ (iQ)(63)= A µ Q ◦ (u A Q) ◦ ( ε C Q ) Qis a mod= ε C Q.□7.3. C<strong>on</strong>structing the functor ̂Q. Our next task is to c<strong>on</strong>struct a B-A-bimodulefunctor ̂Q.Propositi<strong>on</strong> 7.6. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, definea functor ̂Q via the coequalizer DP QP (P x)◦(zl P )P A l ˆQ(P x)◦(z r P )Then there exists a unique functorial morphism ν ′ 0 : BP → ̂Q such that(149) ν ′ 0 ◦ (yP ) = l ◦ (P x) .


133Moreover ( )( ( ̂Q, ν′0 = Coequ ) Fun (yP ) ◦ P wl, (yP ) ◦ (P w r ) )The functor ̂Q can be equipped with the structure of a B-A-bimodule functor(̂Q, µ A b Q, B µb Q)where µ A b Qand B µb Qare uniquely defined by(150) µ A b Q◦ (lA) = l ◦ (P m A )and(151)Proof. By c<strong>on</strong>structi<strong>on</strong> we haveBy Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>9, we haveB µb Q◦ (Bν ′ 0) = ν ′ 0 ◦ (m B P ) .l ◦ (P x) ◦ ( z l P ) = l ◦ (P x) ◦ (z r P ) .(BP, yP ) = Coequ Fun(z l P, z r P ) .By the universality of coequalizers, there exists a unique functorial morphism ν ′ 0 :BP → ̂Q which fulfils (149). Let us prove that(̂Q, ν′0)= Coequ Fun((yP ) ◦(P wl ) , (yP ) ◦ (P w r ) ) . We haveν ′ 0 ◦ (yP ) ◦ ( P w l) (149)= l ◦ (P x) ◦ ( P w l) defx= l ◦ (P x) ◦ (P w r )(149)= ν ′ 0 ◦ (yP ) ◦ (P w r ) .Let now ξ : BP → X be a morphism such that ξ ◦ (yP ) ◦ ( P w l) = ξ ◦ (yP ) ◦ (P w r ).Since P preserves coequalizers, we have(P A, P x) = Coequ Fun(P w l , P w r) .By universality of coequalizers there exists a unique functorial morphism ν 0 : P A →X such that(152) ν 0 ◦ (P x) = ξ ◦ (yP ) .We computeν 0 ◦ (P x) ◦ ( z l P ) (152)= ξ ◦ (yP ) ◦ ( z l P )= ξ ◦ (yP ) ◦ (z r P ) (152)= ν 0 ◦ (P x) ◦ (z r P ) .( )By the universality of the coequalizer ̂Q, l , there exists a unique functorial morphismν : ̂Q → X such thatWe computeSince yP is epi, we getν ◦ l = ν 0 .ν ◦ ν ′ 0 ◦ (yP ) (149)= ν ◦ l ◦ (P x) = ν 0 ◦ (P x) (152)= ξ ◦ (yP ) .ξ = ν ◦ ν ′ 0.


134Assume now that there is another morphism t : ̂Q → X such that ξ = t ◦ ν ′ 0. Thenwe havet ◦ l ◦ (P x) (149)= t ◦ ν ′ 0 ◦ (yP ) = ξ ◦ (yP ) = ν ◦ ν ′ 0 ◦ (yP ) (149)= ν ◦ l ◦ (P x) .Since l ◦ (P x) is an epimorphism, we deduce that t = ν.(2) We want to equip ̂Q with the structure of a B-A-bimodule functor. To beginwith, let us prove a number of equalities. Let us calculateso thatχ ◦ ( Qz l) = χ ◦ (QP χ) ◦ (Qδ D P Q) (98)= χ ◦ (χP Q) ◦ (Qδ D P Q)(105)= χ ◦ ( Qε D P Q ) = χ ◦ (Qz r )(153) χ ◦ ( Qz l) = χ ◦ (Qz r ) .Let(154) b = m A ◦ (xA) .Thenso thatx ◦ (χP ) (102)= m A ◦ (xx) = m A ◦ (xA) ◦ (QP x)(155) x ◦ (χP ) = b ◦ (QP x) .We haveand hence(P χ) ◦ ( z l P Q ) = (P χ) ◦ (P χP Q) ◦ (δ D P QP Q)(98)= (P χ) ◦ (P QP χ) ◦ (δ D P QP Q)δ D= (P χ) ◦ (δ D P Q) ◦ (DP χ) = z l ◦ (DP χ)y ◦ (P χ) ◦ ( z l P Q ) = y ◦ z l ◦ (DP χ) ycoequ= y ◦ z r ◦ (DP χ) = y ◦ ( ε D P Q ) ◦ (DP χ)so that we getε D = y ◦ (P χ) ◦ ( ε D P QP Q ) = y ◦ (P χ) ◦ (z r P Q)(156) y ◦ (P χ) ◦ ( z l P Q ) = y ◦ (P χ) ◦ (z r P Q) .From previous equalities, it follows thatl ◦ (P b) ◦ ( z l P A ) ◦ (DP QP x) = zll ◦ (P b) ◦ (P QP x) ◦ ( z l P QP )(155)= l ◦ (P x) ◦ (P χP ) ◦ ( z l P QP ) (149)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ ( z l P QP )(156)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (z r P QP ) (149)= l ◦ (P x) ◦ (P χP ) ◦ (z r P QP )(155)= l ◦ (P b) ◦ (P QP x) ◦ (z r P QP ) zr= l ◦ (P b) ◦ (z r P A) ◦ (DP QP x) .Since DP QP x is an epimorphism, we obtain(157) l ◦ (P b) ◦ ( z l P A ) = l ◦ (P b) ◦ (z r P A)


135that isl ◦ (P m A ) ◦ (P xA) ◦ ( z l P A ) = l ◦ (P m A ) ◦ (P xA) ◦ (z r P A) .From <str<strong>on</strong>g>2.</str<strong>on</strong>g>9 we have that(̂QA, lA)= Coequ Fun((P xA) ◦(z l P A ) , (P xA) ◦ (z r P A) ) .Hence there exists a unique functorial morphism µ A Q b : ̂QA → ̂Q which satisfies (150).( )Now we want to prove that ̂Q, µ A Q b is a right A-module functor. First let us provethat µ A b Qis associative that isµ A b Q◦( ) ( )µ A Q bA= µ A Q b ◦ ̂QmA .We computeµ A b Q◦( )µ A Q bA◦ (lAA) (150)= µ A Q b ◦ (lA) ◦ (P m A A)(150)= l ◦ (P m A ) ◦ (P m A A) m Aass= l ◦ (P m A ) ◦ (P Am A )(150)= µ A b Q◦ (lA) ◦ (P Am A ) l = µ A b Q◦( )̂QmA ◦ (lAA) .Since lAA is an epimorphism, we get that µ A b Qis associative. Let us prove that µ A b Qis unital that isin fact( )µ A Q b ◦ ̂QuA( )µ A Q b ◦ ̂QuA = ̂Q◦ l l = µ A b Q◦ (lA) ◦ (P Au A ) (150)= l ◦ (P m A ) ◦ (P Au A ) Am<strong>on</strong>ad= land since l is an epimorphism we c<strong>on</strong>clude. We want to prove a series of equalities.First of all, let us prove that(158)(159)In fact, we haveand(χP ) ◦ ( QP w l) = w l ◦ (χP C)(χP ) ◦ (QP w r ) = w r ◦ (χP C)(χP ) ◦ ( QP w l) = (χP ) ◦ (QP χP ) ◦ (QP QP δ C )(98)= (χP ) ◦ (χP QP ) ◦ (QP QP δ C )χ= (χP ) ◦ (QP δ C ) ◦ (χP C) = w l ◦ (χP C)(χP ) ◦ (QP w r ) = (χP ) ◦ ( QP QP ε C) χ=(QP εC ) ◦ (χP ) = w r ◦ (χP C) .From (158) we deduce thatx ◦ (χP ) ◦ ( QP w l) (158)= x ◦ w l ◦ (χP C)xcoequ= x ◦ w r ◦ (χP C) (159)= x ◦ (χP ) ◦ (QP w r )


136and hence we get(160) x ◦ (χP ) ◦ ( QP w l) = x ◦ (χP ) ◦ (QP w r ) .We observe thatν ′ 0 ◦ (m B P ) ◦ (ByP ) ◦ ( BP w l) ◦ (yP QP C)= ν ′ 0 ◦ (m B P ) ◦ (ByP ) ◦ (yP QP ) ◦ ( P QP w l)= ν ′ 0 ◦ (m B P ) ◦ (yyP ) ◦ ( P QP w l)(109)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ ( P QP w l)(149)= l ◦ (P x) ◦ (P χP ) ◦ ( P QP w l)(160)= l ◦ (P x) ◦ (P χP ) ◦ (P QP w r )(149)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (P QP w r )(109)= ν ′ 0 ◦ (m B P ) ◦ (yyP ) ◦ (P QP w r )= ν ′ 0 ◦ (m B P ) ◦ (ByP ) ◦ (yP QP ) ◦ (P QP w r )= ν ′ 0 ◦ (m B P ) ◦ (ByP ) ◦ (BP w r ) ◦ (yP QP C)since yP QP C is an epimorphism, we obtain thatν 0 ′ ◦ (m B P ) ◦ (ByP ) ◦ ( BP w l) = ν 0 ′ ◦ (m B P ) ◦ (ByP ) ◦ (BP w r ) .(Since B preserves coequalizers, we have that B ̂Q,)Bν 0′ = Coequ Fun ((ByP ) ◦( ) BP wl, (ByP ) ◦ (BP w r )) so that there exists a unique functorial morphism B µb Q:( )̂Q, B µb QB ̂Q → ̂Q which satisfies (151).Now we want to show thatB-module functor. First let us prove that B µb Qis associative that is) ( )(B B µb Qm B ̂Q .B µb Q◦= B µb Q◦is a leftWe have)B µb Q◦(B B µb Q◦ (BBν ′ 0) (151)= B µb Q◦ (Bν ′ 0) ◦ (Bm B P )(151)= ν ′ 0 ◦ (m B P ) ◦ (Bm B P ) m Bass(151)= B µb Q◦ (Bν ′ 0) ◦ (m B BP ) m B= B µb Q◦= ν 0 ′ ◦ (m B P ) ◦ (m B BP )( )m B ̂Q ◦ (BBν 0) ′ .Since BBν 0 ′ is an epimorphism, we get that B µb Qis associative. Let us prove thatB µb Qis unital that is( )B µb Q◦ u B ̂Q = ̂Q.We calculate( )B µb Q◦ u B ̂Q◦ ν ′ 0 = B µb Q◦ (Bν ′ 0) ◦ (u B BP ) (151)= ν ′ 0 ◦ (m B P ) ◦ (u B BP ) = ν ′ 0.


Since ν 0 ′ is an epimorphism, we get that B µb Qis unital. Finally we have to prove thecompatibility c<strong>on</strong>diti<strong>on</strong>) ( )(Bµ A Q b = µ A Q b ◦B µb QA .B µb Q◦137We haveB µb Q◦) (Bµ A Q b ◦ (BlA) ◦ (BP xx) ◦ (yP QP QP )(150)= B µb Q◦ (Bl) ◦ (BP m A ) ◦ (BP xx) ◦ (yP QP QP )(102)= B µb Q◦ (Bl) ◦ (BP x) ◦ (BP χP ) ◦ (yP QP QP )(149)= B µb Q◦ (Bν ′ 0) ◦ (ByP ) ◦ (BP χP ) ◦ (yP QP QP )y= B µb Q◦ (Bν ′ 0) ◦ (ByP ) ◦ (yP QP ) ◦ (P QP χP )= B µb Q◦ (Bν ′ 0) ◦ (yyP ) ◦ (P QP χP )(151)= ν ′ 0 ◦ (m B P ) ◦ (yyP ) ◦ (P QP χP )(109)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (P QP χP )(98)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (P χP QP )(149)= l ◦ (P x) ◦ (P χP ) ◦ (P χP QP )(102)= l ◦ (P m A ) ◦ (P xx) ◦ (P χP QP )= l ◦ (P m A ) ◦ (P xA) ◦ (P QP x) ◦ (P χP QP )χ= l ◦ (P m A ) ◦ (P xA) ◦ (P χP A) ◦ (P QP QP x)(150)= µ A b Q◦ (lA) ◦ (P xA) ◦ (P χP A) ◦ (P QP QP x)(149)= µ A b Q◦ (ν ′ 0A) ◦ (yP A) ◦ (P χP A) ◦ (P QP QP x)(109)= µ A b Q◦ (ν ′ 0A) ◦ (m B P A) ◦ (yyP A) ◦ (P QP QP x)= µ A b Q◦ (ν ′ 0A) ◦ (m B P A) ◦ (ByP A) ◦ (yP QP A) ◦ (P QP QP x)y= µ A Q b ◦ (ν 0A) ′ ◦ (m B P A) ◦ (ByP A) ◦ (BP QP x) ◦ (yP QP QP )( )(151)= µ A Q b ◦B µb QA ◦ (Bν 0A) ′ ◦ (ByP A) ◦ (BP QP x) ◦ (yP QP QP )( )(149)= µ A Q b ◦B µb QA ◦ (BlA) ◦ (BP xA) ◦ (BP QP x) ◦ (yP QP QP )( )= µ A Q b ◦B µb QA ◦ (BlA) ◦ (BP xx) ◦ (yP QP QP )Since (BlA) ◦ (BP xx) ◦ (yP QP QP ) is an epimorphism, we c<strong>on</strong>clude. Then(̂Q, B µb Q, µ A b Q)is a B-A-bimodule functor.□


138Propositi<strong>on</strong> 7.7. In the setting of Theorem 6.29 and Propositi<strong>on</strong> 7.6, there existtwo functorial morphisms σ A : Q ̂Q → A and σ B : ̂QQ → B where σ A is A-bilinearand σ B is B-bilinear and they fulfill(161) σ A ◦ (Ql) = m A ◦ (xA)and(162) σ B ◦ (ν ′ 0Q) = m B ◦ (By) .Moreover the associative c<strong>on</strong>diti<strong>on</strong>s hold, that isA µ Q ◦ ( σ A Q ) = µ B Q ◦ ( Qσ B) and B µb Q◦Proof. First we want to prove thatIn fact we have( ) (σ B ̂Q = µ A Q b ◦ ̂QσA).m A ◦ (xA) ◦ (QP x) ◦ ( Qz l P ) = m A ◦ (xA) ◦ (QP x) ◦ (Qz r P ) .m A ◦ (xA) ◦ (QP x) ◦ ( Qz l P ) (102)= x ◦ (χP ) ◦ ( Qz l P )= x ◦ (χP ) ◦ (QP χP ) ◦ (Qδ D P QP ) (128)= x ◦ (χP ) ◦ (χP QP ) ◦ (Qδ D P QP )(130)= x ◦ (χP ) ◦ ( Qε D P QP ) = x ◦ (χP ) ◦ (Qz r P )(102)= m A ◦ (xx) ◦ (Qz r P ) = m A ◦ (xA) ◦ (QP x) ◦ (Qz r P ) .Since Q preserves coequalizers we have(Q ̂Q, Ql) = Coequ Fun((QP x) ◦(Qz l P ) , (QP x) ◦ (Qz r P ) )so that there exists a functorial morphism σ A : Q ̂Q → A which satisfies (161). Nowwe want to show that σ A is A-bilinear that is the following equalities hold( )σ A ◦A µ Q ̂Q = m A ◦ ( Aσ A))σ A ◦(Qµ A Q b = m A ◦ ( σ A A ) .We computem A ◦ ( Aσ A) ◦ (AQl) (161)= m A ◦ (Am A ) ◦ (AxA)m A ass= m A ◦ (m A A) ◦ (AxA) (104)= m A ◦ (xA) ◦ (A µ Q P A )(161)= σ A ◦ (Ql) ◦ (A µ Q P A ) A µ Q= σ A ◦Since AQl is an epimorphism, we get that σ A ◦(A µ Q ̂Q( )A µ Q ̂Q)◦ (AQl) .m A ◦ ( σ A A ) ◦ (QlA) (161)= m A ◦ (m A A) ◦ (xAA)= m A ◦ (Am A ) ◦ (xAA) = x m A ◦ (xA) ◦ (QP m A ))(161)= σ A ◦ (Ql) ◦ (QP m A ) (150)= σ A ◦(Qµ A Q b ◦ (QlA)= m A ◦ ( Aσ A) . We compute


)Since QlA is an epimorphism, we obtain that σ A ◦(Qµ A Q b = m A ◦ ( σ A A ) . Symmetrically,wewant to define σ B . We prove thatIn fact, we havem B ◦ (By) ◦ (yP Q) ◦ ( P w l Q ) = m B ◦ (By) ◦ (yP Q) ◦ (P w r Q) .m B ◦ (By) ◦ (yP Q) ◦ ( P w l Q ) = m B ◦ (yy) ◦ ( P w l Q )(109)= y ◦ (P χ) ◦ ( P w l Q ) = y ◦ (P χ) ◦ (P χP Q) ◦ (P QP δ C Q)(128)= y ◦ (P χ) ◦ (P QP χ) ◦ (P QP δ C Q)(129)= y ◦ (P χ) ◦ ( P QP ε C Q ) = y ◦ (P χ) ◦ (P w r Q)(109)= m B ◦ (yy) ◦ (P w r Q) = m B ◦ (By) ◦ (yP Q) ◦ (P w r Q) .By Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>9, we have(̂QQ, ν′0 Q)= Coequ Fun((yP Q) ◦(P w l Q ) , (yP Q) ◦ (P w r Q) )139so that there exists a functorial morphism σ B : ̂QQ → B which satisfies (162). Nowwe want to show that σ B is B-bicolinear that is the following equalities hold( )σ B ◦B µb QQ = m B ◦ ( Bσ B)m B ◦ ( σ B B ) ( )= σ B ◦ ̂QµBQWe calculatem B ◦ ( Bσ B) ◦ (Bν ′ 0Q) (162)= m B ◦ (Bm B ) ◦ (BBy)m B ass= m B ◦ (m B B) ◦ (BBy) m =Bm B ◦ (By) ◦ (m B P Q)( )(162)= σ B ◦ (ν 0Q) ′ ◦ (m B P Q) (151)= σ B ◦B µb QQ ◦ (Bν 0Q) ′ .( )Since Bν 0Q ′ is an epimorphism, we deduce that σ B ◦B µb QQ = m B ◦ ( Bσ B) . Wecomputem B ◦ ( σ B B ) ◦ (ν ′ 0QB) (162)= m B ◦ (m B B) ◦ (ByB)m B ass= m B ◦ (Bm B ) ◦ (ByB) (108)(162)= σ B ◦ (ν ′ 0Q) ◦ ( BP µ B Q= m B ◦ (By) ◦ ( )BP µ B Q( )̂QµBQ ◦ (ν 0QB) ′ .) ν ′0= σ B ◦Since ν 0QB ′ is an epimorphism, we get that m B ◦ ( σ B B ) = σ B ◦have to prove the associative c<strong>on</strong>diti<strong>on</strong>sA µ Q ◦ ( σ A Q ) = µ B Q ◦ ( Qσ B)( ) (σ B ̂Q = µ A Q b ◦ ̂QσA).B µb Q◦(̂QµBQ). Finally we


140We calculateA µ Q ◦ ( σ A Q ) ◦ (QlQ) ◦ (QP xQ) (161)= A µ Q ◦ (m A Q) ◦ (xAQ) ◦ (QP xQ)= A µ Q ◦ (m A Q) ◦ (xxQ) (102)= A µ Q ◦ (xQ) ◦ (χP Q)(101)= χ ◦ (χP Q) (128)= χ ◦ (QP χ) (107)= µ B Q ◦ (Qy) ◦ (QP χ)(109)= µ B Q ◦ (Qm B ) ◦ (Qyy) = µ B Q ◦ (Qm B ) ◦ (QBy) ◦ (QyP Q)(162)= µ B Q ◦ ( Qσ B) ◦ (Qν ′ 0Q) ◦ (QyP Q)(149)= µ B Q ◦ ( Qσ B) ◦ (QlQ) ◦ (QP xQ) .Since (QlQ)◦(QP xQ) is an epimorphism, we deduce that A µ Q ◦ ( σ A Q ) = µ B Q ◦( Qσ B) .We compute( (µ A Q b ◦ ̂QσA)◦ ν 0Q ′ ̂Q) (◦ yP Q ̂Q)◦ (P QP Ql) ◦ (P QP QP x)( ((149)= µ A Q b ◦ ̂QσA)◦ lQ ̂Q) (◦ P xQ ̂Q)◦ (P QP Ql) ◦ (P QP QP x)l= µ A Q b ◦ (lA) ◦ ( P Aσ A) (◦ P xQ ̂Q)◦ (P QP Ql) ◦ (P QP QP x)(150)= l ◦ (P m A ) ◦ ( P Aσ A) (◦ P xQ ̂Q)◦ (P QP Ql) ◦ (P QP QP x)x= l ◦ (P m A ) ◦ (P xA) ◦ ( P QP σ A) ◦ (P QP Ql) ◦ (P QP QP x)(161)= l ◦ (P m A ) ◦ (P xA) ◦ (P QP m A ) ◦ (P QP xA) ◦ (P QP QP x)= l ◦ (P m A ) ◦ (P xA) ◦ (P QP m A ) ◦ (P QP xx)(102)= l ◦ (P m A ) ◦ (P xA) ◦ (P QP x) ◦ (P QP χP )(151)= l ◦ (P m A ) ◦ (P xx) ◦ (P QP χP )(102)= l ◦ (P x) ◦ (P χP ) ◦ (P QP χP )(128)= l ◦ (P x) ◦ (P χP ) ◦ (P χP QP )(149)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (P χP QP )(109)= ν ′ 0 ◦ (m B P ) ◦ (yyP ) ◦ (P χP QP )= B µb Q◦ (Bν ′ 0) ◦ (yBP ) ◦ (P QyP ) ◦ (P χP QP )y= B µb Q◦(149)= B µb Q◦χ= B µb Q◦(109)= B µb Q◦( )y ̂Q ◦ (P Qν 0) ′ ◦ (P QyP ) ◦ (P χP QP )( )y ̂Q ◦ (P Ql) ◦ (P QP x) ◦ (P χP QP )( ) ( )y ̂Q ◦ P χ ̂Q ◦ (P QP Ql) ◦ (P QP QP x)( ) (m B ̂Q ◦ yy ̂Q)◦ (P QP Ql) ◦ (P QP QP x)


( ) (= B µb Q◦ m B ̂Q ◦ By ̂Q) (◦ yP Q ̂Q)◦ (P QP Ql) ◦ (P QP QP x)( ) ((162)= B µb Q◦ σ B ̂Q ◦ ν 0Q ′ ̂Q) (◦ yP Q ̂Q)◦ (P QP Ql) ◦ (P QP QP x)(Since ν 0Q ′ ̂Q) (◦ yP Q ̂Q)◦ (P QP Ql) ◦ (P QP QP x) is an epimorphism, we get that( ) ( )B µb Q◦ σ B ̂Q = µ A Q b ◦ ̂QσA. □7.4. From coherds to herds.7.8. Given a coherd χ : QP Q → Q in a formal codual structureX = (C, D, P, Q, δ C , δ D ), our purpose is to build the formal dual structure M =(A, B, ̂Q, Q, σ A , σ B ) and then an herd τ : Q → Q ̂QQ in M.Theorem 7.9. Let A and B be categories with coequalizers and let P : A → B,Q : B → A, C : A → A and D : B → B be functors. Assume that all thefunctors P, Q, C and D preserve coequalizers. Let ε C : C → A and ε D : D → Bbe functorial epimorphisms and assume that ( A, ε C) (= Coequ Fun Cε C , ε C C ) ( ) (andB, εD= Coequ Fun Dε D , ε D D ) . Let χ : QP Q → Q be a functorial morphism suchthatχ ◦ (QP χ) = χ ◦ (χP Q) .Let δ C : C → QP be a functorial morphism such thatχ ◦ (δ C Q) = (ε C Q)and let δ D : D → P Q be a functorial morphism such thatχ ◦ (Qδ D ) = (Qε D ).Then there is a formal dual structure M = (A, B, ̂Q, Q, σ A , σ B ).Proof. In view of Theorem 6.29 and Propositi<strong>on</strong>s 7.6, 7.7 a formal dual structureM = (A, B, ̂Q, Q, σ A , σ B ) has been c<strong>on</strong>structed.□Theorem 7.10. Let A and B be categories with coequalizers and letX = (C, D, P, Q, δ C , δ D ) be a regular formal codual structure where P : A → B,Q : B → A, C : A → A and D : B → B are functors that preserve coequalizers.Let χ : QP Q → Q be a copretorsor. Then there is a formal dual structure M =(A, B, ̂Q, Q, σ A , σ B ). Define τ : Q → Q ̂QQ by settingτ := (QlQ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q.Then τ is an herd in M.Proof. By Theorem 7.9, M = (A, B, ̂Q, Q, σ A , σ B ) is a formal dual structure. To showthat τ is an herd in M, we have to prove ( that it satisfies the following c<strong>on</strong>diti<strong>on</strong>s.1) Associativity, in the sense that Q ̂Qτ) (◦ τ = τ ̂QQ)◦ τ. We have(Q ̂Qτ)◦ τ(= Q ̂Qτ)◦ (QlQ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q141


142x=and=δ C=(l= QlQ ̂QQ)◦ (QP Aτ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(QlQ ̂QQ) (◦ QP xQ ̂QQ)◦ (QP QP τ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(δ=CQlQ ̂QQ) (◦ QP xQ ̂QQ) (◦ δ C QP Q ̂QQ)◦ (CQP τ) ◦ (CQδ D )δ C=(125)=◦ (C ρ Q D ) ◦ ρ D QC ρ Q=(QlQ ̂QQ) (◦ QP xQ ̂QQ) (◦ δ C QP Q ̂QQ) (◦C ρ Q P Q ̂QQ)◦ (QP τ)(127)=(QlQ ̂QQ) (◦ QP xQ ̂QQ(QlQ ̂QQ) (◦ QP xQ ̂QQ)◦(C ρ Q P Q ̂QQ)◦ (Qδ D ) ◦ ρ D Q)◦(δ C QP Q ̂QQ)◦◦ (δ C Q) ◦ C ρ Q(δ C QP Q ̂QQ)◦◦ (Cτ) ◦ C ρ Q(δ C Q ̂QQ)◦ (Cτ) ◦ C ρ Q(C ρ Q P Q ̂QQ)◦ (QP τ)(C ρ Q P Q ̂QQ) (◦ δ C Q ̂QQ)◦(C ρ Q P Q ̂QQ) (◦ δ C Q ̂QQ)◦ (CQlQ) ◦ (CQP xQ) ◦ (Cδ C QP Q) ◦ (CCQδ D )◦ ( C C ρ Q D ) ◦ ( CρQ) D ◦ C ρ Q(C ρ Q P Q ̂QQ) (◦ δ C Q ̂QQ)◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D ) ◦ (Cδ C QD)◦ ( C C ρ Q D ) ◦ ( CρQ) D ◦ C ρ Q(Cδ C Q ̂QQ) (◦ ∆ C Q ̂QQ)◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D ) ◦ (Cδ C QD)Since◦ ( C C ρ Q D ) ◦ ( Cρ D Q)◦ C ρ Q(C C ρ Q D ) ◦ ( )Cρ D Q ◦ C ρ QQis a bicom=( ) ( )CCρDQ ◦ C C ρ Q ◦ C Qis a comρ Q = ( (CCρQ) D ◦ ∆ C Q ) ◦ C ρ Q)◦ C Qis a bicom (ρ Q = ∆ C QD ) ◦ (C ρ Q D ) ◦ ρ D Q∆ C= ( ∆ C QD ) ◦ ( Cρ D QQis a com= ( C C ρ Q D ) ◦ (C ρ Q D ) ◦ ρ D Qwe obtain(Cδ C Q ̂QQ) (◦ ∆ C Q ̂QQ)◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D ) ◦ (Cδ C QD)◦ ( C C ρ Q D ) ◦ ( CρQ) D ◦ C ρ Q(= Cδ C Q ̂QQ) (◦ ∆ C Q ̂QQ)◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D ) ◦ (Cδ C QD)◦ ( C C ρ Q D ) ◦ (C ρ Q D ) ◦ ρ D Q


(127)=(Cδ C Q ̂QQ) (◦ ∆ C Q ̂QQ)◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D )143∆ C=Qis a com=Qis a bicom=◦ (CQδ D D) ◦ ( Cρ D QD ) ◦ (C ρ Q D ) ◦ ρ D Q(Cδ C Q ̂QQ)◦ (CCQlQ) ◦ (CCQP xQ) ◦ (CCQP Qδ D ) ◦ (CCQδ D D)◦ ( CCρ D QD ) ◦ ( ∆ C QD ) ◦ (C ρ Q D ) ◦ ρ D Q(Cδ C Q ̂QQ)◦ (CCQlQ) ◦ (CCQP xQ) ◦ (CCQP Qδ D ) ◦ (CCQδ D D)◦ ( CCρ D QD ) ◦ ( C C ρ Q D ) ◦ (C ρ Q D ) ◦ ρ D Q(Cδ C Q ̂QQ)◦ (CCQlQ) ◦ (CCQP xQ) ◦ (CCQP Qδ D ) ◦ (CCQδ D D)◦ ( C C ρ Q DD ) ◦ ( Cρ D QD ) ◦ (C ρ Q D ) ◦ ρ D QC ρ Q=(Cδ C Q ̂QQ))◦(C C ρ Q ̂QQ ◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D ) ◦ (CQδ D D)Qis a bicom=◦ ( Cρ D QD ) ◦ (C ρ Q D ) ◦ ρ D Q(Cδ C Q ̂QQ))◦(C C ρ Q ̂QQ ◦ (CQlQ) ◦ (CQP xQ) ◦ (CQP Qδ D )◦ (CQδ D D) ◦ (C ρ Q DD ) ◦ ( ρ D QD ) ◦ ρ D QC ρ Q=(Cδ C Q ̂QQ))◦(C C ρ Q ̂QQ (C )◦ ρ Q ̂QQ ◦ (QlQ) ◦ (QP xQ) ◦ (QP Qδ D )(127)=(127)=Qis a bicom=δ C=◦ (Qδ D D) ◦ ( ρ D QD ) ◦ ρ D Q) ((CQδ D ̂QQ ◦ Cρ D ̂QQ) (C )Q ◦ ρ Q ̂QQ ◦ (QlQ) ◦ (QP xQ) ◦ (QP Qδ D )◦ (Qδ D D) ◦ ( ρ D QD ) ◦ ρ D Q) ((CQδ D ̂QQ ◦ Cρ D ̂QQ) (C )Q ◦ ρ Q ̂QQ ◦ (QlQ) ◦ (QP xQ) ◦ (QP Qδ D )◦ (δ C QD) ◦ (C ρ Q D ) ◦ ρ D Q) ((CQδ D ̂QQ ◦C ρ Q D ̂QQ) (◦ ρ D ̂QQ)Q ◦ (QlQ) ◦ (QP xQ) ◦ (QP Qδ D )◦ (δ C QD) ◦ (C ρ Q D ) ◦ ρ D Q) ((CQδ D ̂QQ ◦C ρ Q D ̂QQ) (◦ ρ D ̂QQ)Q ◦ (QlQ) ◦ (QP xQ) ◦ (δ C QP Q)Hence we obtain◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(Q ̂Qτ)◦ τ(= QlQ ̂QQ) (◦ QP xQ ̂QQ) (◦ δ C QP Q ̂QQ) (◦C ρ Q P Q ̂QQ) (◦ δ C Q ̂QQ)=(QlQ ̂QQ) (◦ QP xQ ̂QQ)◦◦ (Cτ) ◦ C ρ Q(δ C QP Q ̂QQ))◦(CQδ D ̂QQ ◦(C ρ Q D ̂QQ)


144(◦ ρ D ̂QQ)Q◦ (QlQ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(= τ ̂QQ)◦ τ.2) Counitality, in the sense that ( Qσ B) ◦ τ = Qu B and ( σ A Q ) ◦ τ = u A Q. Let usprove that (QσB ) ◦ τ = Qu B .In fact, we have(QσB ) ◦ τ= ( Qσ B) ◦ (QlQ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(149)= ( Qσ B) ◦ (Qν ′ 0Q) ◦ (QyP Q) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(162)= (Qm B ) ◦ (QBy) ◦ (QyP Q) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D QLet us prove that= (Qm B ) ◦ (Qyy) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(109)= (Qy) ◦ (QP χ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Qδ C= (Qy) ◦ (QP χ) ◦ (QP Qδ D ) ◦ (δ C QD) ◦ (C ρ Q D ) ◦ ρ D Q(130)= (Qy) ◦ ( QP Qε D) ◦ (δ C QD) ◦ (C ρ Q D ) ◦ ρ D Qδ C= (Qy) ◦ (δ C Q) ◦ ( CQε D) ◦ (C ρ Q D ) ◦ ρ D QQis a bicom= (Qy) ◦ (δ C Q) ◦ ( CQε D) ◦ (Cρ D Q) ◦ C ρ QQis a com= (Qy) ◦ (δ C Q) ◦ C ρ Q(127)= (Qy) ◦ (Qδ D ) ◦ ρ D Q(110)= (Qu B ) ◦ ( Qε D) ◦ ρ D Qis a comQ = Qu B .(σ A Q ) ◦ τ = (u A Q).We calculate(σ A Q ) ◦ τ= ( σ A Q ) ◦ (QlQ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(161)= (m A Q) ◦ (xAQ) ◦ (QP xQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q= (m A Q) ◦ (xxQ) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(102)= (xQ) ◦ (χP Q) ◦ (δ C QP Q) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Q(129)= (xQ) ◦ ( ε C QP Q ) ◦ (CQδ D ) ◦ (C ρ Q D ) ◦ ρ D Qε C = (xQ) ◦ (Qδ D ) ◦ ( ε C QD ) ◦ (C ρ Q D ) ◦ ρ D QQis a com= (xQ) ◦ (Qδ D ) ◦ ρ D (127)Q = (xQ) ◦ (δ C Q) ◦ C ρ Q(103)= (u A Q) ◦ ( ε C Q ) ◦ C ρ QQis a com= u A Q.


7.5. Herd - Coherd - Herd.7.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let τ : Q → QP Q be a herd for a regular formal dual structure M =(A, B, P, Q, σ A , σ B , ) where P : A → B, Q : B → A, A : A → A and B : B → Bare functors that preserve equalizers. Then, by Propositi<strong>on</strong>s 6.1 and 6.2, we canc<strong>on</strong>struct com<strong>on</strong>ads C = ( C, ∆ C , ε C) and D = ( D, ∆ D , ε D) and functorial morphismsC ρ Q : Q → CQ and ρ D Q : Q → QD such that (Q, C ρ Q , ρ D Q ) is a C-Dbicomodule) functor (see Theorem 6.5). Let Q as defined in Propositi<strong>on</strong> 7.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Then(Q, D ρ Q , ρ C is a D-C-bicomodule functor. By Theorem 7.5, we c<strong>on</strong>struct a coherdQX = ( C, D, Q, Q, δ C , δ D , χ ) where χ := µ B Q ◦(A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦(QP iQ)◦(QqQ). Then we can c<strong>on</strong>struct m<strong>on</strong>ads A ′ = (A ′ , m A ′, u A ′) and B ′ = (B ′ , m B ′, u B ′)following respectively Propositi<strong>on</strong> 6.25 and Propositi<strong>on</strong> 6.26 as the coequalizers QQC (χQ)◦(QQδC )QQ x′ A ′QQε C DQQ (Qχ)◦(δD QQ)SQ y′ B ′ε D QQThis means that the following holdm A ′ ◦ (x ′ x ′ ) = x ′ ◦ ( χQ ) and u A ′ ◦ ε C = x ′ ◦ δ C(163) m B ′ ◦ (y ′ y ′ ) = y ′ ◦ ( Qχ ) and u B ′ ◦ ε D = y ′ ◦ δ D .Notati<strong>on</strong> 7.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> With notati<strong>on</strong>s of Theorem 6.5 and Propositi<strong>on</strong> 7.1, let h : Q → Pbe defined by settingh = B µ P ◦ ( σ B P ) ◦ (P i) ◦ q.The following theorem reformulates Theorem 3.5 in [BV] in our categorical setting.Theorem 7.13. Let M = (A, B, P, Q, σ A , σ B ) be a tame Morita c<strong>on</strong>text and letτ : Q → QP Q be a herd for M such that A and B reflect equalizers and coequalizers.We denote by A ′ and B ′ the m<strong>on</strong>ads c<strong>on</strong>structed in Claim 7.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Then1) There are functorial morphisms ν A : A ′ → A and ν B : B ′ → B such that ν Aand ν B are morphisms of m<strong>on</strong>ads.2) If the functorial morphism hQ : QQ → P Q, where h = B µ P ◦ ( σ B P ) ◦(P i)◦q,is an isomorphism, then ν A and ν B are isomorphisms.3) If P C = Q ≃ Q ′ = DP then hQ is an isomorphism and hence ν A and ν Bare isomorphisms of m<strong>on</strong>ads.Proof. Note that, since A and B reflect equalizers, by Lemma 6.10, we have aregular herd, i.e. the assumpti<strong>on</strong>s (A, u A ) = Equ Fun (u A A, Au A ) and (B, u B ) =Equ Fun (u B B, Bu B ) are fulfilled. We will prove <strong>on</strong>ly the statement for the m<strong>on</strong>adB ′ , for A ′ the proof is similar.1) C<strong>on</strong>sider the functorial morphismσ B : QQ → B145□


146given byWe computeσ B = m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ)(144)= m B ◦ ( σ B σ B) ◦ (jP Q) ◦ (κ ′ 0Q) .(σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ ) ◦ ( δ D QQ )q= ( σ B P Q ) ◦ (P iQ) ◦ (P Cχ) ◦ ( qQQQ ) ◦ ( δ D QQ )i= ( σ B P Q ) ◦ (P QP χ) ◦ ( P iQQQ ) ◦ ( qQQQ ) ◦ ( δ D QQ )(144)= ( σ B P Q ) ◦ (P QP χ) ◦ ( jP QQQ ) ◦ ( κ ′ 0QQQ ) ◦ ( δ D QQ )(148)= ( σ B P Q ) ◦ (P QP χ) ◦ ( jP QQQ ) ◦ ( DjQQ ) ◦ ( ∆ D QQ )(67)= ( σ B P Q ) ◦ (P QP χ) ◦ ( P τQQ ) ◦ ( jQQ )= ( σ B P Q ) ◦ ( ) (P QP µ B Q ◦ P QP A µ Q B ) ◦ ( P QP AQσ B) ◦ ( P QP σ A QP Q )◦ (P QP QP iQ) ◦ (P QP QqQ) ◦ ( P τQQ ) ◦ ( jQQ )σ= ( A σ B P Q ) ◦ ( (P QP µ Q) B ◦ P QP A µ Q B ) ◦ ( P QP σ A QB ) ◦ ( P QP QP Qσ B)◦ (P QP QP iQ) ◦ (P QP QqQ) ◦ ( P τQQ ) ◦ ( jQQ )(82)= ( σ B P Q ) ◦ ( ) (P QP µ B Q ◦ P QP µBQ B ) ◦ ( P QP Qσ B B )◦ ( P QP QP Qσ B) ◦ (P QP QP iQ) ◦ (P QP QqQ) ◦ ( P τQQ ) ◦ ( jQQ )σ= ( ) ( BBP µ B Q ◦ BP µBQ B ) ◦ ( BP Qσ B B ) ◦ ( BP QP Qσ B) ◦ (BP QP iQ)◦ (BP QqQ) ◦ ( σ B P QQQ ) ◦ ( P τQQ ) ◦ ( jQQ )defD= ( BP µ B Q)◦(BP µBQ B ) ◦ ( BP Qσ B B ) ◦ ( BP QP Qσ B) ◦ (BP QP iQ)◦ (BP QqQ) ◦ ( u B P QQQ ) ◦ ( jQQ )and thus we obtain (σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ ) ◦ ( δ D QQ )(164)= ( BP µ B Q)◦(BP µBQ B ) ◦ ( BP Qσ B B ) ◦ ( BP QP Qσ B) ◦ (BP QP iQ)Let us compute◦ (BP QqQ) ◦ ( u B P QQQ ) ◦ ( jQQ ) .σ B ◦ ( Qχ ) ◦ ( δ D QQ )= m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ ) ◦ ( δ D QQ )= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ ) ◦ ( δ D QQ )(164)= m B ◦ ( Bσ B) ◦ ( ) (BP µ B Q ◦ BP µBQ B ) ◦ ( BP Qσ B B )◦ ( BP QP Qσ B) ◦ (BP QP iQ) ◦ (BP QqQ) ◦ ( u B P QQQ ) ◦ ( jQQ )u B= m B ◦ (u B B) ◦ σ B ◦ ( P µ B Q)◦(P µBQ B ) ◦ ( P Qσ B B ) ◦ ( P QP Qσ B)


◦ (P QP iQ) ◦ ( jQQ )Bm<strong>on</strong>ad= σ B ◦ ( P µ B Q)◦(P µBQ B ) ◦ ( P Qσ B B ) ◦ ( P QP Qσ B) ◦ (P QP iQ)◦ ( jQQ )(82)= σ B ◦ ( (P µ Q) B ◦ P A µ Q B ) ◦ ( P σ A QB ) ◦ ( P QP Qσ B) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )147σ= A σ B ◦ ( ) (P µ B Q ◦ P A µ Q B ) ◦ ( P AQσ B) ◦ ( P σ A QP Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )(81)= m B ◦ ( σ B B ) ◦ ( P A µ Q B ) ◦ ( P AQσ B) ◦ ( P σ A QP Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )A µ Q= mB ◦ ( σ B B ) ◦ ( P Qσ B) ◦ ( P A µ Q P Q ) ◦ ( P σ A QP Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )(82)= m B ◦ ( σ B B ) ◦ ( P Qσ B) ◦ ( P µ B QP Q ) ◦ ( P Qσ B P Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )σ B = m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ ( P µ B QP Q ) ◦ ( P Qσ B P Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )(81)= m B ◦ ( Bσ B) ◦ (m B P Q) ◦ ( σ B BP Q ) ◦ ( P Qσ B P Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )σ B = m B ◦ ( Bσ B) ◦ (m B P Q) ◦ ( Bσ B P Q ) ◦ (BP iQ) ◦ (BqQ) ◦ ( σ B QQ ) ◦ ( jQQ )(67)= m B ◦ ( Bσ B) ◦ (m B P Q) ◦ ( Bσ B P Q ) ◦ (BP iQ) ◦ (BqQ) ◦ ( u B QQ )◦ ( ε D QQ )u B= m B ◦ ( Bσ B) ◦ (m B P Q) ◦ (u B BP Q) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( ε D QQ )so that we getBm<strong>on</strong>ad= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( ε D QQ )= σ B ◦ ( ε D QQ )(165) σ B ◦ ( Qχ ) ◦ ( δ D QQ ) = σ B ◦ ( ε D QQ )and since (B ′ , y ′ ) = Coequ Fun((Qχ)◦(δD QQ ) , ε D QQ ) there exists a unique functorialmorphism ν B : B ′ → B such that(166) ν B ◦ y ′ = σ B = m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) .Now we want to prove that ν B is a morphism of m<strong>on</strong>ads. Let us computem B ◦ (ν B ν B ) ◦ (y ′ y ′ ) = m B ◦ (ν B B) ◦ (B ′ ν B ) ◦ (y ′ B ′ ) ◦ ( QQy ′)


148andy= ′m B ◦ (ν B B) ◦ (y ′ B) ◦ ( ) (QQν )B ◦ QQy′(166)= m B ◦ (m B B) ◦ ( σ B σ B B ) ◦ (P iQB) ◦ (qQB) ◦ ( QQm B)◦(QQσ B σ B)◦ ( QQP iQ ) ◦ ( QQqQ )(144)= m B ◦ (m B B) ◦ ( σ B σ B B ) ◦ (jP QB) ◦ (κ ′ 0QB) ◦ ( QQm B)◦(QQσ B σ B)◦ ( QQjP Q ) ◦ ( QQκ ′ 0Q )= m B ◦ (m B B) ◦ ( Bσ B B ) ◦ ( σ B P QB ) ◦ (jP QB) ◦ (κ ′ 0QB) ◦ ( QQm B)◦ ( QQBσ B) ◦ ( QQσ B P Q ) ◦ ( QQjP Q ) ◦ ( QQκ ′ 0Q )(67)= m B ◦ (m B B) ◦ ( Bσ B B ) ◦ (u B P QB) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQm B)◦ ( QQBσ B) ◦ ( QQu B P Q ) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )u B= m B ◦ (m B B) ◦ (u B BB) ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQm B)◦ ( QQu B B ) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )Bm<strong>on</strong>ad= m B ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )ν B ◦ m B ′ ◦ (y ′ y ′ ) (163)= ν B ◦ y ′ ◦ ( Qχ ) = m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ )(144)= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (jP Q) ◦ (κ ′ 0Q) ◦ ( Qχ )(67)= m B ◦ ( Bσ B) ◦ (u B P Q) ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qχ )u B= m B ◦ (u B B) ◦ σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qχ )Bm<strong>on</strong>ad= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qχ )defχ= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ B Q ◦ Q A µ Q B ) ◦ ( QAQσ B) ◦ ( Qσ A QP Q )◦ ( QQP iQ ) ◦ ( QQqQ )A µ Q= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ ) B Q ◦ QQσB◦ ( Q A µ Q P Q ) ◦ ( Qσ A QP Q )◦ ( QQP iQ ) ◦ ( QQqQ )(82)= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ ) B Q ◦ QQσB◦ ( Qµ B QP Q )◦ ( QQσ B P Q ) ◦ ( QQP iQ ) ◦ ( QQqQ )(144)= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( ) (Qµ ) B Q ◦ QQσB◦ ( Qµ B QP Q )◦ ( QQσ B P Q ) ◦ ( QQjP Q ) ◦ ( QQκ ′ 0Q )(67)= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qµ B Q◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )Qmodulefunctor= σ B ◦ ( ε D P Q ) ◦ (κ ′ 0Q) ◦ ( Qµ B Q)◦(QQσB ) ◦ ( Qµ B QP Q ) ◦ ( QQu B P Q ))◦(QQσB ) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )


κ ′ 0= σ B ◦ ( ε D P Q ) ◦ ( )DP µ B Q ◦ (κ′0 QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )ε= D σ B ◦ ( (P µ Q) B ◦ ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )(81)= m B ◦ ( σ B B ) ◦ ( ε D P QB ) ◦ (κ ′ 0QB) ◦ ( QQσ B) ◦ ( QQε D P Q ) ◦ ( QQκ ′ 0Q )so that we obtainm B ◦ (ν B ν B ) ◦ (y ′ y ′ ) = ν B ◦ m B ′ ◦ (y ′ y ′ )and since y ′ is an epimorphism we deduce thatNow, let us calculatem B ◦ (ν B ν B ) = ν B ◦ m B ′.ν B ◦ u B ′ ◦ ε D (163)= ν B ◦ y ′ ◦ δ D(166)= m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ) ◦ δ D= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ δ D(144)= m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (jP Q) ◦ (κ ′ 0Q) ◦ δ D(67),(148)= m B ◦ ( Bσ B) ◦ (u B P Q) ◦ (ε D P Q) ◦ (Dj) ◦ ∆ Du B ,ε D= m B ◦ (u B B) ◦ σ B ◦ j ◦ (ε D D) ◦ ∆ DBm<strong>on</strong>adDcom<strong>on</strong>ad= σ B ◦ j (67)= u B ◦ ε D .Since the tame c<strong>on</strong>diti<strong>on</strong> is assumed, BA σ B ABAσ B A(97)= A σ B ABBF (94)= B U BA σ B ABAFis also an isomorphism. By (95) we have thatAσ B A ◦ (p P A Q) = σ Bis a functorial isomorphism and thusand Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>6, since p P A Q is a regular epimorphism by c<strong>on</strong>structi<strong>on</strong>, we deducethat σ B is also a regular epimorphism. Thus, by Theorem 6.6, so is Bε D . Since Breflects coequalizers we get that ε D is an epimorphism and therefore we obtainHence ν B is a morphism of m<strong>on</strong>ads.2) C<strong>on</strong>sider the following diagramν B ◦ u B ′ = u B .149DQQDhQDP Q(Qχ)◦(δ D QQ)(ε D QQ)(P µ S Q )◦(jS)◦(Dσ S) (ε D P Q)QQ y′ hQ P Q π Z ZS ′ ν Zwhere (Z, π Z ) = Coequ Fun((P µBQ)◦ (jB) ◦(DσB ) , ε D P Q ) . Note that(ε D P Q ) ◦ (DhQ) εD = (hQ) ◦ ( ε D QQ ) .


150Now we compute(hQ) ◦ ( Qχ ) ◦ ( δ D QQ ) ? = ( P µ B Q)◦ (jB) ◦(DσB ) ◦ (DhQ)(hQ) ◦ ( Qχ ) ◦ ( δ D QQ )= (B µ P Q ) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( Qχ ) ◦ ( δ D QQ )(164)= (B µ P Q ) ◦ ( ) (BP µ B Q ◦ BP µBQ B ) ◦ ( BP Qσ B B )◦ ( BP QP Qσ B) ◦ (BP QP iQ) ◦ (BP QqQ) ◦ ( u B P QQQ ) ◦ ( jQQ )Qmodfunctor=( Bµ P Q ) ◦ ( BP µ B Q)◦ (BP QmB ) ◦ ( BP Qσ B B ) ◦ ( BP QP Qσ B)◦ (BP QP iQ) ◦ (BP QqQ) ◦ ( u B P QQQ ) ◦ ( jQQ )u= (B Bµ P Q ) ◦ (u B P Q) ◦ ( P µ Q) B ◦ (P QmB ) ◦ ( P Qσ B B ) ◦ ( P QP Qσ B)◦ (P QP iQ) ◦ (P QqQ) ◦ ( jQQ )Qmodfunctor ( )= P µBQ ◦ (P QmB ) ◦ ( P Qσ B B ) ◦ ( P QP Qσ B) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )σ= ( ) BP µ B Q ◦ (P QmB ) ◦ ( P QBσ B) ◦ ( P Qσ B P Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )(81)= ( P µ B Q)◦(P QσB ) ◦ ( P Q B µ P Q ) ◦ ( P Qσ B P Q ) ◦ (P QP iQ)◦ (P QqQ) ◦ ( jQQ )j= ( P µ B Q)◦ (jB) ◦(DσB ) ◦ ( D B µ P Q ) ◦ ( Dσ B P Q ) ◦ (DP iQ) ◦ (DqQ)= ( P µ B Q)◦ (jB) ◦(DσB ) ◦ (DhQ)Then the diagram above serially commute and hence in particularso thatπ Z ◦ (hQ) ◦ ( Qχ ) ◦ ( δ D QQ ) = π Z ◦ ( P µ B Q)◦ (jB) ◦(DσB ) ◦ (DhQ)π Z= π Z ◦ ( ε D P Q ) ◦ (DhQ) = π Z ◦ (hQ) ◦ ( ε D QQ )π Z ◦ (hQ) ◦ ( Qχ ) ◦ ( δ D QQ ) = π Z ◦ (hQ) ◦ ( ε D QQ ) .Since (B ′ , y ′ ) = Coequ Fun((Qχ)◦(δD QQ ) , ε D QQ ) , by the universal property ofcoequalizers, there exists a unique functorial morphism ν Z : B ′ → Z such that(167) ν Z ◦ y ′ = π Z ◦ (hQ) .We want to prove that ν Z is an isomorphism. Since hQ is an isomorphism, thereexists (hQ) −1 : P Q → QQ. Note that fromwe deduce that(hQ) ◦ ( Qχ ) ◦ ( δ D QQ ) = ( P µ B Q)◦ (jB) ◦(DσB ) ◦ (DhQ)(hQ) −1 ◦ (hQ) ◦ ( Qχ ) ◦ ( δ D QQ ) ◦ ( D (hQ) −1) == (hQ) −1 ◦ ( ) (P µ ) B Q ◦ (jB) ◦ DσB◦ (DhQ) ◦ ( D (hQ) −1)


151that is(168)Similarly, fromwe deduce that( ) (Qχ ◦ δD QQ ) ◦ ( D (hQ) −1) = (hQ) −1 ◦ ( ) (P µ ) B Q ◦ (jB) ◦ DσB.(ε D P Q ) ◦ (DhQ) = (hQ) ◦ ( ε D QQ )(169) (hQ) −1 ◦ ( ε D P Q ) = ( ε D QQ ) ◦ ( D (hQ) −1) .Thus we haveso thaty ′ ◦ (hQ) −1 ◦ ( P µ B Q)◦ (jB) ◦(DσB ) (168)= y ′ ◦ ( Qχ ) ◦ ( δ D QQ ) ◦ ( D (hQ) −1)defy ′= y ′ ◦ ( ε D QQ ) ◦ ( D (hQ) −1) (169)= y ′ ◦ (hQ) −1 ◦ ( ε D P Q )y ′ ◦ (hQ) −1 ◦ ( P µ B Q)◦ (jB) ◦(DσB ) = y ′ ◦ (hQ) −1 ◦ ( ε D P Q ) .(( ) (Since (Z, π Z ) = Coequ ) Fun P µBQ ◦ (jB) ◦ DσB, ε D P Q ) , by the universal propertyof coequalizers, there exists a unique functorial morphism ν Z′ : Z → B′ suchthat(170) ν ′ Z ◦ π Z = y ′ ◦ (hQ) −1 .Now we want to prove that ν ′ Z is the two-sided inverse of ν Z. Let us computeand since y ′ is an epimorphism we getMoreoverν ′ Z ◦ ν Z ◦ y ′ (167)= ν ′ Z ◦ π Z ◦ (hQ)(170)= y ′ ◦ (hQ) −1 ◦ (hQ) = y ′ν ′ Z ◦ ν Z = Id B ′.ν Z ◦ ν ′ Z ◦ π Z(170)= ν Z ◦ y ′ ◦ (hQ) −1 (167)= π Z ◦ (hQ) ◦ (hQ) −1 = π Zand since π Z is an epimorphism we deduce thatν Z ◦ ν ′ Z = Id Z .Thus ν Z is a functorial isomorphism between B ′ and Z with inverse ν Z ′ . Now we wantto c<strong>on</strong>struct an isomorphism between B and Z. C<strong>on</strong>sider the parallel pairDP Q(P µ S Q )◦(jS)◦(Dσ S) (ε D P Q) P Qand computeσ B ◦ ( ) (P µ ) B Q ◦ (jB) ◦ DσB (81),j= m B ◦ ( σ B B ) ◦ ( P Qσ B) ◦ (jP Q)σ= B m B ◦ ( Bσ B) ◦ ( σ B P Q ) ◦ (jP Q) (67)= m B ◦ ( Bσ B) ◦ (u B P Q) ◦ ( ε D P Q )u B= m B ◦ (u B B) ◦ σ B ◦ ( ε D P Q ) Bm<strong>on</strong>ad= σ B ◦ ( ε D P Q ) .


152Thus we obtainσ B ◦ ( ) (P µ ) B Q ◦ (jB) ◦ DσB= σ B ◦ ( ε D P Q )and since (Z, π Z ) = Coequ Fun((P µBQ)◦ (jB) ◦(DσB ) , ε D P Q ) , by the universalproperty of coequalizers, there exists a unique functorial morphism λ : Z → B suchthat(171) λ ◦ π Z = σ B .Since we already proved in 1) that σ B is a regular epimorphism, in particular wecan write ( B, σ B) = Coequ Fun (ξ, ζ). Let us computeso thatπ Z ◦ ξ ◦ ( ε D P Q ) ε D = π Z ◦ ( ε D P Q ) ◦ (Dξ)defπ Z= πZ ◦ ( P µ B Q)◦ (jB) ◦(DσB ) ◦ (Dξ)σ B coequ= π Z ◦ ( (P µ Q) ) B ◦ (jB) ◦ DσB◦ (Dζ)defπ=ZπZ ◦ ( ε D P Q ) ◦ (Dζ) εD = π Z ◦ ζ ◦ ( ε D P Q )π Z ◦ ξ ◦ ( ε D P Q ) = π Z ◦ ζ ◦ ( ε D P Q ) .Since σ B is a regular epimorphism, by Theorem 6.6, so is Bε D . Since by assumpti<strong>on</strong>B reflects coequalizers, also ε D is an epimorphism so that we get(172) π Z ◦ ξ = π Z ◦ ζ.Since ( B, σ B) = Coequ Fun (ξ, ζ) , by the universal property of coequalizers thereexists a unique functorial morphism λ ′ : B → Z such that(173) λ ′ ◦ σ B = π Z .We prove that λ ′ is the two-sided inverse of λ. In factλ ′ ◦ λ ◦ π Z(171)= λ ′ ◦ σ B (173)= π Z .Since π Z is an epimorphism we deduce thatSimilarlyλ ′ ◦ λ = Id Z .λ ◦ λ ′ ◦ σ B (173)= λ ◦ π Z(171)= σ Band, since also σ B is an epimorphism, we deduce thatWe now want to prove thati.e.We computeλ ◦ λ ′ = Id B .ν B = λ ◦ ν Zλ ′ ◦ ν B = ν Z .λ ′ ◦ ν B ◦ y ′ (109)= λ ′ ◦ m B ◦ ( σ B σ B) ◦ (P iQ) ◦ (qQ)


153(81)= λ ′ ◦ σ B ◦ (B µ P Q ) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ)(173)= π Z ◦ (B µ P Q ) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) = π Z ◦ (hQ) (167)= ν Z ◦ y ′ .Since y ′ is an epimorphism, we getλ ′ ◦ ν B = ν Zso that we deduce that ν B : B ′ → B is an isomorphism and thus an isomorphism ofm<strong>on</strong>ads.3) If P preserves equalizers and P C = Q → κ′Q ′ = DP then ν A and ν B areisomorphisms of m<strong>on</strong>ads.By assumpti<strong>on</strong> we have that q = Id P C and q ′ = Id DP and κ and κ ′ are isomorphisms.Then we can rewrite the initial diagram as followsDP CQDhQDP Q(P Cχ)◦(δD P CQ)(ε D P CQ)(P µ S Q )◦(jS)◦(Dσ S)(ε D P Q)P CQ y′ hQ P Q π Z ZS ′ ν Z((Since (C, i) = Equ ) )Fun QP σA((◦ (τP ) , QP u A , by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>10 we also have(CQ, iQ) = Equ Fun QP σ A Q ) ◦ (τP Q) , QP u A Q ) . We compute(QP σ A Q ) ◦ (τP Q) ◦ τ (68)= ( QP σ A Q ) ◦ (QP τ) ◦ τ (69)= (QP u A Q) ◦ τso that there exists a unique functorial morphism C ρ Q : Q → CQ such that (61)holds i.e.(iQ) ◦ C ρ Q = τas c<strong>on</strong>structed in Propositi<strong>on</strong> 6.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Moreover ( Q, C ρ Q)is a left C-comodule by Propositi<strong>on</strong>6.<str<strong>on</strong>g>1.</str<strong>on</strong>g> We also get(P iQ) ◦ ( P C ρ Q)= P τ.Let us computeand(hQ) ◦ ( P C ρ Q)=( Bµ P Q ) ◦ ( σ B P Q ) ◦ (P iQ) ◦ (qQ) ◦ ( P C ρ Q)q=Id P C=( Bµ P Q ) ◦ ( σ B P Q ) ◦ (P iQ) ◦ ( P C ρ Q)(61)= (B µ P Q ) ◦ ( σ B P Q ) ◦ (P τ) (82)= ( µ A P Q ) ◦ ( P σ A Q ) ◦ (P τ)(69)= ( µ A P Q ) ◦ (P u A Q) P module= P Q(P C ρ Q)◦ (hQ) =(P C ρ Q)◦( Bµ P Q ) ◦ ( σ B P Q ) ◦ (P iQ)(82)= ( ) (P C ρ Q ◦ µAP Q ) ◦ ( P σ A Q ) ◦ (P iQ)(63)= ( ) (P C ρ Q ◦ µAP Q ) ◦ (P u A Q) ◦ ( P ε C Q )P module= ( P C ρ Q)◦(P ε C Q ) Qcomodule= P Q.


154Thus hQ is an isomorphism with inverse P C ρ Q and we can c<strong>on</strong>clude by applying2). □8. Equivalence for (co)module categories8.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Equivalence for module categories coming from copretorsor. In thissubsecti<strong>on</strong> we prove that, for given categories A and B, under the assumpti<strong>on</strong>s ofTheorem 6.29, there exist a m<strong>on</strong>ad A <strong>on</strong> A and a m<strong>on</strong>ad B <strong>on</strong> B such that theircategories of modules are equivalent. We outline that the assumpti<strong>on</strong>s quoted aboveare satisfied in the particular case of a regular coherd.First of all we need to define the functors A Q B and B ̂QA which will be used to setthe equivalence between these module categories.Using the functors Q and ̂Q, we c<strong>on</strong>struct the lifting functors A Q B : B B → A A andB ̂Q A : A A → B B.Propositi<strong>on</strong> 8.<str<strong>on</strong>g>1.</str<strong>on</strong>g> In the setting of 6.29 there exists a functor A (Q B ) : B B → A Asuch that A U A (Q B ) = Q B where (Q B , p Q ) = Coequ Fun(µBQ BU, Q B Uλ B). Moreoverwe have(174) p Q ◦ (A µ Q BU ) = A µ QB ◦ (Ap Q )where A µ QB = A Uλ AA (Q B ) : AQ B → Q B .Proof. In view of Theorem 6.29, we can apply Propositi<strong>on</strong> 3.30.8.<str<strong>on</strong>g>2.</str<strong>on</strong>g> In light of Propositi<strong>on</strong> 8.1, a functor Q : B → A introduced in 6.29 inducesa functor A (Q B ) : B B → A A for the m<strong>on</strong>ads A and B. Our next task is to provethat ( the ) B-A-bimodule functor ̂Q, c<strong>on</strong>structed in Propositi<strong>on</strong> 7.6, induces a functor̂QA : A A → B B which yields the inverse of A (Q B ) .BPropositi<strong>on</strong> 8.3. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, thereexists a functor B ̂QA : AA → B B such that B U B ̂QA = ̂Q( )A where ̂QA , pb Q=(Coequ Fun µ A Q bAU, ̂Q)A Uλ A . Moreover we have) ( )(175)A µ QB ◦(Bpb Q= pb Q◦B µb Q AUwhere B µb QA= B Uλ BB ̂QA : B ̂Q A → ̂Q A , so thatfunctor.(̂QA , B µb QA)□is an B-left moduleProof. In view of Propositi<strong>on</strong> 7.6, we can apply Propositi<strong>on</strong> 3.30 where Q is ̂Q andwe exchange the role of A and B, A and B.□Now we want to prove the first isomorphism.Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, we will c<strong>on</strong>struct a functorialisomorphism B ̂QAA Q B∼ = B B.Lemma 8.4. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29 the followingequality(176) ν ′ 0 ◦ (u B P ) = l ◦ (P u A )


155holds where ν ′ 0 is defined in (149) .Proof. We computeν ′ 0 ◦ (u B P ) ◦ ( ε D P ) ◦ ( DP ε C) (110)= ν ′ 0 ◦ (yP ) ◦ (δ D P ) ◦ ( DP ε C)δ D= ν ′ 0 ◦ (yP ) ◦ ( P QP ε C) ◦ (δ D P C)(149)= l ◦ (P x) ◦ ( P QP ε C) ◦ (δ D P C) = l ◦ (P x) ◦ (P w r ) ◦ (δ D P C)xcoequ= l ◦ (P x) ◦ ( P w l) ◦ (δ D P C) = l ◦ (P x) ◦ (P χP ) ◦ (P QP δ C ) ◦ (δ D P C)δ D= l ◦ (P x) ◦ (P χP ) ◦ (δ D P QP ) ◦ (DP δ C )(149)= ν ′ 0 ◦ (yP ) ◦ (P χP ) ◦ (δ D P QP ) ◦ (DP δ C ) = ν ′ 0 ◦ (yP ) ◦ (z l P ) ◦ (DP δ C )ycoequ= ν ′ 0 ◦ (yP ) ◦ (z r P ) ◦ (DP δ C ) = ν ′ 0 ◦ (yP ) ◦ (ε D P QP ) ◦ (DP δ C )(149)= l ◦ (P x) ◦ (ε D P QP ) ◦ (DP δ C ) = l ◦ (P x) ◦ (P δ C ) ◦ (ε D P C)(103)= l ◦ (P u A ) ◦ ( P ε C) ◦ (ε D P C) εD = l ◦ (P u A ) ◦ ( ε D P ) ◦ (DP ε C ).Since ( ε D P ) ◦ ( DP ε C) is an epimorphism (recall that both ε D and ε C are coequalizers),we c<strong>on</strong>clude.□Propositi<strong>on</strong> 8.5. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, thereexists a functorial morphism α : B B U → ̂Q AA Q B such that(̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B ) . Moreover for every morphism h : B B U →X such thath ◦ (m BB U) = h ◦ (B B Uλ B )if ĥ : ̂Q AA Q B → X is the unique morphism such that ĥ ◦ α = h, we have that)(177) ĥ ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = h ◦ (y B U) ◦ ( P A µ Q BU ) .Proof. Let us prove that)(178)(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U))=(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P xQ B U) .Using Propositi<strong>on</strong> 8.1, we compute) (pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U))u=A(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P u A QP Q B U)(101)=(174)=) (pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ ( P A A µ QB U ) ◦ (P AxQ B U)◦ (P u A QP Q B U)) (pb Q AQ B ◦ (l A U A Q B ) ◦ ( )P A A µ QB ◦ (P AApQ ) ◦ (P AxQ B U)◦ (P u A QP Q B U)


156) ( )l=(pb Q AQ B ◦ ̂QA µ QBp bQ coeq=(150)=def A µ QB( )= pb Q AQ B ◦m=A◦ (lAQ B ) ◦ (P AAp Q ) ◦ (P AxQ B U) ◦ (P u A QP Q B U)( )̂QA Uλ AA Q B ◦ (lAQ B ) ◦ (P AAp Q ) ◦ (P AxQ B U)◦ (P u A QP Q B U)) )(pb Q AQ B ◦(µ A Q bQ B ◦ (lAQ B ) ◦ (P AAp Q ) ◦ (P AxQ B U) ◦ (P u A QP Q B U)) (pb Q AQ B ◦ (lQ B ) ◦ (P m A Q B ) ◦ (P AAp Q ) ◦ (P AxQ B U) ◦ (P u A QP Q B U)) (pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P m A Q B U) ◦ (P u A AQ B U) ◦ (P xQ B U))Am<strong>on</strong>ad=(pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P xQ B U)Now we want to prove that(pb Q AQ B)◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ ( z l BU ))=(pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (z r BU) .We have(pb Q AQ B)◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ ( z l BU ))=(pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U) ◦ (δ D P Q B U))(178)=(pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P xQ B U) ◦ (δ D P Q B U))x=(pb Q AQ B ◦ (lQ B ) ◦ (P xQ B ) ◦ (P QP p Q ) ◦ (δ D P Q B U))δ=D(pb Q AQ B ◦ (lQ B ) ◦ (P xQ B ) ◦ (δ D P Q B ) ◦ (DP p Q ))(149)=(pb Q AQ B ◦ (ν 0Q ′ B ) ◦ (yP Q B ) ◦ (δ D P Q B ) ◦ (DP p Q ))(110)=(pb Q AQ B ◦ (ν 0Q ′ B ) ◦ (u B P Q B ) ◦ ( )ε D P Q B ◦ (DP pQ ))(176)=(pb Q AQ B ◦ (lQ B ) ◦ (P u A Q B ) ◦ ( )ε D P Q B ◦ (DP pQ )) (pb Q AQ B ◦ (lQ B ) ◦ (P u A Q B ) ◦ (P p Q ) ◦ ( ε D P Q B U )ε D =u A=Since, by Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>10)=(pb Q AQ B ◦ (lQ B ) ◦ (P u A Q B ) ◦ (P p Q ) ◦ (z r BU)) (pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (z r BU)(B B U, y B U) = Coequ Fun(zlB U, z r BU ) ,there exists a functorial morphism α : B B U → ̂Q AA Q B such that(179) α ◦ (y B U) = (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) .


157Now we want to prove that(̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B ).Let us show the fork property for α, that is(180) α ◦ (m BB U) = α ◦ (B B Uλ B ) .We have(179)=α ◦ (B B Uλ B ) ◦ (yy B U) = α ◦ (B B Uλ B ) ◦ (yB B U) ◦ (P Qy B U)y= α ◦ (y B U) ◦ (P Q B Uλ B ) ◦ (P Qy B U)) (pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (P Q B Uλ B ) ◦ (P Qy B U))=(pb Q AQ B ◦ (lQ B ) ◦ (P u A Q B ) ◦ (P p Q ) ◦ (P Q B Uλ B ) ◦ (P Qy B U)( )defp Q= pb Q AQ B ◦ (lQ B ) ◦ (P u A Q B ) ◦ (P p Q ) ◦ ( P µ B QBU ) ◦ (P Qy B U))(107)=(pb Q AQ B ◦ (lQ B ) ◦ (P u A Q B ) ◦ (P p Q ) ◦ (P χ B U))u=A(pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U)(179)= α ◦ (y B U) ◦ (P χ B U) (109)= α ◦ (m BB U) ◦ (yy B U)and, since yy B U is an epimorphism, we c<strong>on</strong>clude. Now, let us c<strong>on</strong>sider a functorialmorphism h : B B U → X such that h ◦ (m BB U) = h ◦ (B B Uλ B ) . We have to showthat there exists a unique functorial morphism ĥ : ̂Q AA Q B → X such thatĥ ◦ α = h.First we will show that there exists a functorial morphism ĥ such that ĥ and h fulfill(177) i.e.)ĥ ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = h ◦ (y B U) ◦ ( P A µ QB U ) .To do this, we need a series of equalities. First of all, let us show that(181) y ◦ ( P A µ Q)◦(P AµBQ)◦ (P AQy) ◦ (P xQP Q) = mB ◦ (yy) ◦ (P χP Q) .In fact, we haveNow let us prove thaty ◦ ( P A µ Q)◦(P AµBQ)◦ (P AQy) ◦ (P xQP Q)(107)= y ◦ ( P A µ Q)◦ (P Aχ) ◦ (P xQP Q)x= y ◦ ( )P A (101)µ Q ◦ (P xQ) ◦ (P QP χ) = y ◦ (P χ) ◦ (P QP χ)(98)= y ◦ (P χ) ◦ (P χP Q) (109)= m B ◦ (yy) ◦ (P χP Q) .(182) (yy) ◦ (P χP Q) = (yB) ◦ ( P A µ Q B ) ◦ (P xQB) ◦ (P QP Qy) .


158In fact we haveTherefore we deduce that(yy) ◦ (P χP Q) = (yB) ◦ (P Qy) ◦ (P χP Q)χ= (yB) ◦ (P χB) ◦ (P QP Qy)(101)= (yB) ◦ ( P A µ Q B ) ◦ (P xQB) ◦ (P QP Qy) .y ◦ ( ) ( )(183) P A µ Q ◦ P AµBQ ◦ (P AQy) ◦ (P xQP Q)= m B ◦ (yB) ◦ ( P A µ Q B ) ◦ (P xQB) ◦ (P QP Qy) .Now we computeh ◦ (y B U) ◦ ( P A µ QB U ) ◦ ( P Aµ B QBU ) ◦ (P AQy B U) ◦ (P xQP Q B U)(183)= h ◦ (m BB U) ◦ (yB B U) ◦ ( P A µ Q B B U ) ◦ (P xQB B U) ◦ (P QP Qy B U)assumpth= h ◦ (B B Uλ B ) ◦ (yB B U) ◦ ( P A µ Q B B U ) ◦ (P xQB B U) ◦ (P QP Qy B U)y= h ◦ (y B U) ◦ (P Q B Uλ B ) ◦ ( P A µ Q B B U ) ◦ (P xQB B U) ◦ (P QP Qy B U)A µ Q= h ◦ (yB U) ◦ ( P A µ QB U ) ◦ (P AQ B Uλ B ) ◦ (P xQB B U) ◦ (P QP Qy B U)x= h ◦ (y B U) ◦ ( P A µ QB U ) ◦ (P AQ B Uλ B ) ◦ (P AQy B U) ◦ (P xQP Q B U)Since (P AQy B U) ◦ (P xQP Q B U) is an epimorphism, we obtainh ◦ (y B U) ◦ ( P A µ QB U ) ◦ ( P Aµ B QBU ) = h ◦ (y B U) ◦ ( P A µ QB U ) ◦ (P AQ B Uλ B )Since (P AQ B , P Ap Q ) = Coequ Fun(P AµBQ BU, P AQ B Uλ B), there exists a functorialmorphism h 1 : P AQ B → X such that(184) h 1 ◦ (P Ap Q ) = h ◦ (y B U) ◦ ( P A µ Q BU ) .Now we prove that(185) y ◦ ( P A µ Q)◦ (P xQ) ◦(z l P Q ) = y ◦ ( P A µ Q)◦ (P xQ) ◦ (z r P Q)In fact, we havey ◦ ( P A µ Q)◦ (P xQ) ◦(z l P Q ) (101)= y ◦ (P χ) ◦ ( z l P Q )(156)= y ◦ (P χ) ◦ (z r P Q) (101)= y ◦ ( P A µ Q)◦ (P xQ) ◦ (z r P Q) .Using the previous equalities, we obtainh 1 ◦ (P xQ B ) ◦ ( )z l P Q B ◦ (DP QP pQ ) = zlh 1 ◦ (P xQ B ) ◦ (P QP p Q ) ◦ ( z l P Q B U )x= h 1 ◦ (P Ap Q ) ◦ (P xQ B U) ◦ ( z l P Q B U )(184)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U) ◦ ( z l P Q B U )(185)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U) ◦ (z r P Q B U)(184)= h 1 ◦ (P Ap Q ) ◦ (P xQ B U) ◦ (z r P Q B U)x= h 1 ◦ (P xQ B ) ◦ (P QP p Q ) ◦ (z r P Q B U)


z r= h 1 ◦ (P xQ B ) ◦ (z r P Q B ) ◦ (DP QP p Q ) .Since DP QP p Q is an epimorphism, we deduce thath 1 ◦ (P xQ B ) ◦ ( )z l P Q B = h1 ◦ (P xQ B ) ◦ (z r P Q B ) .( )Since ̂QQB lQ B = Coequ Fun ((P xQ B )◦ ( )z l P Q B , (P xQB )◦(z r P Q B )), there existsa functorial morphism h 2 : ̂QQ B → X such that(186) h 2 ◦ (lQ B ) = h 1 .We computeso that we gety ◦ ( P A µ Q)◦ (P xQ) ◦ (P χP Q)(101)= y ◦ (P χ) ◦ (P χP Q)(98)= y ◦ (P χ) ◦ (P QP χ)(101)= y ◦ ( P A µ Q)◦ (P xQ) ◦ (P QP χ)x= y ◦ ( P A µ Q)◦ (P Aχ) ◦ (P xQP Q)(187) y ◦ ( P A µ Q)◦ (P xQ) ◦ (P χP Q) = y ◦(P A µ Q)◦ (P Aχ) ◦ (P xQP Q) .We also have(lQ B ) ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(101)= (lQ B ) ◦ (P Ap Q ) ◦ ( P A A µ Q BU ) ◦ (P AxQ B U) ◦ (P xQP Q B U)(174)= (lQ B ) ◦ ( )P A A µ QB ◦ (P AApQ ) ◦ (P AxQ B U) ◦ (P xQP Q B U)( )l= ̂QA µ QB ◦ (lAQ B ) ◦ (P AAp Q ) ◦ (P AxQ B U) ◦ (P xQP Q B U)( )x= ̂QA µ QB ◦ (lAQ B ) ◦ (P AxQ B ) ◦ (P AQP p Q ) ◦ (P xQP Q B U)( )̂QA µ QB ◦ (lAQ B ) ◦ (P AxQ B ) ◦ (P xQP QQ B ) ◦ (P QP QP p Q )( )= ̂QA µ QB ◦ (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q )x=so that we get(188)=(lQ B ) ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)( )̂QA µ QB ◦ (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q )and hence we obtain)h 2 ◦(µ A Q bQ B ◦ (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q )(150)= h 2 ◦ (lQ B ) ◦ (P m A Q B ) ◦ (P xxQ B ) ◦ (P QP QP p Q )(186)= h 1 ◦ (P m A Q B ) ◦ (P xxQ B ) ◦ (P QP QP p Q )(102)= h 1 ◦ (P xQ B ) ◦ (P χP Q B ) ◦ (P QP QP p Q )159


160χ= h 1 ◦ (P xQ B ) ◦ (P QP p Q ) ◦ (P χP Q B U)x= h 1 ◦ (P Ap Q ) ◦ (P xQ B U) ◦ (P χP Q B U)(184)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U) ◦ (P χP Q B U)(187)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(184)= h 1 ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(186)= h 2 ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P Aχ B U) ◦ (P xQP Q B U)(188)= h 2 ◦ ( ̂Q A µ QB ) ◦ (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q ) .Since (lAQ B ) ◦ (P xxQ B ) ◦ (P QP QP p Q ) is an epimorphism, we deduce thath 2 ◦ ( ̂Q)A µ QB ) = h 2 ◦(µ A Q bQ B .By Propositi<strong>on</strong> 8.3 we have(̂QAA Q B , pb Q AQ B)= Coequ Fun(µ A b QAU A Q B , ̂Q A Uλ AA Q B)Coequ Fun(µ A b QQ B , ̂Q A µ QB)and hence we infer that there exists a functorial morphismĥ : ̂Q AA Q B → X such that)ĥ ◦(pb Q AQ B = h 2 .Hence we get)ĥ ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = h 2 ◦ (l A U A Q B ) ◦ (P Ap Q )= h 2 ◦ (lQ B ) ◦ (P Ap Q ) (186)= h 1 ◦ (P Ap Q ) (184)= h ◦ (y B U) ◦ ( P A µ Q BU )and hence equality (177) is proven. Now we have( )ĥ ◦ α ◦ (y B U) (179)= ĥ ◦ pb Q AQ B ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)(177)= h ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P u A Q B U) A µ Q is unital= h ◦ (y B U)so we getĥ ◦ α = h.Let now ĥ′ : ̂QAA Q B → X be another functorial morphism such that ĥ′ ◦ α = h.Then we haveĥ ◦ (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)(179)= ĥ ◦ α ◦ (y BU) = h ◦ (y B U) = ĥ′ ◦ α ◦ (y B U)(179)= ĥ′ ◦ (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U) .)Note that, by (178) , since the sec<strong>on</strong>d term is an epimorphism,(pb Q AQ B ◦(l A U A Q B )◦(P Ap Q ) ◦ (P u A Q B U) ◦ (P χ B U) is epi and so (pb Q AQ B ) ◦ (lQ B ) ◦ (P Ap Q ) ◦ (P u A Q B U)is also ( an epimorphism. Therefore we deduce that ĥ′ = ĥ. Hence we have provedthat ̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B ). □=


Theorem 8.6. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, we have afunctorial isomorphism B ̂QAA Q B∼ = B B.Proof. In Propositi<strong>on</strong> 8.5 we have proved the existence of a functorial morphism α :B B U → ̂Q(AA Q B such that ̂QAA Q B , α)= Coequ Fun (m BB U, B B Uλ B. ) . By Propositi<strong>on</strong>3.13 and Propositi<strong>on</strong> 3.14 also ( B U, ( B Uλ B )) = Coequ Fun (m BB U, B B Uλ B. ). Inview of uniqueness of a coequalizer up to isomorphisms, there exists a functorialisomorphismNow sinceβ : ̂Q AA Q B = B U B ̂QAA Q B → B U such that β ◦ α = B Uλ B .( B Uλ B ) ◦ (m BB U) = ( B Uλ B ) ◦ (B B Uλ B )and since β ◦ α = B Uλ B , by applying (177) where ”ĥ” = β and ”h” = BUλ B , wededuce that)β ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) = ( B Uλ B ) ◦ (y B U) ◦ ( P A µ Q BU )equivalentlyi.e.(189) β ◦)β ◦(pb Q AQ B ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P xQ B U)= ( B Uλ B ) ◦ (y B U) ◦ ( P A µ Q BU ) ◦ (P xQ B U)(101)= ( B Uλ B ) ◦ (y B U) ◦ (P χ B U)(pb Q AQ B)◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P xQ B U) = ( B Uλ B ) ◦ (y B U) ◦ (P χ B U) .Recall ( that, in view of Propositi<strong>on</strong> 3.13, ( B U, B Uλ B ) is an B-left module functor.Also ̂QAA Q B , B µb QA A B)Q is an B-left module functor (see proof of Propositi<strong>on</strong>3.30 and Lemma 3.17) where B µb QA= B Uλ BB ̂QA : B ̂Q A → ̂Q A .Now we want toprove that β lifts to a functorial morphism B ̂QAA Q B → B B i.e. thatβ :(̂QAA Q B , B µb QA AQ B)→ ( B U, B Uλ B )is a morphism of B-left module functors. Thus we have to proveWe calculate( B Uλ B ) ◦ (Bβ) = β ◦ ( B µb QA AQ B )(y ̂Q)◦ (P Ql) ◦ (P QP x)B µb Q◦ (Bl) ◦ (yP A) ◦ (P QP x) = B µb Q◦((149)= B µb Q◦ y ̂Q)◦ (P Qν 0) ′ ◦ (P QyP ) = y B µb Q◦ (Bν 0) ′ ◦ (yBP ) ◦ (P QyP )(151)= ν ′ 0 ◦ (m B P ) ◦ (yBP ) ◦ (P QyP ) = ν ′ 0 ◦ (m B P ) ◦ (yyP )(109)= ν ′ 0 ◦ (yP ) ◦ (P χP ) (149)= l ◦ (P x) ◦ (P χP )161


162so that we obtain:(190)We computeB µb Q◦ (Bl) ◦ (yP A) ◦ (P QP x) = l ◦ (P x) ◦ (P χP ) .β ◦ ( B µb QA AQ B ) ◦(175)= β ◦ (pb Q AQ B ) ◦= β ◦ (pb Q AQ B ) ◦(B µb Q AU A Q B))(Bpb Q AQ B ◦ (Bl A U A Q B ) ◦ (yP xp Q ) =(B µb Q AU A Q B)◦ (Bl A U A Q B ) ◦ (yP xp Q )◦ (Bl A U A Q B ) ◦ (yP AQ B ) ◦ (P QP xQ B )◦ (P QP QP p Q )(190)= β ◦ (pb Q AQ B ) ◦ (l A U A Q B ) ◦ (P x A U A Q B ) ◦ (P χP A U A Q B )◦ (P QP QP p Q )χ= β ◦ (pb Q AQ B ) ◦ (l A U A Q B ) ◦ (P x A U A Q B ) ◦ (P QP p Q ) ◦ (P χP Q B U)x= β ◦ (pb Q AQ B ) ◦ (l A U A Q B ) ◦ (P Ap Q ) ◦ (P xQ B U) ◦ (P χP Q B U)(189)= ( B Uλ B ) ◦ (y B U) ◦ (P χ B U) ◦ (P χP Q B U)(98)= ( B Uλ B ) ◦ (y B U) ◦ (P χ B U) ◦ (P QP χ B U)(109)= ( B Uλ B ) ◦ (m BB U) ◦ (yy B U) ◦ (P QP χ B U)BUλ B coequ= ( B Uλ B ) ◦ (B B Uλ B ) ◦ (By B U) ◦ (yP Q B U) ◦ (P QP χ B U)y= ( B Uλ B ) ◦ (B B Uλ B ) ◦ (By B U) ◦ (BP χ B U) ◦ (yP QP Q B U))(189)= ( B Uλ B ) ◦ (Bβ) ◦(Bpb Q AQ B ◦ (Bl A U A Q B ) ◦ (BP Ap Q ) ◦ (BP xQ B U)◦ (yP QP Q B U))= ( B Uλ B ) ◦ (Bβ) ◦(Bpb Q AQ B ◦ (Bl A U A Q B ) ◦ (yP xp Q ))Since(Bpb Q AQ B ◦ (Bl A U A Q B ) ◦ (yP xp Q ) is an epimorphism, we get that ( B Uλ B ) ◦(Bβ) = β ◦ ( B µb QA A Q B). Therefore β is a morphism of B-left module functorsand ̂Qhence, in view of Propositi<strong>on</strong> 3.25, it gives rise to a functorial isomorphismB AA Q B∼ = B B.□Now, we prove the sec<strong>on</strong>d isomorphism.Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, we will c<strong>on</strong>struct a functorialisomorphism A Q BB ̂QA ∼ = A A.Lemma 8.7. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, there exists afunctorial morphism Ξ : A A U → Q BB ̂QA uniquely determined by) )(191)(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) = Ξ ◦ (x A U)such that(192) Ξ ◦ (m AA U) = Ξ ◦ (A A U A λ) .


163( )Proof. Since (Q B , p Q ) = Coequ Fun µBQ BU, Q B Uλ B we have that))(p QB ̂QA ) ◦(µ B QBU B ̂QA = (p QB ̂QA ) ◦(Q B Uλ BB ̂QAso that we obtain) )(p QB ̂QA ◦(Qpb Q(107)== (p QB ̂QA ) ◦ (Q B µb QA)(◦ χ ̂Q) )χ=A U(p QB ̂QA ◦(χ ̂Q) )A ◦(QP Qpb Q) (p QB ̂QA ◦(µ B ̂Q)Q A ◦(Qy ̂Q) )A ◦(QP Qpb Q(Qy ̂Q) )A ◦(QP Qpb Q) ((QBpb Q◦ Qy ̂Q)A U) ) ( ) ((p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U= (p QB ̂QA ) ◦ (Q B µb QA) ◦y(175)== (p QB ̂QA ) ◦ (Q B µb QA) ◦and hence we get) ) ((193)(p QB ̂QA ◦(Qpb Q◦ χ ̂Q)A U =) ) ( ) ((p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A Uso that) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (χP QP A U)) ) (χ=(p QB ̂QA ◦(Qpb Q◦ χ ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)) ) ( ) ((193)=(p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)) ) ( )y=(p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ (QBl A U) ◦ (QyP A A U) ◦ (QP QP x A U)) )(190)=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U) .Therefore we deduce that) )(194)(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (χP QP A U)) )=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U)By using this equality we compute) ) (p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ ( w l AU ) ◦ ( QP Cε C AU )) )w=(p lQB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ ( QP ε C AU ) ◦ ( w l C A U )) )(103)=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP δ C A U) ◦ ( w l C A U )) )w=(p lQB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ ( w l QP A U ) ◦ (QP Cδ C A U)) )=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (χP QP A U) ◦ (QP δ C QP A U)◦ (QP Cδ C A U)


164(194)=) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U) ◦ (QP δ C QP A U)(99)=◦ (QP Cδ C A U)) ) (p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ ( QP ε C QP A U )◦ (QP Cδ C A U)) ) (p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP δ C A U) ◦ ( QP Cε C AU )) ) (p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ ( QP ε C AU ) ◦ ( QP Cε C AU )) )=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ (w r AU) ◦ ( QP Cε C AU )ε C =(103)=since QP Cε C AU is epi we deduce that) ) (p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ ( w l AU )) )=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ (w r AU) .(Since (A A U, x A U) = Coequ Fun wl A U, w r AU ) , there exists a functorial morphismΞ : A A U → Q BB ̂QA such that) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) = Ξ ◦ (x A U) .Let us prove thatBy the definiti<strong>on</strong> of pb Qwe have that( )µ A Q bAUso thatand hencepb Q◦Ξ ◦ (m AA U) = Ξ ◦ (A A Uλ A ) .◦ (lA A U) = pb Q◦(̂QA U A λpb Q◦ (l A U) ◦ (P m AA U) (150)= pb Q◦p bQ coequ= pb Q◦(̂QA U A λ)◦ (lA A U)( )µ A Q bAU◦ (lA A U))◦ (lA A U)(195) pb Q◦ (l A U) ◦ (P m AA U) = pb Q◦(̂QA U A λWe calculate(191)=Ξ ◦ (m AA U) ◦ (xx A U) ◦ ( QP QP ε C AU ))◦ (lA A U) .(102)= Ξ ◦ (x A U) ◦ (χP A U) ◦ ( QP QP ε C AU )) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ (χP A U)◦ ( QP QP ε C AU )(χ ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP u AA U)) )χ=(p QB ̂QA ◦(Qpb Q◦


◦ ( QP QP ε C AU )) ) ( ) ((p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP u AA U)◦ ( QP QP ε C AU )) ) ( )y=(p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ (QBl A U) ◦ (QyP A A U) ◦ (QP QP u AA U)◦ ( QP QP ε C AU )) ) ( )(103)=(p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ (QBl A U) ◦ (QyP A A U) ◦ (QP QP x A U)(193)=(190)=(102)=(195)=( )l,x= p QB ̂QA ◦Am<strong>on</strong>ad=◦ (QP QP δ C A U)) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U)◦ (QP QP δ C A U)) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xx A U)◦ (QP QP δ C A U)) ) ((p QB ̂QA ◦(Qpb Q◦ Q ̂Q)A U A λ ◦ (QlA A U) ◦ (QP xA A U)◦ (QP QP x A U) ◦ (QP QP δ C A U)) ) ((103)=(p QB ̂QA ◦(Qpb Q◦ Q ̂Q)A U A λ ◦ (QlA A U) ◦ (QP xA A U)◦ (QP QP u AA U) ◦ ( QP QP ε C AU )) (Qpb Q◦ (Ql A U) ◦ (QP A A U A λ) ◦ (QP Au AA U) ◦ (QP x A U)◦ ( QP QP ε C AU )) )Am<strong>on</strong>ad=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ ( QP QP ε C AU )) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP u A A A U) ◦ (QP x A U)◦ ( QP QP ε C AU )) ) ((195)=(p QB ̂QA ◦(Qpb Q◦ Q ̂Q)A U A λ ◦ (QlA A U) ◦ (QP u A A A U)◦ (QP x A U) ◦ ( QP QP ε C AU )) )l=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP A A U A λ) ◦ (QP u A A A U) ◦ (QP x A U)◦ ( QP QP ε C AU )u A=) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ (QP A U A λ) ◦ (QP x A U)◦ ( QP QP ε C AU )(191)= Ξ ◦ (x A U) ◦ (QP A U A λ) ◦ (QP x A U) ◦ ( QP QP ε C AU )x= Ξ ◦ (A A U A λ) ◦ (xA A U) ◦ (QP x A U) ◦ ( QP QP ε C AU )165


166= Ξ ◦ (A A U A λ) ◦ (xx A U) ◦ ( QP QP ε C AU )Since (xx A U) ◦ ( QP QP ε C AU ) is epi, we deduce (192) . Note that, in particular, wehave) )(196)(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U) ◦ (χP A U) ◦ ( QP QP ε C AU )) )=(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ ( QP QP ε C AU )) )and since the sec<strong>on</strong>d term is epi, also the first is epi, and hence(p QB ̂QA ◦(Qpb Q◦(Ql A U) ◦ (QP u AA U) is an epimorphism.Propositi<strong>on</strong> 8.8. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, thereexists ( a functorial ) morphism Ξ : A A U → Q BB ̂QA such thatQ BB ̂QA , Ξ = Coequ Fun (m AA U, A A U A λ) . Moreover for every morphism k suchthatk ◦ (m AA U) = k ◦ (A A U A λ)if ̂k : Q BB ̂QA → Y is the unique morphism such that ̂k ◦ Ξ = k, we have that( ) )(197) ̂k ◦ p QB ̂QA ◦(Qpb Q◦ (Ql A U) = k ◦ (m AA U) ◦ (xA A U) .Proof. By Lemma 8.7 we already know thatΞ ◦ (m AA U) = Ξ ◦ (A A U A λ) .Now we want to prove that( )Q BB ̂QA , Ξ = Coequ Fun (m AA U, A A U A λ).Let k : A A U → Y be a functorial morphism such that(198) k ◦ (m AA U) = k ◦ (A A U A λ)We have to show that there exists a functorial morphism ̂k : Q BB ̂QA → Y such that̂k ◦ Ξ = k.First we will show that there exists a functorial morphism ̂k such that ̂k and k fulfil(197) i.e.k ◦ (m AA U) ◦ (xA A U) = ̂k) )◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) .We proceed in several steps. First of all we computek ◦ (m AA U) ◦ (xA A U) ◦ (QP x A U) ◦ ( Qz l P A U )(102)= k ◦ (x A U) ◦ (χP A U) ◦ ( Qz l P A U )= k ◦ (x A U) ◦ (χP A U) ◦ (QP χP A U) ◦ (Qδ D P QP A U)(98)= k ◦ (x A U) ◦ (χP A U) ◦ (χP QP A U) ◦ (Qδ D P QP A U)(105)= k ◦ (x A U) ◦ (χP A U) ◦ ( Qε D P QP A U )(102)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP x A U) ◦ ( Qε D P QP A U )□


= k ◦ (m AA U) ◦ (xA A U) ◦ (QP x A U) ◦ (Qz r P A U) .Since ( Q preserves coequalizers by assumpti<strong>on</strong>, by Lemma<str<strong>on</strong>g>2.</str<strong>on</strong>g>9 we haveQ ̂Q)(A U, Ql A U = Coequ Fun (QP xA U ◦ Qz l P A U), (QP x A U ◦ Qz r P A U) ) , so we deducethat there exists a unique functorial morphism k 1 : Q ̂Q A U → Y such that(199) k 1 ◦ (Ql A U) = k ◦ (m AA U) ◦ (xA A U) .Then we havek 1 ◦( )Qµ A Q bAU◦ (QlA A U) (150)= k 1 ◦ (Ql A U) ◦ (QP m AA U)(199)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP m AA U)x= k ◦ (m AA U) ◦ (Am AA U) ◦ (xAA A U) m Aass= k ◦ (m AA U) ◦ (m A A A U) ◦ (xAA A U)m A(198)= k ◦ (A A Uλ A ) ◦ (m A A A U) ◦ (xAA A U)= k ◦ (m AA U) ◦ (AA A U A λ) ◦ (xAA A U) = x k ◦ (m AA U) ◦ (xA A U) ◦ (QP A A U A λ)((199)= k 1 ◦ (Ql A U) ◦ (QP A A U A λ) = l k 1 ◦ Q ̂Q)A U A λ ◦ (QlA A U)( )Since QlA A U is epi, we get that k 1 ◦ Qµ A Q bAU= k 1 ◦(Q ̂Q)A Uλ A . Since Q preservescoequalizers,(Q ̂Q)(A , Qpb Q= Coequ Fun Qµ A Q bAU, Q ̂Q)A Uλ A , then there exists aunique functorial morphism k 2 : Q ̂Q A → Y such that)(200) k 1 = k 2 ◦(Qpb Q.We have) ) (k 2 ◦(µ B QBU B ̂QA ◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U))) )y= k 2 ◦(µ B QBU B ̂QA ◦(Qy B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) ◦ (QP QP x A U)) )(107)= k 2 ◦(χ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) ◦ (QP QP x A U))χ= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (χP QP A U)(200)= k 1 ◦ ◦ (Ql A U) ◦ (QP x A U) ◦ (χP QP A U)(199)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP x A U) ◦ (χP QP A U)(102)= k ◦ (x A U) ◦ (χP A U) ◦ (χP QP A U)(98)= k ◦ (x A U) ◦ (χP A U) ◦ (QP χP A U)(102)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP x A U) ◦ (QP χP A U)(199)= k 1 ◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U))(200)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U)167


168)(155)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP b A U) ◦ (QP QP x A U))(154)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xAU A ) ◦ (QP QP xU A ))= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xx A U))(102)= k 2 ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U))(149)= k 2 ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (QyP A U) ◦ (QP χP A U))(109)= k 2 ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (Qm B P A U) ◦ (QyyP A U)) ( )(151)= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0P ′ A U) ◦ (QyyP A U)) ( )= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0P ′ A U) ◦ (QByP A U) ◦ (QyP QP A U)) ( )(149)= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ (QBlP A U) ◦ (QBP x A U) ◦ (QyP QP A U)) ( ) (y= k 2 ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U ◦ (QP QlP A U) ◦ (QP QP x A U)) ) ((175)= k 2 ◦(Q B µb QA◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)def A µ QB) ) (= k2 ◦(Q B Uλ BB ̂QA ◦(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)) (Since(QBpb Q◦ Qy ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U) is epi, we get))k 2 ◦(µ B QBU B ̂QA = k 2 ◦(Q B Uλ BB ̂QA .)()From(Q BB ̂QA , p QB ̂QA = Coequ Fun µ B QBU B ̂QA , Q B Uλ BB ̂QA we deduce thatthere exists a unique functorial morphism ̂k : Q BB ̂QA → Y such that(201) ̂k ◦(p QB ̂QA)= k 2 .Moreover we have( ) ))̂k ◦ p QB ̂QA ◦(Qpb Q◦ (Ql A U) = k 2 ◦(Qpb Q◦ (Ql A U)i.e.(202) ̂k ◦(p QB ̂QA)◦Now we compute(200)= k 1 ◦ (Ql A U) (199)= k ◦ (m AA U) ◦ (xA A U)̂k ◦ Ξ ◦ (xA U) (191)= ̂k ◦) (Qpb Q◦ (Ql A U) = k ◦ (m AA U) ◦ (xA A U) .) )(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)(202)= k ◦ (m AA U) ◦ (xA A U) ◦ (QP u AA U) x = k ◦ (m AA U) ◦ (Au AA U) ◦ (x A U)= k ◦ (x A U) .


Since x A U is epi we get that̂k ◦ Ξ = k.Let now ̂k ′ : Q BB ̂QA → Y be another functorial morphism such that ̂k ′ ◦ Ξ = k.Then we have( ) )̂k ◦ p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)(191)= ̂k ◦ Ξ ◦ (x A U) = k ◦ (x A U) = ̂k ′ ◦ Ξ ◦ (x A U)(191)= ̂k) )′ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)) )Since we already observed from (196) that(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP u AA U)is an epimorphism, we have ̂k ′ = ̂k.( )Hence we have proved that Q BB ̂QA , Ξ =Coequ Fun (m AA U, A A U A λ) and, in view of (202) , we get that (197)holds.Theorem 8.9. Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.29, we have afunctorial isomorphism A A ∼ = A Q BB ̂QA .Proof. In Propositi<strong>on</strong> 8.8 we ( have proved)the existence of a functorial morphismΞ : AU A → Q BB ̂QA such that Q BB ̂QA , Ξ = Coequ Fun (m AA U, A A Uλ A ). By Propositi<strong>on</strong>3.13 and Propositi<strong>on</strong> 3.14 also ( A U, A Uλ A ) = Coequ Fun ((m AA U, A A Uλ A )) , inview of uniqueness of a coequalizer up to isomorphisms, there exists a functorialisomorphismρ : A U A Q BB ̂QA = Q BB ̂QA → A U such that ρ ◦ Ξ = A Uλ A .Now since( A Uλ A ) ◦ (m AA U) = ( A Uλ A ) ◦ (A A Uλ A )and since ρ ◦ Ξ = A Uλ A , by Propositi<strong>on</strong> 8.8, we deduce that) )(203) ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) = ( A Uλ A ) ◦ (m AA U) ◦ (xA A U)Now we want to prove that ρ lifts to a functorial morphism A Q BB ̂QA → A A of A-leftmodule functors. First we observe that ( A U, A Uλ A ) is an A-left module functor inview of Propositi<strong>on</strong> 3.13. Also(Q BB ̂QA , A µ ̂Q)QB B A is an A-left module functor(see proof of Propositi<strong>on</strong> 3.30) where A µ QB = A Uλ AA Q B : AQ B → Q B . To showthat ρ is morphism of A-left module functors we have to prove( A Uλ A ) ◦ (Aρ) = ρ ◦ ( A µ QB B ̂Q A ).We have(A ρ ◦ µ ̂Q))) )QB B A ◦(Ap QB ̂QA ◦(xQ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) ◦ (QP QP x A U))(174)= ρ ◦(p (A )) )QB ̂QA ◦ µ Q BU B ̂QA ◦(xQ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U)◦ (QP QP x A U))) )(101)= ρ ◦(p QB ̂QA ◦(χ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) ◦ (QP QP x A U)169□


170) ) (χ= ρ ◦(p QB ̂QA ◦(Qpb Q◦ χ ̂Q)A U ◦ (QP Ql A U) ◦ (QP QP x A U)) ) ( ) ((193)= ρ ◦(p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ Qy ̂Q)A U ◦ (QP Ql A U))y= ρ ◦(p QB ̂QA(149)= ρ ◦◦ (QP QP x A U)) ( )◦(Qpb Q◦ Q B µb Q AU ◦ (QBl A U) ◦ (QBP x A U) ◦ (QyP QP A U)) ) ( )(p QB ̂QA ◦(Qpb Q◦ Q B µb Q AU ◦ (QBν 0AU) ′ ◦ (QByP A U)◦ (QyP QP A U)) )(151)= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (Qm B P A U) ◦ (QByP A U)◦ (QyP QP A U)) )= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (Qm B P A U) ◦ (QyyP A U)) )(109)= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Qν 0AU) ′ ◦ (QyP A U) ◦ (QP χP A U)) )(149)= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP x A U) ◦ (QP χP A U)) )(102)= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xx A U)) )= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP m AA U) ◦ (QP xA A U) ◦ (QP QP x A U)) ) ( )(150)= ρ ◦(p QB ̂QA ◦(Qpb Q◦ Qµ A Q bAU◦ (QlA A U) ◦ (QP xA A U) ◦ (QP QP x A U)defp bQ( ) )= ρ ◦ p QB ̂QA ◦(Qpb Q◦(Q ̂Q)A Uλ A ◦ (QlA A U) ◦ (QP xA A U) ◦ (QP QP x A U)) )l= ρ ◦(p QB ̂QA ◦(Qpb Q◦ (Ql A U) ◦ (QP A A Uλ A ) ◦ (QP xA A U) ◦ (QP QP x A U)(203)= ( A Uλ A ) ◦ (m AA U) ◦ (xA A U) ◦ (QP A A Uλ A ) ◦ (QP xA A U) ◦ (QP QP x A U)x= ( A Uλ A ) ◦ (m AA U) ◦ (AA A Uλ A ) ◦ (xAA A U) ◦ (QP xA A U) ◦ (QP QP x A U)m A= ( A Uλ A ) ◦ (A A Uλ A ) ◦ (m A A A U) ◦ (xAA A U) ◦ (QP xA A U) ◦ (QP QP x A U)AUλ A ass= ( A Uλ A ) ◦ (m AA U) ◦ (m A A A U) ◦ (xAA A U) ◦ (QP xA A U)m A ass= ( A Uλ A ) ◦ (m AA U) ◦ (Am AA U) ◦ (xAA A U) ◦ (QP xA A U)AUλ A ass= ( A Uλ A ) ◦ (A A Uλ A ) ◦ (Am AA U) ◦ (xAA A U) ◦ (QP xA A U)= ( A Uλ A ) ◦ (A A Uλ A ) ◦ (Am AA U) ◦ (AxA A U) ◦ (xQP A A U)) )(203)= ( A Uλ A ) ◦ (Aρ) ◦(Ap QB ̂QA ◦(AQpb Q◦ (AQl A U) ◦ (xQP A A U))x= ( A Uλ A ) ◦ (Aρ) ◦(Ap QB ̂QA ◦(xQ ̂Q) )A ◦(QP Qpb Q◦ (QP Ql A U)


)) )Since(Ap QB ̂QA ◦(xQ B U B ̂QA ◦(QP Qpb Q◦ (QP Ql A U) is an epimorphism, weget that ρ ◦ ( A µ ̂Q QB B A ) = ( A Uλ A ) ◦ (Aρ). Therefore ρ is a morphism of A-leftmodule functors and hence, in view of Propositi<strong>on</strong> 3.25, it gives rise to a functorialisomorphism A Q BB ̂QA ∼ = A A.□8.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Equivalence for comodule categories coming from pretorsor. The <str<strong>on</strong>g>results</str<strong>on</strong>g>obtained in this subsecti<strong>on</strong> can be found in [BM].Given categories A and B, under the assumpti<strong>on</strong>s of Theorem 6.5, <strong>on</strong>e can provethat there exist a com<strong>on</strong>ad C <strong>on</strong> A and a com<strong>on</strong>ad D <strong>on</strong> B such that their categoriesof comodules are equivalent. We outline that the assumpti<strong>on</strong>s quoted above aresatisfied in the particular case of a regular herd.Using the functors Q and Q, we c<strong>on</strong>struct the functors C Q D : D B → C A andD Q C : C A → D B which will be used to set the equivalence between these comodulecategories.Propositi<strong>on</strong> 8.10. In the setting of Theorem 6.5 there exists a functor C ( Q D) :D B → C A such that C U C ( Q D) = Q D where ( Q D , ι Q) = Equ Fun(ρDQ D U, Q D Uγ D) .Moreover we have(204)( Cρ Q D U ) ◦ ι Q = ( Cι Q) ◦ C ρ Q Dwhere C ρ Q D = C Uγ C C ( Q D) : Q D → CQ D .Proof. In view of Theorem 6.5, we can apply Propositi<strong>on</strong> 4.29.8.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> In light of Propositi<strong>on</strong> 8.10, a functor Q : B → A introduced in Theorem 6.5induces a functor C ( Q D) : D B → C A for the com<strong>on</strong>ads C and D. Our next task is toprove that the D-C-bicomodule functor Q, c<strong>on</strong>structed in Propositi<strong>on</strong> 7.1, inducesa functor D (Q C) : C A → D B which yields the inverse of C ( Q D) .Propositi<strong>on</strong> 8.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.5, there )exists a functor D Q C : C A → D B such that D U D Q C = Q C where(Q C , ι Q =(Equ Fun ρ C QC U, Q C Uγ C) . Moreover we have)(205)(Dι Q ◦ D ρ C Q= (D ρ C Q U ) ◦ ι Q( )where D ρ C Q= D Uγ DD Q C : Q C → DQ C so that Q C , D ρ C Qis a left D-comodulefunctor.Proof. In view of Propositi<strong>on</strong> 7.1, we can apply Propositi<strong>on</strong> 4.29 where Q is Q andwe exchange the role of A and B, C and D.□Within the assumpti<strong>on</strong>s and notati<strong>on</strong>s of Theorem 6.5, <strong>on</strong>e can c<strong>on</strong>struct functorialisomorphism D Q C C Q D ∼ = D B and C Q DD Q C ∼ = C A. Such a result can be obtainedby dualizing all the ingredients proved in details for the equivalence between modulecategories.171□


172Theorem 8.13. Let A and B be categories with equalizers and let τ : Q → QP Q bea regular pretorsor for Ξ = ( A, B, P, Q, σ A , σ B , u A , u B). Assume that the underlyingfunctors P, Q, A and B preserve equalizers. Then we have functorial isomorphismsD B ∼ = D Q CC Q D and C A ∼ = C Q DD Q C .9. EXAMPLESLemma 9.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let T Σ R be a bimodule. Let L = − ⊗ T Σ : Mod-T → Mod-R andlet H = Hom R (Σ, −) . Assume that T Σ is faithfully flat. Then the unit η of theadjuncti<strong>on</strong> (L, H) is a regular m<strong>on</strong>o.Proof. It is well known (see e.g. [BM, Lemma <str<strong>on</strong>g>2.</str<strong>on</strong>g>3]) that the diagramL −→ LηLHL LηHL⇒ LHLHLLHLηis a c<strong>on</strong>tractible (split) equalizer with respect to the functorial morphisms (ɛL, ɛLHL).Since T Σ is faithfully flat we get that the diagramis exact.Id Mod-Rη−→ HL ηHL⇒ HLHLHLηCorollary 9.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let α : T → A be a ring homomorphism and assume that T A isfaithfully flat. Let γ : A → A ⊗ T A be the map defined by settingThen (T, α) = Ker (γ) .γ (a) = 1 A ⊗ T a − a ⊗ T 1 A .Corollary 9.3. Let α : A → T be a ring homomorphism such that T A is faithfullyflat. Then the unit of the adjuncti<strong>on</strong> (− ⊗ A T, Hom T (T, −)) is a regular m<strong>on</strong>omorphism.Proof. Let η : Mod-T → Hom T (T, −) ⊗ A T be the unit of the adjuncti<strong>on</strong>. Then,for every M ∈ Mod-T we haveWe haveηM : M → M ⊗ A Tx ↦→ x ⊗ A 1 T .ηM (x) = x ⊗ A 1 T = (M ⊗ A α) (x ⊗ A 1 A ) = (M ⊗ A α) ◦ ( r A M) −1(x) .Then, for every M ∈ Mod-T, we haveKer (M ⊗ A γ) = (M ⊗ A A, M ⊗ A α) ∼ =(M, (M ⊗ A α) ◦ ( ) )rMA −1□= (M, ηM) .Hence, (M, ηM) = Ker (M ⊗ A γ) , i.e. η is a regular m<strong>on</strong>omorphism.□We try here to apply the previous theory to a particular setting in which, first ofall, we compute all the ingredients we need to understand the form of the herd.9.4. Let us c<strong>on</strong>sider


• R = associative unital algebra• A = R-ring• C = R-coring• ψ : C ⊗ R A → A ⊗ R C a right entwining• ˜C = A ⊗ R C the induced A-coring• (Σ A , ρ e CΣ ) = right ˜C-comodule = right entwined module.• T = End eC (Σ) .Note that if T ⊆ A is a right C-Galois extensi<strong>on</strong> i.e.comodule and the can<strong>on</strong>ical Galois mapcan C : A ⊗ T A → A ⊗ R Ct ⊗ T t ′ ↦→ tρ C A (t ′ ) = tt ′ 0 ⊗ R t ′ 1is an isomorphism, then we can c<strong>on</strong>sider the right entwiningψ : C ⊗ R A → A ⊗ R C(c ⊗ R t ↦→ can C can−1C (1 A ⊗ R c) t )173( )AR , ρ C A is a right C-and hence the A-coring A ⊗ R C, which turns out to be a right Galois coring i.e. Ais a right comodule over the A-coring A ⊗ R C via ρ e CA defined byA ∼ = A ⊗ A A A⊗ Aρ C A−→ A ⊗ A A ⊗ R C ∼ = A ⊗ R C,t ↦→ 1 A ⊗ A t 0 ⊗ R t 1 .The coinvariants of A with respect to this coacti<strong>on</strong> is still T and the can<strong>on</strong>ical Galoismap iscan A⊗R C : A ⊗ T A → A ⊗ A A ⊗ R Ct ⊗ T t ′ ↦→ tρ A⊗ RCA(t ′ ) = t ⊗ A t ′ 0 ⊗ R t ′ 1 = 1 ⊗ A tt ′ 0 ⊗ R t ′ 1 = 1 ⊗ A can C (t ⊗ T t ′ )so that can A⊗R C is still an isomorphism. Therefore we can c<strong>on</strong>sider this case as aparticular case of the previous <strong>on</strong>e, where(Σ A , ρ e CΣ ) =(A A , ρ e )CA .Let A be a right Galois extensi<strong>on</strong> of B over the Hopf algebra H. In thiscase we haveA = Mod-R,B = Mod-B where B = A co(H)A = − ⊗ R A : A = Mod-R −→ A = Mod-RB = − ⊗ B A : B = Mod-B −→ B = Mod-BQ = − ⊗ B A : B = Mod-B → A = Mod-RP = − ⊗ R A B : A = Mod-R → B = Mod-BQP = − ⊗ R A ⊗ B A m A→ − ⊗ R AP Q = − ⊗ B A ⊗ R A m A→ − ⊗ B AC = − ⊗ R H : A = Mod-R −→ A = Mod-R


174l = eC ρ L : L = − ⊗ B A −→ ˜CL = − ⊗ B Σ ⊗ A A ⊗ R H ∼ = − ⊗ B A ⊗ R CA sec<strong>on</strong>d particular case of this situati<strong>on</strong> we have the <strong>on</strong>e where R = kis a commutative ring, C = H is a Hopf algebra over k and A is a rightGalois extensi<strong>on</strong> of T = A co(H) .Now let us setA = Mod-R,B = Mod-T where T = End eC (Σ)A = − ⊗ R A : A = Mod-R −→ A = Mod-RC = − ⊗ R C : A = Mod-R −→ A = Mod-RB = − ⊗ T B : B = Mod-T −→ B = Mod-T where B = Hom A (Σ A , Σ A )Ψ = − ⊗ R ψ : AC = − ⊗ R C ⊗ R A −→ CA = − ⊗ R A ⊗ R CL = − ⊗ T Σ : Mod-T −→ Mod-A ∼ = A AW = Hom A (Σ, −) : Mod-A −→ Mod-T˜C = − ⊗ A A ⊗ R C : Mod-A −→ Mod-Al = eC ρ L : L = − ⊗ T Σ −→ ˜CL = − ⊗ T Σ ⊗ A A ⊗ R C ∼ = − ⊗ T Σ ⊗ R CWhen Σ A is f.g.p., we setA (Σ ∗ ) B= Hom A ( B Σ, A A)and we c<strong>on</strong>sider the following formal dual structure M = (A, B, P, Q, σ A , σ B ) <strong>on</strong> thecategories A and B .• A = (− ⊗ R A, − ⊗ R m A , − ⊗ R u A ) is a m<strong>on</strong>ad <strong>on</strong> A = Mod-R• B = (− ⊗ T B, − ⊗ T m B , − ⊗ T u B ) is a m<strong>on</strong>ad <strong>on</strong> B = Mod-T where T =End eC (Σ)• P = − ⊗ R Σ ∗ T : Mod-R → Mod-T• Q = A U ◦ L = − ⊗ T Σ R : Mod − T → Mod − R − ⊗ T Σ : Mod-T → Mod-R• σ A : QP → A is defined by• σ B : P Q → B is defined byσ A : QP = − ⊗ R Σ ∗ ⊗ T Σ → − ⊗ R A− ⊗ R f ⊗ T x ↦→ − ⊗ R f (x)σ B : P Q = − ⊗ T Σ R ⊗ R Σ ∗ T → B = − ⊗ T B ∼ = − ⊗ T Σ R ⊗ A Σ ∗ T− ⊗ T y ⊗ R γ ↦→ − ⊗ T y · γ () ≃ − ⊗ T yγ (x i ) ⊗ A x ∗ i= − ⊗ T y ⊗ A γ (x i ) x ∗ i = − ⊗ T y ⊗ A γ• ( P : A → B, B µ P : BP → P, µ A P : P A → P ) is a bimodule functor• ( Q : B → A, A µ Q : AQ → Q, µ B Q : QB → Q) is a bimodule functor• σ A : QP → A is A-bilinear• σ B : P Q → B is B-bilinearσ A ◦ (A µ Q P ) = m A ◦ ( Aσ A) and σ A ◦ ( )Qµ A P = mA ◦ ( σ A A )σ B ◦ (B µ P Q ) = m B ◦ ( Bσ B) and σ B ◦ ( )P µ B Q = mB ◦ ( σ B B )


175and the associative c<strong>on</strong>diti<strong>on</strong>s holdA µ Q ◦ ( σ A Q ) = µ B Q ◦ ( Qσ B) and B µ P ◦ ( σ B P ) = µ A P ◦ ( P σ A) .In fact, we compute[σ A ◦ (A µ Q P )] (− ⊗ R f ⊗ T x ⊗ R a) = σ A (− ⊗ R f ⊗ T xa)= − ⊗ R f (xa) = − ⊗ R f (x) aand[mA ◦ ( Aσ A)] (− ⊗ R f ⊗ T x ⊗ R a) = m A (− ⊗ R f (x) ⊗ R a) = − ⊗ R f (x) aso thatσ A ◦ (A µ Q P ) = m A ◦ ( Aσ A) .We compute[σ A ◦ ( )]Qµ A P (− ⊗R a ⊗ R f ⊗ T x) = σ A (− ⊗ R af ⊗ T x) = − ⊗ R af (x)and[mA ◦ ( σ A A )] (− ⊗ R a ⊗ R f ⊗ T x) = m A (− ⊗ R a ⊗ R f (x)) = − ⊗ R af (x)so that we getσ A ◦ ( Qµ A P)= mA ◦ ( σ A A ) .We compute[σ B ◦ (B µ P Q )] (− ⊗ T x ⊗ R f ⊗ T b) = σ B (− ⊗ T x ⊗ R fb)= σ B (− ⊗ T x ⊗ R f (b ())) = − ⊗ T x · f (b ())[mB ◦ ( Bσ B)] (− ⊗ T x ⊗ R f ⊗ T b) = m B (− ⊗ T x · f () ⊗ T b) = − ⊗ T [(x · f ()) ◦ b]Let us compute, for every y ∈ Σ we have[− ⊗ T x · f (b ())] (y) = − ⊗ T xf (b (y)) =− ⊗ T [(x · f ()) ◦ b] (y) = − ⊗ T (x · f ()) (b (y)) = − ⊗ T xf (b (y))so that we obtainσ B ◦ (B µ P Q ) = m B ◦ ( Bσ B) .Now we compute[σ B ◦ ( )]P µ B Q (− ⊗T b ⊗ T x ⊗ R f) = σ B (− ⊗ T b (x) ⊗ R f) = − ⊗ T b (x) · f ()and[mB ◦ ( σ B B )] (− ⊗ T b ⊗ T x ⊗ R f) = m B (− ⊗ T b ⊗ T x · f ()) = − ⊗ T [b ◦ (x · f ())]so that, for every y ∈ Σ we haveand[− ⊗ T b (x) · f ()] (y) = − ⊗ T b (x) f (y)(− ⊗ T [b ◦ (x · f ())]) (y) = − ⊗ T b (x · f () (y)) = − ⊗ T b (xf (y)) = − ⊗ T b (x) f (y)so that we getσ B ◦ ( P µ B Q)= mB ◦ ( σ B B ) .


and[µBQ ◦ ( Qσ B)] (− ⊗ T x ⊗ R f ⊗ T y) = µ B Q (− ⊗ T x · f () ⊗ T y)176Now we have[ Aµ Q ◦ ( σ A Q )] (− ⊗ T x ⊗ R f ⊗ T y) = A µ Q (− ⊗ T x ⊗ R f (y)) = − ⊗ T xf (y)so that= − ⊗ T x · f () (y) = − ⊗ T xf (y)A µ Q ◦ ( σ A Q ) = µ B Q ◦ ( Qσ B) .Finally we compute[ Bµ P ◦ ( σ B P )] (− ⊗ R f ⊗ T x ⊗ R g) = B µ P (− ⊗ R f ⊗ T x · g ()) = − ⊗ R f (x · g ())and[µAP ◦ ( P σ A)] (− ⊗ R f ⊗ T x ⊗ R g) = µ A P (− ⊗ R f (x) ⊗ R g) = − ⊗ R f (x) g ()so that, for every y ∈ Σ we haveand[− ⊗ R f (x · g ())] (y) = − ⊗ R f (xg (y)) = − ⊗ R f (x) g (y)so that we get[− ⊗ R f (x) g ()] (y) = − ⊗ R f (x) g (y)B µ P ◦ ( σ B P ) = µ A P ◦ ( P σ A) .Note that, in the case R A is faithfully flat,by Corollary 9.2,(A, u A ) = (Mod-R, − ⊗ R u A ) = Ker (− ⊗ R γ)= Equ Fun (− ⊗ R u A ⊗ R A, − ⊗ R u A ⊗ R A) .Analogously if T B is faithfully flat we have(B, u B ) = (Mod-T, − ⊗ T u B ) = Equ Fun (− ⊗ T u B ⊗ T B, − ⊗ T u B ⊗ T B).Thus, in the following we will assume that both R A and T B are faithfullyflat so that we have a regular formal dual structure.The counit ɛ of the adjuncti<strong>on</strong> (L, W ) is given byɛ M : Hom A (Σ, M) ⊗ T Σ −→ Mf ⊗ T x ↦→ f (x)for each M ∈ Mod-A. Therefore we get that) ( ) eCcan =(˜Cɛ ◦ ρ L W : LW = Hom A (Σ, −) ⊗ T Σ −→ ˜C = − ⊗ A A ⊗ R C Ris defined bycan M : Hom A (Σ, M) ⊗ T Σ −→ M ⊗ A A ⊗ R Cγ ⊗ T x ↦→ γ (x 0 ) ⊗ R x 1)for each M ∈ Mod-A. Hence we deduce that(L, eC ρ L is a left ˜C-Galois functorif and <strong>on</strong>ly if (Σ A , ρ e CΣ ) is a right Galois comodule.


By Lemma 3.29, we have A Q = L = − ⊗ T Σ : Mod-T → Mod-A. We have thatP A is a right adjoint of A Q, so that, by the uniqueness of the adjoint, we haveP A = W = − ⊗ A Σ ∗ T : Mod-A → Mod-T.Note that, by Corollary 6.22,, A σ A A : AQP A → A A = Mod-A is the counit ɛ of theadjuncti<strong>on</strong> ( A Q,P A ) = (L, W ) , i.e.Now, we can c<strong>on</strong>siderAσ A AM = ɛM : A QP A M = M ⊗ A Σ ∗ ⊗ T Σ A → Mm ⊗ A f ⊗ T x ↦→ mf (x) .Acan A =(˜CA σ A A)( ) eC◦ ρ L W : LW → ˜C.For every M ∈ Mod-A, we have( ) ( )Acan A M = ˜CA σAA eC◦ ρ L W M : M ⊗ A Σ ∗ ⊗ T Σ A → M ⊗ R Cm ⊗ A f ⊗ T x ↦→ mf (x 0 ) ⊗ R x 1 .Therefore we deduce that A can A = can. Recall now that, by Lemma 6.17 A can A isan isomorphism if and <strong>on</strong>ly ifcan 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CAis an isomorphism. For every M ∈ Mod-R, we havecan 1 M : QP M = M ⊗ R Σ ∗ T ⊗ T Σ R −→ CAM = M ⊗ R A ⊗ R Cm ⊗ R f ⊗ T x ↦→ ( Cσ A M ) (m ⊗ R f ⊗ T x 0 ⊗ R x 1 ) = m ⊗ R f (x 0 ) ⊗ R x 1 .Assume now that (Σ A , ρ e CΣ ) is a right Galois comodule. Thus we deduce that(L, eC ρ L)is a left Galois functor and thus can 1 := ( Cσ A) ◦ (C ρ Q P ) : QP → CAis an isomorphism. Therefore, we can c<strong>on</strong>sider the compositeτ := ( (can 1 ) −1 Q ) ◦ (Cu A Q) ◦ C ρ Q : Q → QP Qand we can apply Theorem 6.24, that implies that the functorial morphism τ is aregular herd. It is defined bywhereτ : M ⊗ T Σ R −→ M ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T Σ Rm ⊗ T x ↦→ m ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1(( ) ) ( )m ⊗ T x 0 ⊗ R x 1 1 x21 ⊗T0 x2 = (can 1 1 1QM) ( )m ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1= [ (can 1 QM) ◦ ( (can 1 ) −1 QM ) ◦ (Cu A QM) ◦ (C ρ Q M )] (m ⊗ T x)For every c ∈ C, we denote by= [ (Cu A QM) ◦ (C ρ Q M )] (m ⊗ T x)= m ⊗ T x 0 ⊗ R 1 A ⊗ R x 1 .− ⊗ R c 1 ⊗ T c 2 = (can 1 ) −1 (− ⊗ R 1 A ⊗ R c)177


178so that− ⊗ R 1 A ⊗ R c = ( can 1 ◦ (can 1 ) −1) (− ⊗ R 1 A ⊗ R c) = can 1(− ⊗R c 1 ⊗ T c 2)= − ⊗ R c (( 1 c 2) (0) ) ⊗R c21i.e.− ⊗ R c (( 1 c 2) (0) ) ⊗R c2 = − ⊗ 1 R 1 A ⊗ R c.Now, starting from a pretorsor, we want to compute the two com<strong>on</strong>ads associated.First of all we compute the com<strong>on</strong>ad E = ( E, ∆ E , ε E) corresp<strong>on</strong>ding to the com<strong>on</strong>adC defined in Propositi<strong>on</strong> 6.<str<strong>on</strong>g>1.</str<strong>on</strong>g> We have((E, i) = Equ Fun ω l , ω r)where ω l = ( QP σ A) ◦ (τP ) and ω r = QP u A : QP → QP A, i.e.ω l : QP = − ⊗ R Σ ∗ T ⊗ T Σ R → QP A = − ⊗ R A ⊗ R Σ ∗ T ⊗ T Σ Rand− ⊗ R f ⊗ T x ↦→ − ⊗ R f ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 ↦→ − ⊗ R f (x 0 ) ⊗ R x 1 1 ⊗ T x 2 1We computeω r : QP = − ⊗ R Σ ∗ T ⊗ T Σ R → QP A = − ⊗ R A ⊗ R Σ ∗ T ⊗ T Σ R− ⊗ R f ⊗ T x ↦→ − ⊗ R 1 A ⊗ R f ⊗ T x.(can 1 A) ◦ ω l = (can 1 A) ◦ ( QP σ A) ◦ (τP ) = ( CAσ A) ◦ (can 1 QP ) ◦ (τP )= ( CAσ A) ◦ (can 1 QP ) ◦ ( (can 1 ) −1 QP ) ◦ (Cu A QP ) ◦ (C ρ Q P )= ( CAσ A) ◦ (Cu A QP ) ◦ (C ρ Q P )= (Cu A A) ◦ ( Cσ A) ◦ (C ρ Q P )= (Cu A A) ◦ can 1so that we get(can 1 A) ◦ ω l = (Cu A A) ◦ can 1Moreover(can 1 A) ◦ ω r = (can 1 A) ◦ (QP u A ) = (CAu A ) ◦ can 1i.e.(can 1 A) ◦ ω r = (CAu A ) ◦ can 1 .Assume that the functor C : A = Mod-R −→ A = Mod-R preserves equalizers.Then we know that(C, (Cu A )) = Equ Fun ((Cu A A) , (CAu A ))and thus we have(C, can−11 ◦ (Cu A ) ) = Equ Fun ((Cu A A) ◦ can 1 , (CAu A ) ◦ can 1 )so that we get(C,can−11 ◦ (Cu A ) ) = Equ Fun((can1 A) ◦ ω l , (can 1 A) ◦ ω r)i.e.(C, can−11 ◦ (Cu A ) ) = Equ Fun(ω l , ω r) .


Note that, in view of our assumpti<strong>on</strong>s, (B, u B ) = Equ Fun (u B B, Bu B ) and hence wecan apply Propositi<strong>on</strong> 6.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Now, we compute the com<strong>on</strong>ad D = ( D, ∆ D , ε D) definedin Propositi<strong>on</strong> 6.<str<strong>on</strong>g>2.</str<strong>on</strong>g> We have(D, j) = Equ Fun(θ l , θ r)where θ l = ( σ B P Q ) ◦ (P τ) and θ r = u B P Q : P Q → BP Q = W LP Q, i.e.θ l : P Q = − ⊗ T Σ R ⊗ R Σ ∗ T → BP Q = − ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T B− ⊗ T x ⊗ R f ↦→ − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 ⊗ R f ↦→ − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 · fθ l : P Q = − ⊗ T Σ R ⊗ R Σ ∗ T → W LP Q = − ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T Σ ⊗ A Σ ∗− ⊗ T x ⊗ R f ↦→ − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 ⊗ R f ↦→ − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1f (x i ) ⊗ A x ∗ i= − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 ⊗ A f (x i ) x ∗ i = − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 ⊗ A fθ r : P Q = − ⊗ T Σ R ⊗ R Σ ∗ T → BP Q = − ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T B− ⊗ T x ⊗ R f ↦→ − ⊗ T x ⊗ R f ⊗ T 1 B .θ r : P Q = − ⊗ T Σ R ⊗ R Σ ∗ T → BP Q = W LP Q = − ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T Σ ⊗ A Σ ∗− ⊗ T x ⊗ R f ↦→ − ⊗ T x ⊗ R f ⊗ T 1 B (x i ) ⊗ A x ∗ i = − ⊗ T x ⊗ R f ⊗ T x i ⊗ A x ∗ i .Note that P A = W = −⊗ A Σ ∗ and by (15) we have P AA F = W A F = −⊗ R A⊗ A Σ ∗ =− ⊗ R Σ ∗ = P. Let us c<strong>on</strong>sider( ) ( )Acan AA F = ˜CA σAAFA eC◦ ρ L W A F( ) ( )= ˜CA σAAFA eC◦ ρ L P AA F( ) ( )(15)= ˜CA σAAF A eC◦ ρ L PwhereAcan AA F : LW A F = LP −→ ˜C A Fis thus defined by settingor simplyWe havei.e.Acan AA F : − ⊗ R A ⊗ A Σ ∗ ⊗ T Σ −→ − ⊗ R A ⊗ A A ⊗ R C ∼ = − ⊗ R A ⊗ R C− ⊗ R a ⊗ A f ⊗ T x ↦→ − ⊗ R a ⊗ A f (x 0 ) ⊗ R x 1 ≃ − ⊗ R af (x 0 ) ⊗ R x 1Acan AA F : − ⊗ R A ⊗ A Σ ∗ ⊗ T Σ −→ − ⊗ R A ⊗ A A ⊗ R C ∼ = − ⊗ R A ⊗ R C− ⊗ R 1 A ⊗ A f ⊗ T x ↦→ − ⊗ R f (x 0 ) ⊗ R x 1 .W A can AA F Q : W LW A F Q = W LP Q → W ˜C A F QW A can AA F Q : − ⊗ T Σ R ⊗ R A ⊗ A Σ ∗ T ⊗ T Σ ⊗ A Σ ∗ → − ⊗ T Σ R ⊗ R A ⊗ A A ⊗ R C ⊗ A Σ ∗− ⊗ T x ⊗ R a ⊗ A f ⊗ T y ⊗ A g ↦→ − ⊗ T x ⊗ R a ⊗ A f (y 0 ) ⊗ R y 1 ⊗ A gW A can AA F Q : − ⊗ T Σ R ⊗ R A ⊗ A Σ ∗ T ⊗ T Σ ⊗ A Σ ∗ → − ⊗ T Σ R ⊗ R A ⊗ A A ⊗ R C ⊗ A Σ ∗179


180− ⊗ T x ⊗ R 1 A ⊗ A f ⊗ T y ⊗ A g ↦→ − ⊗ T x ⊗ R 1 A ⊗ A f (y 0 ) ⊗ R y 1 ⊗ A gW A can AA F Q : − ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T Σ ⊗ A Σ ∗ → − ⊗ T Σ R ⊗ R A ⊗ R C ⊗ A Σ ∗− ⊗ T x ⊗ R f ⊗ T y ⊗ A g ↦→ − ⊗ T x ⊗ R f (y 0 ) ⊗ R y 1 ⊗ A g.If we apply W A can AA F Q both to θ l and θ r we get the following[(W A can AA F Q) ◦ θ l] (− ⊗ T x ⊗ R f)= (W A can AA F Q) ( − ⊗ T x 0 ⊗ R x 1 1 ⊗ T x 2 1 ⊗ A f )(( ) ) ( )= − ⊗ T x 0 ⊗ R x 1 1 x21 ⊗R0 x2 ⊗ 1 1 A f= − ⊗ T x 0 ⊗ R 1 A ⊗ R x 1 ⊗ A fand[(W A can AA F Q) ◦ θ r ] (− ⊗ T x ⊗ R f)= (W A can AA F Q) (− ⊗ T x ⊗ R f ⊗ T x i ⊗ A x ∗ i )= − ⊗ T x ⊗ R f ((x i ) 0) ⊗ R (x i ) 1⊗ A x ∗ i .Since A can A is an isomorphism, we get that(D, j) = Equ Fun((W A can AA F Q) ◦ θ l , (W A can AA F Q) ◦ θ r)Hence D ⊆ P Q = − ⊗ T Σ ⊗ R Σ ∗ . At this point we stop because it is not so clearwhat is the com<strong>on</strong>ad D.We try to compute the functor Q which does not require the com<strong>on</strong>ad D, but wecannot do it as well. In fact, we have the following:We calculate the equalizerQ q →P C(θ l P)◦(P can −11 )◦(P Cu A )⇒(θ r P )◦(P can −11 )◦(P Cu A )(Q, q)= EquFun((θ l P ) ◦ (P i) , (θ r P ) ◦ (P i) )= Equ Fun((θ l P ) ◦ ( P can −11BP QP)◦ (P CuA ) , (θ r P ) ◦ ( )P can −11 ◦ (P CuA ) ) .We have(θ l P ) ◦ ( )P can −11 ◦ (P CuA ) : − ⊗ R C ⊗ R Σ ∗ T −→ − ⊗ R Σ ∗ T ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T B− ⊗ R c ⊗ R f ↦→ − ⊗ R 1 A ⊗ R c ⊗ R f ↦→ − ⊗ R c 1 ⊗ T c 2 ⊗ R f(↦→ − ⊗ R c 1 ⊗ ) T c2 ⊗ ( )0 R c2 1⊗ ( )1 T c2 2· f 1(= − ⊗ R c 1 ⊗ ) T c2 ⊗ 0 R β 1 ⊗ T β 2 · fwhereso thatMoreover we havec 1 ( c 2 0)⊗R c 2 1 = 1 A ⊗ R c1 A ε C (c) = c 1 ( c 2 0ε C ( c 2 1))= c1 ( c 2) .β 1 ( β 2 0)⊗R β 2 1 = 1 A ⊗ R c 2 <str<strong>on</strong>g>1.</str<strong>on</strong>g>


181On the other side,(θ r P ) ◦ ( )P can −11 ◦ (P CuA ) : − ⊗ R C ⊗ R Σ ∗ T −→ − ⊗ R Σ ∗ T ⊗ T Σ R ⊗ R Σ ∗ T ⊗ T B− ⊗ R c ⊗ R f ↦→ − ⊗ R 1 A ⊗ R c ⊗ R f ↦→ − ⊗ R c 1 ⊗ T c 2 ⊗ R f↦→ − ⊗ R c 1 ⊗ T c 2 ⊗ R f ⊗ T 1 B .MaybewhereQ = − ⊗ R XX = Ker (ϕ)ϕ : C ⊗ R Σ ∗ T → Σ R ⊗ R Σ ∗ T ⊗ T Bc ⊗ R f ↦→ c 1 ⊗ T(c2 ) 0 ⊗ R β 1 ⊗ T β 2 · f = c 1 ⊗ T c 2 ⊗ R f ⊗ T 1 BIn case all the computati<strong>on</strong>s above make sense, we could write a coherd associatedto the pretorsor. By Theorem 7.5, the coherd is defined byχ : = µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ ( QP [ can −11 ◦ (Cu A ) ] Q ) ◦ (QqQ)i.e.= µ B Q ◦ (A µ Q B ) ◦ ( AQσ B) ◦ ( σ A QP Q ) ◦ ( QP can −11 Q ) ◦ (QP Cu A Q) ◦ (QqQ)χ : QQQ ⊆ QP CQ = − ⊗ T Σ R ⊗ R C ⊗ R Σ ∗ T ⊗ T Σ R → Q = − ⊗ T Σ R− ⊗ T x ⊗ R c ⊗ R f ⊗ T y ↦→ − ⊗ T x ⊗ R 1 A ⊗ R c ⊗ R f ⊗ T y↦→ − ⊗ T x ⊗ R c 1 ⊗ T c 2 ⊗ R f ⊗ T y ↦→ − ⊗ T x ⊗ R c 1 ⊗ T c 2 ⊗ R f (y)↦→ − ⊗ T x · c 1 ⊗ T c 2 ⊗ R f (y) ↦→ − ⊗ T x · c 1 ⊗ T c 2 f (y)↦→ − ⊗ T(x · c1 ) ( c 2 f (y) ) = − ⊗ T xc 1 ( c 2 f (y) ) = − ⊗ T xc 1 ( c 2) f (y)where for every x ∈ Σ A and h ∈ Σ ∗In particular, we have= − ⊗ T x ( 1 A ε C (c) ) f (y)x · h ∈ B = Hom A (Σ A , Σ A ) is defined by setting(x · h) (t) = xh (t) for every t ∈ Σ.x · c 1 : Σ A → Σ At ↦→ xc 1 (t) .9.<str<strong>on</strong>g>1.</str<strong>on</strong>g> H-Galois extensi<strong>on</strong>. In order to understand better the situati<strong>on</strong> of the previousexample, we decide to c<strong>on</strong>sider a very particular case, the Schauenburg setting.Let H be a Hopf algebra and let A/k be a right H-Galois extensi<strong>on</strong>. Let us recallsome useful equalities related to the translati<strong>on</strong> mapγ := can −1 (1 A ⊗ −) : H → A ⊗ A : h → can −1 (1 A ⊗ h) =: h 1 ⊗ h 2 .For every h, l ∈ H, a ∈ A, we have(206)(207)h 1 ( h 2) 0 ⊗ ( h 2) 1= 1 A ⊗ hh 1 ⊗ ( h 2) 0 ⊗ ( h 2) 1= (h 1 ) 1 ⊗ (h 1 ) 2 ⊗ h 2


182(208)(209)(210)(211)(h1 ) 0 ⊗ h2 ⊗ ( h 1) 1= (h 2 ) 1 ⊗ (h 2 ) 2 ⊗ S (h 1 )h 1 h 2 = ε H (h) 1 A(hl) 1 ⊗ (hl) 2 = l 1 h 1 ⊗ h 2 l 2a 0 (a 1 ) 1 ⊗ (a 1 ) 2 = 1 A ⊗ a.9.5. The Schauenburg situati<strong>on</strong> is the particular case when T = A co(H) = k. Hencewe haveA = Mod-k,B = Mod-k where T = End eC (Σ) = A co(H) = k.A = − ⊗ k A : A = Mod-k −→ A = Mod-kC = − ⊗ k H : A = Mod-k −→ A = Mod-kB = − ⊗ k A = A : B = Mod-k −→ B = Mod-k where A = Hom A (A A , A A )Ψ = − ⊗ k ψ : AC = − ⊗ k H ⊗ k A −→ CA = − ⊗ k A ⊗ k H(ψ : H ⊗ k A → A ⊗ k H, h ⊗ k a ↦→ can C can−1C (1 A ⊗ k h) a )L = − ⊗ k A : Mod-k −→ Mod-A ∼ = A AW = Hom A (A, −) : Mod-A −→ Mod-k˜C = − ⊗ A A ⊗ k H ∼ = ⊗ k H : Mod-A −→ Mod-Al = eC ρ L : L = − ⊗ k A −→ ˜CL = − ⊗ k A ⊗ A A ⊗ k H ∼ = − ⊗ k A ⊗ k HLet us assume thatThen,k = commutative ringH = Hopf algebraA/k = faithfully flat H-Galois extensi<strong>on</strong> with ρ H A : A → A ⊗ HA co(H) = k1 Acan : A ⊗ A → A ⊗ H defined by setting can (a ⊗ b) = ab 0 ⊗ b 1γ : H → A ⊗ A defined by setting γ (h) := can −1 (1 A ⊗ h) = h 1 ⊗ h 2τ : A → A ⊗ A ⊗ Aa ↦→ a 0 ⊗ γ (a 1 ) = a 0 ⊗ a 1 1 ⊗ a 2 1is a pretorsor. We want to c<strong>on</strong>struct the com<strong>on</strong>ads C and D as in Theorem 6.5where A = B = Mod-k and P = Q = − ⊗ A. First, let us c<strong>on</strong>sider ω l = − ⊗ k ̂ωland ω r = − ⊗ k ̂ω r : − ⊗ A ⊗ A → − ⊗ A ⊗ A ⊗ A wherêω l = ( σ A ⊗ A ⊗ A ) ◦ (A ⊗ τ) : A ⊗ A → A ⊗ A ⊗ Âω l (a ⊗ b) = ab 0 ⊗ b 1 1 ⊗ b 2 1̂ω r = (u A ⊗ A ⊗ A) : A ⊗ A → A ⊗ A ⊗ Âω r (a ⊗ b) = 1 A ⊗ a ⊗ b.


Let ω = ω l −ω r and ̂ω = ̂ω l −̂ω r . First of all we want to prove that for any k-moduleX we haveKer (ωX) = Ker (X ⊗ ̂ω) = X ⊗ Ker (̂ω) .Since A is faithfully flat over k we equivalently prove thatNote thatA ⊗ Ker (̂ω)Ker (X ⊗ ̂ω ⊗ A) = X ⊗ Ker (̂ω) ⊗ A. A ⊗ A ⊗ AA⊗ b ω lA⊗c ω r A ⊗ A ⊗ A ⊗ Awith respect to the map m A ⊗ A ⊗ A is a c<strong>on</strong>tractible equalizer so that alsoKer (̂ω) A ⊗ Abω lcω r A ⊗ A ⊗ Ais a c<strong>on</strong>tractible equalizer (see the dual case of [BW, Propositi<strong>on</strong> 3.4 (c)]). Hence,by Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>20, ( it is preserved by any functor. Since(C, i) = Equ Fun ω l = − ⊗ ̂ω) l , ω r = − ⊗ ̂ω r we have that C = − ⊗ Ĉ where{∑Ĉ = a i ⊗ b i | ∑ ( ) ( aib i) ⊗ ( b i) 1⊗ ( b i) 2= 1 0 1 1 A ⊗ ∑ }a i ⊗ b i .Note that γ is a fork for ̂ω l and ̂ω r , in fact( ̂ωl ◦ γ)(h) = ̂ω ( l h 1 ⊗ h 2) = h 1 h 2 0 ⊗ ( )h 2 1 ( )1 ⊗ h2 2 (206)1 = 1 A ⊗ h 1 ⊗ h 2and(̂ω r ◦ γ ) (h) = ̂ω ( r h 1 ⊗ h 2) = 1 A ⊗ h 1 ⊗ h 2 .) ( )Since(Ĉ, î = Equ ̂ωl , ̂ω r , by the universal property of the equalizer, there existsa unique functorial morphism ϕ : H → Ĉ such that î ◦ ϕ = γ. In our case thismeans that Imγ ⊆ C and henceϕ : H → Ĉh ↦→ h 1 ⊗ h 2 .We want to prove that ϕ is an isomorphism. We computeLet us setand let us computeand[(A ⊗ ϕ) ◦ can] (a ⊗ b) = (A ⊗ ϕ) (ab 0 ⊗ b 1 ) = ab 0 ⊗ b 1 1 ⊗ b 2 <str<strong>on</strong>g>1.</str<strong>on</strong>g>ψ : A ⊗ C → A ⊗ Aa ⊗ b ⊗ d ↦→ ab ⊗ d[ψ ◦ (A ⊗ ϕ) ◦ can] (a ⊗ b) = ψ ( ab 0 ⊗ b 1 1 ⊗ b 2 1)= ab0 b 1 1 ⊗ b 2 1[(A ⊗ ϕ) ◦ can ◦ ψ] (a ⊗ b ⊗ d) = [(A ⊗ ϕ) ◦ can] (ab ⊗ d)(211)= a ⊗ b183


184= abd 0 ⊗ d 1 1 ⊗ d 2 1b⊗d∈C= a ⊗ b ⊗ d.Therefore, A ⊗ ϕ is an isomorphism and since A/k is faithfully flat, also ϕ is anisomorphism, i.e. Ĉ ∼ = H.Now we want to compute the com<strong>on</strong>ad D. We haveθ l = ( A ⊗ A ⊗ σ B) ◦ (τ ⊗ A) : A ⊗ A → A ⊗ A ⊗ Aθ l (a ⊗ b) = a 0 ⊗ a 1 1 ⊗ a 2 1bθ r = A ⊗ A ⊗ u B : A ⊗ A → A ⊗ A ⊗ Aθ r (a ⊗ b) = a ⊗ b ⊗ 1 A .((Since (D, j) = Equ ) )Fun A ⊗ A ⊗ σB◦ (τ ⊗ A) , A ⊗ A ⊗ u B , we have{∑D = a i ⊗ b i | ∑ ( ) ai ⊗ ( a i) 1⊗ ( a i) 20 1 1 bi = ∑ }a i ⊗ b i ⊗ 1 A .By applying A ⊗ can to θ l and θ r , for every ∑ a i ⊗ b i ∈ D, we get that[ ] ( ∑ )(∑ ((A ⊗ can) ◦ θl a i ⊗ b i = (A ⊗ can)) ai ⊗ ( a i) 1⊗ ( a i) )20 1 1 bi= ∑ ( ) ai ⊗ ( a i) (1 (a ) (i 2 (a0 1 1)0 bi i⊗) 21)1bi= ∑ ( ) ai ⊗ ( a i) (1 (a ) )i 2 ( ) (0 1 1 bi (a ⊗ ) )i 2 ( )00 1 bi11(206)= ∑ ( ) ai ⊗ ( b i) ⊗ ( a i) ( ) (∑ )0 0 1 bi = 1 ρH A⊗A a i ⊗ b iand(∑ )[(A ⊗ can) ◦ θ r ] a i ⊗ b i(∑ )= (A ⊗ can) a i ⊗ b i ⊗ 1 A = ∑ a i ⊗ b i ⊗ 1 H .Since (A ⊗ can) is an isomorphism, we get D = Equ ( ρ H A⊗A , A ⊗ A ⊗ u H)= (A ⊗ A) co(H) .By Theorem 6.5, ∆ D and ε D are uniquely determined by(P τ) ◦ j = (jj) ◦ ∆ D and σ B ◦ j = u B ◦ ε D .Let ∑ a i ⊗ b i ∈ D = (A ⊗ A) co(H) . Then we have(∑ ) (∑ )(jj) ◦ ∆ D a i ⊗ b i = [(τ ⊗ A) ◦ j] a i ⊗ b iand also(uA ◦ ε D) ( ∑a i ⊗ b i )= ∑ (ai ) 0 ⊗ ( a i) 11 ⊗ ( a i) 21 ⊗ bi(∑ )= (τ ⊗ A) a i ⊗ b i(∑ )= (m A ◦ j) a i ⊗ b i = ∑ a i · b iSince ∑ a i ⊗ b i ∈ (A ⊗ A) co(H) , we have∑ ( ) ai ⊗ ( b i) ⊗ ( a i) ( )0 0 1 bi = ∑ a i ⊗ b i ⊗ 11 Hso that, by applying m A ⊗ H, since A is an H-comodule algebra, we get∑ (a i b i) ⊗ ( a i b i) = ∑ ( ) ( )0 1 ai0 bi ⊗ ( a i) ( )0 1 bi = ∑ a i · b i ⊗ 11 H


so that (θ l P ) ◦ (P i) : H ⊗ A → A ⊗ A ⊗ A∑i.e. ai · b i ∈ A co(H) = k1 A∼ = k. Note that from mA ◦ (A ⊗ u A ) ◦ (r A ) −1 = Id Awe get that A ⊗ u A is a m<strong>on</strong>omorphism and hence, since A is faithfully flat overk, also u A is a m<strong>on</strong>omorphism. We denote by ν = u |k1 AA: k → k1 A the obviousisomorphism. Thus from(uA ◦ ε D) ( ∑ )a i ⊗ b i = ∑ a i · b i185we getLet us computei.e.ε D (∑a i ⊗ b i )= v −1 (∑ai · b i ).θ l P = A ⊗ θ l : a ⊗ b ⊗ c ↦→ a ⊗ b 0 ⊗ b 1 1 ⊗ b 2 1cθ r P = A ⊗ θ r : a ⊗ b ⊗ c ↦→ a ⊗ b ⊗ c ⊗ 1 AA ⊗ θ l : A ⊗ A ⊗ AP i : C ⊗ A → A ⊗ A ⊗ Ah ⊗ a ↦→ h 1 ⊗ h 2 ⊗ ah ⊗ a ↦→ h 1 ⊗ ( h 2) ⊗ ( h 2) 1h 2) 20 1 1 h1 1 ⊗ h 2 1 ⊗ h 1 2 ⊗ h 2 2a(θ r P ) ◦ (P i) : H ⊗ A → A ⊗ A ⊗ Ah ⊗ a ↦→ h 1 ⊗ h 2 ⊗ a ⊗ 1 A .Recall that H ⊆ C ⊆ A ⊗ A. Such Q = (C ⊗ A) ∩ [A ⊗ D] ∼[= ” (H ⊗ A) ∩A ⊗ (A ⊗ A) co(H)] ”. Note that, assuming that A preserves equalizers, forevery h ⊗ a ∈ H ⊗ A, i.e. h 1 ⊗ h 2 ⊗ a ∈ C ⊗ A, h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) ifand <strong>on</strong>ly if h 1 ⊗ h 2 ⊗ a ∈ Equ ( A ⊗ ρ H A⊗A , A ⊗ A ⊗ A ⊗ u H)whereEqu ( )A ⊗ ρ H A⊗A, A ⊗ A ⊗ A ⊗ u H= Equ ( (A ⊗ A ⊗ A ⊗ m H ) ◦ (A ⊗ A ⊗ f ⊗ H) ◦ ( ) )A ⊗ ρ H A ⊗ ρ H A , A ⊗ A ⊗ A ⊗ uH= {a ⊗ b ⊗ c | a ⊗ b 0 ⊗ c 0 ⊗ b 1 c 1 = a ⊗ b ⊗ c ⊗ 1 H }so that h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) = Equ ( A ⊗ ρ H A⊗A , A ⊗ A ⊗ A ⊗ u H)if and<strong>on</strong>ly ifh 1 ⊗ ( h 2) 0 ⊗ a 0 ⊗ ( h 2) 1 a 1 = h 1 ⊗ h 2 ⊗ a ⊗ 1 H .Let us prove that Q = (H ⊗ A) co(H) . Now,(H ⊗ A) co(H) = {h ⊗ a | h 1 ⊗ a 0 ⊗ h 2 a 1 = h ⊗ a ⊗ 1 H }where h ∈ H, h ϕ↦→ h 1 ⊗ h 2 ∈ C.1) Let h ⊗ a ∈ (H ⊗ A) co(H) and let us prove that h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) .Since h ⊗ a ∈ (H ⊗ A) co(H) , we computeh 1 ⊗ ( h 2) 0 ⊗ a 0 ⊗ ( h 2) 1 a 1(207)= (h 1 ) 1 ⊗ (h 1 ) 2 ⊗ a 0 ⊗ h 2 a 1 = h 1 ⊗ h 2 ⊗ a ⊗ 1 H


186so that h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) .2) Now, let h 1 ⊗ h 2 ⊗ a ∈ A ⊗ (A ⊗ A) co(H) , i.e. h 1 ⊗ (h 2 ) 0⊗ a 0 ⊗ (h 2 ) 1a 1 =h 1 ⊗ h 2 ⊗ a ⊗ 1 H or equivalently (h 1 ) 1 ⊗ (h 1 ) 2 ⊗ a 0 ⊗ h 2 a 1 = h 1 ⊗ h 2 ⊗ a ⊗ 1 H . Byapplying to this equality the map can ⊗ A we obtain1 A ⊗ h 1 ⊗ a 0 ⊗ h 2 a 1 = (can ⊗ A) ( (h 1 ) 1 ⊗ (h 1 ) 2 )⊗ a 0 ⊗ h 2 a 1= (can ⊗ A) ( h 1 ⊗ h 2 ⊗ a ⊗ 1 H)= 1A ⊗ h ⊗ a ⊗ 1 Hand henceh 1 ⊗ 1 A a 0 ⊗ h 2 a 1 = h ⊗ 1 A a ⊗ 1 Hso that h 1 ⊗ h 2 ⊗ a ∈ (H ⊗ A) co(H) . Therefore we proved that[(ϕ ⊗ A) (H ⊗ A) ∩ A ⊗ (A ⊗ A) co(H)] [= (ϕ ⊗ A) (H ⊗ A) co(H)] .We can take( ) ()Q, q = (H ⊗ A) co(H) , (ϕ ⊗ A) |(H⊗A)co(H) .By Theorem 7.5, using i ◦ ϕ = γ, we have thatχ := m A ◦ (A ⊗ m A ) ◦ (m A ⊗ A ⊗ A) ◦ (A ⊗ A ⊗ A ⊗ m A )()◦ (A ⊗ i ⊗ A ⊗ A) ◦ A ⊗ (ϕ ⊗ A) |(H⊗A)co(H) ⊗ Aχ : A ⊗ (H ⊗ A) co(H) ⊗ A → Aa ⊗ h ⊗ b ⊗ c ↦→ a ⊗ h 1 ⊗ h 2 ⊗ b ⊗ c ↦→ ( ah 1) ( h 2 (bc) ) = a ( h 1 h 2) (bc) (209)= abcε H (h)is a coherd in X = (H, (A ⊗ A) co(H) , (H ⊗ A) co(H) , A, δ H , δ D ) where δ H(H ⊗ A) co(H) ⊗ A is uniquely determined by[](ϕ ⊗ A) |(H⊗A)co(H) ⊗ A ◦ δ H = (H ⊗ i) ◦ ∆ H .: H →Since (C, i) = Equ Fun(ω l , ω r) , by the universal property of the equalizer, there existsa unique functorial morphism ϕ : H → C such that i◦ϕ = γ. In our case this meansthat Imγ ⊆ C and henceϕ : H → Ch ↦→ h 1 ⊗ h 2 .For every h ∈ H, we have([] )(ϕ ⊗ A) |(H⊗A)co(H) ⊗ A ◦ δ C = [ (C ⊗ i) ◦ ∆ C] = (C ⊗ i) ◦ (ϕ ⊗ ϕ) ◦ ∆ H ◦ ϕ −1= (ϕ ⊗ i ◦ ϕ) ◦ ∆ H ◦ ϕ −1 = (ϕ ⊗ γ) ◦ ∆ H ◦ ϕ −1and hence[](ϕ ⊗ A) |(H⊗A)co(H) ⊗ A ◦ δ C ◦ ϕ = (ϕ ⊗ γ) ◦ ∆ H = (ϕ ⊗ A ⊗ A) ◦ (H ⊗ γ) ◦ ∆ Hso that(ϕ −1 ⊗ A ⊗ A ) []◦ (ϕ ⊗ A) |(H⊗A)co(H) ⊗ A ◦ δ C ◦ ϕ= ( ϕ −1 ⊗ A ⊗ A ) ◦ (ϕ ⊗ A ⊗ A) ◦ (H ⊗ γ) ◦ ∆ H


187Now(ϕ ⊗ A) |(H⊗A)co(H) = (ϕ ⊗ A) ◦ i (H⊗A)co(H)where i (H⊗A)co(H) : (H ⊗ A) co(H) → H ⊗ A is the can<strong>on</strong>ical inclusi<strong>on</strong> and hence weget(ϕ −1 ⊗ A ⊗ A ) []◦ [(ϕ ⊗ A) ⊗ A] ◦ i (H⊗A)co(H) ⊗ A ◦ δ C ◦ ϕ= ( ϕ −1 ⊗ A ⊗ A ) ◦ (ϕ ⊗ A ⊗ A) ◦ (H ⊗ γ) ◦ ∆ Hi.e. []i (H⊗A)co(H) ⊗ A ◦ δ C ◦ ϕ = (H ⊗ γ) ◦ ∆ H .Now we have[() ] (hi (H⊗A)co(H) ⊗ A ◦ δ 1 C ⊗ h 2) [() ]= i (H⊗A)co(H) ⊗ A ◦ δ C ◦ ϕ (h)= ( (H ⊗ γ) ◦ ∆ H) (h) = h 1 ⊗ h 1 2 ⊗ h 2 2i.e. (i (H⊗A)co(H) ⊗ A) (δC (h 1 ⊗ h 2)) = h 1 ⊗ h 1 2 ⊗ h 2 2Let us compute δ D : D → QQ = ⊗A⊗(H ⊗ A) co(H) following Propositi<strong>on</strong> 7.2 whichneeds to satisfy(κ ′ 0Q) ◦ δ D = (Dj) ◦ ∆ D .In our case this meanswhereand(jP Q) ◦ (κ ′ 0Q) ◦ δ D = (jP Q) ◦ (Dj) ◦ ∆ D = (jj) ◦ ∆ D = (τ ⊗ A)κ ′ 0 (h ⊗ a) = h 1 ⊗ h 2 ⊗ a(jj) ◦ ∆ D (a ⊗ b) = [(τ ⊗ A) ◦ j] (a ⊗ b) = (τ ⊗ A) (a ⊗ b) = a 0 ⊗ a 1 1 ⊗ a 2 1 ⊗ b.so thatδ D(∑a i ⊗ b i )= ∑ (ai ) 0 ⊗ ( a i) 1 ⊗ bi .In this more specific situati<strong>on</strong> we could compute both the com<strong>on</strong>ads C and D andthe functor Q so that we obtained a coherd. We now would like to compute them<strong>on</strong>ads corresp<strong>on</strong>ding to the coherd following Theorem 6.29. But the computati<strong>on</strong>sare not straightforward and it is not clear what these new m<strong>on</strong>ads are.9.<str<strong>on</strong>g>2.</str<strong>on</strong>g> H-Galois coextensi<strong>on</strong>. This is the most clear example of a coherd that wecould give. It gives also a descripti<strong>on</strong> of the dual case of the Morita-Takeuchiequivalence studied by Schauenburg in [Scha4]. In fact we could understand theequivalence between the module categories over the two m<strong>on</strong>ads c<strong>on</strong>structed fromthe coherd.Let H = ( H, m H , u H , ∆ H , ε H , S ) be a Hopf algebra and let L ⊆ H be a rightcoideal subalgebra i.e. ∆ H (L) ⊆ L ⊗ H. We can c<strong>on</strong>sider ε H : H → k as acharacter so that)J = J ε H =〈(hy) (1)ε((hy) H (2)− h (1) ε ( H h (2) y ) 〉| h ∈ H, y ∈ L


188= 〈( h (1) y (1))εH ( h (2) y (2))− h(1) ε H ( h (2))ε H (y) | h ∈ H, y ∈ L 〉= 〈 h (1) y (1) ε H ( h (2))εH ( y (2))− h(1) ε H ( h (2))ε H (y) | h ∈ H, y ∈ L 〉= 〈 hy − hε H (y) | h ∈ H, y ∈ L 〉 = 〈 hy ′ | h ∈ H, y ′ ∈ L +〉 = HL +where we denote L + = L ∩ Ker ( ε H) . Let us prove that such J is a coideal of H (seealso [BrHaj, Lemma 3.2]). In fact, since ∆ H (y) = y (1) ⊗ y (2) ∈ L ⊗ H we have∆ H ( hy − hε H (y) ) = h (1) y (1) ⊗ h (2) y (2) − h (1) ⊗ h (2) ε H (y)= h (1)(y(1) − ε H ( y (1)))⊗ h(2) y (2) + h (1) ε H ( y (1))⊗ h(2) y (2) − h (1) ⊗ h (2) ε H (y)= h (1)(y(1) − ε H ( y (1)))⊗ h(2) y (2) + h (1) ⊗ h (2) ε H ( y (1))y(2) − h (1) ⊗ h (2) ε H (y)= h (1)(y(1) − ε H ( y (1)))⊗ h(2) y (2) + h (1) ⊗ h (2)(y − ε H (y) ) ∈ HL + ⊗ H + H ⊗ HL +and obviouslyε H ( hy − hε H (y) ) = ε H (h) ε H (y) − ε H (h) ε H (y) = 0.Then we can c<strong>on</strong>struct the coalgebra C := H/J = H/HL + and we can c<strong>on</strong>siderthe can<strong>on</strong>ical projecti<strong>on</strong> π : H → C = H/J which is a coalgebra map and a leftH-linear map. We can defineC ρ H := (π ⊗ H) ◦ ∆ H : H → C ⊗ H and ρ C H := (H ⊗ π) ◦ ∆H : H → H ⊗ Ch ↦→ π ( h (1))⊗ h(2) h ↦→ h (1) ⊗ π ( h (2))so that H is a C-bicomodule. Note that C ρ H : H → C□ C H in fact, using that π isa coalgebra map, the coassociativity and the naturality of ∆ H , we compute(∆ C ⊗ H ) ◦ C ρ H = ( ∆ C ⊗ H ) ◦ (π ⊗ H) ◦ ∆ H = (π ⊗ π ⊗ H) ◦ ( ∆ H ⊗ H ) ◦ ∆ H= (π ⊗ π ⊗ H) ◦ ( H ⊗ ∆ H) ◦ ∆ H = (C ⊗ π ⊗ H) ◦ (π ⊗ H ⊗ H) ◦ ( H ⊗ ∆ H) ◦ ∆ H= (C ⊗ π ⊗ H) ◦ ( C ⊗ ∆ H) ◦ (π ⊗ H) ◦ ∆ H = ( C ⊗ C ρ H)◦ C ρ H .Similarly, we also have that ρ C H : H → H□ CC in fact, using that π is a coalgebramap, the coassociativity and naturality of ∆ H , we have(H ⊗ ∆C ) ◦ ρ C H = ( H ⊗ ∆ C) ◦ (H ⊗ π) ◦ ∆ H = ( H ⊗ ∆ C ◦ π ) ◦ ∆ H= ( H ⊗ (π ⊗ π) ◦ ∆ H) ◦ ∆ H = (H ⊗ π ⊗ π) ◦ ( H ⊗ ∆ H) ◦ ∆ H= (H ⊗ π ⊗ π) ◦ ( ∆ H ⊗ H ) ◦ ∆ H = (H ⊗ π ⊗ C) ◦ (H ⊗ H ⊗ π) ◦ ( ∆ H ⊗ H ) ◦ ∆ HNow, the map= (H ⊗ π ⊗ C) ◦ ( ∆ H ⊗ C ) ◦ (H ⊗ π) ◦ ∆ H = ( ρ C H ⊗ C ) ◦ ρ C H.∆ H : H → H□ C Hh ↦→ h (1) ⊗ h (2)))is well defined. In fact h (1)(1) ⊗π(h (1)(2) ⊗h (2) = h (1) ⊗π(h (2)(1) ⊗h (2)(2) . Moreover,the map π : H → C is a counit for H, in fact[(π□C H) ◦ ∆ H] (h) = π ( )h (1) ⊗ h(2) = C ρ H (h) ≃ h[(H□C π) ◦ ∆ H] (h) = h (1) ⊗ π ( )h (2) = ρCH (h) ≃ h


189[(ε C ⊗ H ) ◦ (π ⊗ H) ◦ ∆ H] (h) = ( ε C π ) ( h (1))⊗ h(2) = ε H ( h (1))⊗ h(2) ≃ h[(H ⊗ εC ) ◦ (H ⊗ π) ◦ ∆ H] (h) = h (1) ⊗ ( ε C π ) ( h (2))= h(1) ⊗ ε H ( h (2))≃ hso that H is a C-coring. Moreover, H has a right L-module structurewhich is left C-colinear i.e.µ L H : H ⊗ L → Hh ⊗ b ↦→ m H (h ⊗ b) = hb(212) π ( h (1) b (1))⊗ h(2) b (2) = π (h 1 ) ⊗ h (2) b(see [BrHaj, Lemma 3.3]), so that [( H ⊗ µ L H)◦(∆ H ⊗ L )] (H ⊗ L) ⊆ H□ C H.Assume that H is a right L-Galois coextensi<strong>on</strong> over C, that iscocan = ( H ⊗ µ L H)◦(∆ H ⊗ L ) : H ⊗ L → H□ C Hh ⊗ b ↦→ h (1) ⊗ h (2) bis an isomorphism and assume also that H is flat over k. In particular, if H L isfaithfully flat, we know that co(C) H = L (see [Schn2, Lemma <str<strong>on</strong>g>1.</str<strong>on</strong>g>3 (2)] and [BrWi,34.2 p. 343]) where we denoteco(C) H = { h ∈ H | C ρ H (h) = π (1 H ) ⊗ h } .In this case, we can also define the inverse of the cocan<strong>on</strong>ical map, i.e.cocan −1 : H□ C H → H ⊗ L∑h i ⊗ g i ↦→ ∑ h i (1) ⊗ S ( )h i (2) g i .For every ∑ h i ⊗g i ∈ H□ C H, we have ∑ )h i (1)(h ⊗π i (2)⊗g i = ∑ ( )h i ⊗π g(1)i ⊗g(2) i .By means of the left H-linearity of π and of this equality we have∑hi(1) ⊗ π ( S ( ) ) ( )h i (3) gi(1) ⊗ S hi(2) gi(2) = ∑ h i (1) ⊗ S ( ) ( ) ( )h i (3) π gi(1) ⊗ S hi(2) gi(2)= ∑ h i (1) ⊗ S ( ( ) ( )h(3)) i π hi(4) ⊗ S hi(2) g i = ∑ h i (1) ⊗ π ( S ( ) ) ( )h i (3) hi(4) ⊗ S hi(2) gi= ∑ h i (1) ⊗ π (1 H ) ⊗ S ( )h i (2) giso that∑hi(1) ⊗ S ( )h i (2) g i ∈ Ker ( H ⊗ [C ρ H − π (1 H ) ⊗ (−) ]) = H ⊗ co(C) H = H ⊗ Lwhere in the first equality we have used that H is flat over k. Therefore cocan −1 isa well-defined map. Note that, by applying ε H ⊗ L to this element, we also deducethat, for every ∑ h i ⊗ g i ∈ H□ C H, we have(213)∑S(hi ) g i ∈ L.Now, let k be a commutative ring, let H be a k-Hopf algebra and letL ⊆ H be a right coideal subalgebra. Assume that H is a right L-Galoiscoextensi<strong>on</strong> over the coalgebra C = H/HL + , assume that H L is faithfullyflat, so that co(C) H = L, assume that H k is faithfully flat and assume that


190H C is faithfully coflat. Assume also C H coflat. Then we can c<strong>on</strong>sider thefollowing formal codual structure X = (C, D, Q, P, δ C , δ D ) whereA = Mod-kB = Comod-CC = ( − ⊗ H, − ⊗ ∆ H , − ⊗ ε H) : A = Mod-k −→ A = Mod-k(D = −□ C H, −□ C ∆ H , −□ C ε C H C) : B = Comod-C −→ B = Comod-CQ = −□ C H : B = Comod-C → A = Mod-kP = − ⊗ H C : A = Mod-k → B = Comod-Cδ C : = − ⊗ ∆ H : C = − ⊗ H → QP = − ⊗ H□ C Hδ D : = −□ C ∆ H : D = −□ C H → P Q = −□ C H ⊗ H.Now, for every ∑ ∑i j ki,j ⊗ h i,j ⊗ g i ∈ (H ⊗ H) □ C H, we have that∑ ∑( )(214)i j ki,j ⊗ h i,j(1) ⊗ π h i,j(2)⊗ g i = ∑ ∑i j ki,j ⊗ h i,j ⊗ π ( )g(1)i ⊗ gi(2) .We want to prove that ∑ ∑i j ki,j ⊗ S (h i,j ) g i ∈ H ⊗ L. We compute, using the leftH-linearity of π and (214)∑ ∑ (i j ki,j ⊗ π S ( h i,j) )(1) gi (1) ⊗ S ( h i,j) (2) gi (2)= ∑ ∑ ( )i j ki,j ⊗ S h i,j(2)π ( ) )g(1)i ⊗ S(h i,j(1)g(2)i= ∑ ∑ ( ) ( ) ( )i j ki,j ⊗ S h i,j(2)π h i,j(3)⊗ S h i,j(1)g i= ∑ ∑ ( ( ) ) ( )i j ki,j ⊗ π S h i,j(2)h i,j(3)⊗ S h i,j(1)g i= ∑ ∑i j ki,j ⊗ π (1 H ) ⊗ S ( h i,j) g iso that we get∑ ∑ij ki,j ⊗πwhich means∑ ∑i(S ( h i,j) )(1) gi (1) ⊗S ( h i,j) (2) gi (2) = ∑ ∑i j ki,j ⊗π (1 H )⊗S ( h i,j) g ij ki,j ⊗ S ( h i,j) g i ∈ Ker ( H ⊗ [C ρ H − π (1 H ) ⊗ (−) ]) = H ⊗ co(C) H = H ⊗ Li.e.∑ ∑(215)i j ki,j ⊗ S ( h i,j) g i ∈ H ⊗ L.Similarly, for every ∑ ∑i j li,j ⊗ h i,j ⊗ g i ∈ (L ⊗ H) □ C H, we have that∑ ∑i j li,j ⊗ S ( h i,j) g i ∈ Ker ( L ⊗ [C ρ H − π (1 H ) ⊗ (−) ]) = L ⊗ co(C) H = L ⊗ Li.e.(216)∑i∑j li,j ⊗ S ( h i,j) g i ∈ L ⊗ L


so that, since L is a subalgebra of H we get that, for every ∑ ∑i j li,j ⊗ h i,j ⊗ g i ∈(L ⊗ H) □ C H,∑ ∑(217)i j li,j S ( h i,j) g i ∈ L.Let us c<strong>on</strong>sider the following mapi∑i∑̂χ : (H ⊗ H) □ C H → H∑j ki,j ⊗ h i,j ⊗ g i ↦→ ∑ ij ki,j S ( h i,j) g iwhich is left C-colinear. In fact, in view of (215), we have that ∑ iS (h i,j ) g i ∈ H ⊗ L and by (212), we get that∑ ( ∑j π [ (k ) i,j(1) S hi,jg i] [ ((1))⊗k ) i,j(2) S hi,jg i] = ∑ (k(2) i∑j π i,j(1)Therefore, we can define the coherd χ = −□ C ̂χ given byχ : QP Q = −□ C H ⊗ H□ C H → Q = −□ C H∑∑ ∑−□ Ci∑j ki,j ⊗ h i,j ⊗ g i ↦→ −□ Ci j ki,j S ( h i,j) g i .Let us prove the properties of χ. We have[χ ◦ (QP χ)](−□ C k ⊗ ∑ )h i ⊗ g i ⊗ l j ⊗ n j= [χ ◦ (χ ⊗ H□ C H)](−□ C k ⊗ ∑ )h i ⊗ g i ⊗ l j ⊗ n j∑ (= χ(−□ ) ) ∑ ( (C kS hig i ⊗ l j ⊗ n j = −□ ) C kS hig i) S ( l j) n jand[χ ◦ (χP Q)](−□ C k ⊗ ∑ )h i ⊗ g i ⊗ l j ⊗ n j= [χ ◦ (−□ C H ⊗ H□ C χ)](k ⊗ ∑ )h i ⊗ g i ⊗ l j ⊗ n j= χ(k ⊗ ∑ h i ⊗ g i S ( l j) ) ∑ (n j = −□ ) ( C kS hig i S ( l j) n j)191∑j ki,j ⊗)⊗k i,j(2) S ( h i,j) g i .so that χ is coassociative. Moreover, we have[χ ◦ (δ C Q)] (k ⊗ h) = [χ ◦ (−□ C H ⊗ δ C )] (−□ C k ⊗ h) = χ ( −□ C k ⊗ h (1) ⊗ h (2))and= −□ C kS ( h (1))h(2) = kε H (h) = ( −□ C H ⊗ ε H) (k ⊗ h) = ( ε C Q ) (k ⊗ h)∑ )[χ ◦ (Qδ D )](−□ C k i ⊗ h i∑ )= [χ ◦ (δ D □ C H)](−□ C k i ⊗ h i)hi∑ ) ∑= χ(−□ C ki(1) ⊗ k(2) i ⊗ h i = −□ C ki(1) S ( k(2)i= ∑ ε H ( k i) 1 H h i = ∑ ε H ( k i) h i = −□ C∑ (ε C ◦ π ) ( k i) h i∑= −□ ( C εCπ ( k i)) ∑ (h i ≃ −□ ) C π ki□ C h i∑ (= −□ ) ( ) ∑ )C ε C H C ki□ C h i = ε C H C □ C H(−□ C k i ⊗ h i


192=(Qε C H C) ( ∑ )−□ C k i ⊗ h iso that the counitality c<strong>on</strong>diti<strong>on</strong>s are also satisfied, i.e. χ is really a coherd. SinceH k is faithfully flat, we have that ( k, ε H) (= Coequ Mod-k H ⊗ ε H , ε H ⊗ H ) and sinceH C is faithfully coflat, by [Schn1, Propositi<strong>on</strong> <str<strong>on</strong>g>1.</str<strong>on</strong>g>1], we also have that(C, π) =(C, ε C H C) ()= Coequ Comod-C H□ C ε C H C , ε C H C □ C H= Coequ Comod-C (H□ C π, π□ C H)so that X is a regular formal codual structure and thus χ is a regular coherd. FollowingTheorem 6.29, we calculate the m<strong>on</strong>ad(A, x) = Coequ Fun(w l , w r)where w l = (χP ) ◦ (QP δ C ) and w r = QP ε C : QP C → QP . In our caseand− ⊗ ∑ i− ⊗ ∑ i∑∑w l : − ⊗ H ⊗ H□ C H → − ⊗ H□ C H∑j ki,j ⊗ ∑ h i,j ⊗ g i ↦→ − ⊗ ∑ iw r : − ⊗ H ⊗ H□ C H → − ⊗ H□ C H∑j ki,j ⊗ ∑ h i,j ⊗ g i ↦→ − ⊗ ∑ ij ki,j (1) ⊗ ki,j (2) S ( h i , j ) g ij εH ( k i,j) h i,j ⊗ g i .Assume now that k is a field, so that everything is flat over k. Hence, for everyX ∈ Mod-kand thusAX ==X ⊗ H□ C HIm (X ⊗ w l − X ⊗ w r ) = X ⊗ H□ C HIm (X ⊗ (w l − w r ))X ⊗ H□ C HX ⊗ Im (w l − w r ) = X ⊗ H□ CHIm (w l − w r )A = − ⊗ H□ CH〈 ∑where I w =i∑j ki,j (1) ⊗ ki,j (2) S (hi , j) g i − ∑ 〉i∑j εH (k i,j ) h i,j ⊗ g i . In the sequel,given elements ∑ i hi ⊗ g i ∈ H□ C H, we will use the notati<strong>on</strong>][∑i hi ⊗ g i = ∑ i hi ⊗ g i + I w .AWe will prove that this new m<strong>on</strong>ad A <strong>on</strong> the category Mod-k is isomorphic to them<strong>on</strong>ad coming from the algebra L. C<strong>on</strong>sider the following mapI wϕ : H□ CH−→ LI] w[∑i hi ⊗ g i ↦→ ∑ S ( h i) g iiA


which is well-defined by (213), i.e. ∑ S (h i ) g i ∈ L. Note that, since L = co(C) H, forevery b ∈ L, we haveThe inverse of this map is given by1 H ⊗ π (1 H ) ⊗ b = 1 H ⊗ ∑ π (b 1 ) ⊗ b 2 .ϕ −1 : L −→ H□ CHI wb ↦→ [1 H ⊗ b] A.In fact we have (ϕ −1 ◦ ϕ) ( [ ∑ i hi ⊗ g i ] A)= ϕ −1 ( ∑ i S (hi ) g i ) = [1 H ⊗ ∑ i S (hi ) g i ] A=[ ∑ i hi ⊗ g i ] Aby definiti<strong>on</strong> of I w and (ϕ ◦ ϕ −1 ) (b) = ϕ ([1 H ⊗ b] A) = S (1 H ) b = band thus ϕ is bijective so thatA = − ⊗ H□ CH≃ − ⊗ L : Mod-k → Mod-k.I wThe functorial morphisms m A and u A of the m<strong>on</strong>ad A are uniquely determined byx ◦ (χP ) = m A ◦ (xx) and x ◦ δ C = u A ◦ ε Cwhere x : H□ C H → H□ CHI wdenotes the can<strong>on</strong>ical projecti<strong>on</strong>. In our case we have( [ ]] )m H□ C HIw∑i hi ⊗ g i ⊗A[∑j kj ⊗ l j =A[∑i,j hi ⊗ g i S ( k j) ]l j A=[∑i,j 1 H ⊗ S ( h i) g i S ( k j) ] (∑l j = ϕ −1 S ( h i) g i S ( k j) )l jAi,j( (∑= ϕ −1 m L S ( h i) g i ⊗ ∑ S ( k j) ))l ji j= ( ϕ −1 ◦ m L ◦ (ϕ ⊗ ϕ) ) ( [∑]i hi ⊗ g]Ai ⊗[∑j kj ⊗ l jfrom which we deduce thatMoreoverso thatu H□ C HIwu H□ C HIwϕ ◦ m H□ C HIw= m L ◦ (ϕ ⊗ ϕ) .(ε H (h) ) = (x ◦ δ C ) (h) = [ h (1) ⊗ h (2)]((1 k ) = u H□ C H ε H (1 H ) ) = (x ◦ δ C ) (1 H ) = [ ]1 H(1) ⊗ 1 H(2) = [1 A H ⊗ 1 H ] AIw= [1 H ⊗ 1 L ] A= ϕ −1 (1 L ) = ( )ϕ −1 ◦ u L (1k )from which we deduce thatϕ ◦ u H□ C H = u L .IwThe two relati<strong>on</strong>s obtained say that ϕ : H□ CH−→ L is an algebra isomorphism sothatA = − ⊗ H□ CHI wI w≃ − ⊗ L as m<strong>on</strong>ads.AA)193


194Following Theorem 6.29, we now calculate the m<strong>on</strong>ad(E, y) = Coequ Fun(z l , z r)where z l = (P χ) ◦ (δ D P Q) and z r = ε D P Q : DP Q → P Q. In our case, let usc<strong>on</strong>sider∑ii∑ẑ l : (H ⊗ H) □ C H −→ H ⊗ H∑j ki,j ⊗ h i,j ⊗ g i ↦→ ∑ ij ki,j S ( h i,j) g i (1) ⊗ g i (2)and let us prove that ẑl it is left C-colinear. By (215) we have that ∑ iS (h i,j ) g i ∈ H ⊗ L so that, in view of (212), we have∑ ( ∑j π [ (k ) ) [ ( i,j(1) S hi,jg(1)]i ⊗ k ) ]i,j(2) S hi,jg(1)iHenceand= ∑ i∑j π (k i,j(1))(1)⊗ k i,j(2) S ( h i,j) g i (1) ⊗ g i (2).z l : −□ C H ⊗ H□ C H −→ −□ C H ⊗ H∑∑ ∑−□ C∑j ki,j ⊗ h i,j ⊗ g i ↦→ −□ Cii(2) ⊗ gi (3)j ki,j S ( h i,j) g i (1) ⊗ g i (2)z r : −□ C H ⊗ H□ C H −→ −□ C H ⊗ H∑∑−□ C∑j ki,j ⊗ h i,j ⊗ g i ↦→ −□ C∑j ki,j ⊗ h i,j ε ( H g i)iare well-defined. For every ( X, ρ C X)∈ Comod-C we haveso thatwhereI X□C z =E ( X, ρ C X)=X□ C H ⊗ HIm (X□ C z l − X□ C z r ) =E ( X, ρ C X)=X□ C H ⊗ HI X□C ziX□ C H ⊗ HIm (X□ C (z l − z r ))〈 ∑i,j xj ⊗ k j S (h i ) g i (1) ⊗ gi (2) − ∑ i,j xj ⊗ k j ⊗ h i ε H (g i )| ∑ j xj ⊗ k j , ∑ i hi ⊗ g i ∈ H□ C H∑j ki,j ⊗Recall (see [BrHaj, Theorem 3.5]) that, associated to the cocan<strong>on</strong>ical map, we havea unique can<strong>on</strong>ical entwining structure given byψ = (̂τ ⊗ H) ◦ ( H ⊗ ∆ H) ◦ cocan : H ⊗ L −→ L ⊗ Hh ⊗ y ↦→ y (1) ⊗ hy (2)where ̂τ = ( ε H ⊗ L ) ◦cocan −1 : H□ C H −→ L is the cotranslati<strong>on</strong> map. Since cocanis an isomorphism, in order to understand better the m<strong>on</strong>ad E we first composewith the isomorphism H ⊗ cocan and we compute for every h, g ∈ H, y ∈ L,(z l ◦ (H ⊗ cocan) ) (h ⊗ g ⊗ y) = hy (1) ⊗ gy (2) and (z r ◦ (H ⊗ cocan)) (h ⊗ g ⊗ y) =〉.h ⊗ gε H (y). Leti : (H ⊗ H) L + → (H ⊗ H)


denote the can<strong>on</strong>ical inclusi<strong>on</strong>. Then i is a left C-comodule map, in fact, for every∑i (h i ⊗ g i ) ( l i − ε H (l i ) ) = ∑ i h il i(1) ⊗ g i l i(2) − h i ⊗ g i ε H (l i ) ∈ (H ⊗ H) L + , since∆ H (l i ) = l i(1) ⊗ l i(2) ∈ L ⊗ H, we have∑i π ( h i(1) l i(1))⊗ hi(2) l i(2) ⊗ g i l i(3) − π ( h i(1))⊗ hi(2) ⊗ g i ε H (l i )= ∑ i π ( h i(1))⊗ hi(2) l i(1) ⊗ g i l i(2) − π ( h i(1))⊗ hi(2) ⊗ g i ε H (l i )= ∑ i π ( h i(1))⊗(hi(2) ⊗ g i) (li − ε H (l i ) ) ∈ C ⊗ (H ⊗ H) L + .Hence, for every ( X, ρ C X)∈ Comod-C, we can c<strong>on</strong>sider the mapX□ C i : X□ C (H ⊗ H) L + → X□ C (H ⊗ H) .so that, for every ( X, ρ C X)∈ Comod-C, we havewhereI X□C L =Let p : H ⊗ H →E ( X, ρ C X)=X□ C H ⊗ HI X□C z= X□ CH ⊗ HI X□C L〈 ∑i xi ⊗ h i y (1) ⊗ gy (2) − ∑ i xi ⊗ h i ⊗ gε H (y)| ∑ i xi ⊗ h i ⊗ g ⊗ y ∈ X□ C H ⊗ H ⊗ L= X□ C[(H ⊗ H) L+ ] .H⊗H(H⊗H)L +〉195be the can<strong>on</strong>ical projecti<strong>on</strong> and let us assume that i isleft C-copure i.e. for every ( X, ρ C X)∈ Comod-C, the sequence0 → X□ C (H ⊗ H) L + X□ Ci−→ X□ C (H ⊗ H) X□ Cp−→ X□ Cis exact. In this case we get that, for every ( X, ρX) C ∈ Comod-C,E ( )X, ρ C ∼= H ⊗ HX X□C(H ⊗ H) L = X□ + C (H ⊗ H) LH ⊗ H(H ⊗ H) L → 0 +where (H ⊗ H) Ldenotes the invariants with respect to the algebra L. In the sequel,given h i , k i ∈ H we will use the notati<strong>on</strong>][∑i hi ⊗ k i = ∑ i hi ⊗ k i + (H ⊗ H) L +ELet us denote E := −□ C (H ⊗ H) Land let us c<strong>on</strong>sider multiplicati<strong>on</strong> and unit ofE. Following Theorem 6.29, they are uniquely determined byi.e.wherêm E :m E ◦ (yy) = y ◦ (P χ) and y ◦ δ D = u E ◦ ε Dm E = −□ Ĉm E and u E = −□ C û EH ⊗ H(H ⊗ H) L □ H ⊗ H+ C(H ⊗ H) L −→ H ⊗ H+ (H ⊗ H) L and û + E : C −→ H ⊗ H(H ⊗ H) L +given by(∑ ∑ ∑ [̂m E k i,j ⊗ h i,j] □ [E C g i,s ⊗ l i,s] [∑E)= k i,j S ( h i,j) ]g i,s ⊗ l i,sE


196)û E(ε C H C (h) = û E (π (h)) = [ ]h (1) ⊗ h (2) . ELet us check that ̂m E is a well-defined map. Let us c<strong>on</strong>siderf : H ⊗ H → Hh ⊗ k ↦→ hS (k) .For every (h ⊗ k) · l ∈ (H ⊗ H) L + , we havef [( hl (1) ⊗ kl (2))− (h ⊗ k) ε (l)]= hl(1) S ( l (2))S (k) − hS (k) ε (l) = 0so that f induces a morphismH ⊗ Hf :(H ⊗ H) L → H +[h ⊗ k] ↦→ hS (k) .Now, let us c<strong>on</strong>sider the compositeH ⊗ H(H ⊗ H) L ⊗ H ⊗ H f⊗Id H⊗Id Hm−→ H ⊗ H ⊗ HH ⊗Id Hp−→ H ⊗ H −→H ⊗ H+ (H ⊗ H) L +where p denotes the can<strong>on</strong>ical projecti<strong>on</strong>. Note that[p ◦ (m H ⊗ H)] ( H ⊗ (H ⊗ H) L +) = 0in fact, for every x ∈ H and (h ⊗ k) · l ∈ (H ⊗ H) L + we haveand thusx ⊗ [( hl (1) ⊗ kl (2))− (h ⊗ kε (l))]= x ⊗(hl(1) ⊗ kl (2))− x ⊗ (h ⊗ kε (l))xhl (1) ⊗ kl (2) − xh ⊗ kε (l) = (xh ⊗ k) (l − ε (l)) ∈ (H ⊗ H) L + .Therefore, the above composite map induces the mapH ⊗ H(H ⊗ H) L ⊗ H ⊗ H+ (H ⊗ H) L → H ⊗ H+ (H ⊗ H) L +[k ⊗ h] ⊗ [g ⊗ l] ↦→ [kS (h) g ⊗ l]which is well-defined and hence also the mapH ⊗ Ĥm E :(H ⊗ H) L □ H ⊗ H+ C(H ⊗ H) L → H ⊗ H+ (H ⊗ H) L +∑ [ ] k ⊗ hi ⊗ [ g i ⊗ l ] [∑ ↦→ ( )E E kS hig i ⊗ l].is well defined. Observe that, by using (213) and (212) we have∑ ( ( (π k ) (1) S hig i) ) ( (⊗ k ) (1) (2) S hig i) = ∑ π ( ) ( (k ) (2) (1) ⊗ k(2) S hig i)so that the maps∑ [ ] k ⊗ hi ⊗ [ g i ⊗ l ] [∑ ↦→ ( ) ]E E kS hig i ⊗ l∑k ⊗[h i ⊗ g i] A ↦→ ∑ kS ( h i) g iEE,and∑ [k ⊗ hi ] E ⊗ gi ↦→ ∑ kS ( h i) g i


are left C-colinear and hence ̂m E is also left colinear. Therefore the mapH ⊗ Hm E = −□ Ĉm E : −□ C(H ⊗ H) L □ H ⊗ H+ C(H ⊗ H) L → H ⊗ H+ (H ⊗ H) L +is well-defined. Moreover, Q = −□ C H can be equipped with the structure of an A-Bbimodulefunctor, i.e. in our setting, with a well-defined structure of L-E-bimodulefunctor given by A µ Q = −□ C µ Q and µ E Q = −□ C ̂µ E Q where∑iµ Q : H ⊗ L −→ Hk ⊗ l ↦→ kl̂µ E Q : H ⊗ H(H ⊗ H) L □ CH −→ H+∑ [k i,j ⊗ h i,j] ⊗ E gi ↦→ ∑ ∑ijj ki,j S ( h i,j) g i .Similarly <strong>on</strong>e can prove that A µ Q and µ E Q are well-defined. Let us calculate the( )( (coequalizer ̂Q, l = Coequ Fun (P x) ◦ z l P ) , (P x) ◦ (z r P ) ) defined in Propositi<strong>on</strong>7.6− ⊗ A ⊗ ĤQ =− ⊗ Im ((x ⊗ H) ◦ (H□ C z l ) − (x ⊗ H) ◦ (H□ C z r ))=− ⊗ H□ CHI w⊗ H− ⊗ Im ((x ⊗ H) ◦ (H□ C z l ) − (x ⊗ H) ◦ (H□ C z r )) .Since we are in the case when cocan is an isomorphism, we equivalently calculate,for every ∑ h i ⊗ g i ∈ H□ C H, k ∈ H and t ∈ L,((x ⊗ H) ◦(H□C z l) ◦ (H□ C H ⊗ cocan) ) ( ∑h i ⊗ g i ⊗ k ⊗ t)[∑ ]= h i ⊗ g i t (1) ⊗ kt (2)197and(∑ )((x ⊗ H) ◦ (H□ C z r ) ◦ (H□ C H ⊗ cocan)) h i ⊗ g i ⊗ k ⊗ t[∑ ]= h i ⊗ g i ⊗ kε H (t) .Having in mind that also ϕ is an isomorphism, we also compute(ϕ ⊗ H) ( (x ⊗ H) ◦ ( H□ C z l) ◦ (H□ C H ⊗ cocan) ) ( ∑ )h i ⊗ g i ⊗ k ⊗ t[∑ ]= (ϕ ⊗ H) h i ⊗ g i t (1) ⊗ kt (2) = ∑ S ( h i) g i t (1) ⊗ kt (2)and(∑ )(ϕ ⊗ H) ((x ⊗ H) ◦ (H□ C z r ) ◦ (H□ C H ⊗ cocan)) h i ⊗ g i ⊗ k ⊗ t[∑ ]= (ϕ ⊗ H) h i ⊗ g i ⊗ kε H (t) = ∑ S ( h i) g i ⊗ kε H (t) .


198Letandα l = (ϕ ⊗ H) ( (x ⊗ H) ◦ ( H□ C z l) ◦ (H□ C H ⊗ cocan) )α r = (ϕ ⊗ H) ((x ⊗ H) ◦ (H□ C z r ) ◦ (H□ C H ⊗ cocan)) .Then, for every ∑ h i ⊗ g i ∈ H□ C H, k ∈ H and t ∈ L,(∑ )(α l − α r ) h i ⊗ g i ⊗ k ⊗ t = ∑ S ( h i) g i t (1) ⊗ kt (2) − ∑ S ( h i) g i ⊗ kε H (t)[∑ (=) [∑ (S hig i ⊗ k]· t − ) ]S hig i ⊗ k · ε H (t) 1 L[∑ (=) S hig i ⊗ k]· (t )− ε H (t) 1 Lso that we getIm (α l − α r ) = (L ⊗ H) L +and hence the isomorphism ϕ : A = H□ CHI w−→ L induces an isomorphism( )( ( ̂Q, l = Coequ Fun (P x) ◦ z l P ) , (P x) ◦ (z r P ) )∼ = − ⊗ Coequ (αl , α r ) = − ⊗ L ⊗ H(L ⊗ H) L + .In the sequel, given elements l i ∈ L and h i ∈ H we will use the notati<strong>on</strong>[∑ ]l i ⊗ h i = ∑ l i ⊗ h i + (L ⊗ H) L + .bQFollowing Propositi<strong>on</strong> 7.6, the functor ̂Q can be equipped with the structure of aB-A-bimodule functor, i.e. in our setting, with a structure of E-L-bimodule functor.In particular E µb Q= − ⊗ ʵbQ: E ̂Q → ̂Q and µ L b Q= − ⊗ ̂µ L b Q: ̂QA → ̂Q where∑andi∑jE L ⊗ Hµb Q:(L ⊗ H) L □ H ⊗ H+ C(H ⊗ H) L −→ L ⊗ H+ (L ⊗ H) L +∑ [l i,j ⊗ k i,j] [Q b □ C h i,s ⊗ t i,s] ↦→ ∑ ∑ ∑ [E l i,j S ( k i,j) h i,s ⊗ t i,s] bi Qŝµ L b Q: L ⊗ L ⊗ H(L ⊗ H) L + −→ L ⊗ H(L ⊗ H) L +y ⊗ [y ′ ⊗ h]b Q↦→ [yy ′ ⊗ h]b Q.Such a bimodule functor ̂Q is the <strong>on</strong>e giving rise, together with the functor Q, tothe equivalence of the categories of modules over the m<strong>on</strong>ads A ≃ L and B = Ec<strong>on</strong>structed in the above Subsecti<strong>on</strong> 8.1 (in particular see Theorems 8.6 and 8.9).More explicitly,andLQ E = − ⊗ E H L : E B = E (Comod-C) → L A = L (Mod-k) = Mod-LE ̂Q L = − ⊗ LL ⊗ H(L ⊗ H) L + : LA = Mod-L → E B = E (Comod-C) .js


Now we will give details of the isomorphisms associated to the equivalence of categories.Given a right E-module functor F we will denote simply by − ⊗ E F thefunctor defined byLet us c<strong>on</strong>sider the functorE ̂Q LL Q E = − ⊗ E H L ⊗ LCoequ Fun(µEF EU, F E Uλ E).L ⊗ H(L ⊗ H) L + : EB = E (Comod-C) → E B = E (Comod-C) .We want to prove that E ̂QLL Q E is functorially isomorphic to Id E B. Now, for any(X, E µ X)∈ E B we have(X, E µ X)⊗E E = Coequ Fun(µEE EU ( X, E µ X), EE Uλ E(X, E µ X))= Coequ Fun(mE X, E E µ X) 3.14= ( X, E µ X).Thus to this aim it is enough to c<strong>on</strong>struct an isomorphism of left E-modules ̂β :L⊗HH L ⊗ L → H⊗H . This will imply that β = −□(L⊗H)L + (H⊗H)L + C ̂β : ̂QLL Q = −□ C H L ⊗ LL⊗HH⊗H→ E = −□(L⊗H)L + C gives rise to a functorial isomorphism(H⊗H)L +E ̂QLL Q E ≃Id E B. We want to show that ̂β is the following morphismL ⊗ H(L ⊗ H) L → H ⊗ H+ (H ⊗ H) L +h ⊗ L [x ⊗ h ′ ]b Q↦→ [hx ⊗ h ′ ] E.̂β : H ⊗ LFirst we have to prove that it is a well-defined map. Let us c<strong>on</strong>sider the mapβ : H ⊗ L ⊗ H →H ⊗ H(H ⊗ H) L +h ⊗ x ⊗ h ′ ↦→ [hx ⊗ h ′ ] E.For every (x ⊗ h ′ ) · (t− ε H (t) ) ∈ (L ⊗ H) L + we haveβ ( h ⊗ [ (x ⊗ h ′ ) · (t− ε H (t) )]) = β ( h ⊗ xt (1) ⊗ h ′ t (2) − h ⊗ x ⊗ h ′ ε H (t) )so that β factors through β : H ⊗we have= hxt (1) ⊗ h ′ t (2) − hx ⊗ h ′ ε H (t) ∈ (H ⊗ H) L +199L⊗H → H⊗H . Moreover, for every l ∈ L,(L⊗H)L + (H⊗H)L +β (hl ⊗ x ⊗ h ′ ) = [(hl) x ⊗ h ′ ] E= [h (lx) ⊗ h ′ ] E= β (h ⊗ lx ⊗ h ′ )so that β is also L-balanced and gives rise to the map ̂β : H ⊗ LThe inverse of ̂β is given bŷθ :H ⊗ H(H ⊗ H) L → H ⊗ L ⊗ H+ L(L ⊗ H) L +[x ⊗ y] E↦→ x ⊗ L [1 L ⊗ y]b Q.L⊗H→ H⊗H .(L⊗H)L + (H⊗H)L +


200This map is well-defined, in fact, let us c<strong>on</strong>sider the map θ : H ⊗ H → H ⊗ LL⊗H(L⊗H)L + defined by settingθ (x ⊗ y) = x ⊗ L [1 L ⊗ y]b Q.For every (h ⊗ g) · (t− ε H (t) ) ∈ (H ⊗ H) L + , we have (h ⊗ g) · (t− ε H (t) ) =ht (1) ⊗ gt (2) − h ⊗ gε H (t) and using that ∆ (L) ⊆ L ⊗ H, we computeht (1) ⊗ L(1L ⊗ gt (2))− h ⊗L(1L ⊗ gε H (t) )= h ⊗ L t (1) · (1L ⊗ gt (2))− h ⊗L(1L ⊗ gε H (t) )= h ⊗ L(t(1) ⊗ gt (2))− h ⊗L(1L ⊗ gε H (t) )= h ⊗ L(t(1) ⊗ gt (2) − 1 L ⊗ gε H (t) )= h ⊗ L((1L ⊗ g) · t − (1 L ⊗ g) ε H (t) )= h ⊗ L((1L ⊗ g) · (t− ε H (t) )) ∈ H ⊗ L (L ⊗ H) L +so that θ factors throughH⊗H(H⊗H)L + → H ⊗ LL⊗H(L⊗H)L +giving rise to the map ̂θ. Wecompute, using definiti<strong>on</strong> of ̂Q L = ⊗ L ̂Q and µ A b Q(̂θ ◦ ̂β) (h ⊗ L [x ⊗ h ′ ]b Q)= ̂θ ([hx ⊗ h ′ ] E) = hx ⊗ L [1 L ⊗ h ′ ]b Q= h ⊗ L x · [1 L ⊗ h ′ ]b Q= h ⊗ L [x1 L ⊗ h ′ ]b Q= h ⊗ L [x ⊗ h ′ ]b Qand (̂β ◦ ̂θ)([x ⊗ y] E) = ̂β)(x ⊗ L [1 L ⊗ y]b Q= [x ⊗ y] E.Let us show that ̂β is an isomorphism of left E-modules. Using definiti<strong>on</strong> of ̂µ E Q ,(215) i.e. ∑ ∑i j ki,j ⊗ S (h i,j ) g i ∈ H ⊗ L, definiti<strong>on</strong> of ̂m E we compute(∑ ∑ [̂βk i,j ⊗ h i,j] )·i jE gi ⊗ L [x ⊗ h ′ ]b Q= ̂β(∑i∑j ki,j S ( h i,j) )g i ⊗ L [x ⊗ h ′ ]b Q= ̂β(∑i∑j ki,j ⊗ L S ( h i,j) )g i · [x ⊗ h ′ ]b Q= ̂β(∑[ (i∑j ki,j ⊗ ) L S hi,jg i x ⊗ h ′] )Q b[∑=i∑j ki,j S ( h i,j) ]g i x ⊗ h ′ = ∑ ∑ [k i,j S ( h i,j) g i x ⊗ h ′]E i jE= ∑ ∑ [k i,j ⊗ h i,j] · [g i x ⊗ h ′] = ∑ ∑ [i jE E k i,j ⊗ h i,j] · ̂β)(g i ⊗i jE L [x ⊗ h ′ ]b Q.Similarly we want to understand the other isomorphism. Given a right L-modulefunctor G we will denote simply by − ⊗ L G the functor defined byCoequ Fun(µLG LU, G L Uλ L).Let us c<strong>on</strong>sider the functorL ⊗ HLQ EE ̂QL = − ⊗ L(L ⊗ H) L ⊗ + E H : L A = Mod-L → L A = Mod-L.We want to prove that L Q EE ̂QL is functorially isomorphic to Id L A. Now, for any(X, L µ X)∈ L A we have(X, L µ X)⊗L L = Coequ Fun(µLL LU ( X, L µ X), LL Uλ L(X, L µ X))


201= Coequ Fun(mL X, L L µ X) 3.14= ( X, L µ X).Thus to this aim it is enough to c<strong>on</strong>struct an isomorphism of left L-modules ̂ζ :L⊗H⊗(L⊗H)L + E H → L. This will imply that ζ = −⊗ ̂ζ : Q EE ̂Q = −⊗L⊗H⊗(L⊗H)L + E H →− ⊗ L gives rise to a functorial isomorphism L Q EE ̂QL ∼ = IdL A. We want to showthat ̂ζ is the following morphismLet us c<strong>on</strong>sider∑iL ⊗ Ĥζ :(L ⊗ H) L ⊗ + E H → L∑ [l i,j ⊗ h i,j] Q b ⊗ E g i ↦→ ∑ ∑i∑ij∑ζ : L ⊗ H□ C H → L∑j li,j ⊗ h i,j ⊗ g i ↦→ ∑ ij li,j S ( h i,j) g i .j li,j S ( h i,j) g iand let us prove that it is well-defined. By (217) we get that ∑ iNow we use that C H is coflat. Let us prove thatζ [ (L ⊗ H) L + □ C H ] = 0.∑j li,j S (h i,j ) g i ∈ L.Let ∑ i zi ⊗ h i ∈ (L ⊗ H) L + □ C H where, for each i, z i ∈ (L ⊗ H) L + . This meansthat there exist elements w i,j ∈ L ⊗ H and elements t i,j ∈ L + such thatz i = ∑ j wi,j · t i,jSince w i,j ∈ L ⊗ H there exist l i,j,k ∈ L and g i,j,k ∈ H such thatw i,j = ∑ k li,j,k ⊗ g i,j,k .Hence we have∑i zi ⊗ h i = ∑ ∑ ∑ (l i,j,k ⊗ g i,j,k) · t i,j ⊗ h ii j k= ∑ ∑ ∑ [l i,j,k t i,ji j k(1) ⊗ gi,j,k t i,j(2) − ( l i,j,k ⊗ g i,j,k) (ε )] H ti,j⊗ h i= ∑ ∑ ∑i j k li,j,k t i,j(1) ⊗ gi,j,k t i,j(2) ⊗ hi − ( l i,j,k ⊗ g i,j,k) (ε ) H ti,j⊗ h iso that)ζ(∑i zi ⊗ h i = ∑ ∑ ∑ ( )i j k li,j,k t i,j(1) S g i,j,k t i,j(2)h i − ( l i,j,k S ( g i,j,k)) (ε ) H ti,jh i= ∑ ∑ ∑ ( )i j k li,j,k t i,j(1) S t i,j(2)S ( g i,j,k) h i − ( l i,j,k S ( g i,j,k)) (ε ) H ti,jh i= ∑ ∑ ∑ (i j k li,j,k ε ) H ti,jS ( g i,j,k) h i − ( l i,j,k S ( g i,j,k)) (ε ) H ti,jh i = 0.L⊗Hhence we have a well defined map ζ : □(L⊗H)L + C H → L defined by setting(∑ ∑ [ζl i,j ⊗ h i,j] )Q b ⊗ g i = ∑ ∑i j li,j S ( h i,j) g i .ij


202We now have to prove that this map induces a map ζ :e ∈ E. We have to prove that(∑ ∑ [ζl i,j ⊗ h i,j] ) (∑ ∑Q b · e ⊗ g i = ζijijL⊗H(L⊗H)L +⊗ E H → L. Let[l i,j ⊗ h i,j] b Q⊗ e · g i ).Since e ∈ E, there exist x k , y k ∈ H such that e = [∑ k xk ⊗ y k] . Hence we have toEprove that(∑ ∑ [ζl i,j ⊗ h i,j] ] )bi jQ ·[∑k xk ⊗ y k ⊗ g iE(∑ ∑ [= ζl i,j ⊗ h i,j] ] )Q b ⊗[∑k xk ⊗ y k · g iand by using definiti<strong>on</strong> of E µb Qand µ E Qi.e.∑i∑j∑i(∑ ∑ ∑ζi j(∑ ∑ ∑= ζijk li,j S ( h i,j) x k S ( y k) g i = ∑ ijkkwe have to prove that[l i,j S ( h i,j) x k ⊗ y k] )Q b ⊗ g i[l i,j ⊗ h i,j] b Q⊗ x k S ( y k) g i )∑j∑which is true, so that we can c<strong>on</strong>clude that the map ̂ζ :Ek li,j S ( h i,j) x k S ( y k) g iL⊗H(L⊗H)L +⊗ E H → L iswell-defined. Now, we want to prove that ̂ζ is bijective. The inverse of ̂ζ is given byΞ : L →L ⊗ H(L ⊗ H) L ⊗ + E Hl ↦→ [1 H ⊗ 1 H ]b Q⊗ E l.Now we compute(Ξ ◦ ̂ζ) (∑ ∑ [l i,j ⊗ h i,j] ) (∑bi jQ⊗ E g i = Ξi∑j li,j S ( h i,j) )g i∑ ∑= [1 H ⊗ 1 H ]b Q⊗ Ei j li,j S ( h i,j) g i= ∑ ∑[1 [H ⊗ 1 H ]bi j Q⊗ E l i,j ⊗ h i,j] · E gi = ∑ ∑i= ∑ ∑ [l i,j ⊗ h i,j] bi jQ⊗ E g iand ) ()(̂ζ ◦ Ξ (l) = ζ [1 H ⊗ 1 H ]b Q⊗ E l = 1 H S (1 H ) l = l.j [1 H ⊗ 1 H ]b Q[l i,j ⊗ h i,j] E ⊗ E g iLet us show that ̂ζ is an isomorphism of left L-modules. Let a ∈ L and let usc<strong>on</strong>sider̂ζ(a · ∑ ∑ [l i,j ⊗ h i,j] )bi jQ⊗ E g i = ̂ζ(∑ ∑ [( ) a · li,j⊗ h i,j] )bi jQ⊗ E g i= ∑ ∑i j ali,j S ( h i,j) (∑g i = a ·i∑j li,j S ( h i,j) )g i= a · ̂ζ(∑ ∑ [l i,j ⊗ h i,j] )Q b ⊗ E g i .ij


As observed at the beginning of this secti<strong>on</strong>, this reproduces what happens in thedual case of the [Scha4] setting where, starting from a Hopf-Galois extensi<strong>on</strong>, <strong>on</strong>ecan produce a new Hopf algebra such that the Hopf-Galois object turns into a Hopfbi-Galois object and Hopf algebras are Morita-Takeuchi equivalent. In our setting,coming from a coGalois coextensi<strong>on</strong> we get a coherd, which allows us to computethe m<strong>on</strong>ads and in particular a new m<strong>on</strong>ad together with the new bimodule functor.Following the theory developed in the previous secti<strong>on</strong>s, we could then calculate indetails also the equivalence between the module categories with respects to the twom<strong>on</strong>ads.9.3. Galois comodules. Let B Σ A be a B-A-bimodule. Let L = − ⊗ B Σ A , R =Hom A ( B Σ A , −). Let C be an A-coring and let C = (− ⊗ A C, − ⊗ A ∆, r ◦ (− ⊗ A ε)).Assume that (Σ, ρ Σ ) is a B-C-comodule i.e. (Σ, ρ Σ ) is a C-comodule andρ Σ : Σ → Σ ⊗ A Cis a morphism of B-A-bimodules. In particular the mapλ : B → EndC (Mod-A) ((Σ, ρ Σ )) defined by setting λ (b) (x) = bxis well-defined and is a ring morphism. Moreover λ is a m<strong>on</strong>omorphism. In thiscase β = − ⊗ B ρ Σ : − ⊗ B Σ A → − ⊗ B Σ A ⊗ A C is a left C-comodule functor. Theassociated functorial morphism can = ϕ = (Cɛ) ◦ (βR) : LR → C,can : Hom A ( B Σ A , −) ⊗ B Σ AβR→ HomA ( B Σ A , −) ⊗ B Σ A ⊗ A C Cɛ→ − ⊗ A Cf ⊗ B x ↦→ f ⊗ B x 0 ⊗ A x 1 ↦→ f (x 0 ) ⊗ A x 1can M : Hom A ( B Σ A , M) ⊗ B Σ A → M ⊗ A Cf ⊗ B x ↦→ f (x 0 ) ⊗ A x 1203We havecan = (Cɛ) ◦ (βR) = (ɛ ⊗ A C) ◦ Hom A ( B Σ A , −) ⊗ B ρ Σcan M = ϕ M (f ⊗ B t) = (ɛ ⊗ A C) (f ⊗ B t 0 ⊗ A t 1 ) = f (t 0 ) ⊗ A t 1 .K ϕ : Mod-B → C (Mod-A) = Comod-CM ↦→ (M ⊗ B Σ, M ⊗ B ρ Σ ) .Since Mod-B has all equalizers, K ϕ has a right adjointD ϕ (X, x) = Equ ((− ⊗ A C) ◦ ρ Σ , Hom A ( B Σ A , x))= {f ∈ Hom A ( B Σ A , X) | x ◦ f = (f ⊗ A C) ◦ ρ Σ }= HomC (Mod-A) ((Σ, ρ Σ ) , (X, x))Hence D ϕ = HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) = Comod-C → Mod-B has a leftadjoint K ϕ = (− ⊗ B Σ, − ⊗ B ρ Σ ) .Theorem 9.6 ([GT, Theorem 3.1] ). HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) →Mod-B is full and faithful if and <strong>on</strong>ly if


2041) − ⊗ B Σ A preserves the equalizerHomC (Mod-A) ((Σ, ρ Σ ) , (X, x))i Hom A (Σ, X)x◦−(−⊗ A C)◦ρ Σ Hom A (Σ, X ⊗ A C) .2) can : Hom A ( B Σ A , −) ⊗ B Σ A → − ⊗ A C is a com<strong>on</strong>ad isomorphism.Proof. Apply Theorem 4.53 to the adjuncti<strong>on</strong> (− ⊗ B Σ A , Hom A ( B Σ A , −)) .Theorem 9.7 ([GT, Theorem 3.2]). K ϕ : Mod-B → C (Mod-A) = Comod-C is anequivalence of categories if and <strong>on</strong>ly if1) − ⊗ B Σ A preserves the equalizerHomC (Mod-A) ((Σ, ρ Σ ) , (X, x))i Hom A (Σ, X)x◦−(−⊗ A C)◦ρ Σ Hom A (Σ, X ⊗ A C) .2) − ⊗ B Σ A reflects isomorphisms and3) can : Hom A ( B Σ A , −) ⊗ B Σ A → − ⊗ A C is a com<strong>on</strong>ad isomorphism.Proof. Apply Theorem 4.55 to the adjuncti<strong>on</strong> (− ⊗ B Σ A , Hom A ( B Σ A , −)) .Let us now c<strong>on</strong>sider a particular case of the previous situati<strong>on</strong>.Let C be an A-coring and let Σ be a right C-comodule. Set T = EndC (Mod-A) ((Σ, ρ Σ )).Then it is easy to check that (Σ, ρ Σ ) is a T -C-comodule. Following [Wis], we saythat Σ is a Galois C-comodule whenever can : Hom A ( T Σ A , −) ⊗ T Σ → − ⊗ A C isan isomorphism. The adjuncti<strong>on</strong> (C U, C F ) for C = (− ⊗ A C, − ⊗ A ∆, r ◦ (− ⊗ A ε))gives us the followingPropositi<strong>on</strong> 9.8. Let C be an A-coring and let Σ be a right C-comodule.T = EndC (Mod-A) ((Σ, ρ Σ )). Then the mapψL : Hom A ( T Σ A , L) → HomC (Mod-A)((Σ, ρΣ ) , C F L ) defined by settingψL (f) = (f ⊗ A C) ◦ ρ Σis an isomorphism whose inverse is defined by setting (ψL) −1 (h) = r L ◦ (L ⊗ A ε) ◦ h, for every L ∈ Mod-A. In this way we get a functorial isomorphismψ : Hom A ( T Σ A , −) → HomC (Mod-A)((Σ, ρΣ ) , C F ) .9.9. Note that, in particular, we have(ψA : Hom A ( T Σ A , A) → HomC (Mod-A) (Σ, ρΣ ) , C F A )whereso thatHomC (Mod-A)((Σ, ρΣ ) , C F A ) = HomC (Mod-A) ((Σ, ρ Σ ) , A ⊗ A C)and is defined by setting≃ HomC (Mod-A) ((Σ, ρ Σ ) , C)ψA : Hom A ( T Σ A , A) → HomC (Mod-A) ((Σ, ρ Σ ) , C)[ψA (f)] (t) = [l C ◦ (f ⊗ A C) ◦ ρ Σ ] (t) = f (t 0 ) t 1 .□□Set


Theorem 9.10 ([GT]). Let C be an A-coring and let Σ be a right C-comodule.Assume that A C is flat. Set T = EndC (Mod-A) ((Σ, ρ Σ )). Then the following areequivalent:(a) The functor HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) → Mod-T is full andfaithful where C = −⊗ A C.(b) ɛ : HomC (Mod-A) ((Σ, ρ Σ ) , − ⊗ T Σ) → C (Mod-A) is an isomorphism.(c) (Σ, ρ Σ ) is a generator of C (Mod-A).(d) can : HomC (Mod-A) ((Σ, ρ Σ ) , −) ⊗ T Σ → − ⊗ A C is an isomorphism and T Σ isflat.Proof. By Propositi<strong>on</strong> A.12, A C is flat if and <strong>on</strong>ly if (Mod-A) C is a Grothendieckcategory and the forgetful functor U : (Mod-A) C → Mod-A is left exact. Also,by the foregoing, D ϕ = HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) → Mod-T has a leftadjoint K ϕ = (− ⊗ T Σ, − ⊗ T ρ Σ ) .(a) ⇔ (b) It follows by Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>3<str<strong>on</strong>g>2.</str<strong>on</strong>g>(a) ⇔ (c) It follows by Propositi<strong>on</strong> A.3.(c) ⇒ (d) Since (Σ, ρ Σ ) is a generator of C (Mod-A) and since (− ⊗ T Σ, − ⊗ T ρ Σ ) :Mod-T → C (Mod-A) is a left adjoint of HomC (Mod-A) ((Σ, ρ Σ ) , −) : C (Mod-A) →Mod-T, by Gabriel-Popescu Theorem A.9, (− ⊗ T Σ, − ⊗ T ρ Σ ) is a left exact functor.Since the forgetful functor U : (Mod-A) C → Mod-A is also left exact, wededuce that − ⊗ T Σ : Mod-T → Mod-A is left exact i.e. T Σ is flat. SinceHomC (Mod-A) ((Σ, ρ Σ ) , −) is full and faithful, by Theorem 9.6, can is an isomorphism.(d) ⇒ (a) It follows by Theorem 9.6.□Theorem 9.11 ([GT]). Let C be an A-coring, let B be a ring and assume that A Cis flat. Let (Σ, ρ Σ ) be a B-C-comodule. Then the following are equivalent:(a) The functor − ⊗ B Σ A : Mod-B → C (Mod-A) is an equivalence of categorieswhere C = − ⊗ A C.(b) can : Hom A ( B Σ A , −) → − ⊗ A C is an isomorphism and B Σ is faithfully flat.(c) (Σ, ρ Σ ) is a generator of C (Mod-A) and the functor − ⊗ B Σ : Mod-B →C (Mod-A) is full and faithful.(d) (Σ, ρ Σ ) is a generator of C (Mod-A), the functor − ⊗ B Σ : Mod-B →C (Mod-A) is faithful and λ : B → T = EndC (Mod-A) ((Σ, ρ Σ )) is an isomorphism.Proof. (a) ⇒ (b) By Theorem 9.7, can is an isomorphism. Since A C is flat, byPropositi<strong>on</strong> A.12, the forgetful functor U : C (Mod-A) → Mod-A is exact. Since Uis also faithful, we get that the functor− ⊗ B Σ A : Mod-B → Mod-Ais faithful and exact.(b) ⇒ (a) It follows by Theorem 9.7.(a) ⇒ (c) Since B is a generator of Mod-B, B Σ ≃ B ⊗ B Σ is a generator ofC (Mod-A).(c) ⇒ (d) Since − ⊗ B Σ : Mod-B → C (Mod-A) is full and faithful and it isthe left adjoint of the adjuncti<strong>on</strong> ( − ⊗ B Σ, HomC (Mod-A) ((Σ, ρ Σ ) , −) ) , the unit is a205


206functorial isomorphism. In particular we have thatηB : B → HomC (Mod-A) ((Σ, ρ Σ ) , (B ⊗ B Σ, ρ Σ )) ≃ EndC (Mod-A) ((Σ, ρ Σ ))is an isomorphism. Note that ηB is exactly λ.(d) ⇒ (b) By Theorem 9.10, can : HomC (Mod-A) ((Σ, ρ Σ ) , −) ⊗ B Σ → − ⊗ A C is anisomorphism and B Σ is flat. Since − ⊗ B Σ : Mod-B → C (Mod-A) is faithful andU : C (Mod-A) → Mod-A is also faithful, the functor −⊗ B Σ A = U (− ⊗ B Σ) : Mod-B → (Mod-A) is faithful. Then B Σ is faithfully flat.□Remark 9.1<str<strong>on</strong>g>2.</str<strong>on</strong>g> By Theorem 9.11 we deduce that if −⊗ B Σ A : Mod-B → C (Mod-A)is an equivalence of categories then Σ is a Galois C-comodule.9.13. Let B Σ A be a B-A-bimodule. In the case that Σ A is finitely generated andprojective we have a natural isomorphismΛ : Hom A (Σ, −) → − ⊗ A Σ ∗f ↦→ f (x i ) ⊗ A x ∗ iwhere Σ ∗ = Hom A (Σ, A) and (x i , x ∗ i ) i=1,...,nis a dual basis for Σ A . We can c<strong>on</strong>siderthe adjuncti<strong>on</strong> (− ⊗ B Σ A , − ⊗ A Σ ∗ ) and the associated com<strong>on</strong>ad − ⊗ A Σ ∗ ⊗ B Σ A :Mod-A → Mod-A, then the A-coring Σ ∗ ⊗ B Σ A is called the comatrix coring associatedto the bimodule B Σ A . Moreover, when (Σ, ρ Σ ) is a B-C-comodule then wehave the following commutative diagramΛ⊗ B Σ(218) Hom A (Σ, −) ⊗ B Σ− ⊗ A Σ ∗ ⊗ B Σcan−⊗A can− ⊗ A Cwherecan : Σ ∗ ⊗ B Σ → Cdefined by settingcan (φ ⊗ B s) = φ (s 0 ) s 1is a morphism of A-corings where Σ ∗ ⊗ B Σ is an A-coring via comultiplicati<strong>on</strong>∆ (ϕ ⊗ B t) = ∑ ϕ ⊗ B x i ⊗ A x ∗ i ⊗ B t and counit ε (ϕ ⊗ B t) = ϕ (t) .iRemark 9.14. Following [BrWi, pag 189] we say that Σ is a Galois C-comodulewhen Σ A is finitely generated and projective and ev : HomC (Mod-A) (Σ, C) ⊗ B Σ → Cis an isomorphism.Corollary 9.15 ([GT]). Let C be an A-coring, let B be a ring and let (Σ, ρ Σ ) be aB-C-bicomodule. Then the following are equivalent:(a) A C is flat and the functor − ⊗ B Σ : Mod-B → C (Mod-A) is an equivalenceof categories where C = − ⊗ A C(b) Σ A is finitely generated and projective, the can<strong>on</strong>ical map can : Σ ∗ ⊗ B Σ → Cis an isomorphism and B Σ is faithfully flat(c) A C is flat, Σ is a finitely generated projective generator of C (Mod-A) andλ : B → T = EndC (Mod-A) ((Σ, ρ Σ )) is an isomorphism.


Proof. (a) ⇒ (c) Apply Propositi<strong>on</strong> A.19 to the functor T = − ⊗ B Σ. Since B is afinitely generated and projective generator of Mod-B, Σ C ≃ B ⊗ B Σ C is a finitelygenerated and projective generator of C (Mod-A). By the equivalence (a) ⇔ (d) ofTheorem 9.11 we get that λ : B → T = EndC (Mod-A) ((Σ, ρ Σ )) is an isomorphism.(c) ⇒ (b) Let us c<strong>on</strong>sider U : C (Mod-A) → Mod-A which is the left adjointof the free functor − ⊗ A C : Mod-A → C (Mod-A). We have to prove that Σ A isfinitely generated and projective. Now, by Propositi<strong>on</strong> A.18, we prove that Σ A isfinite, i.e. that Hom Mod-A (Σ A , −) preserves coproducts. Let us c<strong>on</strong>sider a family(A i ) i∈I∈ Mod-A. We have the followingΣfinite≃∐i∈IHomC (Mod-A)Hom Mod-A (U (Σ) , A i ) (U,−⊗ AC)adj≃(Σ, ∐ i∈I(A i ⊗ A C))∐i∈I−⊗ A Cright adj≃HomC (Mod-A) (Σ, A i ⊗ A C)HomC (Mod-A)((U,−⊗ A C)adj≃ Hom Mod-A U (Σ) , ∐ )A ii∈I(Σ,( ∐i∈IA i)207⊗ A C)Since Σ A = U (Σ) we deduce that Hom Mod-A (Σ A , −) preserves coproducts. Since byassumpti<strong>on</strong> A C is flat, by Theorem 9.10 (c) ⇒ (d) we get thatcan : HomC (Mod-A) ((Σ, ρ Σ ) , −)⊗ B Σ → −⊗ A C is an isomorphism and B Σ is flat. Bydiagram 218 we obtain that can is also an isomorphism. Since Σ is a finitely generatedprojective generator of C (Mod-A), by Corollary A.21 HomC (Mod-A) ((Σ, ρ Σ ) , −)is an equivalence of categories, hence so is − ⊗ B Σ : Mod-B → C (Mod-A) so thatBΣ is faithfully flat.(b) ⇒ (a) Since can is an isomorphism, we have that A C is flat if and <strong>on</strong>ly ifAΣ ∗ ⊗ B Σ is flat. By assumpti<strong>on</strong> we know that B Σ is flat. Since Σ A is finitelygenerated and projective, also A Σ ∗ is finitely generated and projective so A Σ ∗ is flat.Therefore the functor − ⊗ A Σ ∗ ⊗ B Σ is left exact and, since can is an isomorphism,−⊗ A C is also left exact. By diagram 218, since can is an isomorphism, can is also anisomorphism. Now, A C is flat and B Σ is faithfully flat, then we can apply Theorem9.11 (b) ⇒ (a) to deduce that − ⊗ B Σ : Mod-B → C (Mod-A) is an equivalence ofcategories.□Remark 9.16. By Corollary 9.15 we deduce that if A C is flat and − ⊗ B Σ A : Mod-B → C (Mod-A) is an equivalence of categories, then Σ is a Galois C-comodule.Corollary 9.17 ([GT, Theorem 3.10] Generalized Descent for Modules). Let B Σ Abe a B-A-bimodule such that Σ A is finitely generated and projective. Let Σ ∗ =Hom A (Σ, A) . Then the following are equivalent:(a) A (Σ ∗ ⊗ B Σ) is flat and the functor − ⊗ B Σ : Mod-B → C (Mod-A) is anequivalence of categories where C = − ⊗ A Σ ∗ ⊗ B Σ(b) B Σ is faithfully flat.Proof. By (9.13) we have that Σ ∗ ⊗ B Σ is an A-coring and thus C = − ⊗ A Σ ∗ ⊗ B Σis a com<strong>on</strong>ad <strong>on</strong> Mod-A. Note that Σ is a B-C-bicomodule via a can<strong>on</strong>ical right


208coacti<strong>on</strong> ρ C Σ : Σ → Σ ⊗ A Σ ∗ ⊗ B Σ defined by setting ρ C Σ (s) = ∑ n x i ⊗ A x ∗ i ⊗ B s where(x i , x ∗ i ) i=1,...,nis a dual basis for Σ A . Then we can apply Corollary 9.15 (a) ⇔ (b) tothe case ”C” = Σ ∗ ⊗ B Σ so that can : Σ ∗ ⊗ B Σ → C is the identity map. □9.18. Let B → A a k-algebra extensi<strong>on</strong>. Let ” B Σ A ” = B A A in 9.13. Then thecomatrix coring becomes C = A ⊗ B A which is an A-coring with coproduct ∆ C : C =A ⊗ B A → C ⊗ A C = A ⊗ B A ⊗ A A ⊗ B A defined by setting∆ C (a ⊗ B a ′ ) = a ⊗ B 1 A ⊗ A 1 A ⊗ B a ′and counit ε C : C = A ⊗ B A → A defined by settingε C (a ⊗ B a ′ ) = aa ′for every a, a ′ ∈ A. Such A-coring C = A ⊗ B A is called can<strong>on</strong>ical coring or Sweedlercoring associated to the algebra extensi<strong>on</strong> B → A.Definiti<strong>on</strong> 9.19. Let B be a k-algebra and let B → σ A be an algebra extensi<strong>on</strong>.A right descent datum from A to B is a right A-module M together with a rightA-module morphism δ : M → M ⊗ B A such that(219) (δ ⊗ B A) ◦ δ = (M ⊗ B σ ⊗ B A) ◦ ( M ⊗ B l −1Aand(220) µ M ◦ δ = Mi=1)◦ δwhere l −1A: B ⊗ B A → A is the can<strong>on</strong>ical isomorphism and µ M : M ⊗ B A → M isinduced by the A-module structure of M, µ A M : M ⊗ A → A. Given (M, δ) , (M ′ , δ ′ )two right descent data from A to B, a morphism of right descent data from A to Bis a right A-module map f : M → M ′ such thatδ ′ ◦ f = (f ⊗ B A) ◦ δ.We will denote by D (A ↓ B) the category of right descent data. Similarly <strong>on</strong>e candefine left descent data from A to B and their category (A ↓ B) D.Let A = (A, m A , u A ) be a m<strong>on</strong>ad <strong>on</strong> a category A. Then we can c<strong>on</strong>sider theadjuncti<strong>on</strong> ( A F , A U) , where A F : A → A A and A U : AA → A, with unit u Awhich is the unit of the m<strong>on</strong>ad and counit λ A determined by A U ( λ A(X, A µ X))=A µ X for every ( X, A µ X)∈ A A. Then A F A U is a com<strong>on</strong>ad <strong>on</strong> the category A A byPropositi<strong>on</strong> 4.4. Hence we can c<strong>on</strong>sider the category of comodules for the com<strong>on</strong>adC = A F A U, A F A U ( A A) = C ( A A) which is the category of descent data with respect tothe m<strong>on</strong>ad A and it is denoted by Des A (A) .Example 9.20. Let B σ → A be a k-algebra extensi<strong>on</strong>. Then A is a B-ring. In factm A : A ⊗ A → A induces m : A ⊗ B A → A as follows. We have to prove thatm A (ab ⊗ a ′ ) = m A (a ⊗ ba ′ ) . We computem A (ab ⊗ a ′ ) = m A (aσ (b) ⊗ a ′ ) = (aσ (b)) a ′= a (σ (b) a ′ ) = m A (a ⊗ σ (b) a ′ ) = m A (a ⊗ ba ′ ) .


Moreover the unit is u = σ : B → A. Then A = ( )− ⊗ B A, − ⊗ B m, (− ⊗ R u) ◦ r−−1is a m<strong>on</strong>ad <strong>on</strong> the category of right B-modules, Mod-B, as in Example 3.3. Notethat we have an iso of categories K : Mod-A → A (Mod-B) given byMod-A −→ A (Mod-B)( )X, µAX ↦→( )X, µ A Xwhere µ A X : X ⊗ B A → X is well-defined starting from µ A X : X ⊗ A → X. In fact wehave(µ A X (xb ⊗ a) = µ A X µAX (x ⊗ σ (b)) ⊗ a )XisA-mod= µ A X (x ⊗ m A (σ (b) ⊗ a)) = µ A X (x ⊗ ba) .Now, since A = ( )− ⊗ B A, − ⊗ B m, (− ⊗ R u) ◦ r−−1 is a m<strong>on</strong>ad, we can c<strong>on</strong>siderAF = − ⊗ B A : Mod-B → A (Mod-B) ≃ Mod-A and A U = − ⊗ A A B : A (Mod-B) ≃Mod-A → Mod-B so that C = A F A U = −⊗ A A⊗ B A is a com<strong>on</strong>ad <strong>on</strong> A (Mod-B) ≃Mod-A associated to the A-coring C = A ⊗ B A. The category of comodules for thecom<strong>on</strong>ad C = A F A U = − ⊗ A A ⊗ B A is then the category of right comodules for theA-coring C = A ⊗ B AAF A U ( A (Mod-B)) = C ( A (Mod-B)) = ( A (Mod-B)) C ≃ (Mod-A) C= C (Mod-A) = A F A U (Mod-A)and it is the category of right descent data from A to B, usually denoted byD (A ↓ B) .Corollary 9.21 ([Scha4, Theorem 4.5.2] Faithfully flat descent). Let A be a k-algebra and let B ⊆ A be a k-algebra extensi<strong>on</strong>. Let C = A ⊗ B A be the can<strong>on</strong>icalA-coring. The following statements are equivalent:(a) B A is flat and the functor − ⊗ B A : Mod-B → D (A ↓ B) is an equivalenceof categories;(b) B A is faithfully flat.Proof. Apply Corollary 9.17 to the case ” B Σ A ” = B A A , noting that by Example9.20 C (Mod-A) = D (A ↓ B) where C = − ⊗ A C = − ⊗ A A ⊗ B A. □Remark 9.2<str<strong>on</strong>g>2.</str<strong>on</strong>g> The inverse equivalence of the inducti<strong>on</strong> functor − ⊗ B A : Mod-B → D (A ↓ B) = C (Mod-A) where C = − ⊗ A C = − ⊗ A A ⊗ B A, maps a descentdatum (M, δ) into M coδ = {m ∈ M | δ (m) = m ⊗ B 1 A } ≃ M coC . Moreover, sincewe have an equivalence, in particular the counit is an isomorphism, so that the mapis an isomorphism with inverse given byM coδ ⊗ B A ɛ M−→ Mm ⊗ B a ↦→ maM → M coδ ⊗ B Am ↦→ δ (m) .In fact we have [(δ ⊗ B A) ◦ δ] (m) = m 00 ⊗ B m 01 ⊗ B m 1 = m 0 ⊗ B 1 A ⊗ B m 1 so thatδ (m) ∈ M coδ ⊗ B A.209


210Now, we c<strong>on</strong>sider a particular case of the setting investigated above.Lemma 9.23. Let C be an A-coring. Then A can be endowed with a right C-comodulestructure ρ C A if and <strong>on</strong>ly if C has a grouplike element, namely [( l A C ◦ ρC A)(1A ) ] .Proof. Assume first that A has a right C-comodule structure given by ρ C A . We wantto prove that g = [( lC A ◦ A) ρC (1A ) ] is a grouplike element for C. First, fromg = [( )lC A ◦ ρ C A (1A ) ]we deduce that(221) ρ C A (1 A ) = ( l A C) −1(g) = 1A ⊗ A gLet us compute∆ (( C lC A ◦ ρA) C (1A ) ) = ( ∆ C ◦ lC A ◦ ρA) C (1A ) = [( lC A ⊗ A C ) ◦ ( A ⊗ A ∆ C) ◦ ρA] C (1A )[(lAC ⊗ A C ) ◦ ( ρ C A ⊗ A C ) ◦ ρA] C (1A ) = [( lC A ⊗ A C ) ◦ ( ρ C A ⊗ A C )] ( ρ C A (1 A ) )ArightC-com=Moreover(221)= [( l A C ⊗ A C ) ◦ ( ρ C A ⊗ A C )] (1 A ⊗ A g) = [( l A C ◦ ρ C A)⊗A C ] (1 A ⊗ A g)= ( l A C ◦ ρ C A)(1A ) ⊗ A g = g ⊗ A g.ε (( C lC A ◦ ρA) C (1A ) ) = ( ε C ◦ lC A ◦ ρA) C (1A )= [ l A ◦ ( A ⊗ A ε C) ]◦ ρ C A (1A ) ArightCcom= 1 A .C<strong>on</strong>versely, let us assume that g ∈ C is a grouplike element and let us define ρ C A :A → A ⊗ A C by settingρ C A (a) = 1 A ⊗ A g · a.We have to check that it defines a C-comodule structure <strong>on</strong> A. We compute, forevery a ∈ A,[(A ⊗A ∆ C) ◦ ρ C A](a) =(A ⊗A ∆ C) (1 A ⊗ A g · a) ∆C Alin= 1 A ⊗ A g ⊗ A g · aso that= ( ρ C A ⊗ A C ) (1 A ⊗ A g · a) = [( ρ C A ⊗ A C ) ◦ ρ C A](a)(A ⊗A ∆ C) ◦ ρ C A = ( ρ C A ⊗ A C ) ◦ ρ C A.We also have, for every a ∈ A,[rAA ◦ ( A ⊗ A ε C) ] [◦ ρ C A (a) = rAA ◦ ( A ⊗ A ε C)] (1 A ⊗ A g · a)so that= r A A(1A ⊗ A ε C (g · a) ) ε C Alin= 1 A ε C (g) a = ar A A ◦ ( A ⊗ A ε C) ◦ ρ C A = Id A .□


Let C be an A-coring and assume that g ∈ C is a grouplike element. Then we canc<strong>on</strong>sider the map ρ A : A → A ⊗ A C defined by settingρ A (a) = 1 A ⊗ A (g · a) for every a ∈ A.We denote by C = − ⊗ A C. Then, by Lemma 9.23, (A, ρ A ) is a right C-comoduleandEndC (Mod-A) ((A, ρ A )) ≃ {b ∈ A | 1 A ⊗ A (g · b) = b ⊗ A g}= {b ∈ A | 1 A ⊗ A (g · b) = 1 A ⊗ A bg} = {b ∈ A | g · b = bg} = A coC .In this case the mapcan : Σ ∗ ⊗ B Σ = A ⊗ B A → Cis defined by settingcan (a ⊗ B a ′ ) = aga ′and C is called a Galois coring iff can is an isomorphism and B = A coC .Propositi<strong>on</strong> 9.24. Let C be an A-coring and assume that g ∈ C is a grouplikeelement. Let B ⊆ A coC . Then the following statements are equivalent:(a) A C is flat and the functor − ⊗ B A : Mod-B → C (Mod-A) = (Mod-A) C is anequivalence of categories;(b) the can<strong>on</strong>ical map can : A ⊗ B A → C is an isomorphism and B A is faithfullyflat;(c) A C is flat, A is a finitely generated projective generator of C (Mod-A) andλ : B → T = EndC (Mod-A) ((A, ρ A )) = A coC is an isomorphism.Theorem 9.25. [BRZ2002, Theorem 5.6]Let C be an A-coring and assume thatg ∈ C is a grouplike element.1) If C is a Galois coring and A coCA is faithfully flat, then the functor −⊗ A coC A :Mod-A coC → C (Mod-A) = (Mod-A) C is an equivalence of categories and A Cis flat.2) If the functor − ⊗ A coC A : Mod-A coC → C (Mod-A) is an equivalence ofcategories, then C is a Galois coring.3) If A C is flat and the functor − ⊗ A coC A : Mod-A coC → C (Mod-A) is anequivalence of categories, then A coCA is faithfully flat.Proof. 1) follows from Propositi<strong>on</strong> 9.24 (b) ⇒ (a).2) follows from Theorem 9.7.3) follows from Propositi<strong>on</strong> 9.24 (a) ⇒ (b). □Corollary 9.26. Let C be an A-coring and assume that g ∈ C is a grouplikeelement. Assume that A C is flat. Let B ⊆ A coC . Then the following statements areequivalent:(a) the functor − ⊗ B A : Mod-B → C (Mod-A) = (Mod-A) C is an equivalenceof categories;(b) the can<strong>on</strong>ical map can : A ⊗ B A → C is an isomorphism and B A is faithfullyflat;(c) A is a finitely generated projective generator of C (Mod-A) and λ : B → T =EndC (Mod-A) ((A, ρ A )) = A coC is an isomorphism.211


212Definiti<strong>on</strong> 9.27. Let k be a commutative ring. An entwining structure (A, C, ψ)over k c<strong>on</strong>sists of• A = (A, m, u) a k-algebra• C = (C, ∆, ε) a k-coalgebra• ψ : C ⊗ A → A ⊗ C satisfying the following relati<strong>on</strong>s(222)(m ⊗ C)◦(A ⊗ ψ)◦(ψ ⊗ A) = ψ ◦(C ⊗ m) and ψ ◦(C ⊗ u)◦r −1Cand= (u ⊗ C)◦l−1C(223)(ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (∆ ⊗ A) = (A ⊗ ∆) ◦ ψ and r A ◦ (A ⊗ ε) ◦ ψ = l A ◦ (ε ⊗ A) .Notati<strong>on</strong> 9.28. Let (A, C, ψ) be an entwining structure over k. We will use sigmanotati<strong>on</strong>ψ (c ⊗ a) = ∑ a α ⊗ c αor with summati<strong>on</strong> understoodψ (c ⊗ a) = a α ⊗ c α .Using this notati<strong>on</strong> we can rewrite (222) and (223) as follows(224)(225)(ab) α⊗ c α = a α b β ⊗ c αβ , ψ (c ⊗ 1 A ) = (1 A ) α⊗ c α = 1 A ⊗ ca α ⊗ c α 1 ⊗ c α 2 = a αβ ⊗ c β 1 ⊗ c α 2 , a α ε C (c α ) = ε C (c) aMoreover we set, for every a, b, a ′ , b ′ ∈ A and c ∈ Ca (b ⊗ c) = ab ⊗ c and (b ⊗ c) b ′ = bψ (c ⊗ b ′ ) = bb ′ α ⊗ c α .We also define a map ∆ C : C = A ⊗ C → C ⊗ A C = A ⊗ C ⊗ A A ⊗ C, by settingand a map ε C : C → A, as follows∆ C (a ⊗ c) = a ⊗ c (1) ⊗ A 1 A ⊗ c (2)ε C (a ⊗ c) = aε (c) .Definiti<strong>on</strong> 9.29. Let (A, C, ψ) be an entwining structure. An entwined (A, C, ψ)-module is a triple ( M, µ A M , ρC M)where(M, µAM)is a right A-module,(M, ρCM)is aright C-comodule such that the structures are compatible(µAM ⊗ C ) ◦ (M ⊗ ψ) ◦ ( ρ C M ⊗ A ) = ρ C M ◦ µ A Mi.e. for every m ∈ M and for every a ∈ A we have∑(226)(ma)0 ⊗ (ma) 1= ∑ m 0 a α ⊗ m α 1 .A morphism of entwined modules f : ( M, µ A M , (M) ρC → N, µAN , ρN) C is a morphism ofright A-modules and a morphism of right C-comodules. We denote by M C A (ψ) thecategory of entwined (A, C, ψ)-modules.Propositi<strong>on</strong> 9.30 ([BrWi, 3<str<strong>on</strong>g>2.</str<strong>on</strong>g>6 pg. 325]). Let k be a commutative ring, let A =(A, m, u) be a k-algebra and let C = (C, ∆, ε) be a k-coalgebra.1) If (A, C, ψ) is an entwining structure, then, using the notati<strong>on</strong>s introducedin (9.28), ( C = A ⊗ C, ∆ C , ε C) is an A-coring that will be called the A-coringassociated to the entwining (A, C, ψ) .


2) If A ⊗ C is an A-coring then (A, C, ψ) is an entwining structure whereψ (c ⊗ a) = (1 A ⊗ c) · a.3) If C = A ⊗ C is the A-coring associated to the entwining (A, C, ψ), thenM C A = (Mod-A)C ≃ M C A (ψ).Proof. 1) Let us define the A-bimodule structures <strong>on</strong> C = A ⊗ C. Set, for everya, b, a ′ , b ′ ∈ A and c ∈ Ca (b ⊗ c) = ab ⊗ c and (b ⊗ c) b ′ = bψ (c ⊗ b ′ ) = bb ′ α ⊗ c αi.e.a ′ (b ⊗ c) b ′ = a ′ bψ (c ⊗ b ′ ) = a ′ bb ′ α ⊗ c α .We check the right module structure. Let us compute(a ⊗ c) (bb ′ ) = aψ (c ⊗ bb ′ ) = a [ψ (C ⊗ m) (c ⊗ b ⊗ b ′ )]ψentw= a [((m ⊗ C) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A)) (c ⊗ b ⊗ b ′ )][= a [((m ⊗ C) ◦ (A ⊗ ψ)) (b α ⊗ c α ⊗ b ′ )] = a (m ⊗ C)(b α ⊗ b ′ β ⊗ (c α ) β)](= a b α b ′ β ⊗ (c α ) β) = ab α b ′ β ⊗ (c α ) β = (ab α ⊗ c α ) b ′ = ((a ⊗ c) b) b ′ .Let us calculate(a ⊗ c) 1 A = aψ (c ⊗ 1 A ) = a [(ψ ◦ (C ⊗ u)) (c ⊗ 1 k )]= a [( ) ]ψ ◦ (C ⊗ u) ◦ r −1 ψentwC (c) = a [( ) ](u ⊗ C) ◦ l −1C (c)= a [(u ⊗ C) (1 k ⊗ c)] = a (1 A ⊗ c) = a ⊗ c.Now, let us check that it is a bimodule(a ′ (a ⊗ c)) b ′ = a ′ aψ (c ⊗ b ′ ) = a ′ (aψ (c ⊗ b ′ )) = a ′ ((a ⊗ c) b ′ ) .We define the coproduct <strong>on</strong> C = A⊗C, ∆ C : C = A⊗C → C ⊗ A C = A⊗C ⊗ A A⊗C,by setting∆ C (a ⊗ c) = a ⊗ c (1) ⊗ A 1 A ⊗ c (2)where we denote ∆ (c) = c (1) ⊗ c (2) . It is straightforward to check that it is leftA-linear. Let us check it is also right A-linear. Let us compute∆ C ((a ⊗ c) b ′ ) = ∆ C (aψ (c ⊗ b ′ )) = ∆ C (ab ′ α ⊗ c α )(225)= ab ′ α ⊗ c α (1) ⊗ A 1 A ⊗ c α (2) = a (b ′ α) β⊗ c β (1) ⊗ A 1 A ⊗ c α (2)= aψ ( c (1) ⊗ b α) ′ ⊗A 1 A ⊗ c α (224)(2) = aψ ( )c (1) ⊗ b ′ α ⊗A ψ ( )c α (2) ⊗ 1 A= ( )a ⊗ c (1) b′α ⊗ A ψ ( ) ( )c α (2) ⊗ 1 A = a ⊗ c(1) ⊗A b ′ αψ ( )c α (2) ⊗ 1 A= a ⊗ c (1) ⊗ A(b′α ⊗ c α (2))1A = a ⊗ c (1) ⊗ A b ′ α ⊗ c α (2)= a ⊗ c (1) ⊗ A ψ ( c (2) ⊗ b ′) = a ⊗ c (1) ⊗ A ψ ( c (2) ⊗ b ′)= a ⊗ c (1) ⊗ A(1A ⊗ c (2))b ′ = ( a ⊗ c (1) ⊗ A 1 A ⊗ c (2))b ′ = ( ∆ C (a ⊗ c) ) b ′Let us check the coassociativity(∆ C ⊗ C ) ( a ⊗ c (1) ⊗ A 1 A ⊗ c (2))= a ⊗ c(1)(1) ⊗ A 1 A ⊗ c (1)(2) ⊗ A 1 A ⊗ c (2)213


214∆coass= a ⊗ c (1) ⊗ A 1 A ⊗ c (2)(1) ⊗ A 1 A ⊗ c (2)(2)= ( C ⊗ ∆ C) ( a ⊗ c (1) ⊗ A 1 A ⊗ c (2)).We define the counit of C, ε C : C → A, as followsε C (a ⊗ c) = aε (c) .It is straightforward to check that ε C is left A-linear. Let us check it is also rightA-linear. Let us computeε C ((a ⊗ c) b ′ ) = ε C (aψ (c ⊗ b ′ )) = ε C (ab ′ α ⊗ c α ) = ab ′ αε (c α )(225)= aε (c) b ′ = ( ε C (a ⊗ c) ) b ′ .Let now check the counitality(rC ◦ ( C ⊗ ε C) ◦ ∆ C) (a ⊗ c) = ( r C ◦ ( C ⊗ ε C)) ( a ⊗ c (1) ⊗ A 1 A ⊗ c (2))= r C(a ⊗ c(1) ⊗ A ε ( c (2)))= a ⊗ cand similarly(lC ◦ ( ε C ⊗ C ) ◦ ∆ C) (a ⊗ c) = ( l C ◦ ( ε C ⊗ C )) ( a ⊗ c (1) ⊗ A 1 A ⊗ c (2))= l C(aε(c(1))⊗A 1 A ⊗ c (2))= a ⊗ cthe right counitality is proved.2) Assume that A ⊗ C is an A-coring with the coproduct and counit as above, i.e.∆ C (a ⊗ c) = a ⊗ c (1) ⊗ A 1 A ⊗ c (2) and ε C (a ⊗ c) = aε (c) .Let us setψ (c ⊗ a) = (1 A ⊗ c) · a.We want to prove that ψ is an entwining for A and C. Since A ⊗ C is an A-coring,it is in particular a right A-module, so thati.e.((a ⊗ c) · a ′ ) · b ′ = (a ⊗ c) · (a ′ b ′ )(227) aa ′ αb ′ β ⊗ c αβ = a (a ′ b ′ ) α⊗ c αLet us compute, for every a, b ∈ A and c ∈ C[(m ⊗ C) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A)] (c ⊗ a ⊗ b)= [(m ⊗ C) ◦ (A ⊗ ψ)] (ψ (c ⊗ a) ⊗ b)= [(m ⊗ C) ◦ (A ⊗ ψ)] (a α ⊗ c α ⊗ b) = (m ⊗ C)(a α ⊗ b β ⊗ (c α ) β)= a α b β ⊗ (c α ) β (227)= (ab) α⊗ c α= ψ (c ⊗ ab) = [ψ ◦ (C ⊗ m)] (c ⊗ a ⊗ b)and[ ]ψ ◦ (C ⊗ u) ◦ r−1C (c) = [ψ ◦ (C ⊗ u)] (c ⊗ 1k ) = ψ (c ⊗ 1 A )A⊗CrightAmod= (1 A ⊗ c) · 1 A = 1 A ⊗ c = (u ⊗ C) (1 k ⊗ c) = [ ](u ⊗ C) ◦ l −1 (c) .C


On the other hand, ∆ C and ε C are A-bilinear maps and in particular right A-modulemap so that we havei.e.∆ C ((a ⊗ c) b ′ ) = ( ∆ C (a ⊗ c) ) b ′ and ε C ((a ⊗ c) b ′ ) = ( ε C (a ⊗ c) ) b ′(228) ab ′ α ⊗ c α (1) ⊗ A 1 A ⊗ c α (2) = a ⊗ c (1) ⊗ A b ′ α ⊗ c α (2)and(229) ab ′ αε (c α ) = aε (c) b ′ .Then, for every c ∈ C and a ∈ A, we haveand[(A ⊗ ∆) ◦ ψ] (c ⊗ a) = (A ⊗ ∆) (a α ⊗ c α ) = a α ⊗ c α (1) ⊗ c α (2)(228)= 1 A ⊗ c (1) a α ⊗ c α (2) = ψ ( )c (1) ⊗ a α ⊗ cα(2)= (ψ ⊗ C) ( ) (c (1) ⊗ a α ⊗ c α (2) = [(ψ ⊗ C) ◦ (C ⊗ ψ)] c(1) ⊗ c (2) ⊗ a )= [(ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (∆ ⊗ A)] (c ⊗ a)[r A ◦ (A ⊗ ε) ◦ ψ] (c ⊗ a) = [r A ◦ (A ⊗ ε)] (a α ⊗ c α ) = a α ε (c α )(229)= ε (c) a = [l A ◦ (ε ⊗ A)] (c ⊗ a) .3) Let M ∈ M C A (ψ) , that is ρC M is a right A-module map where A ⊗ C has a rightA-module structure given by(a ⊗ c) b ′ = aψ (c ⊗ b ′ ) = ab ′ α ⊗ c α .Since ρ C M is a right A-module map, then the comodule structure given by the compositeρ C M : M ρC M−→ M ⊗ C ≃ M ⊗ A A ⊗ C = M ⊗ A Cis a right A-module map and thus ( ( )M, ρM) C is a right C-comodule. C<strong>on</strong>versely, letM, ρCM be a right C-comodule, then we can c<strong>on</strong>sider215ρ C M : M ρC M−→ M ⊗ A C = M ⊗ A A ⊗ C ≃ M ⊗ Cas a right A-module map and thus we can see M as a (A, C, ψ)-entwined module.In fact, (226) just means that the map ρ C M is a right A-module map.□Theorem 9.31 ([SS, Lemma <str<strong>on</strong>g>1.</str<strong>on</strong>g>7]). Let C be a k-coalgebra and let A be a k-algebrasuch that (A, C, ψ) is an entwining structure. Then C = A ⊗ C is an A-coring.Assume that A C is flat (i.e. C is k-flat) and that ( A, m, ρA) C ∈ MCA (ψ). Let B =A coC . Then the following statements are equivalent:(a) the functor − ⊗ B A : Mod-B → M C A (ψ) is an equivalence of categories;(b) the can<strong>on</strong>ical map can : A ⊗ B A → A ⊗ C is an isomorphism (i.e. B ⊆ A isa C-Galois extensi<strong>on</strong>) and B A is faithfully flat.Proof. By Propositi<strong>on</strong> 9.30 we know that M C A = (Mod-A)C ≃ M C A (ψ) . By hypothesis( A, m, ρA) C ∈ MCA (ψ) and thus, by Lemma 9.23, C = A ⊗ C has a grouplikeelement, that is ρ C A (1 A) . Then we can apply Corollary 9.26 to c<strong>on</strong>clude. □


216Definiti<strong>on</strong> 9.3<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let H = ( )H, ∆ H , ε H , m H , u H be a k-bialgebra, letA = ( ) (((A, m A , u A ) , ρ H A be a right H-comodule algebra, let D = D, ∆ D , ε D) ), µ H Dbe a right H-module coalgebra and g ∈ D be a grouplike element. We definethe category of (D, A)-Hopf modules (or Doi-Koppinen Hopf modules) denoted byM D A (H) , as follows:• M ∈ Ob ( M D A (H)) is a right D-comodule via ρ D M , a right A-module via µA Msuch that for every m ∈ M we have( ) ∑(230) ρDM ◦ µ A M (m ⊗ a) = µAM (m 0 ⊗ a 0 ) ⊗ µ H D (m 1 ⊗ a 1 )where ρ D M (m) = ∑ m 0 ⊗ m 1 ∈ M ⊗ D and ρ H A (a) = ∑ a 0 ⊗ a 1 ∈ A ⊗ H, i.e.ρ D M is a morphism of right A-modules or equivalently, µA M is a morphism ofright D-comodules• f ∈ Hom M DA (H) (M, N) is both a morphism of right D-comodules and amorphism of right A-modules.Lemma 9.33. Let H = ( ) (H, ∆ H , ε H , m H , u H be a k-bialgebra, let A = (A, mA , u A ) , ρ H Abe a right H-comodule algebra, let D = (( D, ∆ D , ε D) , µ D) H be a right H-modulecoalgebra and g ∈ D be a grouplike element. Then A ∈ M D A (H) and A is a rightD-comodule algebra.Proof. We denote µ H D (d ⊗ h) = d · h. First of all we want to prove that A is a rightD-comodule. In fact we can c<strong>on</strong>siderdefined by settingρ D A : A → A ⊗ Dρ D A (a) = a 0 ⊗ g · a 1 .Let us compute, for every a ∈ A,[( ) ] (A ⊗ ∆D◦ ρ ) D A (a) = A ⊗ ∆D(a 0 ⊗ g · a 1 ) = a 0 ⊗ (g · a 1 ) (1)⊗ (g · a 1 ) (2)so thatDisHmodcoalg= a 0 ⊗ g (1) · a 1(1) ⊗ g (2) · a 1(2)A is Hcom= a 00 ⊗ g (1) · a 01 ⊗ g (2) · a 1ggrouplike= a 00 ⊗ g · a 01 ⊗ g · a 1 = ( ρ D A ⊗ D ) (a 0 ⊗ g · a 1 ) = [( ρ D A ⊗ D ) ◦ ρ D A](a)(A ⊗ ∆D ) ◦ ρ D A = ( ρ D A ⊗ D ) ◦ ρ D A.We compute, for every a ∈ A,[rA ◦ ( A ⊗ ε D) ] [◦ ρ D A (a) = rA ◦ ( A ⊗ ε D)] (a 0 ⊗ g · a 1 )(= r A a0 ⊗ ε D (ga 1 ) ) DisHmodcoalg (= r A a0 ⊗ ε D (g) ε H (a 1 ) )so that= a 0 ε D (g) ε H (a 1 ) ggrouplike= a1 k = ar A ◦ ( A ⊗ ε D) ◦ ρ D A = Id A .Note that A is a right A-module via m A . It remains to prove (230) . Recall thatρ D A (a) = ∑ a 0 ⊗ g · a 1 ∈ A ⊗ D)


217so that we have( ) ( )ρDA ◦ µ A A (a ⊗ b) = ρDA ◦ m A (a ⊗ b) = ρDA (ab)= ∑ ∑(ab) 0⊗ µ H D (g ⊗ (ab) 1) AisHcomalg= a0 b 0 ⊗ g · (a 1 b 1 )∑a0 b 0 ⊗ (g · a 1 ) · b 1 = ∑ ( )a 0 b 0 ⊗ µ H D µHD (g ⊗ a 1 ) ⊗ b 1= ∑ ( )m A (a 0 ⊗ b 0 ) ⊗ µ H D µHD (g ⊗ a 1 ) ⊗ b 1DisHmodcoalg== ∑ µ A A (a 0 ⊗ b 0 ) ⊗ µ H D (g · a 1 ⊗ b 1 ) .Then we deduce that A ∈ M D A (H). Note that this last computati<strong>on</strong> says that m Ais a morphism of right D-comodules. It remains to prove that u A is also a morphismof right D-comodules. Let us compute(ρDA ◦ u A)(1k ) = ρ D A (1 A ) = (1 A ) 0⊗ g · (1 A ) 1AisHcomalgDisHmodcoalg= 1 A ⊗ g · 1 H = 1 A ⊗ g= (u A ⊗ D) (1 k ⊗ g) = [ ](u A ⊗ D) ◦ ρ D k (1k )so that we c<strong>on</strong>clude that ( (A, m A , u A ) , ρA) D is a right D-comodule algebra. □Theorem 9.34 ([MeZu, Theorem 3.29 (a) ⇔ (f)]). Let H = ( )H, ∆ H , ε H , m H , u Hbe a k-bialgebra, let A = ( )(((A, m A , u A ) , ρ H A be a right H-comodule algebra, let D =D, ∆ D , ε D) ), µ H D be a right H-module coalgebra and let g ∈ D be a grouplikeelement. Then ( (A, m A , u A ) , ρA) D is a right D-comodule algebra and D = A ⊗ D isan A-coring. Assume that A D is flat (i.e. D is k-flat). Let B = A coD . Then thefollowing statements are equivalent:(a) the functor − ⊗ B A : Mod-B → M D A (H) is an equivalence of categories;(b) the can<strong>on</strong>ical map can : A ⊗ B A → A ⊗ D is an isomorphism (i.e. B ⊆ A isa D-Galois extensi<strong>on</strong>) and B A is faithfully flat.Proof. We set µ H D (d ⊗ h) = d · h. By Lemma 9.33, we know that ( )(A, m A , u A ) , ρ D Ais a right D-comodule algebra. First of all we want to prove that D = A ⊗ D is anA-coring. Let us c<strong>on</strong>sider ψ : D ⊗ A → A ⊗ D defined by setting, for every a ∈ Aand d ∈ D,ψ (d ⊗ a) = a 0 ⊗ d · a 1where we denote ρ H A (a) = a 0 ⊗ a 1 . Let us prove that (A, D, ψ) is then an entwiningstructure over k. We have to prove (222). Let us compute, for every a, b ∈ A, d ∈ D,[(m A ⊗ D) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A)] (d ⊗ a ⊗ b)= [(m A ⊗ D) ◦ (A ⊗ ψ)] (a 0 ⊗ d · a 1 ⊗ b)= (m A ⊗ D) (a 0 ⊗ b 0 ⊗ (d · a 1 ) · b 1 ) = a 0 b 0 ⊗ (d · a 1 ) · b 1so that(D,µ H D)Hmodcoalg= a 0 b 0 ⊗ d · (a 1 b 1 ) (A,ρH A)H-com alg= (ab) 0⊗ d · (ab) 1= ψ (d ⊗ ab) = [ψ ◦ (D ⊗ m A )] (d ⊗ a ⊗ b)(m A ⊗ D) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A) = ψ ◦ (D ⊗ m A ) .


218Let us compute, for every d ∈ D,[ ]ψ ◦ (D ⊗ uA ) ◦ r −1D (d) = [ψ ◦ (D ⊗ uA )] (d ⊗ 1 k ) = ψ (d ⊗ 1 A )so that we have(A,ρ H A)H-com algDisHmodcoal= (1 A ) 0⊗ d · (1 A ) 1= 1 A ⊗ d · 1 H = 1 A ⊗ d= (u A ⊗ D) (1 k ⊗ d) = [ ](u A ⊗ D) ◦ l −1D (d)ψ ◦ (D ⊗ u A ) ◦ r −1D= (u A ⊗ D) ◦ l −1D .Let us prove (223) . Let us compute, for every a ∈ A, d ∈ D[(ψ ⊗ D) ◦ (D ⊗ ψ) ◦(∆ D ⊗ A )] (d ⊗ a)= [(ψ ⊗ D) ◦ (D ⊗ ψ)] ( d (1) ⊗ d (2) ⊗ a )= (ψ ⊗ D) ( d (1) ⊗ a 0 ⊗ d (2) · a 1)= a00 ⊗ d (1) · a 01 ⊗ d (2) · a 1A isHcomod= a 0 ⊗ d (1) · a 1(1) ⊗ d (2) · a 1(2)DisHmodcoalg= a 0 ⊗ (d · a 1 ) (1)⊗ (d · a 1 ) (2)so that we getandso that we get= ( A ⊗ ∆ D) (a 0 ⊗ d · a 1 ) = [( A ⊗ ∆ D) ◦ ψ ] (d ⊗ a)(ψ ⊗ D) ◦ (D ⊗ ψ) ◦ ( ∆ D ⊗ A ) = ( A ⊗ ∆ D) ◦ ψ[rA ◦ ( A ⊗ ε D) ◦ ψ ] (d ⊗ a) = [ r A ◦ ( A ⊗ ε D)] (a 0 ⊗ d · a 1 )(= r A a0 ⊗ ε D (d · a 1 ) ) DisHmodcoal (= r A a0 ⊗ ε D (d) ε H (a 1 ) )= aε D (d) = ε D (d) a = l A(ε D (d) ⊗ a ) = [ l A ◦ ( ε D ⊗ A )] (d ⊗ a)r A ◦ ( A ⊗ ε D) ◦ ψ = l A ◦ ( ε D ⊗ A ) .Then by Propositi<strong>on</strong> 9.30, ( D = A ⊗ D, ∆ D , ε D) is the A-coring associated to theentwining (A, D, ψ) and M D A = (Mod-A)D ≃ M D A (ψ). Note that M ∈ MD A (ψ) , issuch that ( ( )M, µ M) A is a right A-module, M, ρDM is a right D-comodule satisfying(µAM ⊗ D ) ◦ (M ⊗ ψ) ◦ ( ρ D M ⊗ A ) = ρ D M ◦ µ A Mi.e. for every m ∈ M and for every a ∈ A( )ρDM ◦ µ A M (m ⊗ a) = µAM (m 0 ⊗ a 0 ) ⊗ µ H D (m 1 ⊗ a 1 )which is exactly the c<strong>on</strong>diti<strong>on</strong> (230) for M ∈ M D A (H) . Since morphisms in bothcategories M D A (ψ) and MD A (H) are right A-linear and right D-colinear morphismswe deduce thatM D A (ψ) ≃ M D A (H) .Since by Lemma 9.33 A ∈ M D A (H) ≃ MD A (ψ) , we can apply Theorem 9.31 to thecase ”C” = D and ”M C A (ψ) ” = MD A (ψ) ≃ MD A (H) .□


219Corollary 9.35 ([Schn1, Theorem I (2) ⇔ (4)]). Let H = ( )H, ∆ H , ε H , m H , u Hbe a k-bialgebra and let ( )(A, m A , u A ) , ρ H A be a right H-comodule algebra. ThenH = A⊗H is an A-coring. Assume that A H is flat (i.e. H is k-flat). Let B = A coH .Then the following statements are equivalent:(a) the functor − ⊗ B A : Mod-B → M H A is an equivalence of categories;(b) the can<strong>on</strong>ical map can : A ⊗ B A → A ⊗ H is an isomorphism (i.e. B ⊆ A isan H-Galois extensi<strong>on</strong>) and B A is faithfully flat.Proof. We can apply Theorem 9.34 to the case ”D” = H so that M D A (H) = MH A .□10. BicategoriesIn this last part we will change some notati<strong>on</strong>s to be more clear and to give moreevidence to a new product we introduce here.Let C be a bicategory. For every 0-cell X in C, we denote by 1 X : X → X theidentity 1-cell over X. For every 1-cell A in C, we denote by 1 A : A → A the identity2-cell over A. We will use juxtapositi<strong>on</strong> when we compose 2-cells vertically and wewill denote by · the horiz<strong>on</strong>tal compositi<strong>on</strong> of 1-cells and 2-cells.Let us assume that C is a bicategory with completeness requirement (all thecategories C ((X, A) , (Y, B)) have coequalizers which are preserved by compositi<strong>on</strong>with 1-cells).We keep denoting by (A, m A , u A ) a m<strong>on</strong>ad with its multiplicati<strong>on</strong> and unit.We now want to define the 2-category Mnd (C) following the definiti<strong>on</strong> given in[St]. For simplicity we will always assume to work with a 2-category C even if <strong>on</strong>ecan prove similar <str<strong>on</strong>g>results</str<strong>on</strong>g> for an arbitrary bicategory.Definiti<strong>on</strong> 10.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let C be a 2-category. A m<strong>on</strong>ad in C is a pair (X, A) where Xis an object of C, A : X → X is a 1-cell in C together with 2-cells m A : 1 A · 1 A → 1 Aand u A : 1 X → 1 A satisfying associativity and unitality c<strong>on</strong>diti<strong>on</strong>s, i.e.(231)(232)m A (1 A · m A ) = m A (m A · 1 A )m A (u A · 1 A ) = 1 A = m A (1 A · u A ) .Definiti<strong>on</strong> 10.<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let C be a 2-category and let (X, A) , (Y, B) be m<strong>on</strong>ads in C. Am<strong>on</strong>ad functor in C is a pair (Q, φ) : (X, A) → (Y, B) where Q : X → Y is a 1-celland φ : B · Q → Q · A satisfying the following c<strong>on</strong>diti<strong>on</strong>s(233)(234)(1 Q · m A ) (φ · 1 A ) (1 B · φ) = φ (m B · 1 Q )φ (u B · 1 Q ) = 1 Q · u A .Definiti<strong>on</strong> 10.3. Let C be a 2-category, let (X, A) , (Y, B) be m<strong>on</strong>ads in C and let(Q, φ) , (Q ′ , φ ′ ) : (X, A) → (Y, B) be m<strong>on</strong>ad functors. A m<strong>on</strong>ad functor transformati<strong>on</strong>σ : (Q, φ) → (Q ′ , φ ′ ) in C is a 2-cell σ : Q → Q ′ such that(235) φ ′ (1 B · σ) = (σ · 1 A ) φ.Definiti<strong>on</strong> 10.4. The 2-category Mnd (C) c<strong>on</strong>sists of• Objects: m<strong>on</strong>ads in C• 1-cells: m<strong>on</strong>ad functors in C


220• 2-cells: m<strong>on</strong>ad functor transformati<strong>on</strong>s in C.Remark 10.5. We denote by (X, 1 X ) in C the trivial m<strong>on</strong>ad <strong>on</strong> the object X withtrivial multiplicati<strong>on</strong> and unit m 1X : 1 1X · 1 1X → 1 1X and u 1X : 1 X → 1 1X .Definiti<strong>on</strong> 10.6. Let C, C ′ be two 2-categories and let G : C → C ′ be a pseudofunctor.Then the pseudofunctor Mnd (G) : Mnd (C) → Mnd (C ′ ) is defined asfollows:• Mnd (G) (X, A) = (G (X) , G (A))• Mnd (G) (Q, φ) = (G (Q) , G (φ))• Mnd (G) (σ) = G (σ) .Remark 10.7. Note that Cmd (C) = Mnd (C ∗ ) where C ∗ is the dual reversing2-cells of C.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> C<strong>on</strong>structi<strong>on</strong> of BIM (C)The idea of defining this bicategory goes back to the strict m<strong>on</strong>oidal category ofbalanced bimodule functors that we defined in Subsecti<strong>on</strong> 3.<str<strong>on</strong>g>2.</str<strong>on</strong>g> We observed that,c<strong>on</strong>sidering bimodule functors with respect to the same m<strong>on</strong>ad <strong>on</strong> both sides, wehave a unit and a compositi<strong>on</strong>, so that they form a strict m<strong>on</strong>oidal category. In thecase we c<strong>on</strong>sider a bimodule with respect to two different m<strong>on</strong>ads, the unit objectfails and the compositi<strong>on</strong> between them is no l<strong>on</strong>ger inside the class of objects of thecategory. The way to solve this problem is to look at balanced bimodule functorsas 0-cells of a bicategory, changing the definiti<strong>on</strong> of their product.Definiti<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g><str<strong>on</strong>g>1.</str<strong>on</strong>g> Let X be a 0-cell and let (Y, B) be a m<strong>on</strong>ad in C. A left B-modulein C (or simply a left B-module) is a pair (Q, λ Q ) where Q : X → Y is a 1-cell andλ Q : B · Q → Q is a 2-cell in C, satisfying the associativity and unitality propertieswith respect to the m<strong>on</strong>ad B, i.e.λ Q (m B · 1 Q ) = λ Q (1 B · λ Q ) and λ Q (u B · 1 Q ) = 1 Q .Definiti<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g><str<strong>on</strong>g>2.</str<strong>on</strong>g> Let (X, A) and (Y, 1 Y ) be m<strong>on</strong>ads in C. A right A-module in C(or simply a right A-module) is a m<strong>on</strong>ad functor in C ∗ , i.e. a 1-cell Q : X → Yand a 2-cell ρ Q : Q · A → 1 Y · Q = Q in C, satisfying the associativity and unitalityproperties with respect to the m<strong>on</strong>ad A, i.e.ρ Q (1 Q · m A ) = ρ Q (ρ Q · 1 A ) and ρ Q (1 Q · u A ) = 1 Q .Definiti<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>3. Let (X, A) and (Y, B) be m<strong>on</strong>ads in C. A B-A-bimodule in C (orsimply a B-A-bimodule) is a triple (Q, λ Q , ρ Q ) where• (Q, λ Q ) is a left B-module in C• (Q, ρ Q ) is a right A-module in C• the compatibility c<strong>on</strong>diti<strong>on</strong> holdsλ Q (1 B · ρ Q ) = ρ Q (λ Q · 1 A ) .Lemma 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>4. Let (X, A) , (Y, B) be m<strong>on</strong>ads in C and let (Q, λ Q ) be a left A-moduleand (Q, ρ Q ) be a right B-module. Then (Q, λ Q ) = Coequ C (m A · 1 Q , 1 A · λ Q ) and(Q, ρ Q ) = Coequ C (1 Q · m B , ρ Q · 1 B ).


Proof. We will <strong>on</strong>ly prove the statement for the left module. Similarly can be provedthe other <strong>on</strong>e. Since λ Q is associative, we deduce thatNow, assume that (S, σ) is such thatThen we haveλ Q (m A · 1 Q ) = λ Q (1 A · λ Q ) .σ (m A · 1 Q ) = σ (1 A · λ Q ) .σ (u A · 1 Q ) λ Qu A= σ (1 A · λ Q ) (u A · 1 A · 1 Q )propσ= σ (m A · 1 Q ) (u A · 1 A · 1 Q ) Am<strong>on</strong>ad= σ.Moreover, since λ Q is epi, we c<strong>on</strong>clude that the 2-cell σ (u A · 1 Q ) is unique withrespect to the propertyσ (u A · 1 Q ) λ Q = σso that(Q, λ Q ) = Coequ C (m A · 1 Q , 1 A · λ Q ) .□Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>5. Let (X, A) , (Y, B) and (W, C) be m<strong>on</strong>ads in C and let Q : Y →X and Q ′ : W → Y be respectively a A-B-bimodule with (Q, λ Q , ρ Q ) and a B-Cbimodulein C with (Q ′ , λ Q ′, ρ Q ′). Then (Q • B Q ′ , p Q,Q ′) = Coequ C (ρ Q · 1 Q ′, 1 Q · λ Q ′)is a A-C-bimodule in C via the acti<strong>on</strong>s λ Q•B Q ′ and ρ Q• B Q ′ uniquely determined by(236) λ Q•B Q ′ (1 A · p Q,Q ′) = p Q,Q ′ (λ Q · 1 Q ′)and(237) ρ Q•B Q ′ (p Q,Q ′ · 1 C) = p Q,Q ′ (1 Q · ρ Q ′) .Proof. Let us define the bimodule structures <strong>on</strong> Q• B Q ′ . Let us c<strong>on</strong>sider the followingdiagramQ · B · Q ′ · C1 Q·1 B·ρ Q ′ρ Q·1 Q ′·1 C1 Q·λ Q ′·1 CQ · B · Q ′ ρ Q·1 Q ′1 Q·λ Q ′Q · Q ′ · C1 Q·ρ Q ′p Q,Q ′·1 C Q · Q ′ p Q,Q ′Q • B Q ′ · Cρ Q•B Q ′ Q • B Q ′Note that the left square serially commutes. In fact we have(1 Q · ρ Q ′) (ρ Q · 1 Q ′ · 1 C ) ρ Q= (ρ Q · 1 Q ′) (1 Q · 1 B · ρ Q ′)and(1 Q · ρ Q ′) (1 Q · λ Q ′ · 1 C ) Qbim= (1 Q · λ Q ′) (1 Q · 1 B · ρ Q ′) .Therefore, we getp Q,Q ′ (1 Q · ρ Q ′) (ρ Q · 1 Q ′ · 1 C ) = p Q,Q ′ (1 Q · ρ Q ′) (1 Q · λ Q ′ · 1 C )and by the universal property of the coequalizer(Q • B Q ′ · C, p Q,Q ′ · 1 C ) = Coequ C (ρ Q · 1 Q ′ · 1 C , 1 Q · λ Q ′ · 1 C ), there exists a unique2-cell ρ Q•B Q ′ : Q • B Q ′ · C → Q • B Q ′ such thatρ Q•B Q ′ (p Q,Q ′ · 1 C) = p Q,Q ′ (1 Q · ρ Q ′) .221


222We now want to prove that ρ Q·BQ ′c<strong>on</strong>sider the following diagramQ · B · Q ′ · C · Cρ Q·1 Q ′·1 C·1 C1 Q·λ Q ′·1 C·1 Cdefines a structure of right C-module. Let usQ · Q ′ · C · C p Q,Q ′·1 C·1 C Q • B Q ′ · C · C1 Q·1 B·1 Q ′·m C1 Q·1 Q ′·m Cρ Q•B Q ′·1 C1 Q•B Q ′·m C1 Q·1 B·ρ Q ′·1 CQ · B · Q ′ · Cρ Q·1 Q ′·1 C1 Q·λ Q ′·1 C1 Q·ρ Q ′·1 CQ · Q ′ · Cp Q,Q ′·1 CQ • B Q ′ · C1 Q·1 B·ρ Q ′1 Q·ρ Q ′ρ Q•B Q ′Q · B · Q ′ ρ Q·1 Q ′1 Q·λ Q ′ Q · Q ′ p Q,Q ′ Q • B Q ′The diagram serially commutes and since the rows and the first two columns arecoequalizers, also the third column is a coequalizer. In particular,i.e. ρ Q•B Q ′ρ Q•B Q ′ (ρ Q• B Q ′ · 1 C) = ρ Q•B Q ′ (1 Q• B Q ′ · m C)is associative. Now, we also have that the following diagramQ · B · Q ′ · Cρ Q·1 Q ′·1 C1 Q·λ Q ′·1 CQ · Q ′ · C p Q,Q ′·1C Q • B Q ′ · C1 Q·1 B·ρ Q ′1 Q·1 B·1 Q ′·u C1 Q·ρ Q ′1 Q·1 Q ′·u C1 Q•B Q ′·u CQ · B · Q ′ ρ Q·1 Q ′1 Q·λ Q ′Q · Q ′ p Q,Q ′ρ Q•B Q ′ Q • B Q ′serially commutes. In particularso thatand since p Q,Q ′(1 Q•B Q ′ · u C) p Q,Q ′ = (p Q,Q ′ · 1 C ) (1 Q · 1 Q ′ · u C )ρ Q•B Q ′ (1 Q• B Q ′ · u C) p Q,Q ′ = ρ Q•B Q ′ (p Q,Q ′ · 1 C) (1 Q · 1 Q ′ · u C )= p Q,Q ′ (1 Q · ρ Q ′) (1 Q · 1 Q ′ · u C ) Q′ mod= p Q,Q ′is an epimorphism, we get thatρ Q•B Q ′ (1 Q• B Q ′ · u C) = 1 Q•B Q ′so that ρ Q•B Q ′ is also unital. Therefore (Q • B Q ′ , ρ Q•B Q ′) is a right C-module. Similarly,let us c<strong>on</strong>sider the following diagramA · Q · B · Q ′ 1 A·ρ Q·1 Q ′λ Q·1 B·1 Q ′1 A·1 Q·λ Q ′Q · B · Q ′ ρ Q·1 Q ′1 Q·λ Q ′A · Q · Q ′ 1 A·p Q,Q ′λ Q·1 Q ′ Q · Q ′ p Q,Q ′A · Q • B Q ′λ Q•B Q ′ Q • B Q ′


Since we are assuming that the coequalizers are preserved by the compositi<strong>on</strong> withany 1-cell, both the rows are coequalizers and the left square serially commutes. Infact(λ Q · 1 Q ′) (1 A · ρ Q · 1 Q ′) Qbim= (ρ Q · 1 Q ′) (λ Q · 1 B · 1 Q ′)(λ Q · 1 Q ′) (1 A · 1 Q · λ Q ′) λ Q= (1 Q · λ Q ′) (λ Q · 1 B · 1 Q ′) .By the universal property of the coequalizer(Q • B Q ′ , p Q,Q ′) = Coequ C (ρ Q · 1 Q ′, 1 Q · λ Q ′), there exists a unique 2-cell λ Q•B Q ′ :A · Q • B Q ′ → Q • B Q ′ such thatλ Q•B Q ′ (1 A · p Q,Q ′) = p Q,Q ′ (λ Q · 1 Q ′) .By similar computati<strong>on</strong>s, <strong>on</strong>e can prove that (Q • B Q ′ , λ Q•B Q ′) is a left A-module.Finally, we prove that the structures are compatible. In factρ Q•B Q ′ (λ Q• B Q ′ · 1 C) (1 A · p Q,Q ′ · 1 C )(236)= ρ Q•B Q ′ (p Q,Q ′ · 1 C) (λ Q · 1 Q ′ · 1 C )(237)= p Q,Q ′ (1 Q · ρ Q ′) (λ Q · 1 Q ′ · 1 C ) λ Q= p Q,Q ′ (λ Q · 1 Q ′) (1 A · 1 Q · ρ Q ′)(236)= λ Q•B Q ′ (1 A · p Q,Q ′) (1 A · 1 Q · ρ Q ′)223(237)= λ Q•B Q ′ (1 A · ρ Q•B Q ′) (1 A · p Q,Q ′ · 1 C )and since 1 A · p Q,Q ′ · 1 C is epi, we get thatρ Q•B Q ′ (λ Q• B Q ′ · 1 C) = λ Q•B Q ′ (1 A · ρ Q•B Q ′)i.e. (Q • B Q ′ , λ Q•B Q ′, ρ Q• B Q ′) is an A-C-bimodule.□Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>6. Let (X, A) and (Y, B) be m<strong>on</strong>ads in the 2-category C, let (Q, λ Q )be a left A-module and (Q, ρ Q ) be a right B-module. Then A• A Q ≃ Q and Q• B B ≃Q.Proof. Let us c<strong>on</strong>sider the trivial left A-module (A, m A ) and note that (A • A Q, p A,Q ) =Coequ C (m A · 1 Q , 1 A · λ Q ). We already observed, in Lemma 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>4, that (Q, λ Q ) =Coequ C (m A · 1 Q , 1 A · λ Q ). Therefore, there exists an isomorphism l Q : A • A Q → Qsuch that(238) l Q p A,Q = λ Q .Similarly, if we c<strong>on</strong>sider the trivial right B-module (B, m B ), since (Q • B B, p Q,B ) =Coequ C (1 Q · m B , ρ Q · 1 B ) = (Q, ρ Q ) we deduce that there exists an isomorphismr Q : Q • B B → Q such that(239) r Q p Q,B = ρ Q .Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>7. Let (X, A), (Y, B), (Z, C), (W, D) be m<strong>on</strong>ads in the 2-categoryC and let (Q, λ Q , ρ Q ) be an A-B-bimodule, (Q ′ , λ Q ′, ρ Q ′) be a B-C-bimodule and(Q ′′ , λ Q ′′, ρ Q ′′) be a C-D-bimodule. Then the coequalizers (Q • B Q ′ ) • C Q ′′ ≃ Q • B(Q ′ • C Q ′′ ) are isomorphic as A-D-bimodules.□


224Proof. Let us c<strong>on</strong>sider the following diagramQ · B · Q ′ · C · Q ′′ 1ρ Q·1 Q ′·1 C·1 Q ′′1 Q·λ Q ′·1 C·1 Q ′′Q · Q ′ · C · Q ′′p Q,Q ′·1 C·1 Q ′′Q • B Q ′ · C · Q ′′1 Q·1 B·1 Q ′·λ Q ′′1 Q·1 B·ρ Q ′·1 Q ′′1 Q·1 Q ′·λ Q ′′1 Q·ρ Q ′·1 Q ′′2ρ Q•B Q ′·1 Q ′′Q · B · Q ′ · Q ′′ ρ Q·1 Q ′·1 Q ′′1 Q·λ Q ′·1 Q ′′Q · Q ′ · Q ′′ p Q,Q ′·1 Q ′′1 Q•B Q ′·λ Q ′′ Q • B Q ′ · Q ′′1 Q·1 B·p Q ′ ,Q ′′31 Q·p Q ′ ,Q ′′4p Q•B Q ′ ,Q ′′Q · B · Q ′ • C Q ′′ ρ Q·1 Q ′ •C Q ′′ 1 Q·λ Q ′ •C Q ′′ Q · Q ′ • C Q ′′ p Q,Q ′ •C Q ′′ Q • B (Q ′ • C Q ′′ ) ≃ (Q • B Q ′ ) • C Q ′′Note that the left upper square serially commutes because of naturality of the 2-cells. The right upper square commutes because of naturality and of (237). The leftbottom square commutes because of naturality and of (236). The rows are coequalizersand, since the 1-cells preserves coequalizers, also the columns are coequalizers.By the commutativity of the diagram, we deduce thatp Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) (ρ Q · 1 Q ′ · 1 Q ′′)3= p Q,Q ′ • C Q ′′ (ρ Q · 1 Q ′ • C Q ′′) (1 Q · 1 B · p Q ′ ,Q ′′)coequ= p Q,Q ′ • C Q ′′ (1 Q · λ Q ′ • C Q ′′) (1 Q · 1 B · p Q ′ ,Q ′′)3= p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) (1 Q · λ Q ′ · 1 Q ′′)and since (Q • B Q ′ · Q ′′ , p Q,Q ′ · 1 Q ′′) = Coequ C (ρ Q · 1 Q ′ · 1 Q ′′, 1 Q · λ Q ′ · 1 Q ′′), thereexists a unique 2-cell ξ : Q • B Q ′ · Q ′′ → Q • B (Q ′ • C Q ′′ ) such that(240) ξ (p Q,Q ′ · 1 Q ′′) = p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) .Moreover, we haveξ (1 Q•B Q ′ · λ Q ′′) (p Q,Q ′ · 1 C · 1 Q ′′) 2 = ξ (p Q,Q ′ · 1 Q ′′) (1 Q · 1 Q ′ · λ Q ′′)(240)= p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) (1 Q · 1 Q ′ · λ Q ′′)p Q ′ ,Q ′′coequ= p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) (1 Q · ρ Q ′ · 1 Q ′′)(240)= ξ (p Q,Q ′ · 1 Q ′′) (1 Q · ρ Q ′ · 1 Q ′′) 2 = ξ (ρ Q•B Q ′ · 1 Q ′′) (p Q,Q ′ · 1 C · 1 Q ′′)and since p Q,Q ′ · 1 C · 1 Q ′′ is epi, we get that ξ is a fork for (1 Q•B Q ′ · λ Q ′′, ρ Q• B Q ′ · 1 Q ′′) .By the universal property of the coequalizer((Q • B Q ′ ) • C Q ′′ , p Q•B Q ′ ,Q ′′) = Coequ C (1 Q•B Q ′ · λ Q ′′, ρ Q• B Q ′ · 1 Q ′′), there exists a unique2-cell ζ : (Q • B Q ′ ) • C Q ′′ → Q • B (Q ′ • C Q ′′ ) such thatand thus we haveζp Q•B Q ′ ,Q ′′ = ξζp Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) = ξ (p Q,Q ′ · 1 (240)Q ′′) = p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′)


i.e.(241) ζp Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) = p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) .Similarly, we havep Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) (1 Q · ρ Q ′ · 1 Q ′′)2= p Q•B Q ′ ,Q ′′ (ρ Q• B Q ′ · 1 Q ′′) (p Q,Q ′ · 1 C · 1 Q ′′)p Q•B Q ′ ,Q ′′coequ= p Q•B Q ′ ,Q ′′ (1 Q• B Q ′ · λ Q ′′) (p Q,Q ′ · 1 C · 1 Q ′′)2= p Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) (1 Q · 1 Q ′ · λ Q ′′)and since (Q · Q ′ • C Q ′′ , 1 Q · p Q ′ ,Q ′′) = Coequ C ((1 Q · ρ Q ′ · 1 Q ′′) , (1 Q · 1 Q ′ · λ Q ′′)) , thereexists a unique ξ ′ : Q · Q ′ • C Q ′′ → (Q • B Q ′ ) • C Q ′′ such that(242) ξ ′ (1 Q · p Q ′ ,Q ′′) = p Q• B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) .Moreover, we haveξ ′ (ρ Q · 1 Q ′ • C Q ′′) (1 Q · 1 B · p Q ′ ,Q ′′) ρ Q= ξ ′ (1 Q · p Q ′ ,Q ′′) (ρ Q · 1 Q ′ · 1 Q ′′)(242)= p Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) (ρ Q · 1 Q ′ · 1 Q ′′)p Q,Q ′coequ= p Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) (1 Q · λ Q ′ · 1 Q ′′)(242)= ξ ′ (1 Q · p Q ′ ,Q ′′) (1 Q · λ Q ′ · 1 Q ′′) 3 = ξ ′ (1 Q · λ Q ′ • C Q ′′) (1 Q · 1 B · p Q ′ ,Q ′′)and since 1 Q·1 B·p Q ′ ,Q ′′ is epi, we deduce that ξ′ is a fork for (ρ Q · 1 Q ′ • C Q ′′, 1 Q · λ Q ′ • C Q ′′) .Since (Q • B (Q ′ • C Q ′′ ) , p Q,Q ′ • C Q ′′) = Coequ C (ρ Q · 1 Q ′ • C Q ′′, 1 Q · λ Q ′ • C Q ′′) , there existsa unique 2-cell ζ ′ : Q • B (Q ′ • C Q ′′ ) → (Q • B Q ′ ) • C Q ′′ such thatand thusso thatζ ′ p Q,Q ′ • C Q ′′ = ξ′ζ ′ p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) = ξ′ (242)(1 Q · p Q ′ ,Q′′) = p Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′)(243) ζ ′ p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) = p Q• B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) .We now want to prove that ζ and ζ ′ are two-sided inverse. We haveζζ ′ p Q,Q ′ • C Q ′′ (1 (243)Q · p Q ′ ,Q′′) = ζp Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′)(241)= p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′)and since p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q′′) is an epimorphism, we deduce thatSimilarly, we haveζζ ′ = 1 Q•B (Q ′ • C Q ′′ ).ζ ′ ζp Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 (241)Q ′′) = ζ ′ p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′)(243)= p Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′)225


226and since p Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) is an epimorphism, we get thatζ ′ ζ = 1 (Q•B Q ′ )• C Q ′′.Therefore, (Q • B Q ′ ) • C Q ′′ ≃ Q • B (Q ′ • C Q ′′ ) via ζ. Moreover, by Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>5,we know that (Q • B Q ′ ) • C Q ′′ and Q • B (Q ′ • C Q ′′ ) are A-D-bimodules. We nowwant to prove that ζ is a morphism of left A-modules and right D-modules. Let uscomputeζλ (Q•B Q ′ )• C Q ′′ (1 A · p Q•B Q ′ ,Q ′′) (1 A · p Q,Q ′ · 1 Q ′′)defλ (Q•B Q ′ )• C Q ′′= ζp Q•B Q ′ ,Q ′′ (λ(Q•B Q ′ ) · 1 Q ′′)(1A · p Q,Q ′ · 1 Q ′′)defλ (Q•B Q ′ )= ζp Q•B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) (λ Q · 1 Q ′ · 1 Q ′′)(241)= p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) (λ Q · 1 Q ′ · 1 Q ′′)λ Q=pQ,Q ′ • C Q ′′ (λ Q · 1 Q ′ • C Q ′′) (1 A · 1 Q · p Q ′ ,Q ′′)defλ (Q•B Q ′ )= λ Q•B (Q ′ • C Q ′′ ) (1 A · p Q,Q ′ • C Q ′′) (1 A · 1 Q · p Q ′ ,Q ′′)(241)= λ Q•B (Q ′ • C Q ′′ ) (1 A · ζ) (1 A · p Q•B Q ′ ,Q ′′) (1 A · p Q,Q ′ · 1 Q ′′)and since (1 A · p Q•B Q ′ ,Q ′′) (1 A · p Q,Q ′ · 1 Q ′′) is epi, we get thatζλ (Q•B Q ′ )• C Q ′′ = λ Q• B (Q ′ • C Q ′′ ) (1 A · ζ)i.e. ζ is a morphism of left A-modules. Similarly, <strong>on</strong>e can prove that ζ is a morphismof right D-modules.□Notati<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>8. In the setting of Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>7, let us c<strong>on</strong>sider the isomorphismof bimodulesζ : (Q • B Q ′ ) • C Q ′′ → Q • B (Q ′ • C Q ′′ ) .In order to be more clear, in the following, we will denote it byζ Q,Q ′ ,Q ′′ : (Q • B Q ′ ) • C Q ′′ → Q • B (Q ′ • C Q ′′ )which is the unique satisfying the following(244) ζ Q,Q ′ ,Q ′′p Q• B Q ′ ,Q ′′ (p Q,Q ′ · 1 Q ′′) = p Q,Q ′ • C Q ′′ (1 Q · p Q ′ ,Q ′′) .Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>9. Let (X, A), (Y, B), (Z, C), (W, D), (U, E) be m<strong>on</strong>ads in the 2-category C and let (Q, λ Q , ρ Q ) be an A-B-bimodule, (Q ′ , λ Q ′, ρ Q ′) be a B-C-bimodule,(Q ′′ , λ Q ′′, ρ Q ′′) be a C-D-bimodule and (Q ′′′ , λ Q ′′′, ρ Q ′′′) be a D-E-bimodule. Then thePentag<strong>on</strong> Axiom holds, i.e. the following diagram is commutative((Q • B Q ′ ) • C Q ′′ ) • D Q ′′′ ζ Q,Q ′ ,Q ′′• D 1 Q ′′′(Q • B (Q ′ • C Q ′′ )) • D Q ′′′ζ Q•B Q ′ ,Q ′′ ,Q ′′′ζ Q,Q ′ •C Q ′′ ,Q ′′′(Q • B Q ′ ) • C (Q ′′ • D Q ′′′ )Q • B ((Q ′ • C Q ′′ ) • D Q ′′′ )ζ Q,Q ′ ,Q ′′ •D Q ′′′1 Q • B ζ Q ′ ,Q ′′ ,Q ′′′Q • B (Q ′ • C (Q ′′ • D Q ′′′ ))


227Proof. We computeand(1 Q • B ζ Q ′ ,Q ′′ ,Q ′′′) ζ Q,Q ′ • C Q ′′ ,Q ′′′ (ζ Q,Q ′ ,Q ′′ • D 1 Q ′′′) p (Q•B Q ′ )• C Q ′′ ,Q ′′′(p Q•B Q ′ ,Q ′′ · 1 Q ′′′) (p Q,Q ′ · 1 Q ′′ · 1 Q ′′′)= (1 Q • B ζ Q ′ ,Q ′′ ,Q ′′′) ζ Q,Q ′ • C Q ′′ ,Q ′′′p Q• B (Q ′ • C Q ′′ ),Q ′′′ (ζ Q,Q ′ ,Q ′′ · 1 Q ′′′)(p Q•B Q ′ ,Q ′′ · 1 Q ′′′) (p Q,Q ′ · 1 Q ′′ · 1 Q ′′′)(244)= (1 Q • B ζ Q ′ ,Q ′′ ,Q ′′′) ζ Q,Q ′ • C Q ′′ ,Q ′′′p Q• B (Q ′ • C Q ′′ ),Q ′′′ (p Q,Q ′ • C Q ′′ · 1 Q ′′′)(1 Q · p Q ′ ,Q ′′ · 1 Q ′′′)= (1 Q • B ζ Q ′ ,Q ′′ ,Q ′′′) p Q,(Q ′ • C Q ′′ )• D Q ′′′ (1 Q · p Q ′ • C Q ′′ ,Q ′′′) (1 Q · p Q ′ ,Q ′′ · 1 Q ′′′)= p Q,Q ′ • C (Q ′′ • D Q ′′′ ) (1 Q · ζ Q ′ ,Q ′′ ,Q ′′′) (1 Q · p Q ′ • C Q ′′ ,Q ′′′) (1 Q · p Q ′ ,Q ′′ · 1 Q ′′′)(241)= p Q,Q ′ • C (Q ′′ • D Q ′′′ ) (1 Q · p Q ′ ,Q ′′ • D Q ′′′) (1 Q · 1 Q ′ · p Q ′′ ,Q ′′′)ζ Q,Q ′ ,Q ′′ • D Q ′′′ζ Q• B Q ′ ,Q ′′ ,Q ′′′p (Q• B Q ′ )• C Q ′′ ,Q ′′′ (p Q• B Q ′ ,Q ′′ · 1 Q ′′′) (p Q,Q ′ · 1 Q ′′ · 1 Q ′′′)(241)= ζ Q,Q ′ ,Q ′′ • D Q ′′′p Q• B Q ′ ,Q ′′ • D Q ′′′ (1 Q• B Q ′ · p Q ′′ ,Q ′′′) (p Q,Q ′ · 1 Q ′′ · 1 Q ′′′)p Q,Q ′= ζ Q,Q ′ ,Q ′′ • D Q ′′′p Q• B Q ′ ,Q ′′ • D Q ′′′ (p Q,Q ′ · 1 Q ′′ • D Q ′′′) (1 Q · 1 Q ′ · p Q ′′ ,Q ′′′)so that we get that(241)= p Q,Q ′ • C (Q ′′ • D Q ′′′ ) (1 Q · p Q ′ ,Q ′′ • D Q ′′′) (1 Q · 1 Q ′ · p Q ′′ ,Q ′′′)(1 Q • B ζ Q ′ ,Q ′′ ,Q ′′′) ζ Q,Q ′ • C Q ′′ ,Q ′′′ (ζ Q,Q ′ ,Q ′′ • D 1 Q ′′′) p (Q•B Q ′ )• C Q ′′ ,Q ′′′ (p Q• B Q ′ ,Q ′′ · 1 Q ′′′)(p Q,Q ′ · 1 Q ′′ · 1 Q ′′′)= ζ Q,Q ′ ,Q ′′ • D Q ′′′ζ Q• B Q ′ ,Q ′′ ,Q ′′′p (Q• B Q ′ )• C Q ′′ ,Q ′′′ (p Q• B Q ′ ,Q ′′ · 1 Q ′′′) (p Q,Q ′ · 1 Q ′′ · 1 Q ′′′)and since p (Q•B Q ′ )• C Q ′′ ,Q ′′′ (p Q• B Q ′ ,Q ′′ · 1 Q ′′′) (p Q,Q ′ · 1 Q ′′ · 1 Q ′′′) is an epimorphism, wededuce that the Pentag<strong>on</strong> Axiom holds.□Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>10. Let (X, A), (Y, B), (Z, C) be m<strong>on</strong>ads in the 2-category C andlet (Q, λ Q , ρ Q ) be an A-B-bimodule and (Q ′ , λ Q ′, ρ Q ′) be a B-C-bimodule. Then theTriangle Axiom holds, i.e. the following diagram is commutativeProof. We compute(Q • B B) • B Q ′ ζ Q,B,Q ′Q • B (B • B Q ′ )rQ • B 1 Q ′1 Q • B l Q ′Q • B Q ′(r Q • B 1 Q ′) (p Q•B B,Q ′) (p Q,B · 1 Q ) = p Q,Q ′ (r Q · 1 Q ′) (p Q,B · 1 Q )(239)= p Q,Q ′ (ρ Q · 1 Q ′) defp= p Q,Q ′ (1 Q · λ Q ′)(238)= p Q,Q ′ (1 Q · l Q ′) (1 Q · p B,Q ′)= (1 Q • B l Q ′) p Q,B•B Q ′ (1 Q · p B,Q ′)


228(241)= (1 Q • B l Q ′) ζ Q,B,Q ′p Q•B B,Q ′ (p Q,B · 1 Q ′)so that, since p Q•B B,Q ′ (p Q,B · 1 Q ′) is an epimorphism, we getr Q • B 1 Q ′ = (1 Q • B l Q ′) ζ Q,B,Q ′.Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let (X, A) , (Y, B) be m<strong>on</strong>ads in C, let (P, λ P , ρ P ) , (Q, λ Q , ρ Q )be A-B-bimodules in C, let (P ′ , λ P ′, ρ P ′) , (Q ′ , λ Q ′, ρ Q ′) be B-C-bimodules in C andlet f : P → Q, f ′ : P ′ → Q ′ be bimodule morphisms in C. Then there exists a uniqueA-C-bimodule morphism f • B f ′ : P • B P ′ → Q • B Q ′ .Proof. Since f is an A-B-bimodule morphism, we have that(245) λ Q (1 A · f) = fλ P and ρ Q (f · 1 B ) = fρ P .Since f ′ is a B-C-bimodule morphism, we have that(246) λ Q ′ (1 B · f ′ ) = f ′ λ P ′ and ρ Q ′ (f ′ · 1 C ) = f ′ ρ P ′.Let us c<strong>on</strong>sider the following diagramP · B · P ′ ρ P ·1 P ′ 1 P ·λ P ′f·1 B·f ′ P · P ′ p P,P ′f·f ′P • B P ′f• B f ′Q · B · Q ′ ρ Q·1 Q ′ Q · Q ′ p Q,Q ′ Q • B Q ′1 Q·λ Q ′Note that the left square serially commutes, in factandThus, we get that(f · f ′ ) (ρ P · 1 P ′) = (f · 1 Q ′) (1 P · f ′ ) (ρ P · 1 P ′)ρ P= (f · 1 Q ′) (ρ P · 1 Q ′) (1 P · 1 B · f ′ )(245)= (ρ Q · 1 Q ′) (f · 1 B · 1 Q ′) (1 P · 1 B · f ′ ) = (ρ Q · 1 Q ′) (f · 1 B · f ′ )(f · f ′ ) (1 P · λ P ′) = (f · 1 Q ′) (1 P · f ′ ) (1 P · λ P ′)(246)= (f · 1 Q ′) (1 P · λ Q ′) (1 P · 1 B · f ′ )f= (1 Q · λ Q ′) (f · 1 B · 1 Q ′) (1 P · 1 B · f ′ )= (1 Q · λ Q ′) (f · 1 B · f ′ ) .p Q,Q ′ (f · f ′ ) (ρ P · 1 P ′) = p Q,Q ′ (f · f ′ ) (1 P · λ P ′)and since (P • B P ′ , p P,P ′) = Coequ C (ρ P · 1 P ′, 1 P · λ P ′) we deduce that there exists aunique 2-cell f • B f ′ : P • B P ′ → Q • B Q ′ such that(247) (f • B f ′ ) p P,P ′ = p Q,Q ′ (f · f ′ ) .□


We now want to prove that f • B f ′ is a morphism of A-C-bimodules. Note that, byPropositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>5, P • B P ′ and Q • B Q ′ are A-C-bimodules. We computeλ Q•B Q ′ (1 A · f • B f ′ ) (1 A · p P,P ′) (247)= λ Q•B Q ′ (1 A · p Q,Q ′) (1 A · f · f ′ )(236)= p Q,Q ′ (λ Q · 1 Q ′) (1 A · f · f ′ )= p Q,Q ′ (λ Q · 1 Q ′) (1 A · f · 1 Q ′) (1 A · 1 P · f ′ )(245)= p Q,Q ′ (f · 1 Q ′) (λ P · 1 Q ′) (1 A · 1 P · f ′ )λ P= p Q,Q ′ (f · 1 Q ′) (1 P · f ′ ) (λ P · 1 P ′) = p Q,Q ′ (f · f ′ ) (λ P · 1 P ′)(247)= (f • B f ′ ) p P,P ′ (λ P · 1 P ′)(236)= (f • B f ′ ) λ P •B P ′ (1 A · p P,P ′)229and since 1 A · p P,P ′is an epimorphism, we get thatλ Q•B Q ′ (1 A · f • B f ′ ) = (f • B f ′ ) λ P •B P ′i.e. f • B f ′ is a morphism of left A-modules. Similarly, we also haveρ Q•B Q ′ (f • B f ′ · 1 C ) (p P,P ′ · 1 C ) (247)= ρ Q•B Q ′ (p Q,Q ′ · 1 C) (f · f ′ · 1 C )(237)= p Q,Q ′ (1 Q · ρ Q ′) (f · f ′ · 1 C )= p Q,Q ′ (1 Q · ρ Q ′) (1 Q · f ′ · 1 C ) (f · 1 P ′ · 1 C )(246)= p Q,Q ′ (1 Q · f ′ ) (1 Q · ρ P ′) (f · 1 P ′ · 1 C )f= p Q,Q ′ (1 Q · f ′ ) (f · 1 P ′) (1 P · ρ P ′) = p Q,Q ′ (f · f ′ ) (1 P · ρ P ′)and since p P,P ′ · 1 C is epi, we get that(247)= (f • B f ′ ) p P,P ′ (1 P · ρ P ′)(237)= (f • B f ′ ) ρ P •B P ′ (p P,P ′ · 1 C)ρ Q•B Q ′ (f • B f ′ · 1 C ) = (f • B f ′ ) ρ P •B P ′i.e. f • B f ′ is also a morphism of right C-modules.□Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>1<str<strong>on</strong>g>2.</str<strong>on</strong>g> For any m<strong>on</strong>ad (Y, B) in C, the compositi<strong>on</strong> denoted by • B iscompatible with the vertical can<strong>on</strong>ical compositi<strong>on</strong>.Proof. Let (X, A) , (Y, B) , (Z, C) be m<strong>on</strong>ads in C, let (P, λ P , ρ P ) , (Q, λ Q , ρ Q ) ,(W, λ W , ρ W ) be A-B-bimodules in C, let (P ′ , λ P ′, ρ P ′) , (Q ′ , λ Q ′, ρ Q ′) , (W ′ , λ W ′, ρ W ′)be B-C-bimodules in C and let f : P → Q, g : Q → W be A-B-bimodule morphisms,f ′ : P ′ → Q ′ , g ′ : Q ′ → W ′ be B-C-bimodule morphisms in C. By Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>11we can c<strong>on</strong>sider the A-C-bimodule morphisms f • B f ′ : P • B P ′ → Q • B Q ′ andg • B g ′ : Q • B Q ′ → W • B W ′ and we can compose them in order to get(g • B g ′ ) (f • B f ′ ) : P • B P ′ → W • B W ′ .


230On the other hand, we can first c<strong>on</strong>sider the can<strong>on</strong>ical vertical composites gf :P → W and g ′ f ′ : P ′ → W ′ , which are still bimodule morphisms, and then we cancompose them horiz<strong>on</strong>tally gettingWe have to prove thatLet us c<strong>on</strong>sider the following diagramsand(gf) • B (g ′ f ′ ) : P • B P ′ → W • B W ′ .(g • B g ′ ) (f • B f ′ ) = (gf) • B (g ′ f ′ ) .P · B · P ′f·1 B·f ′ ρ P ·1 P ′ 1 P ·λ P ′Q · B · Q ′ ρ Q·1 Q ′g·1 B·g ′ (gf)·1 B·(g ′ f ′ )1 Q·λ Q ′P · P ′ p P,P ′f·f ′Q · Q ′ p Q,Q ′g·g ′P • B P ′f• B f ′Q • B Q ′g• B g ′W · B · W ′ρ W ·1 W ′W · W ′ p W,W ′ W • B W ′P · B · P ′1 W ·λ W ′ρ P ·1 P ′ 1 P ·λ P ′P · P ′ p P,P ′(gf)·(g ′ f ′ )P • B P ′W · B · W ′ρ W ·1 W ′W · W ′ p W,WW •′ B W ′1 W ·λ W ′(gf)• B (g ′ f ′ )We have to prove that (gf) • B (g ′ f ′ ) makes the external square of the first diagramcommutative. Since Bim (C) is a bicategory, in particular we have that (gf)·(g ′ f ′ ) =(g · g ′ ) (f · f ′ ) so that, by the commutativity of the first diagram, we deduce thatalso the left square of the sec<strong>on</strong>d <strong>on</strong>e commutes, i.e.[(gf) · (g ′ f ′ )] (ρ P · 1 P ′) = (ρ W · 1 W ′) [(gf) · 1 B · (g ′ f ′ )][(gf) · (g ′ f ′ )] (1 P · λ P ′) = (1 W · λ W ′) [(gf) · 1 B · (g ′ f ′ )] .Therefore, the exists the unique 2-cell (gf) • B (g ′ f ′ ) : P • B P ′ → W • B W ′ such thatThen we have[(gf) • B (g ′ f ′ )] p P,P ′ = p W,W ′ [(gf) · (g ′ f ′ )] .[(gf) • B (g ′ f ′ )] p P,P ′ = p W,W ′ [(gf) · (g ′ f ′ )] = p W,W ′ [(g · g ′ ) (f · f ′ )]= p W,W ′ (g · g ′ ) (f · f ′ ) = (g • B g ′ ) (f • B f ′ ) p P,P ′and since p P,P ′ is an epimorphism, we get that(gf) • B (g ′ f ′ ) = (g • B g ′ ) (f • B f ′ ) .Definiti<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>13. The bicategory BIM (C) c<strong>on</strong>sists of• 0-cells are m<strong>on</strong>ads in C□


• 1-cells are bimodules in C together with their horiz<strong>on</strong>tal compositi<strong>on</strong> definedas follows. Let (X, A) , (Y, B) and (W, C) be m<strong>on</strong>ads in C and let Q : Y → Xand Q ′ : W → Y be respectively an A-B-bimodule with (Q, λ Q , ρ Q ) and aB-C-bimodule in C with (Q ′ , λ Q ′, ρ Q ′). Then the horiz<strong>on</strong>tal compositi<strong>on</strong> ofthe two bimodules is given by (Q • B Q ′ , p Q,Q ′) = Coequ C (ρ Q · 1 Q ′, 1 Q · λ Q ′)[Note that Q • B Q ′ is an A-C-bimodule in C by Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>5. Moreover,such horiz<strong>on</strong>tal compositi<strong>on</strong> is weakly associative and unital by Propositi<strong>on</strong>s1<str<strong>on</strong>g>1.</str<strong>on</strong>g>7 and 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>6.]• 2-cells are bimodule morphisms in C.Example 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>14. Let us c<strong>on</strong>sider the bicategory SetMat as defined in [RW, <str<strong>on</strong>g>2.</str<strong>on</strong>g>1].The objects of this bicategory are sets, denoted by A, B, . . .. An arrow (1-cell)M : A → B is a set valued matrix which, to fix notati<strong>on</strong> ,has entries M (a, b) forevery a ∈ A and b ∈ B. A 2-cell f : M → N : A → B is a matrix of functi<strong>on</strong>sf (a, b) : M (a, b) → N (a, b). Moreover, for A −→ MB −→ LC we have L · M : A → Cdefined by(L · M) (a, c) = ∑ b∈BL (b, c) × M (a, b) .A m<strong>on</strong>ad in SetMat <strong>on</strong> an object A is thus a pair (A, M) where A is a set andM : A → A is a matrix whose entries are M (a, b) for every a, b ∈ A, i.e. itis a small category with set of objects A. Hence, a m<strong>on</strong>ad functor is a functorF : (A, M) → (B, N) where A and B are the sets of objects of the small categoriesM and N. Note that, since F is a functor between categories, F is just a mapF : A → B at the level of objects. This map induces a 1-cell Q F : A → B definedas follows{}∅ if b ≠ F (a)Q F (a, b) =.{(a, F (a))} if b = F (a)Moreover, we can c<strong>on</strong>sider the following 2-cell φ F : Q F A → BQ F defined, for every(a, b) ∈ A × B, by the mapnote thatQ F A (a, b) = ∑ a ′ ∈Aφ F (a, b) : Q F A (a, b) → BQ F (a, b) .Q F (a ′ , b) × A (a, a ′ ) =⋃a ′ ∈F ← (b)where F ← (b) = {a ∈ A | F (a) = b}. Similarly we have{(a ′ , F (a ′ ))} × A (a, a ′ )BQ F (a, b) = ∑ b ′ ∈BB (b ′ , b) × Q F (a, b ′ ) = B (F (a) , b) × {(a, F (a))} .We can identify the set⋃{(a ′ , F (a ′ ))} × A (a, a ′ ) = Q F A (a, b) =anda ′ ∈F ← (b)⋃a ′ ∈F ← (b)B (F (a) , b) × {(a, F (a))} = BQ F (a, b) = B (F (a) , b)A (a, a ′ )231


232so that we define the map φ F (a, b) : Q F A (a, b) =⋃a ′ ∈F ← (b)A (a, a ′ ) → BQ F (a, b) =B (F (a) , b) = B (F (a) , F (a ′ )). Clearly, such a map is induced by the matrix mapA (a, a ′ ) → B (F (a) , F (a ′ ))f ↦→ F (f) .Since F is a functor, F preserves compositi<strong>on</strong>, F (g ◦ f) = F (g) ◦ F (f) , i.e. F iscompatible with respect to the multiplicati<strong>on</strong>s of the m<strong>on</strong>ads (A, M) and (B, N),and F preserves the identity, F (1 a ) = 1 F (a) , i. e. F is compatible with respect to theunits of the m<strong>on</strong>ads (A, M) and (B, N). Hence we get that F is a m<strong>on</strong>ad functor.Let now F, G : (A, M) → (B, N) be m<strong>on</strong>ad functors and let χ : (F, φ F ) → ( G, φ G)be a functor transformati<strong>on</strong>. Then we have that χ : Q F → Q G is defined by setting{∅{(a, F (a))}Then, we have Q F (a, b) Q F (f)−→ Q F (a ′ , b ′ )χ (a, b) : Q F (a, b) → Q G (a, b)} {if b ≠ F (a)∅↦→if b = F (a) {(a, G (a))}}if b ≠ G (a).if b = G (a){∅{(a, F (a))}Q F (a, b) Q F (f)−→ Q F (a ′ , b ′ )} {}if b ≠ F (a)∅ if b↦→′ ≠ F (a ′ )if b = F (a) {(a ′ , F (a ′ ))} if b ′ = F (a ′ )and Q G (a, b) Q G(f)−→ Q G (a ′ , b ′ ) we have thati.e.χ is a m<strong>on</strong>ad functor transformati<strong>on</strong>.Now, let us define the following mapχ (a ′ , b ′ ) (Q F (f)) = Q G (f) (χ (a, b))F (C) : Mnd (C) → BIM (C)(X, A) ↦→ (X, A)(X, A) (Q,φ)→ (Y, B) ↦→ (Q · A, (1 Q · m A ) (φ · 1 A ) , 1 Q · m A )(Q, φ) σ → (P, ψ) ↦→ σ · 1 A .Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>15. The map F defined above is well-defined and it is a pseudofunctor.Proof. First, let us prove that (Q · A, (1 Q · m A ) (φ · 1 A ) , 1 Q · m A ) is a bimodule. Infact, we haveλ Q·A (1 B · λ Q·A ) = (1 Q · m A ) (φ · 1 A ) (1 B · 1 Q · m A ) (1 B · φ · 1 A )φ= (1 Q · m A ) (1 Q · 1 A · m A ) (φ · 1 A · 1 A ) (1 B · φ · 1 A )m A ass= (1 Q · m A ) (1 Q · m A · 1 A ) (φ · 1 A · 1 A ) (1 B · φ · 1 A )(233)= (1 Q · m A ) (φ · 1 A ) (m B · 1 Q · 1 A ) = λ Q·A (m B · 1 Q · 1 A )


233andλ Q·A (u B · 1 Q · 1 A ) = (1 Q · m A ) (φ · 1 A ) (u B · 1 Q · 1 A )(234)= (1 Q · m A ) (1 Q · u A · 1 A ) m Aunit= 1 Q · 1 A .For the right A-module structure, we haveandFinally, we computeρ Q·A (ρ Q·A · 1 A ) = (1 Q · m A ) (1 Q · m A · 1 A )m A ass= (1 Q · m A ) (1 Q · 1 A · m A ) = ρ Q·A (1 Q · 1 A · m A )ρ Q·A (1 Q · 1 A · u A ) = (1 Q · m A ) (1 Q · 1 A · u A ) m Aunit= 1 Q · 1 A .ρ Q·A (λ Q·A · 1 A ) = (1 Q · m A ) (1 Q · m A · 1 A ) (φ · 1 A · 1 A )m A ass= (1 Q · m A ) (1 Q · 1 A · m A ) (φ · 1 A · 1 A )φ= (1 Q · m A ) (φ · 1 A ) (1 B · 1 Q · m A ) = λ Q·A (1 B · ρ Q·A )so that (Q · A, (1 Q · m A ) (φ · 1 A ) , 1 Q · m A ) is a B-A-bimodule. Now, let us c<strong>on</strong>siderthe identity object (X, 1 X ) ∈ Mnd (C) . Then F ((X, 1 X )) = (X, 1 X ) which is anidentity object in BIM (C). Now, let us c<strong>on</strong>sider the composite of 1-cells in Mnd (C)We have to prove that(X, A) (Q,φ)−→ (Y, B) (P,ψ)−→ (Z, C) .F ((P, ψ) (Q, φ)) ≃ F ((P, ψ)) • B F ((Q, φ)) .We have that (P, ψ) (Q, φ) = (P · Q, (1 P · φ) (ψ · 1 Q )) where P · Q : X → Z and(1 P · φ) (ψ · 1 Q ) : C · P · Q → P · Q · A. Then we haveF ((P, ψ) (Q, φ)) = F ((P · Q, (1 P · φ) (ψ · 1 Q )))= (P · Q · A, (1 P · 1 Q · m A ) (1 P · φ · 1 A ) (ψ · 1 Q · 1 A ) , 1 P · 1 Q · m A ) .On the other hand, we haveand thusF ((P, ψ)) = (P · B, (1 P · m B ) (ψ · 1 B ) , 1 P · m B )F ((Q, φ)) = (Q · A, (1 Q · m A ) (φ · 1 A ) , 1 Q · m A )F ((P, ψ)) • B F ((Q, φ)) = (P · B) • B (Q · A) .By definiti<strong>on</strong> of ((P · B) • B (Q · A) , p P ·B,Q·A ) = Coequ C (ρ P ·B · 1 Q · 1 A , 1 P · 1 B · λ Q·A )we have the following diagramP · B · B · Q · A ρ P ·B·1 Q·1 A1 P ·1 B·λ Q·A P · B · Q · A p P ·B,Q·A (P · B) • B (Q · A)Note that, ρ P ·B = 1 P · m B so that we can rewrite it in the following way P · B · B · Q · A 1 P ·m B·1 Q·1 AP · B · Q · A p P ·B,Q·A (P · B) • B (Q · A)1 P ·1 B·λ Q·A


234Since we have(B • B (Q · A) , p B,Q·A ) = Coequ C (m B · 1 Q · 1 A , 1 B · λ Q·A )and we are assuming that the compositi<strong>on</strong> with 1-cells preserves coequalizer, we alsohave(P · (B • B (Q · A)) , 1 P · p B,Q·A ) = Coequ C (1 P · m B · 1 Q · 1 A , 1 P · 1 B · λ Q·A ) .Therefore, there exists a unique isomorphism h : (P · B)• B (Q · A) → P ·(B • B (Q · A))such that(248) h (p P ·B,Q·A ) = 1 P · p B,Q·A .Moreover, by Propositi<strong>on</strong> 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>6, P · (B • B (Q · A)) ≃ P · (Q · A) so that we get(P · B) • B (Q · A) ≃ P · (Q · A) = P · Q · A.Now, the left C-module structure λ (P ·B)•B (Q·A) of (P · B) • B (Q · A), by (236) isuniquely determined byλ (P ·B)•B (Q·A) (1 C · p P ·B,Q·A ) = p P ·B,Q·A (λ P ·B · 1 Q · 1 A ) .By (248) we getp P ·B,Q·A = h −1 (1 P · p B,Q·A )and thus we can rewrite the above relati<strong>on</strong>(λ (P ·B)•B (Q·A) (1 C · p P ·B,Q·A ) = λ (P ·B)•B (Q·A) 1C · [h −1 (1 P · p B,Q·A ) ])andso that= λ (P ·B)•B (Q·A)(1C · h −1) (1 C · 1 P · p B,Q·A )p P ·B,Q·A (λ P ·B · 1 Q · 1 A ) = h −1 (1 P · p B,Q·A ) (λ P ·B · 1 Q · 1 A )defλ P ·B= h −1 (1 P · p B,Q·A ) (λ P · 1 B · 1 Q · 1 A )λ=Ph ( ) −1 λ P · 1 B•B (Q·A) (1C · 1 P · p B,Q·A )λ (P ·B)•B (Q·A)(1C · h −1) (1 C · 1 P · p B,Q·A ) = h −1 ( λ P · 1 B•B (Q·A))(1C · 1 P · p B,Q·A ) .Since 1 C · 1 P · p B,Q·A is epi, we get(λ (P ·B)•B (Q·A) 1C · h −1) = h ( )−1 λ P · 1 B•B (Q·A)and thusso that we get thatλ (P ·B)•B (Q·A) = h −1 ( λ P · 1 B•B (Q·A))(1C · h)λ (P ·B)•B (Q·A) ≃ λ P · 1 B•B (Q·A) ≃ λ P · 1 Q·A ≃ λ P ·Q·A .Similarly, the right A-module structure λ (P ·B)•B (Q·A) of (P · B) • B (Q · A), by (237)is uniquely determined byBy (248) we getρ (P ·B)•B (Q·A) (p P ·B,Q·A · 1 A ) = p P ·B,Q·A (1 P · 1 B · ρ Q·A ) .p P ·B,Q·A = h −1 (1 P · p B,Q·A )


and thus we can rewrite the above relati<strong>on</strong>([ρ (P ·B)•B (Q·A) (p P ·B,Q·A · 1 A ) = ρ (P ·B)•B (Q·A) h −1 (1 P · p B,Q·A ) ] )· 1 Aandso that= ρ (P ·B)•B (Q·A)(h−1 · 1 A)(1P · p B,Q·A · 1 A )p P ·B,Q·A (1 P · 1 B · ρ Q·A ) = h −1 (1 P · p B,Q·A ) (1 P · 1 B · ρ Q·A )(237)= h −1 ( 1 P · ρ B•B (Q·A))(1P · p B,Q·A · 1 A )ρ (P ·B)•B (Q·A)(h−1 · 1 A)(1P · p B,Q·A · 1 A ) = h −1 ( 1 P · ρ B•B (Q·A))(1P · p B,Q·A · 1 A ) .Since 1 P · p B,Q·A · 1 A is epi, we get( )ρ (P ·B)•B (Q·A) h−1 · 1 ( )A = h−11 P · ρ B•B (Q·A)and thusso that we get thatρ (P ·B)•B (Q·A) = h −1 ( 1 P · ρ B•B (Q·A))(h · 1A )ρ (P ·B)•B (Q·A) ≃ 1 P · ρ B•B (Q·A) ≃ 1 P · ρ Q·A = ρ P ·Q·A .1<str<strong>on</strong>g>2.</str<strong>on</strong>g> Entwined modules and comodulesLet (X, 1 X ) , (Y, B) be m<strong>on</strong>ads in C and let us compute the categoryMnd (C) ((X, 1 X ) , (Y, B)) . Note that C (X, B) : C (X, Y ) → C (X, Y ) is a m<strong>on</strong>adover the category C (X, Y ) . In fact, we set multiplicati<strong>on</strong> and unit of the m<strong>on</strong>adto be C (X, m B ) = m B (−) : C (X, B · B) → C (X, B) and C (X, u B ) = u B (−) :C (X, 1 Y ) → C (X, B). In fact we haveandC (X, m B ) C (X, m B · 1 B ) = m B (m B · 1 B ) = m B (1 B · m B )= C (X, m B ) C (X, 1 B · m B )C (X, m B ) C (X, u B · 1 B ) = m B (u B · 1 B ) = 1 B = m B (1 B · u B )= C (X, m B ) C (X, 1 B · u B )The objects of such category are the m<strong>on</strong>ad functors (Q, φ) from (X, 1 X ) to (Y, B) ,i.e. the 1-cells Q : X → Y together with the 2-cells φ : B · Q = C (X, B) Q → Qsatisfying the following c<strong>on</strong>diti<strong>on</strong>sφ (1 B · φ) = φ (m B · 1 Q )φ (u B · 1 Q ) = 1 Qwhich says that φ gives a structure of left C (X, B)-module to the 1-cell Q : X → Y .Therefore, we can c<strong>on</strong>clude thatMnd (C) ((X, 1 X ) , (Y, B)) = C(X,B) C (X, Y ).Now, following [St, pg. 158], we define the bicategory of com<strong>on</strong>ads as follows:Cmd (C) = Mnd (C ∗ ) ∗where (−) ∗denotes the bicategory obtained by reversing235□


2362-cells. This means that a com<strong>on</strong>ad (X, C) in C is a 1-cell C : X → X togetherwith 2-cells ∆ C : C → C · C and ε C : C → 1 X called comultiplicati<strong>on</strong> and counitsatisfying the reversed diagrams, i.e.(1C · ∆ C) ∆ C = ( )∆ C · 1 C ∆C(249)(1C · ε C) ∆ C = 1 C = ( )(250)ε C · 1 C ∆ C .A com<strong>on</strong>ad functor is a pair (P, ψ) : (X, C) → (Y, D) where P : X → Y is a 1-cellin C and ψ : P · C → D · P is a 2-cell in C satisfying(εD · 1 P)ψ = 1P · ε C and (1 D · ψ) (ψ · 1 C ) ( 1 P · ∆ C) = ( ∆ D · 1 P)ψ.Finally, a com<strong>on</strong>ad functorial morphism ω : (P ′ , ψ ′ ) → (P, ψ) is ω : P ′ → P is a2-cell in C satisfyingψ (ω · 1 C ) = (1 D · ω) ψ ′ .Now, we c<strong>on</strong>sider the category Cmd (C) ((X, 1 X ) , (Y, C)) where (X, 1 X ) and (Y, C)are 0-cells in Cmd (C) respectively with trivial comultiplicati<strong>on</strong> and counit theformer and ∆ C , ε C the latter. Note that C (X, C) : C (X, Y ) → C (X, Y ) is acom<strong>on</strong>ad over the category C (X, Y ) with comultiplicati<strong>on</strong> and counit given byC ( X, ∆ C) = ∆ C () : C (X, C) → C (X, C · C) and C ( X, ε C) = ε C () : C (X, C) →C (X, 1 Y ). The objects of such category are the com<strong>on</strong>ad functors (Q, ψ) : (X, 1 X ) →(Y, C) where Q : X → Y is a 1-cell and ψ : Q · 1 X → C · Q = C (X, C)Q is a 2-cellsatisfying ( ε C · 1 Q)ψ = 1Q and ( ∆ C · 1 Q)ψ = (1C · ψ) ψ so thatCmd (C) ((X, 1 X ) , (Y, C)) = C(X,C) C (X, Y ).Following the definiti<strong>on</strong> of the 2-category Mnd (C) for any bicategory C, we canc<strong>on</strong>sider the 2-categories Mnd (Mnd (C)) and Mnd (BIM (C)) and the functorbetween themMnd (F (C)) : Mnd (Mnd (C)) → Mnd (BIM (C)) .Let us first c<strong>on</strong>sider Mnd (Mnd (C)):• 0-cells: pairs ((X, A) , (Q, φ)) where (X, A) is an object in Mnd (C) and(Q, φ) is a 1-cell in Mnd (C) together with a pair of 2-cells in Mnd (C) m (Q,φ)and u (Q,φ) satisfying associativity and unitality c<strong>on</strong>diti<strong>on</strong>s. Therefore we havethat A : X → X is a 1-cell in C together with 2-cells m A = m (X,A) : A·A → Aand u A = u (X,A) : 1 X → A satisfying associativity and unitality c<strong>on</strong>diti<strong>on</strong>sand we have that Q : X → X is a 1-cell in C together with the 2-cell of Cφ : A · Q → Q · A satisfying the following c<strong>on</strong>diti<strong>on</strong>s(251)(252)(253)(254)φ (m A · 1 Q ) = (1 Q · m A ) (φ · 1 A ) (1 A · φ)φ (u A · 1 Q ) = 1 Q · u AFinally, the 2-cells of Mnd (C)m (Q,φ) : (Q, φ) · (Q, φ) = (Q · Q, (1 Q · φ) (φ · 1 Q )) → (Q, φ) and u (Q,φ) :(1 X , 1 1X ) → (Q, φ) satisfying the associativity and unitality c<strong>on</strong>diti<strong>on</strong>s, needsto satisfy also the followingφ ( 1 A · m (Q,φ))=(m(Q,φ) · 1 A)(1Q · φ) (φ · 1 Q )φ ( 1 A · u (Q,φ))= u(Q,φ) · 1 A .


An object, or 0-cell, of Mnd (Mnd (C)) is called distributive law and it givesrise to a m<strong>on</strong>ad structure <strong>on</strong> Q·A. In fact, the m<strong>on</strong>ad functor transformati<strong>on</strong>m (Q,φ) induces a multiplicati<strong>on</strong> <strong>on</strong> Q · Adefined by settingm Q·A : Q · A · Q · A → Q · Am Q·A = ( m (Q,φ) · m A)(1Q · φ · 1 A ) = ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) (1 Q · φ · 1 A ) .Using naturality and associativity of m (Q,φ) , naturality of φ, associativity ofm A , we havem Q·A (m Q·A · 1 Q · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) (1 Q · φ · 1 A ) ( m (Q,φ) · 1 A · 1 Q · 1 A)(1 Q · 1 Q · m A · 1 Q · 1 A ) (1 Q · φ · 1 A · 1 Q · 1 A )= ( m (Q,φ) · 1 A) (m(Q,φ) · 1 Q · 1 A)(1Q · 1 Q · 1 Q · m A ) (1 Q · 1 Q · φ · 1 A )(1 Q · 1 Q · m A · 1 Q · 1 A ) (1 Q · φ · 1 A · 1 Q · 1 A )= ( m (Q,φ) · 1 A) (1Q · m (Q,φ) · 1 A)(1Q · 1 Q · 1 Q · m A ) (1 Q · 1 Q · φ · 1 A )(1 Q · 1 Q · m A · 1 Q · 1 A ) (1 Q · φ · 1 A · 1 Q · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) ( 1 Q · m (Q,φ) · 1 A · 1 A)(1Q · 1 Q · φ · 1 A )(1 Q · 1 Q · m A · 1 Q · 1 A ) (1 Q · φ · 1 A · 1 Q · 1 A )(251)= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) ( 1 Q · m (Q,φ) · 1 A · 1 A)(1Q · 1 Q · 1 Q · m A · 1 A )(1 Q · 1 Q · φ · 1 A · 1 A ) (1 Q · 1 Q · 1 A · φ · 1 A ) (1 Q · φ · 1 A · 1 Q · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) (1 Q · 1 Q · m A · 1 A ) ( 1 Q · m (Q,φ) · 1 A · 1 A · 1 A)(1 Q · 1 Q · φ · 1 A · 1 A ) (1 Q · φ · 1 Q · 1 A · 1 A ) (1 Q · 1 A · 1 Q · φ · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) (1 Q · 1 Q · 1 A · m A ) ( 1 Q · m (Q,φ) · 1 A · 1 A · 1 A)(1 Q · 1 Q · φ · 1 A · 1 A ) (1 Q · φ · 1 Q · 1 A · 1 A ) (1 Q · 1 A · 1 Q · φ · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) ( 1 Q · m (Q,φ) · 1 A · 1 A)(1Q · 1 Q · 1 Q · 1 A · m A )(1 Q · 1 Q · φ · 1 A · 1 A ) (1 Q · φ · 1 Q · 1 A · 1 A ) (1 Q · 1 A · 1 Q · φ · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) ( 1 Q · m (Q,φ) · 1 A · 1 A)(1Q · 1 Q · φ · 1 A )(1 Q · 1 Q · 1 A · 1 Q · m A ) (1 Q · φ · 1 Q · 1 A · 1 A ) (1 Q · 1 A · 1 Q · φ · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) ( 1 Q · m (Q,φ) · 1 A · 1 A)(1Q · 1 Q · φ · 1 A ) (1 Q · φ · 1 Q · 1 A )(1 Q · 1 A · 1 Q · 1 Q · m A ) (1 Q · 1 A · 1 Q · φ · 1 A )(253)= ( )m (Q,φ) · 1 A (1Q · 1 Q · m A ) (1 Q · φ · 1 A ) ( )1 Q · 1 A · m (Q,φ) · 1 A(1 Q · 1 A · 1 Q · 1 Q · m A ) (1 Q · 1 A · 1 Q · φ · 1 A )so that m Q·A is associative.u (Q,φ) induces a unit of Q · A= m Q·A (1 Q · 1 A · m Q·A )237Similarly, the m<strong>on</strong>ad functor transformati<strong>on</strong>u Q·A : 1 X → Q · A


238defined by settingu Q·A = ( u (Q,φ) · 1 A)uA .Using naturality of u (Q,φ) , unitality of m (Q,φ) and m A we havem Q·A (u Q·A · 1 Q · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) (1 Q · φ · 1 A ) ( u (Q,φ) · 1 A · 1 Q · 1 A)(uA · 1 Q · 1 A )= ( m (Q,φ) · 1 A) (u(Q,φ) · 1 Q · 1 A)(1Q · m A ) (φ · 1 A ) (u A · 1 Q · 1 A )(252)= (1 Q · m A ) (1 Q · u A · 1 A ) = 1 Q · 1 A .so that we have a m<strong>on</strong>ad(Q · A, m Q·A , u Q·A ) = ( Q · A, ( )m (Q,φ) · m A (1Q · φ · 1 A ) , ( ) )u (Q,φ) · 1 A uA . Wewill see that such a m<strong>on</strong>ad is taken to an A-ring in the bimodule category.• 1-cells: pairs ((U, ϕ) , τ) : ((X, A) , (Q, φ)) → ((Y, B) , (P, ψ)) where (U, ϕ) :(X, A) → (Y, B) is a 1-cell in Mnd (C), i.e. a m<strong>on</strong>ad functor where ϕ :B · U → U · A satisfies ϕ (u B · 1 U ) = 1 U · u A and (1 U · m A ) (ϕ · 1 A ) (1 B · ϕ) =ϕ (m B · 1 U ), and τ is 2-cell in Mnd (C), i.e. a m<strong>on</strong>ad functor transformati<strong>on</strong>τ : (P, ψ) (U, ϕ) → (U, ϕ) (Q, φ), i.e. τ : (P · U, (1 P · ϕ) (ψ · 1 Q )) →(U · Q, (1 U · φ) (ϕ · 1 Q )) satisfying(1 U · φ) (ϕ · 1 Q ) (1 B · τ) = (τ · 1 A ) (1 P · ϕ) (ψ · 1 Q ) .• 2-cells: σ : ((U, ϕ) , τ) → ((U ′ , ϕ ′ ) , τ ′ ) where σ : (U, ϕ) → (U ′ , ϕ ′ ) is a 2-cellin Mnd (C) i.e.ϕ ′ (1 B · σ) = (σ · 1 A ) ϕ,satisfyingLet us now c<strong>on</strong>sider Mnd (BIM (C)):τ ′ (1 P · σ) = (σ · 1 Q ) τ• 0-cells: pairs ((X, A) , (Q, λ Q , ρ Q )) where (X, A) is an object in BIM (C),i.e. a m<strong>on</strong>ad in C and (Q, λ Q , ρ Q ) : (X, A) → (X, A) is a 1-cell in BIM (C)together with 2-cells in BIM (C), i.e. (Q, λ Q , ρ Q ) is an A-bimodule in Ctogether with bimodule morphisms m (Q,λQ ,ρ Q) : Q• A Q → Q and u (Q,λQ ,ρ Q) :1 X → Q satisfying associativity and unitality c<strong>on</strong>diti<strong>on</strong>s)()m (Q,λQ ,ρ Q)(m (Q,λQ ,ρ Q) • A 1 Q = m (Q,λQ ,ρ Q)1 Q • A m (Q,λQ ,ρ Q))()m (Q,λQ ,ρ Q)(u (Q,λQ ,ρ Q) • A 1 Q = 1 Q = m (Q,λQ ,ρ Q)1 Q • A u (Q,λQ ,ρ Q)• 1-cells: pairs ((U, λ U , ρ U ) , δ) : ((X, A) , (Q, λ Q , ρ Q )) → ((Y, B) , (P, λ P , ρ P ))where (U, λ U , ρ U ) : (X, A) → (Y, B) is a 1-cell in BIM (C) andδ : (P, λ P , ρ P ) (U, λ U , ρ U ) = P • B U → (U, λ U , ρ U ) (Q, λ Q , ρ Q ) = U • A Qsatisfies the following c<strong>on</strong>diti<strong>on</strong>sδ ( )u (P,λP ,ρ P ) • B 1 U = 1U • A u (Q,λQ ,ρ Q) and()1 U • A m (Q,λQ ,ρ Q)(δ • A 1 Q ) (1 P • B δ) = δ ( )1 U • B m (P,λP ,ρ P )


• 2-cells: ω : ((U, λ U , ρ U ) , δ) → ((U ′ , λ U ′, ρ U ′) , δ ′ ) where ω : (U, λ U , ρ U ) →(U ′ , λ U ′, ρ U ′) is a 2-cell in BIM (C), i.e. it is a B-A-bimodule morphism,satisfyingδ ′ (1 P • B ω) = (ω • A 1 Q ) δ.Now, let us apply the functorMnd (F (C)) : Mnd (Mnd (C)) → Mnd (BIM (C))to the distributive law ((X, A) , (Q, φ)). We getMnd (F (C)) (((X, A) , (Q, φ))) = (F (C) (X, A) , F (C) (Q, φ))where= ((X, A) , (Q · A, (1 Q · m A ) (φ · 1 A ) , 1 Q · m A ))Mnd (F (C)) ( m (Q,φ))= F (C)(m(Q,φ))= m(Q,φ) · 1 AMnd (F (C)) ( u (Q,φ))= F (C)(u(Q,φ))= u(Q,φ) · 1 AMnd (F (C)) ( m (Q,φ)):Mnd (F (C)) (Q · Q)= Q · Q · A−→Mnd (F (C)) (Q)= Q · AMnd (F (C)) ( u (Q,φ)): Mnd (F (C)) (1X ) = A −→ Mnd (F (C)) (Q) = Q · A.In particular, (Q · A, (1 Q · m A ) (φ · 1 A ) , 1 Q · m A ) comes together with bimodule morphismsMnd (F (C)) ( m (Q,φ))= m(Q,φ) · 1 A and Mnd (F (C)) ( u (Q,φ))= u(Q,φ) · 1 A .Note thatMnd (F (C)) (Q · Q) = Q · Q · A ≃ (Q · A) • A (Q · A)= Mnd (F (C)) (Q) • A Mnd (F (C)) (Q) .where the isomorphism is given by the following: by definiti<strong>on</strong>,((Q · A) • A (Q · A) , p Q·A,Q·A ) = Coequ C (1 Q · m A · 1 Q · 1 A , 1 Q · 1 A · λ Q·A )and since we are assuming that the coequalizers are preserved, by Lemma 1<str<strong>on</strong>g>1.</str<strong>on</strong>g>4 wealso have(Q · Q · A, 1 Q · λ Q·A ) = Coequ C (1 Q · m A · 1 Q · 1 A , 1 Q · 1 A · λ Q·A )so that there exists a unique isomorphismsuch thatα : (Q · A) • A (Q · A) → Q · Q · A(255) αp Q·A,Q·A = 1 Q · λ Q·A = (1 Q · 1 Q · m A ) (1 Q · φ · 1 A ) .Recall that we can c<strong>on</strong>sider the m<strong>on</strong>ad(Q · A, m Q·A , u Q·A ) = ( Q · A, ( m (Q,φ) · m A)(1Q · φ · 1 A ) , ( u (Q,φ) · 1 A)uA)and thusm Q·A = ( m (Q,φ) · m A)(1Q · φ · 1 A )= ( m (Q,φ) · 1 A)(1Q · 1 Q · m A ) (1 Q · φ · 1 A )= ( m (Q,φ) · 1 A)αpQ·A,Q·Athat is, m Q·A factorizes through (Q · A) • A (Q · A) and we denote by(256) m (Q·A,(1 Q·m A)(φ·1 A ),1 Q·m A) = ( m (Q,φ) · 1 A)α239


240the unique A-bimodule morphism such thatm Q·A = m (Q·A,(1 Q·m A)(φ·1 A ),1 Q·m A) p Q·A,Q·A.Note that also u (Q,φ) · 1 A is an A-bimodule morphism, in factλ Q·A(1A · u (Q,φ) · 1 A)= (1Q · m A ) (φ · 1 A ) ( 1 A · u (Q,φ) · 1 A)andTherefore,(252)= (1 Q · m A ) ( u (Q,φ) · 1 A · 1 A) u (Q,φ)= ( u (Q,φ) · 1 A)mA( )ρ Q·A u(Q,φ) · 1 A · 1 A = (1Q · m A ) ( ) u (Q,φ)u (Q,φ) · 1 A · 1 A = ( )u (Q,φ) · 1 A mA .()Q · A, m (Q·A,(1Q·m A)(φ·1 A ),1 Q·m A) , u (Q·A,(1 Q·m A)(φ·1 A ),1 Q·m A)= ( Q · A, ( ) )m (Q,φ) · 1 A α, u(Q,φ) · 1 Ais an A-ring, so that the functor Mnd (F (C)) : Mnd (Mnd (C)) → Mnd (BIM (C))associates distributive laws to A-rings.Let us now c<strong>on</strong>sider Cmd (Mnd (C)) :• 0-cells: ((X, A) , (C, γ)) where (X, A) is a m<strong>on</strong>ad, C : X → X, γ : A · C →C·A together with ∆ C : C → C·C and ε C : C → 1 X satisfying coassociativityand counitality and satisfying(1 C · γ) (γ · 1 C ) ( 1 A · ∆ C) = ( ∆ C · 1 A)γ(257)1 A · ε C = ( ε C · 1 A)γ.(258)Note that, if we c<strong>on</strong>sider ( C · A, ∆ C·A , ε C·A) where∆ C·A = (γ · 1 C · 1 A ) ( 1 A · ∆ C · 1 A)(uA · 1 C · 1 A ) and ε C·A : C · A → A coassociativityand counitality properties are not satisfied. But, by applying thefunctor Cmd (F (C)) to the com<strong>on</strong>ad ( C, ∆ C , ε C) we getCmd (F (C)) (( C, ∆ C , ε C)) = ( C · A, ∆ C · 1 A , ε C · 1 A)where∆ C · 1 A ≃ ∆ C·A : C · A → C · A • A C · Aand ∆ C · 1 A and ε C · 1 A are A-bimodule morphisms, clearly satisfying coassociativityand counitality c<strong>on</strong>diti<strong>on</strong>s. Hence, ( )C · A, ∆ C · 1 A , ε C · 1 A is anA-coring.SinceMnd (C) ((X, 1 X ) , (Y, B)) = C(X,B) C (X, Y )dually we getCmd (C) ((X, 1 X ) , (Y, C)) = C(X,C) C (X, Y ) .C<strong>on</strong>sider the objects ( (X, 1 X ) , ( ))1 (X,1X ), 1 X , ((X, A) , (C, γ)) ∈ Cmd (Mnd (C))[(C, γ) : (X, A) → (X, A) , γ : A · C → C · A] and let((Q, φ) , σ) ∈ Cmd ( Mnd (C) ( (X, 1 X ) , ( )) )1 (X,1X ), 1 X , ((X, A) , (C, γ)) be a com<strong>on</strong>adfunctor, where (Q, φ) : (X, 1 X ) → (X, A) is a 1-cell in Mnd (C), i.e. φ : A · Q → Qsatisfies φ (u A · 1 Q ) = 1 Q and φ (1 A · φ) = φ (m A · 1 Q ) and σ : (Q, φ) ( )1 (X,1X ), 1 X =(Q, φ) → (C, γ) (Q, φ) = (C · Q, (1 C · φ) (γ · 1 Q )) is a 2-cell in Mnd (C), i.e.


(1 C · φ) (γ · 1 Q ) (1 A · σ) = σφ, i.e. σ is an A-linear map. Since ((Q, φ) , σ) is acom<strong>on</strong>ad functor, the 2-cell σ : Q → C · Q satisfies ( )ε C · 1 Q σ = 1Q and (1 C · φ) φ =( )C(X,C)∆C · 1 Q φ. This means that ((Q, φ) , σ) ∈C(X,A)C (X, X) (γ) is an entwined module.By applying the functor Cmd (F (C)) : Cmd (Mnd (C)) −→ Cmd (BIM (C))to the element((Q, φ) , σ) ∈ Cmd ( Mnd (C) ( (X, 1 X ) , ( )) )1 (X,1X ), 1 X , ((X, A) , (C, γ)) we getCmd (F (C)) (((Q, φ) , σ)) ∈ Cmd ( BIM (C) ( (X, 1 X ) , ( )) )1 (X,1X ), 1 X , ((X, A) , (C, γ))which is an element of C(X,C·A) BIM (X, X), i.e. it is a left C · A-comodule with respectto • A .241Appendix A. Gabriel Popescu TheoremNotati<strong>on</strong> A.<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let A be a Grothendieck category, let U be an object of A andlet B = Hom A (U, U). Assume that U is a generator of A i.e. that the functorHom A (U, −) : A → Mod-B is faithful.Lemma A.<str<strong>on</strong>g>2.</str<strong>on</strong>g> In the assumpti<strong>on</strong>s and notati<strong>on</strong>s of A.1, let X ∈ A and let λ :U (Hom A(U,X)) → X be the codiag<strong>on</strong>al morphism of the family (f) f∈(HomA (U,X)) . ThenIm (λ) = X.(HomProof. Let J : Ker (λ) → U A(U,X))be the can<strong>on</strong>ical m<strong>on</strong>omorphism and letλ : U (HomA(U,X)) → X be the codiag<strong>on</strong>al morphism of the family (f) f∈(HomA (U,X))and, for every f ∈ Hom A (U, X) let i f : U → U (HomA(U,X)) the f-th can<strong>on</strong>icalinjecti<strong>on</strong>. Then we have λ ◦ i f = f. Let χ : X → Coker (λ) be the can<strong>on</strong>icalprojecti<strong>on</strong> and let us assume that χ ≠ 0. Then there exists h : U → X such thatχ ◦ h ≠ 0. Then we have0 ≠ χ ◦ h = χ ◦ λ ◦ i h = 0 ◦ i h = 0.C<strong>on</strong>tradicti<strong>on</strong>. Thus Coker (λ) = 0 and hence X = KerCoker (λ) = Im (λ).□Propositi<strong>on</strong> A.3. In the assumpti<strong>on</strong>s and notati<strong>on</strong>s of A.1, the functor Hom A (U, −) :A → Mod-B is full.Proof. Let ϕ ∈ Hom B (Hom A (U, X) , Hom A (U, Z)). We have to prove that thereexists a morphism g : X → Z such that ϕ = Hom A (U, g). For any subset F ofHom A (U, X) we denote byi F : U (F ) → U (Hom A(U,X))the can<strong>on</strong>ical injecti<strong>on</strong>. If F = {f} we will write i f instead of i {f} . Let λ :U (HomA(U,X)) → X be the codiag<strong>on</strong>al morphism of the family (f) f∈(HomA (U,X))and letµ : U (HomA(U,X)) → Z be the codiag<strong>on</strong>al morphism of the family (ϕ (f)) f∈(HomA (U,X)) .Then, for every f ∈ Hom A (U, X) we haveλ ◦ i f = f and µ ◦ i f = ϕ (f) .


242Let F be a finite subset of Hom A (U, X) and let us c<strong>on</strong>sider the commutative diagram0 Ker (λ F )j FU (F ) λ F Xh F0 Ker (λ)i Fj U (Hom A(U,X)) λId X Xwhere λ F : U (F ) → X is the codiag<strong>on</strong>al morphism of the family (f) f∈F, j and j Fare the can<strong>on</strong>ical inclusi<strong>on</strong>s and h F is the morphism that factorizes i F ◦ j F throughKer (λ). We haveµ ◦ i F ◦ j F = µ ◦ j ◦ h F .For every f ∈ F let α f : U → U (F ) and π f : U (F ) → U be respectively the can<strong>on</strong>icalinjecti<strong>on</strong>s and projecti<strong>on</strong>s. ThenId U (F ) = ∑ f∈F α f ◦ π f .Let σ : U → Ker (λ F ) be any morphism. We compute0 = λ F ◦ j F ◦ σ = λ F ◦ Id U (F ) ◦ j F ◦ σ = ∑ f∈F λ F ◦ α f ◦ π f ◦ j F ◦ σ= ∑ f∈F f ◦ π f ◦ j F ◦ σ.Since π f ◦ j F ◦ σ ∈ B = Hom A (U, U) and ϕ ∈ Hom B (Hom A (U, X) , Hom A (U, Z)) ,we get that(∑))0 = ϕ f ◦ π f ◦ j F ◦ σ =f∈F(∑f∈F ϕ (f) ◦ π f ◦ j F ◦ σand hence, since U is a generator of A, we get that∑f∈F ϕ (f) ◦ π f ◦ j F = 0.On the other hand we have thatµ ◦ i F ◦ α f = µ ◦ i f = ϕ (f)and hence we obtain0 = ∑ )µ ◦ i F ◦ α f ◦ π f ◦ j F = µ ◦ i F ◦f∈F(∑f∈F α f ◦ π f ◦ j F= µ ◦ i F ◦ j F = µ ◦ j ◦ h F .Let u : Ker (µ) → U (HomA(U,X)) be the can<strong>on</strong>ical injecti<strong>on</strong>.morphism β F : Ker (λ F ) → Ker (µ) such thatj ◦ h F = u ◦ β FThen there exists aand since both j and h F are m<strong>on</strong>o, also β F is m<strong>on</strong>o. We want to check that thefamily (β F ) F ⊆HomA (U,X) is compatible. For every F, G ⊆ Hom A (U, X) finite subsets,let us denote i G F : U (F ) → U (G) . Thus we have λ G ◦ i G F = λ F and0 = λ F ◦ j F = λ G ◦ i G F ◦ j F .


Since j G : Ker (λ G ) → U (G) there exists a unique morphism i ̂GF : Ker (λ F ) → Ker (λ G )such thati G F ◦ j F = j G ◦ i ̂GF .We want to prove that β G ◦ ̂ i G F = β F for every F, G finite subsets of Hom A (U, X) .Let us computeu ◦ β G ◦ i ̂GF= j ◦ h G ◦ i ̂GF = i G ◦ j G ◦ i ̂GF = i G ◦ i G F ◦ j F = i F ◦ j F= j ◦ h F = u ◦ β F .Since u is m<strong>on</strong>o we c<strong>on</strong>clude. Let us c<strong>on</strong>sider the exact sequence0 → Ker (λ F ) j F−→ U (F ) λ−→FXSince A is a Grothendieck category, we have that lim → are exact and hence we getthe exact sequence0 → lim Ker (λ F ) lim→ j F−→ lim U (F ) = U (Hom A(U,X)) lim→ λ F =λ−→ X.→ →It follows that Ker (λ) = lim → Ker (λ F ) and hence there exists a unique m<strong>on</strong>omorphismβ = lim → β F : lim → Ker (λ F ) = Ker (λ) → Ker (µ) such thatβ ◦ h F = β F for every finite subset F of Hom A (U, X) .Since for every finite subset F of Hom A (U, X)243we get thatand henceu ◦ β ◦ h F = u ◦ β F = j ◦ h Fu ◦ β = jµ ◦ j = µ ◦ u ◦ β = 00 Ker (λ)j U (Hom A(U,X))λXtp∼ k∼Coker (j) Ker (χ)eµZλχ=0 Coker (λ)Therefore there exists a unique morphism ˜µ : Im (λ) ≃ Coker (j) → Z such that˜µ◦p = µ where p : U (Hom A(U,X)) → Coker (j) is the can<strong>on</strong>ical projecti<strong>on</strong>. By LemmaA.2, we have that Im (λ) = X and then X = Im (λ) = Coker (j). Then there existsan isomorphism t : X → Coker (j) such that t ◦ λ = p. Set g = ˜µ ◦ t and for everyf ∈ Hom A (U, X), we computeg ◦ f = ˜µ ◦ t ◦ f = ˜µ ◦ t ◦ λ ◦ i f = ˜µ ◦ p ◦ i f = µ ◦ i f = ϕ (f) .This means that ϕ = Hom A (U, g).□


244Lemma A.4. Let A be an abelian category and let U ∈ A. Then, for every exactsequence in Athe sequence0 → Hom A (U, K) Hom A(U,k)−→0 → K k−→ Xis an exact sequence of abelian groups.f−→ Y,Hom A (U, X) Hom A(U,f)−→ Hom A (U, Y )Proof. Let h ∈ Hom A (U, K). Then Hom A (U, k) (h) = kh. Since k is a m<strong>on</strong>omorphismit follows that kh = 0 if and <strong>on</strong>ly if h = 0. Hence Hom A (U, k) is also am<strong>on</strong>omorphism. Also (Hom A (U, f) ◦ Hom A (U, k)) (h) = fkh = 0. This impliesthat Im (Hom A (U, k)) ⊆ Ker (Hom A (U, f)). Let now g ∈ Hom A (U, X) and assumethat Hom A (U, f) (g) = 0 i.e. fg = 0. Since (K, k) = Ker (f) there exists a morphismg ′ : U → K such that g = kg ′ = Hom A (U, k) (g ′ ) ∈ Im (Hom A (U, k)). Thereforewe get that Ker (Hom A (U, f)) ⊆ Im (Hom A (U, k)) and hence Ker (Hom A (U, f)) =Im (Hom A (U, k)).□Lemma A.5. In the assumpti<strong>on</strong>s and notati<strong>on</strong>s of A.1, let (T, H) be an adjuncti<strong>on</strong>where T : B → A and H : A → B and let f : X → Y be a morphism in A. Then fis a m<strong>on</strong>omorphism (resp. epimorphism) if and <strong>on</strong>ly if T H (f) is a m<strong>on</strong>omorphism(resp. epimorphism).Proof. First of all, for every X ∈ A let ɛX : T H (X) → X be the counit of theadjuncti<strong>on</strong> (T, H). Then, in view of Propositi<strong>on</strong> A.3 and Propositi<strong>on</strong> <str<strong>on</strong>g>2.</str<strong>on</strong>g>32, ɛX is anisomorphism and for every morphism f : X → Y in A we havef ◦ ɛX = ɛY ◦ T H (f) .Thus f is m<strong>on</strong>o (resp. epi) if and <strong>on</strong>ly if T H (f) is m<strong>on</strong>o (resp. epi).Lemma A.6. In the assumpti<strong>on</strong>s and notati<strong>on</strong>s of A.1, let m, n ∈ N, m, n ≥ 1,let f : B m → B n be a morphism of right B-modules, let X = Coim ( f ) and letj : X → B n be the can<strong>on</strong>ical injecti<strong>on</strong>. Let T : Mod-B → A be a left adjoint of thefunctor Hom A (U, −) : A → Mod-B. Then T (j) is a m<strong>on</strong>omorphism.Proof. Let m, n ∈ N, m, n ≥ 1, let f : U m → U n be a morphism in A. Let usc<strong>on</strong>sider the diagram□0 Ker (f)k U m fU n iCoim (f)00where p is the can<strong>on</strong>ical epimorphism and i is the can<strong>on</strong>ical m<strong>on</strong>omorphism. Byapplying to it the functor H = Hom A (U, −), in view of Lemma A.4, we obtain thep


245diagramH(k)H(f)0 Ker (H (f)) = H (Ker (f)) H (U m ) H (U n )H(p)H(i)H (Coim (f))0Since Coim (H (f)) = Coker (H (k)) and H (p) ◦ H (k) = 0 there exists a uniquemorphism ζ : Coim (H (f)) → H (Coim (f)) such that(259) H (p) = ζ ◦ qwhere q : H (U m ) → Coim (H (f)) is the can<strong>on</strong>ical epimorphism. Let j : Coim (H (f)) →H (U n ) be the can<strong>on</strong>ical m<strong>on</strong>omorphism such that j ◦ q = H (f). Then fromj ◦ q ◦ H (k) = H (f ◦ k) = 0 we get that(260) q ◦ H (k) = 0.H(k)0 Ker (H (f)) = H (Ker (f)) H (U m ) H (UqH(p)n )H(i) jH (Coim (f)) Coim (H (f)) = Coker (H (k))ζ000From H (i) ◦ ζ ◦ q (259)= H (i) ◦ H (p) = H (f) = j ◦ q, since q is an epimorphism, weget that(261) H (i) ◦ ζ = j.Let us apply T to it having in mind that T is right exactH(f)0 T H (Ker (f))T H(k) T H (U m T H(f))T H (U n )T (q)T H(p)T H(i) T (j)ξT H (Coim (f)) T (Coim (H (f)))T (ζ)Let us prove that T (j) is m<strong>on</strong>o. From formula (260) we obtain that T (q) ◦T H (k) = T (q ◦ H (k)) = 0. SinceT H (Coim (f)) = Coim (T H (f)) = Coker (Ker (T H (f)))= Coker (T H (Ker (f))) = Coker (T H (k))there exists a unique ξ : T H (Coim (f)) → T (Coim (H (f))) such that(262) ξ ◦ T H (p) = T (q) .


246We haveT (ζ) ◦ ξ ◦ T H (p) (262)= T (ζ) ◦ T (q) (259)= T H (p)and since T H (p) is epi by Lemma A.5, we getWe computeand since T (q) is epi, we obtain thatT (ζ) ◦ ξ = Id T H(Coim(f)) .ξ ◦ T (ζ) ◦ T (q) (259)= ξ ◦ T H (p) (262)= T (q)ξ ◦ T (ζ) = Id T (Coim(H(f))) .Therefore T (ζ) is an isomorphism. From formula (261) we get that T H (i) ◦ T (ζ) =T (j) and by Lemma A.5 we c<strong>on</strong>clude that T (j) is a m<strong>on</strong>omorphism.Let m, n ∈ N, m, n ≥ 1, let f : B m → B n be a morphism of right B-modulesand let X = Coim ( f ) . Since U is a generator, by Propositi<strong>on</strong> A.3, there existsa unique morphism f : U m → U n such that H (f) = f. Then, by the foregoing,X = Coim (H (f)) and T (j) is a m<strong>on</strong>omorphism where j : X → B n is the can<strong>on</strong>icalm<strong>on</strong>omorphism.□Lemma A.7. Let B be a ring and let X be a submodule of a free module A (Z) .Let P 0 (X) be the set of finite subsets of X and let j F : X F → X be the can<strong>on</strong>icalinclusi<strong>on</strong> of the submodule of X spanned by F ∈ P 0 (X). Then for every F ∈ P 0 (X)there exists a finite subset Z F of Z and a m<strong>on</strong>omorphism i F : X F → A (Z F ) such thatthe diagramj FX F X i Fj h FA (Z F )A (Z)where j : X → A (Z) is the can<strong>on</strong>ical inclusi<strong>on</strong> and h F : A (Z F ) → A (Z) is the can<strong>on</strong>icalsecti<strong>on</strong> of the can<strong>on</strong>ical projecti<strong>on</strong> π F : A (Z) → A (Z F ) , is commutative. Moreover(i F ) F ∈P0 (X) is a family of morphisms between the direct systems (X F )( ) F ∈P0 (X) andA(Z F ) and (h F ∈P 0 (X) F ◦ i F ) F ∈P0 (X)is a compatible family of morphisms such thatlim (h F ◦ i F ) = j.−→Proof. Let (e z ) z∈Zbe the can<strong>on</strong>ical basis of A (Z) . Then, for every x ∈ X there existsa finite subset F x of Z such thatFor every F ∈ P 0 (X) let us setx = ∑ z∈F xe z a z where a z ∈ A for every z ∈ F x .Z F = ⋃ x∈FF xand let ( e F z)z∈Z Fbe the can<strong>on</strong>ical basis of A (Z F ) . Then the assignmente F z↦→ e z where z ∈ Z F


yields the can<strong>on</strong>ical secti<strong>on</strong> h F : A (Z F ) → A (Z) of the can<strong>on</strong>ical projecti<strong>on</strong> π F :A (Z) → A (Z F ) since π F (e z ) = e F z for every z ∈ F . Set i F = π F ◦ j ◦ j F . Then wehaveIm (j ◦ j F ) ⊆ ∑ z∈F e zA = ∑ z∈F (h F ◦ π F ) (e z ) Aand sincewe obtain that(h F ◦ π F ) (e z ) = e z for every z ∈ F(263) h F ◦ i F = h F ◦ π F ◦ j ◦ j F = j ◦ j F .Assume now that F, G ∈ P 0 (X) and that F ⊆ G. Then Z F ⊆ Z G so that wecan c<strong>on</strong>sider the can<strong>on</strong>ical secti<strong>on</strong> h G F : A(Z F ) → A (ZG) of the can<strong>on</strong>ical projecti<strong>on</strong>πF G : A(ZG) → A (Z F ) . We have( ) ( )πFG eGz = eFz and h G F eFz = eGz for every z ∈ Z F .Moreoverh G ◦ h G F = h F .Let j G F : X F → X G be the can<strong>on</strong>ical inclusi<strong>on</strong>. Thenso that we getj G ◦ j G F = j F and π G ◦ h F = h G Fi G ◦ j G F = π G ◦ j ◦ j G ◦ j G F = π G ◦ j ◦ j F =(263)= π G ◦ h F ◦ i F = h G F ◦ i Fand henceh G ◦ i G ◦ jF G = h G ◦ h G F ◦ i F = h F ◦ i Fwhich proves that (h F ◦ i F ) F ∈P0 (X)is a compatible family of morphisms. Sincelim −→ (X F ) F ∈P0 (X)= X, to prove thatlim (h F ◦ i F ) = j−→it is enough to prove thatj ◦ j F = h F ◦ i Ffor every F ∈ P 0 (X) . This holds in view of (263).Lemma A.8. Let f : X → Y and p : W → X be morphisms in an abelian categoryA. Assume that p is an epimorphism and thatThen f is a m<strong>on</strong>omorphism.Ker (f ◦ p) = Ker (p) .Proof. Since p is an epimorphism, we have that Coker (Ker (p)) = (X, p). It followsthat Coker (Ker (f ◦ p)) = (X, p). Let f ◦ p : Coker (Ker (f ◦ p)) → Ker (Coker (f ◦ p))be the isomorphism such that(264) f ◦ p = k ◦ f ◦ p ◦ p247□


248where k : Ker (Coker (f ◦ p)) → Y is the can<strong>on</strong>ical m<strong>on</strong>omorphism. Since p is anepimorphism, from formula (264) we obtain that f = k ◦ f ◦ p and hence f is am<strong>on</strong>omorphism.□Theorem A.9 ([Po, page 112]). Let A be a Grothendieck category, let U be an objectof A and let B = Hom A (U, U). Assume that U is a generator of A and that thereexists a left adjoint T : Mod-B → A of the functor Hom A (U, −) : A → Mod-B.Then T is an exact functor.Proof. By Propositi<strong>on</strong> A.3, H is full and faithful. Since T is a left adjoint so that itpreserves epimorphisms, we have <strong>on</strong>ly to prove that it is left exact.Now let X be a submodule of a free right B-module B (Z) . Let P 0 (X) be the set offinite subset of X and let j F : X F → X be the can<strong>on</strong>ical inclusi<strong>on</strong> of the submoduleof X spanned by F ∈ P 0 (X). By Lemma A.7, for every F ∈ P 0 (X) there exists afinite subset Z F of Z and a m<strong>on</strong>omorphism i F : X F → A (Z F ) such that the diagramj FX F X i Fj h FA (Z F )A (Z)where j : X → A (Z) is the can<strong>on</strong>ical inclusi<strong>on</strong> and h F : A (Z F ) → A (Z) is the can<strong>on</strong>icalsecti<strong>on</strong> of the can<strong>on</strong>ical projecti<strong>on</strong> π F : A (Z) → A (Z F ) , is commutative. Moreover(h F ◦ i F ) F ∈P0 (X)is a compatible family of morphisms such thatlim (h F ◦ i F ) = j.−→Since T is a left adjoint functor, we have()T (j) = T lim (h F ◦ i F )−→= lim−→T (h F ◦ i F ) .By Lemma A.6 we know that T (i F ) is a m<strong>on</strong>omorphism. On the other hand π F ◦h F = Id A (Z F ) and hence also T (h F ) is a m<strong>on</strong>omorphism. Since A is a Grothendieckcategory, direct limits are exact in A and hence T (j) is a m<strong>on</strong>omorphism.Finally let0 → L f−→ Mbe a m<strong>on</strong>omorphism in Mod-B. Then we can c<strong>on</strong>struct the following commutativediagram with exact rows and columns000 Ker (p)i ′Pp ′L0Id Ker(p)0 Ker (p)f ′ i B (M) pf M 0


where p : B (M) → M is the usual epimorphism of right B-modules and (P, f ′ , p ′ ) isthe pullback of (p, f). Recall thatP = { (x, y) ∈ B (M) × L | p (x) = f (y) }and f ′ : P → B (M) is defined by setting f ′ ((x, y)) = x while p ′ : P → L is defined bysetting p ′ ((x, y)) = y. Moreover i ′ : Ker (p) → P is defined by setting i ′ (x) = (x, 0).Since f is a m<strong>on</strong>omorphism we have that also f ′ is a m<strong>on</strong>omorphism and since p isan epimorphism, also p ′ is an epimorphism. Then, by the foregoing, both T (f ′ ) andT (i) are m<strong>on</strong>omorphism. Since T (i) is a m<strong>on</strong>omorphism we get that T (i ′ ) is alsoa m<strong>on</strong>omorphism so that (T (Ker (p)) , T (i ′ )) is a kernel of T (p ′ ). Since T (f ′ ) isa m<strong>on</strong>omorphism and T (f ′ ) T (i ′ ) = T (i) we get that (T (Ker (p)) , T (i ′ )) is also akernel of T (p) T (f ′ ). In fact T (p) T (f ′ ) T (i ′ ) = T (p) T (i) = 0 and if ζ : Z → T (P )is a morphism such that T (p) T (f ′ ) ζ = 0 there exists a unique morphism ζ ′ : Z →T (Ker (p)) such that T (f ′ ) ζ = T (i) ζ ′ so that T (f ′ ) ζ = T (i) ζ ′ = T (f ′ ) T (i ′ ) ζ ′and since T (f ′ ) is m<strong>on</strong>o we get that ζ = T (i ′ ) ζ ′ . Since T (p) T (f ′ ) = T (f) T (p ′ )we deduce that (T (Ker (p)) , T (i ′ )) is a kernel of T (f) T (p ′ ). Therefore we obtainthatKer (T (f) T (p ′ )) = Ker (T (p ′ )) .Since T is right exact we know that T (p ′ ) is an epimorphism and hence, in view ofLemma A.8, we deduce that T (f) is a m<strong>on</strong>omorphism.02490 T (Ker (p)) T (i′ )T (P )T (p ′ )T (L)0Id T (Ker(p))T (f ′ )0 T (Ker (p)) T (i) T ( B (M)) T (p)T (f) T (M) 0Lemma A.10. Let C be an A-coring. Then the category (Mod-A) C has coproductsand cokernels so that it is cocomplete. Moreover if U : (Mod-A) C → (Mod-A) isthe forgetful functor we have((∐ ))U (Mi , ρ i ) i∈I, ρ M = ⊕ M i and U (( Coker (f) , ρ Coker(f))) = Coker (f) .i∈I□Proof. Let (M ι , ρ i ) i∈Ibe a family of right C-comodules and let ε i : M i → M = ⊕ M ii∈Ibe the can<strong>on</strong>ical injecti<strong>on</strong> and π i : M → M i the can<strong>on</strong>ical projecti<strong>on</strong>. Since π i ε i =Id Mi the mapε i ⊗ A C : M i ⊗ A C → M ⊗ A Cis injective and hence also the mapρ i = (ε i ⊗ A C) ◦ ρ i : M i → M ⊗ A Cis injective. Letρ M : M → M ⊗ A C


250be the codiag<strong>on</strong>al map of the ρ i . Then ρ M is uniquely defined byρ M ◦ ε i = ρ i .Then ( M, ρ M) ∈ (Mod-A) C . In fact, for every i ∈ I we have(ρ M ⊗ A C ) ◦ ρ M ◦ ε i = ( ρ M ⊗ A C ) ◦ ρ i = ( ρ M ⊗ A C ) ◦ (ε i ⊗ A C) ◦ ρ i= (ρ i ⊗ A C) ◦ ρ i = (ε i ⊗ A C) ◦ (ρ i ⊗ A C) ◦ ρ i = (ε i ⊗ A C) ◦ ( M i ⊗ A ∆ C) ◦ ρ iand= ( M ⊗ A ∆ C) ◦ (ε i ⊗ A C) ◦ ρ i = ( M ⊗ A ∆ C) ◦ ρ i = ( M ⊗ A ∆ C) ◦ ρ M ◦ ε ir M ◦ ( M ⊗ A ε C) ◦ ρ M ◦ ε i = r M ◦ ( M ⊗ A ε C) ◦ ρ i = r M ◦ ( M ⊗ A ε C) ◦ (ε i ⊗ A C) ◦ ρ i= r M ◦ (ε i ⊗ A A) ◦ ( M i ⊗ A ε C) ◦ ρ i = ε i ◦ r Mi ◦ ( M i ⊗ A ε C) ◦ ρ i = ε i .Let f : ( M, ρ M) → ( N, ρ N) be a morphism in (Mod-A) C so that f : M → N is amorphism in Mod-A and let us c<strong>on</strong>siderMf−→ Np−→ Coker (f) → 0the cokernel of f in Mod-A. Then we have the following diagram in Mod-AMfNpCoker (f)0We computeρ Mρ Nρ Coker(f)M ⊗ A C f⊗ AC N ⊗ A C p⊗ AC Coker (f) ⊗A C 0(p ⊗ A C) ◦ ρ N ◦ f = (p ⊗ A C) ◦ (f ⊗ A C) ◦ ρ M = (pf ⊗ A C) ◦ ρ M = 0by the universal property of the cokernel there exists a unique morphism ρ Coker(f) :Coker (f) → Coker (f) ⊗ A C such thatρ Coker(f) ◦ p = (p ⊗ A C) ◦ ρ N .Let us check that ( Coker (f) , ρ Coker(f)) ∈ (Mod-A) C . Let us compute(ρ Coker(f) ⊗ A C ) ◦ ρ Coker(f) ◦ p = ( ρ Coker(f) ⊗ A C ) ◦ (p ⊗ A C) ◦ ρ Nand= (p ⊗ A C ⊗ A C) ◦ ( ρ N ⊗ A C ) ◦ ρ N = (p ⊗ A C ⊗ A C) ◦ ( N ⊗ A ∆ C) ◦ ρ N= ( Coker (f) ⊗ A ∆ C) ◦ (p ⊗ A C) ◦ ρ N = ( Coker (f) ⊗ A ∆ C) ◦ ρ Coker(f) ◦ pr Coker(f) ◦ ( Coker (f) ⊗ A ε C) ◦ ρ Coker(f) ◦ p= r Coker(f) ◦ ( Coker (f) ⊗ A ε C) ◦ (p ⊗ A C) ◦ ρ N= r Coker(f) ◦ (p ⊗ A A) ◦ ( N ⊗ A ε C) ◦ ρ N = p ◦ r N ◦ ( N ⊗ A ε C) ◦ ρ N = pand since p is epi we c<strong>on</strong>clude. Now, let ζ : ( N, ρ N) → ( Z, ρ Z) be a morphism in(Mod-A) C such that ζ◦f = 0. Then, there exists a unique morphism ζ ′ : Coker (f) →Z in Mod-A such that ζ ′ ◦p = ζ. We want to prove that ζ ′ ∈ (Mod-A) C . We computeρ Z ◦ ζ ′ ◦ p = ρ Z ◦ ζ = (ζ ⊗ A C) ◦ ρ N


251= (ζ ′ ⊗ A C) ◦ (p ⊗ A C) ◦ ρ N = (ζ ′ ⊗ A C) ◦ ρ Coker(f) ◦ pand since p is an epimorphism we get that ζ ′ ∈ (Mod-A) C .Lemma A.1<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let C be an A-coring and assume that A C is flat. Then the category(Mod-A) C has kernels. Moreover if U : (Mod-A) C → (Mod-A) is the forgetfulfunctor we haveU (( Ker (f) , ρ Ker(f))) = Ker (f) .Proof. Since by Lemma A.10 the preadditive category (Mod-A) C has coproducts,it also has products. Now, let f : ( M, ρ M) → ( N, ρ N) a morphism in (Mod-A) C .Then in Mod-A we can c<strong>on</strong>sider the exact sequence0 → Ker (f)k−→ Mand, since A C is flat, we get the exact sequence0 Ker (f)ρ Ker(f)kMf−→ N0 Ker (f) ⊗ A C k⊗ AC M ⊗ A C f⊗ AC N ⊗ A CWe have0 = ρ N ◦ f ◦ k = (f ⊗ A C) ◦ ρ M ◦ k.By the properties of the kernel of f there exists a unique morphism ρ Ker(f) : Ker (f) →Ker (f) ⊗ A C such thatρ M ◦ k = (k ⊗ A C) ◦ ρ Ker(f) .We have to prove that ( Ker (f) , ρ Ker(f)) ∈ (Mod-A) C . Let us compute(k ⊗ A C ⊗ A C) ◦ ( ρ Ker(f) ⊗ A C ) ◦ ρ Ker(f) = ( ρ M ⊗ A C ) ◦ (k ⊗ A C) ◦ ρ Ker(f)= ( ρ M ⊗ A C ) ◦ ρ M ◦ k = ( M ⊗ A ∆ C) ◦ ρ M ◦ k = ( M ⊗ A ∆ C) ◦ (k ⊗ A C) ◦ ρ Ker(f)andρ M= (k ⊗ A C ⊗ A C) ◦ ( Ker (f) ⊗ A ∆ C) ◦ ρ Ker(f)k ◦ r Ker(f) ◦ ( Ker (f) ⊗ A ε C) ◦ ρ Ker(f) = r M ◦ (k ⊗ A C) ◦ ( Ker (f) ⊗ A ε C) ◦ ρ Ker(f)= r M ◦ ( M ⊗ A ε C) ◦ (k ⊗ A C) ◦ ρ Ker(f) = r M ◦ ( M ⊗ A ε C) ◦ ρ M ◦ k = k.Since k is m<strong>on</strong>o we c<strong>on</strong>clude. Let now ζ : ( Z, ρ Z) → ( M, ρ M) be a morphism in(Mod-A) C such that f ◦ ζ = 0. Then by the universal property of the kernel of f inMod-A there exists a unique morphism ζ ′ : Z → Ker (f) such thatk ◦ ζ ′ = ζ.We want to prove that ζ ′ ∈ (Mod-A) C . Let us compute(k ⊗ A C) ◦ ρ Ker(f) ◦ ζ ′ = ρ M ◦ k ◦ ζ ′ = ρ M ◦ ζ = (ζ ⊗ A C) ◦ ρ Z= (k ⊗ A C) ◦ (ζ ′ ⊗ A C) ◦ ρ Zand since k⊗ A C is m<strong>on</strong>o we c<strong>on</strong>clude that ζ ′ ∈ (Mod-A) C and U (( Ker (f) , ρ Ker(f))) =Ker (f) .□fNρ N□


252Propositi<strong>on</strong> A.12 ([ELGO2, Propositi<strong>on</strong> <str<strong>on</strong>g>1.</str<strong>on</strong>g>2]). Let C be an A-coring. Then thefollowing are equivalent(a) A C is flat.(b) (Mod-A) C is an abelian category and the forgetful functor U : (Mod-A) C →Mod-A is left exact (and hence exact).(c) (Mod-A) C is a Grothendieck category and the forgetful functor U : (Mod-A) C →Mod-A is left exact (and hence exact).Proof. By Lemma A.10, the category (Mod-A) C has coproducts and cokernels.(a) ⇒ (c) By Lemma A.11 has kernels. C<strong>on</strong>sider the following diagram( ) Ker (f) , ρKer(f) k() M, ρMf ( ) N, ρNχ ( ) Coker (f) , ρCoker(f)χ ′ ρ k′( ) ( )Coker (k) , ρCoker(k) Ker (χ) , ρKer(χ).¯fin (Mod-A) C . Then we get the diagramKer (f)k M χ ′ Coker (k)fρ¯f Nk ′ Ker (χ) .χ Coker (f)in Mod-A. Since Mod-A is preabelian, f is an isomorphism in Mod-A and hence alsoin (Mod-A) C . Thus also the category (Mod-A) C is preabelian and moreover abelian(there exist products of every finite family of objects in the category). Moreover,by Lemma A.10 and Lemma A.11 U is left exact. Further, the direct limits areexacts for module categories and thus also for (Mod-A) C . We now have to find agenerator for (Mod-A) C . Let ( M, ρ M) ∈ (Mod-A) C and let p : A (M) → M is theusual epimorphism of right A-modules. Let us c<strong>on</strong>sider the epimorphism l given bythe following compositel : C (M) −→ A (M) ⊗ A C p⊗ AC−→ M ⊗ A C −→ 0where the first arrow is the can<strong>on</strong>ical isomorphism and the sec<strong>on</strong>d <strong>on</strong>e is the usualepimorphism so that l ( (c m ) m∈M)=∑m∈M m ⊗ A c m where c m are almost all zero.Then we have the following diagramρ0Pgρ M0MC (M) l M ⊗ A C 00


253where (P, ρ, g) is the pullback of ( l, ρ M) . Recall that P is the submodule ofdefined by settingC (M) × MP = { (x, m) ∈ C (M) × M | l (x) = ρ M (m) }and ρ : P → C (M) is defined by setting ρ ((x, m)) = x while g : P → M bysetting g ((x, m)) = m. Since ρ M is m<strong>on</strong>o, ρ is also m<strong>on</strong>o (thus ρ (P ) = H is asubcomodule of C (M) ) and since l is epi, g is epi. Denote by h M F : C(F ) → C (M) thecan<strong>on</strong>ical inclusi<strong>on</strong> for any F ⊆ M. Let m ∈ M, then there exist n ∈ N and F m ={y 1 , y 2 , . . . , y n } ⊆ M such that ρ M (m) = ∑ ))y∈F my ⊗ A c y = l(h M F m((c y ) y∈Fm.Then, for every m ∈ M, there exists z ∈ P such that m = g (z) = g ((ρ (z) , m))where ρ (z) = h M F m((c y ) y∈Fm)∈ h M F m(C(F m) ) ⊆ C (M) . Thus, for every m ∈ M, thereexists x m = (c y ) y∈Fm∈ such that m = g (( h M F m(x m ) , m )) . Then we have definedthe following homomorphismsuch thatν xm : x m A −→ Mx m ↦→ g (( h M F m(x m ) , m )) .m = ν xm (x m ) .Since x m A ⊆ C (Fm) , we deduce that the subcomodules of C (N) form a set of generatorsfor (Mod-A) C ⊕i.e. H is a generator for (Mod-A) C .H⊆C (N)(c) ⇒ (b) Obvious.(b) ⇒ (a) By Example 4.3 and Definiti<strong>on</strong> 4.10 F : Mod-A → (Mod-A) C is a rightadjoint of U and then F is left exact. Then using the hypothesis that U is left exact,we deduce that U ◦ F : Mod-A → Mod-A is also left exact, i.e. A C is flat. □Definiti<strong>on</strong> A.13. Let A be a Grothendieck category. An object A ∈ A is calledfinitely generated if, for every direct family of subobjects {A i } i∈Iof A such thatA = ∑ A i , there exists an index i 0 ∈ I such that A = A i0 .i∈IPropositi<strong>on</strong> A.14. Let A be a Grothendieck category. An object A ∈ A is finitelygenerated if and <strong>on</strong>ly if, for every family of subobjects {A i } i∈Iof A such that ∑ i∈IA i =∑A, there exists a finite number of subobjects A 1 , . . . , A n such that A = n A i .Proof. (⇐) Let {A i } i∈Ibe a direct family of subobjects of A closed under sumsand such that A = ∑ A i . By hypothesis there exists a finite number of subobjectsi∈I∑A 1 , . . . , A n such that A = n A i . Since the family is direct and closed under sums,i∈I∑there exists an index i 0 ∈ I such that A = n A i ⊆ A i0 . Then A is finitely generated.i∈Ii∈I


254(⇒) Let {A i } i∈Ibe a family of subobjects of A closed under sums and whichc<strong>on</strong>tains A itself. Assume that A = ∑ A i . Since A is finitely generated, there existsi∈Ian index i 0 ∈ I such that A i0 = A.Lemma A.15. Let A be a Grothendieck category and let 0 → A ′ −→ A −→ pA ′′ →0 be an exact sequence in A. Then if A is finitely generated A ′′ is also finitelygenerated.Proof. Let (A ′′i ) i∈Ibe a direct family of subobjects of A ′′ such that A ′′ = ∑ A ′′i . Theni∈Iwe have, for every i ∈ I, A ′′i = A i A ′ for A i subobject of A such that A ′ ⊆ A i .Hence (A i ) i∈Iis a direct family of subobjects of A such that A = ∑ A i and since Ai∈Iis finitely generated there exists an index i 0 ∈ I such that A = A i0 . Then we haveA ′′ = A i0 A ′ = A ′′i 0, i.e. A ′′ is also finitely generated.□Lemma A.16. Let A be a Grothendieck category and let A ∈ A be a finitely generatedobject. Let f : A → ∐ i∈IB i be a morphism in A. Then there exist a finite subsetF ⊆ I such that Im (f) ⊆ ∑ ε i (B i ).i∈F)B ii∈Ii∈IProof. Let ε i : B i → ∐ B j the can<strong>on</strong>ical inclusi<strong>on</strong>s and c<strong>on</strong>sider ∇ (ε i ) i∈I: ∐ B i →j∈Ii∈I( )∐∐B j defined by setting ∇ (ε i ) i∈IB j = ∑ ε i (B i ). We prove ∇ (ε i ) i∈I=j∈I j∈Ii∈IId`B i. In fact we have that ∇ (ε j ) j∈I◦ ε i = ε i = Id ` B j◦ ε i . Thus, ∐ B i =i∈Ij∈I(i∈IIm Id` = Im ( ) ∑∇ (ε i ) i∈I = ε i (B i ) where (ε i (B i )) i∈Idefine a family of subobjectsof ∐ B i . Let f : A → ∐ B j . By Lemma A.15, since A is finitely generatedi∈Ij∈Ialso Coim (f) is finitely generated and, since Coim (f) ≃ Im (f) ⊆ ∑ ε i (B i ), therei∈I□exists a finite subset F ⊆ I such that Im (f) ⊆ ∑ ε i (B i ).i∈F□Definiti<strong>on</strong> A.17. Let A be an abelian category. A projective object P ∈ A iscalled finite if the functor Hom A (P, −) preserves coproducts.Propositi<strong>on</strong> A.18. Let A be a Grothendieck category and let P be a projectiveobject. Then P is finite if and <strong>on</strong>ly if P is finitely generated.Proof. Assume first that P ∈ A is finite. Let {P i } i∈Ibe a family of subobjects of Psuch that ∑ i∈IP i = P. Let p i : P i → P be the can<strong>on</strong>ical inclusi<strong>on</strong> for every i ∈ I andc<strong>on</strong>sider p = ∇ (p i ) i∈I: ∐ i∈IP i → P. Then we have( ) ( )∐∇ (pi ) i∈IP i = ∑i∈Ii∈Ip i (P i ) = ∑ i∈IP i = P


and thus p is an epimorphism. Since P is projective there exists i : P → ∐ P i such(i∈Ithat p ◦ i = Id P . Note that i ∈ Hom A P, ∐ )P i and since P is finite we havei∈Ithat ∇ (Hom (P, ε i )) i∈I: ∐ (Hom A (P, B i ) → Hom A P, ∐ )B i is an isomorphism.i∈Ii∈IThus there exist n ∈ N and i 1 ∈ Hom A (P, P 1 ) , . . . , i n ∈ Hom A (P, P n ) such that∐i = ε 1 i 1 + · · · + ε n i n . Hence Id P = p ◦ i = p ◦ (ε 1 i 1 + · · · + ε n i n ) : P → n P i → P∐and then P = n P i so that P is finitely generated.ε F ii∈1Assume now that P is finitely generated. Let us denote by ε j : B j → ∐ B i ,i∈I: B i → ∐ B i the can<strong>on</strong>ical injecti<strong>on</strong>s for every F ⊆ I finite subset, and let usprove thati∈F∇ (Hom (P, ε i )) i∈I: ∐ i∈IHom A (P, B i ) −→ Hom A(P, ∐ i∈IB i)i∈1255(f i ) i∈I↦→ ∑ i∈Iε i ◦ f iis an isomorphism. First of all we prove that it is epi. Since P is finitely generated, iff : P → ∐ i∈IB i is a morphism in A, by Lemma A.16, there exists a F ⊆ I finite subsetsuch that Im (f) ⊆ ∑ ε i (B i ) . Let us denote by f : P → Im (f) and s : Im (f) ↩→∑i∈Fε i (B i ) the can<strong>on</strong>ical inclusi<strong>on</strong>. Let us c<strong>on</strong>sider h = ∇ (ε i ) i∈F: ∐ B i → ∐ B ii∈Fi∈F i∈Isatisfying(265) h ◦ ε F i = ∇ (ε i ) i∈F◦ ε F i = ε i for every i ∈ F .Then, by definiti<strong>on</strong> of the codiag<strong>on</strong>al morphism, we have that Im (h) = ∑ ε i (B i )i∈Fand thus, if we call ĥ : ∐ B i → Im (h) = ∑ ε i (B i ) the can<strong>on</strong>ical projecti<strong>on</strong>, wei∈F i∈Fcan write(266) h = t ◦ hwhere t : ∑ ε i (B i ) → ∐ B i is the inclusi<strong>on</strong>. Thus also f can be factorized throughi∈Fi∈If by(267) f = t ◦ s ◦ f.With these notati<strong>on</strong>s we can rewrite (265) as follows(268) ε i = h ◦ ε F i = t ◦ h ◦ ε F i .


256We will prove that h : ∐ B i → ∑ ε i (B i ) is in fact an isomorphism. We define thei∈F i∈Ffamily (η j ) j∈Iby settingη j = 0 for every j ∈ I\F and η j = ε F j for every j ∈ F .Then we can take ∇ (η i ) i∈I: ∐ B i → ∐ B i . Let us compute for every j ∈ Fi∈I i∈F∇ (η i ) i∈I◦ h ◦ ε F jdefh= ∇ (η i ) i∈I◦ ∇ (ε i ) i∈F◦ ε F j= ε F j = Id ` B i◦ ε F ji∈F(265)= ∇ (η i ) i∈I◦ ε jand thus ∇ (η i ) i∈I◦ h = Id ` B i. Therefore we deduce that h is m<strong>on</strong>o and then h isi∈Fan isomorphism. Let us c<strong>on</strong>sider (δ ij : B i → B j ) j∈Ithe family defined by settingδ ii = Id Bi and δ ij = 0 for every j ≠ i.Since ∐ B i is a finite coproduct, we can view it as a product and call π j : ∐ B i =i∈Fi∈F∏B i = × i∈F→ B j the projecti<strong>on</strong>s for every j ∈ F satisfyingi∈F(269) π j ◦ ε F i = δ ij and∑ε F i π i = Id ×.i∈FNote that, by the universal property of the coproduct, there exist q j : ∐ i∈IB i → B jsuch thati∈F(270) q j ◦ ε i = δ ij .Let us compute, for every i ∈ F and for every j ∈ I,and thusq j ◦ h ◦ ε F i = q j ◦ ε i(270)= δ ij(269)= π j ◦ ε F i(271) q j ◦ h = π j .We define the family (f i ) i∈I∈ ∐ i∈IHom A (P, B i ) by settingNote thati.e.f i = π i ◦ h −1 ◦ s ◦ f for every i ∈ F and f i = 0 for every i ∈ I\F .f i = π i ◦ h −1 ◦ s ◦ f (271)= q i ◦ h ◦ h −1 ◦ s ◦ f(266)= q i ◦ t ◦ h ◦ h −1 ◦ s ◦ f = q i ◦ t ◦ s ◦ f (267)= q i ◦ f(272) f i = q i ◦ f.For such a family (f i ) i∈I, we have to prove thatf = ∑ i∈Iε i ◦ f i .


257Since f i = 0 for every i ∈ I\F we have∑ε i ◦ f i = ∑i∈Ii∈Fso that it is sufficient to prove thatε i ◦ f if = ∑ i∈Fε i ◦ f iand by (267) and (268)t ◦ s ◦ f = ∑ i∈Ft ◦ h ◦ ε F i ◦ f i .Since t is m<strong>on</strong>o we <strong>on</strong>ly need to prove thats ◦ f = ∑ i∈Fh ◦ ε F i◦ f iand thus, for every j ∈ F, thatπ j ◦ h −1 ◦ s ◦ f = π j ◦ h −1 ◦ ∑ i∈Fh ◦ ε F i ◦ f i .Let us computeOn the other handπ j ◦ h −1 ◦ s ◦ f (271)= q j ◦ h ◦ h −1 ◦ s ◦ f(266)= q j ◦ t ◦ h ◦ h −1 ◦ s ◦ f= q j ◦ t ◦ s ◦ f (267)= q j ◦ f (272)= f j .π j ◦ h −1 ◦ ∑ i∈Fh ◦ ε F iπ j ◦ h −1 ◦ h ◦ ε F iπ j ◦ ε F i◦ f i◦ f i = ∑ i∈F◦ f i = ∑ i∈F(269)= ∑ δ ij ◦ f i = f ji∈Fso that we c<strong>on</strong>clude that ∐ (Hom A (P, B i ) ∇(Hom(P,ε i)) i∈I−→ HomA P, ∐ )B i is an epimorphism.Let now (f i ) i∈Ii∈Ii∈I∈ ∐ Hom A (P, B i ) where f i ’s are almost all zero, be( i∈I ) ∑such that ∇ (Hom (P, ε i )) i∈I (fi ) i∈I = ε i ◦ f i = 0. Since f i ’s are almost all zero,i∈Ilet F ⊆ I be a finite subset such that f i ≠ 0 for every i ∈ F and f i = 0 for everyi ∈ I\F . Then 0 = ∑ (265)ε i ◦ f i = ∑ h ◦ ε F i ◦ f i . Since h is m<strong>on</strong>o, we also havei∈Ii∈F0 = ∑ (ε F i ◦ f i ∈ Hom A P, ∐ )B i so that, for every j ∈ F,i∈Fi∈F0 = π j ◦ ∑ i∈Iε F i◦ f i = ∑ i∈Iπ j ◦ ε F i ◦ f i(269)= f jand thus f i = 0 for every i ∈ I.□


258Propositi<strong>on</strong> A.19. Let (T, H) be an adjuncti<strong>on</strong> where T : A → B, H : B → Aand A, B are Grothendieck categories. If T is an equivalence of categories, then1) if P is a generator of A then T P is a generator of B2) if P is projective in A then T P is projective B3) if P is finite in A then T P is finite B4) if P is finitely generated in A then T P is finitely generated in B5) if P is finitely generated and projective in A then T P is finitely generatedand projective B6) if P is finite projective in A then T P is finite projective in B.Proof. 1) Let f : Y → Y ′ be a n<strong>on</strong> zero morphism in B. Since T is an equivalence,there exists a n<strong>on</strong> zero morphism g : X → X ′ in A such that f = T (g). Since Pis a generator of A there exists a morphism p : P → X such that g ◦ p ≠ 0. Then0 ≠ T (g ◦ p) = T (g) ◦ T (p) = f ◦ T (p) and T (p) : T P → T X = Y so that T P is agenerator of B.2) Let f : Y → Y ′ be a morphism in B. Since T is an equivalence, there existsa morphism g : X → X ′ in A such that f = T (g), Y = T X and Y ′ = T X ′ . Letl : T P → Y a morphism in B, then l : T P → T X then there exists h : P → X suchthat l = T (h). Since P is projective A, there exists k : P → X ′ such that g ◦ h = k.By applying the functor T we get T (g ◦ h) = T (g) ◦ T (h) = f ◦ l = T (k) then T Pis projective in B.3) Let (N i ) i∈Ibe a family of objects in B. Since T is an equivalence, there existsa family (M i ) i∈Iof objects in A such that (N i ) i∈I= (T M i ) i∈I. Denote by ε i :M i → ∐ (M i and by Hom A (P, ε i ) : Hom A (P, M i ) → Hom A P, ∐ M i). Then wei∈Ii∈I (can c<strong>on</strong>sider the codiag<strong>on</strong>al morphism ∇ (Hom A (P, ε i )) i∈I: Hom A P, ∐ )M i →∐i∈IHom A (P, M i ). Since P is finite in A we have that P preserves coproducts, i.e.i∈I∇ (Hom A (P, ε i )) i∈Iis an isomorphism. Letφ X,X ′ : Hom A (X, X ′ ) −→ Hom B (T X, T X ′ )f ↦→ T (f)Since T is an equivalence φ X,X ′ is bijective for every X, X ′ ∈ A and ∐ (T M i ) =( )i∈I∐T M i . Then we can c<strong>on</strong>sideri∈I ( )) (∐Hom B (T P, T (ε i )) : Hom B (T P, T (M i )) → Hom B(T P, T M i = Hom B T P, ∐i∈I (i∈Iand their codiag<strong>on</strong>al morphism ∇ (Hom B (T P, T (ε i ))) i∈I: Hom B T P, ∐ )(T M i ) →i∈I)(T M i )


∐Hom B (T P, T (M i )). Then we have the following commutative diagrami∈I(Hom A P, ∐ )M ii∈Iφ ` P, M ii∈I∇(Hom A (P,ε i )) i∈I(Hom B T P, ∐ ∇(HomB (T P,T (ε i ))) i∈I(T M i ))i∈I∐Hom A (P, M i )i∈I`φ P,Mii∈I∐Hom B (T P, T (M i ))i∈I259where we observed that the first row is an isomorphism and also the φ’s are isomorphism.Then we deduce that ∇ (Hom B (T P, T (ε i ))) i∈Iis an isomorphism, so thatT P preserves coproducts, i.e. T P is finite.4) Let {Q i } i∈Ibe a direct family of subobjects of T P such that T P = ∑ i∈IQ i .Then, since T is an equivalence, there exists a direct family {P i } i∈Iof subobjects ofP such that T P i = Q i for every i ∈ I and P = ∑ i∈IP i . Since P is finitely generated,there exists an index i 0 ∈ I such that P = P i0 and then T P = T P i0 = Q i0 , i.e. T Pis finitely generated.5) By Propositi<strong>on</strong> A.18, P is finite and thus by 3) we deduce that T P is alsofinite. Since T P is moreover projective, by Propositi<strong>on</strong> A.18 we c<strong>on</strong>clude that T Pis finitely generated.6) By Propositi<strong>on</strong> A.18, since P is finite projective, P is finitely generated andprojective. Then we c<strong>on</strong>clude by 5).□Definiti<strong>on</strong> A.20. Let A be an abelian category. A finite projective generator P inA is called progenerator.Corollary A.2<str<strong>on</strong>g>1.</str<strong>on</strong>g> Let A be a Grothendieck category. There exists an equivalenceF : A → Mod-B, where B is a ring, if and <strong>on</strong>ly if A c<strong>on</strong>tains a progenerator P .Moreover• If P is a progenerator of A, then Hom A (P, −) : A → Mod-T where T =Hom A (P, P ) .• If F is an equivalence, there exists a progenerator P in A such thatHom A (P, P ) ≃ B and F ≃ Hom A (P, −).Proof. Assume first that A c<strong>on</strong>tains a progenerator P . Let B = Hom A (P, P ) andc<strong>on</strong>sider the functor Hom A (P, −) : A → Mod-B. Since P is a generator and A is aGrothendieck category, by Propositi<strong>on</strong> A.3 we deduce that Hom A (P, −) is full andfaithful. Hence we <strong>on</strong>ly have to prove that Hom A (P, −) is surjective <strong>on</strong> the objects.Let M ∈ Mod-B. Then we have the following exact sequence in Mod-BB (X) −→ B (M) −→ M → 0.Since B = Hom A (P, P ) we can rewrite is asHom A (P, P ) (X) −→ Hom A (P, P ) (M) −→ M → 0.


260Since P is finite Hom A (P, P ) (X) ≃ Hom A(P, P(X) ) andHom A (P, P ) (M) ≃ Hom A(P, P(M) ) and then we have an exact sequence in Mod-B(273) Hom A(P, P(X) ) f−→ Hom A(P, P(M) ) −→ Q → 0where Q = Coker (f). Then Q ≃ M. Since Hom A (P, −) is full (and faithful) wehaveHom A (A, A ′ ) ≃ Hom Mod-B (Hom A (P, A) , Hom A (P, A ′ )) ,hence there exists a unique morphism g : P (X) → P (M) in A such that f =Hom A (P, −) (g). Let us c<strong>on</strong>sider in A(274) P (X) g−→ P (M) −→ X → 0where X = Coker (g). Since P is projective, Hom A (P, −) is exact, and applying itto (274) we get the exact sequenceHom A(P, P(X) ) f=Hom A (P,g)−→ Hom A(P, P(M) ) → Hom A (P, X) → 0.From this sequence and (273) we deduce that Q ≃ Hom A (P, X) where X =Coker (g) ∈ A.C<strong>on</strong>versely, let us assume that F : A → Mod-B is an equivalence of categories. LetG : Mod-B → A be its inverse equivalence. Since B is a progenerator and G is anequivalence of categories, by Propositi<strong>on</strong> A.19 1) and 6), we deduce that G (B) is aprogenerator in A. Moreover we haveB ≃ Hom Mod-B (B, B) ≃ Hom A (G (B) , G (B)) .Observe that G is a left adjoint to F and thus we haveHom A (G (B) , −) ≃ Hom Mod-B (B, F−) .Since Hom Mod-B (B, F−) ≃ F as functors, we deduce thatF ≃ Hom A (G (B) , −)where G (B) is a progenerator in A.□Theorem A.2<str<strong>on</strong>g>2.</str<strong>on</strong>g> Let A be an abelian category. There exists an equivalence F : A →Mod-B, where B is a ring, if and <strong>on</strong>ly if A c<strong>on</strong>tains a progenerator P and arbitrarycoproducts of copies of P . If F is an equivalence, there exists a progenerator P inA such that Hom A (P, P ) ≃ B and F ≃ Hom A (P, −).Proof. Assume first that A c<strong>on</strong>tains a progenerator P and arbitrary coproducts ofcopies of P . Let B = Hom A (P, P ) and c<strong>on</strong>sider the functor Hom A (P, −) : A → Ab.Let us endow any abelian group Hom A (P, A) , for every A ∈ A, with a right B-module structure given by the compositi<strong>on</strong> with morphisms of Hom A (P, P ) = B.This means we have the following mapHom A (P, A) × Hom A (P, P ) → Hom A (P, A)(h, ξ) ↦→ h ◦ ξ.For every morphism f : A → B in A we define a morphism in Mod-B as followsHom A (P, f) : Hom A (P, A) → Hom A (P, B)


ξ ↦→ f ◦ ξ.Then it is well-defined a functor Hom A (P, −) : A → Mod-B. We want to prove thatHom A (P, −) is an equivalence of category. To be full and faithful for Hom A (P, −)means that the mapφ A,A ′ : Hom A (A, A ′ ) −→ Hom Mod-B (Hom A (P, A) , Hom A (P, A ′ ))( )HomA (P, f) : Homf ↦→A (P, A) → Hom A (P, A ′ )ξ ↦→ f ◦ ξis bijective for every A, A ′ ∈ A. Note that Hom A (P, −) induces an isomorphismφ P,P : Hom A (P, P ) −→ Hom Mod-B (Hom A (P, P ) , Hom A (P, P )) .In fact, for every ζ ∈ Hom A (P, P ) such that Hom A (P, ζ) = 0 we have that, forevery ξ ∈ Hom A (P, P ) , 0 = Hom A (P, ζ) (ξ) = ζ ◦ ξ. Since P is a generator, wededuce that ζ = 0. Now, let f : Hom A (P, P ) → Hom A (P, P ) be a morphism inMod-B and set f (Id P ) = χ. Then, for every ξ ∈ Hom A (P, P ), we haveand thusf (ξ) = f (Id P ◦ ξ) f∈Mod-B= f (Id P ) ◦ ξ = χ ◦ ξ = Hom A (P, χ) (ξ)f = Hom A (P, χ) = Hom A (P, −) (χ)so that φ P,P is an epimorphism. Let us c<strong>on</strong>sider families (P i ) i∈Iand (P j ) j∈JwhereP i ≃ P ≃ P j for every i ∈ I and j ∈ J. Set B i = Hom A (P, P i ) and B j =Hom A (P, P j ). Then B i = Hom A (P, P i ) ≃ Hom A (P, P ) = B and similarly B j ≃ B.Let us compute( ∐Hom A P j , ∐ )coprodP i ≃∏ (Hom A P j , ∐ )P finiteP i ≃∏ ∐Hom A (P j , P i )j∈J i∈Ij∈Ji∈Ij∈J i∈Iφ P,P≃ ∏ ∐Hom Mod-B (Hom A (P, P j ) , Hom A (P, P i )) = ∏ ∐Hom Mod-B (B j , B i )j∈J i∈I j∈J i∈I(B i ≃Bfinite∏≃ Hom Mod-B B j , ∐ )(coprod∐B i ≃ Hom Mod-B B j , ∐ )B ij∈Ji∈Ij∈J i∈Ihence(275) Hom A( ∐j∈JP j , ∐ i∈IP i)≃ Hom Mod-B( ∐j∈JB j , ∐ i∈IB i)which says that Hom A (P, −) induces a bijecti<strong>on</strong> between the full subcategory of thecoproducts of copies of P in A and the full subcategory of coproducts of copies ofB in Mod-B, i.e. Hom A (P, −) is full and faithful <strong>on</strong> the full subcategory of thecoproducts of copies of P in A. Let us denote by ε P i : P → P (I) , p P i : P (I) → P andε j : B = Hom A (P, P ) → B (I) = Hom A (P, P ) (I) , p j : B (I) = Hom A (P, P ) (I) → B =Hom A (P, P ) the can<strong>on</strong>ical maps. Now, let A, A ′ ∈ A. Since P is a generator, wehaveP (J)e f−→ P (I)h−→ A = Coker (h) → 0261


262andP (J ′ )e f ′−→ P (I′ ) h ′−→ A ′ = Coker (h ′ ) → 0.Let z : Hom A (P, A) → Hom A (P, A ′ ) be a morphism in Mod-B. We have to provethat there exists a morphism a : A → A ′ such that z = Hom A (P, a). Since P isprojective, Hom A (P, −) is exact so that we get the exact sequencesand(Hom ) A P, P(J)A(P,e Hom f)−→Hom A(P, P(I) ) Hom A (P,h)−→ Hom A (P, A) → 0( )Hom A P, P (J ′ ) HomA(P,e f ′) ( )−→ Hom A P, P (I′ ) HomA (P,h ′ )−→ Hom A (P, A ′ ) → 0Then we can c<strong>on</strong>siderHom A(P, P(J) ) Hom A(P,e f) Hom A(P, P(I) ) Hom A (P,h) Hom A (P, A)0Hom A(P, P(J ′ ) ) Hom A(P,e f ′) Hom A(P, P(I ′ ) ) Hom A (P,h ′ ) HomA (P, A ′ ) 0(Since Hom ) A P, P(I)(≃ B (I) it is projective, so that there exists a morphismy : Hom ) (A P, P(I)→ Hom ) (A P, P(I ′ )and a morphism x : Hom ) A P, P(J)(→Hom ) A P, P(J ′ ). Thus we have the following diagramzHom A(P, P(J) )A(P,e Hom f) ( Hom )A P, P(I)Hom A (P,h)Hom A (P, A)0xyHom A(P, P(J ′ ) ) Hom A(P,e f ′) Hom A(P, P(I ′ ) ) Hom A (P,h ′ ) HomA (P, A ′ ) 0Since Hom A (P, −) is full and faithful <strong>on</strong> coproducts of copies of P, every morphismx : Hom A(P, P(J) ) → Hom A(P, P(J ′ ) ) is of the form x = Hom A (P, ˜x) for ˜x :P (J) → P (J ′) , so that we can rewrite the diagram as followszHom A(P, P(J) )A(P,e Hom f) ( Hom )A P, P(I)Hom A (P,h)Hom A (P, A)0Hom A (P,ex)Hom A (P,ey)Hom A(P, P(J ′ ) ) Hom A(P,e f ′) Hom A(P, P(I ′ ) ) Hom A (P,h ′ ) HomA (P, A ′ ) 0zThus we haveHom A(P, ˜f) ′ ◦ ˜x = Hom A(P, ˜f)′= Hom A (P, ỹ) ◦ Hom A(P, ˜f◦ Hom A (P, ˜x)) (= Hom A P, ỹ ◦ ˜f).Since P is a generator we already now that Hom A (P, −) is faithful, so that wededuce that˜f ′ ◦ ˜x = ỹ ◦ ˜f


263i.e.f eP (J) P (I) h A 0exef ′eyP (J ′ h)P (I′ )′ A ′ 0( )Since A = Coker ˜f and by the commutative of the diagram, we deduce that thereexists a unique morphism a : A → A ′ in A such that the diagramf eP (J) P (I) h A0exP (J ′ )ef ′eyP (I′ )ah ′ A ′ 0is commutative. By applying the exact functor Hom A (P, −) thus we getHom A(P, P(J) )A(P,e Hom f) ( Hom )A P, P(I)Hom A (P,h)Hom A (P, A)0Hom A (P,ex)Hom A (P,ey)zHom A (P,a)Hom A(P, P(J ′ ) ) Hom A(P,e f ′) Hom A(P, P(I ′ ) ) Hom A (P,h ′ ) HomA (P, A ′ ) 0which saysz ◦ Hom A (P, h) = Hom A (P, h ′ ) ◦ Hom A (P, ỹ)= Hom A (P, a) ◦ Hom A (P, h)and since Hom A (P, h) is epi we deduce thatz = Hom A (P, a) .This proves that Hom A (P, −) is full. Since P is a generator, Hom A (P, −) is faithful.Then we <strong>on</strong>ly need to prove that Hom A (P, −) is surjective <strong>on</strong> objects. Let M ∈Mod-B. Then we have the following exact sequence in Mod-BB (X) → B (M) → M → 0.Since B = Hom A (P, P ) we can rewrite is asHom A (P, P ) (X) → Hom A (P, P ) (M) → M → 0.Since P is finite Hom A (P, P ) (X) ≃ Hom A(P, P(X) ) andHom A (P, P ) (M) ≃ Hom A(P, P(M) ) and then we have an exact sequence in Mod-B(276) Hom A(P, P(X) ) f−→ Hom A(P, P(M) ) → Q → 0where Q = Coker (f). Then Q ≃ M. Since Hom A (P, −) is full (and faithful) wehaveHom A (A, A ′ ) ≃ Hom Mod-B (Hom A (P, A) , Hom A (P, A ′ )) ,


264hence there exists a unique morphism g : P (X) → P (M) in A such that f =Hom A (P, −) (g). Let us c<strong>on</strong>sider in AP (X)g−→ P (M) → X → 0where X = Coker (g). Since P is projective, Hom A (P, −) is exact, and applying itwe get the exact sequenceHom A(P, P(X) ) f=Hom A (P,g)−→ Hom A(P, P(M) ) −→ Hom A (P, X) → 0.From this sequence and (276) we deduce that Q ≃ Hom A (P, X) where X =Coker (g) ∈ A.C<strong>on</strong>versely, let us assume that F : A → Mod-B is an equivalence of categories.Let G : Mod-B → A be its inverse equivalence. Since B is a progenerator and G isan equivalence of categories, by Propositi<strong>on</strong> A.19 1) and 6), we deduce that G (B)is a progenerator in A. Moreover we haveB ≃ Hom Mod-B (B, B) ≃ Hom A (G (B) , G (B)) .Observe that G is a left adjoint to F and thus we haveHom A (G (B) , −) ≃ Hom Mod-B (B, F−) .Since Hom Mod-B (B, F−) ≃ F as functors, we deduce thatF ≃ Hom A (G (B) , −)where G (B) is a progenerator in A. Moreover, since G is an equivalence, G ( B (X)) ≃G (B) (X) .□


References[Ap] H. Appelgate, Acyclic models and resolvent functors, Ph.D. thesis (Columbia University,1965).[Ba] R. Baer, Zur Einführung des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199-207.[Be] J. Beck, Distributive laws, in Seminar <strong>on</strong> Triples and Categorical Homology Theory, B.Eckmann (ed.), Springer LNM 80 (1969), 119-140.[Bo] G. Böhm, Private communicati<strong>on</strong> to the author.[BW] M. Barr and T. Wells, Toposes, Triples and Theories, Grundl. der math. Wiss. 278,Springer-Verlag, (1983), available athttp://www.cwru.edu/artsci/math/wells/pub/ttt.html.http://www.case.edu/artsci/math/wells/pub/ttt.html.[BB] G. Böhm and T. Brzeziński, Pre-torsors and equivalences, J. Algebra 317 (2007), 544-580. Corrigendum, J. Algebra 319 (2008), 1339-1340.[BM] G. Böhm and C. Menini, Pre-torsors and Galois comodules overmixed distributive laws, to appear in Appl. Cat. Str.,<strong>on</strong>line versi<strong>on</strong>http://www.springerlink.com/c<strong>on</strong>tent/xtk716u4517t0m63/fulltext.pdf, preprintarXiv:RA0806.121<str<strong>on</strong>g>2.</str<strong>on</strong>g>[BRZ2002] T. Brzeziński, The structure of corings. Inducti<strong>on</strong> functors, Maschke-type theorem, andFrobenius and Galois-type properties, Algebra Represent. Theory 5 (2002), 389-410.[BrHaj] T. Brzeziński, P.M. Hajac, Coalgebra extensi<strong>on</strong>s and algebra coextensi<strong>on</strong>s of Galoistype, Commun. Algebra 27(3) (1999), 1347-1368.[BMV] T. Brzeziński, A. Vazquez Marquez, J. Vercruysse, The Eilenberg-Moore categoryand a Beck-type theorem for a Morita c<strong>on</strong>text, to appear in Appl. Cat. Str.,<strong>on</strong>line versi<strong>on</strong> http://www.springerlink.com/c<strong>on</strong>tent/y68l7724n12n5u18/fulltext.pdf,preprint arXiv:081<str<strong>on</strong>g>1.</str<strong>on</strong>g>4304.[BV] T. Brzeziński and J. Vercruysse, Bimodule herds, J. Algebra 321 (2009), 2670-2704.[BrWi] T. Brzeziński and R. Wisbauer, Corings and comodules, L<strong>on</strong>d<strong>on</strong> Mathematical SocietyLecture Note Series 309, Cambridge University Press, Cambridge, (2003).[D] E. Dubuc, Kan extensi<strong>on</strong>s in enriched category theory, Lecture Notes in Mathematics145, Springer Verlag Berlin (1970).[ELGO2] L. El Kaoutit, J. Gómez-Torrecillas, F.J. Lobillo, Semisimple corings, Algebra Colloq.11 (2004), no. 4, 427-44<str<strong>on</strong>g>2.</str<strong>on</strong>g>[GT] J. Gómez-Torrecillas, Com<strong>on</strong>ads and Galois corings, Appl. Categorical Structures 14(2006), 579-598. Available <strong>on</strong>line at arXiv:math.RA/0607043v<str<strong>on</strong>g>1.</str<strong>on</strong>g>[Gra] John W. Gray, Formal category theory: adjointness for 2-categories, Lecture Notes inMathematics, Vol. 39<str<strong>on</strong>g>1.</str<strong>on</strong>g> Springer-Verlag, Berlin-New York, 1974. xii+282 pp. 18DXX[G] C. Grunspan, Quantum torsors, J. Pure Appl. Algebra 184 (2003), 229-255.[Ho] D. Hobst, Antipodes in the theory of n<strong>on</strong>commutative torsors, Ph.D. thesis Ludwig-Maximilians Universität München 2004, Logos Verlag, Berlin (2004).[H] P. Huber, Homotopy theory in general categories, Math. Ann. 144 (1961), 361-385.[J] P.T. Johnst<strong>on</strong>e, Adjoint lifting theorems for categories of algebras, Bull. L<strong>on</strong>d<strong>on</strong> Math.Soc., 7 (1975), 294-297.[KT] H.F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensi<strong>on</strong>s of an algebra, IndianaUniv. Math. J. 30 (1981), 675-69<str<strong>on</strong>g>2.</str<strong>on</strong>g>[MeZu] C. Menini, M. Zuccoli, Equivalence Theorems and Hopf-Galois Extensi<strong>on</strong>s, J. Algebra194 (1997), 245-274.[Mesa] B. Mesablishvili, Entwining structures in m<strong>on</strong>oidal categories, J. Algebra 319 (2008),[Po]2496-2517.N. Popescu, Abelian Categories with Applicati<strong>on</strong> to Rings and Modules, AcademicPress, L<strong>on</strong>d<strong>on</strong> & New York, (1973).[Pr] H. Prüfer, Theorie der Abelschen Gruppen. I. Grundeigenschaften, Math. Z. 20,(1924),165-187.265


266[RW] R. Rosebrugh, R.J. Wood, Distributive laws and factorizati<strong>on</strong>, J. Pure Appl. Algebra175 (2002), 327-353.[Sch1] P. Schauenburg, Quantum torsors with fewer axioms, preprint arXivmath.QA/0302003.[Scha4] P. Schauenburg, Hopf-Galois and bi-Galois extensi<strong>on</strong>s, in: Galois theory, Hopf algebras,and semiabelian categories, Fields Inst. Commun. 43, AMS 2004, 469-515.[Sch4] P. Schauenburg, Quantum torsors and Hopf-Galois objects, preprint arXiv[SS]math.QA/0208047.P. Schauenburg and H.-J. Schneider, On generalized Hopf Galois extensi<strong>on</strong>s, J. PureAppl. Algebra 202 (2005), 168-194.[Schn1] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J.Math. 72 (1990), 167-195.[Schn2] H.-J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J.Algebra 152 (1992), 289-31<str<strong>on</strong>g>2.</str<strong>on</strong>g>[St] R. Street, The formal theory of m<strong>on</strong>ads, J. Pure Appl. Algebra 2 (1972), 149-168.[W] R. Wisbauer, Algebras versus coalgebras, Applied Categorical Structures 16 (2008),255-295.[Wis] R. Wisbauer, On Galois Comodules, Comm. Algebra 34, (2006), 2683-271<str<strong>on</strong>g>1.</str<strong>on</strong>g>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!