12.07.2015 Views

(ed.). Gravitational waves (IOP, 2001)(422s).

(ed.). Gravitational waves (IOP, 2001)(422s).

(ed.). Gravitational waves (IOP, 2001)(422s).

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix C. The string cosmology equations 331For this background:Ɣ 0i j = H i δ ji , Ɣ ij 0 = a i ȧ i δ ij , R 0 0 =− ∑ i(Ḣ i + H 2i ),R j i =−Ḣ i δ ji− H i δ ji(∇φ) 2 = ˙φ 2 ,∑H k ,kR =− ∑ i∇ 2 φ = ¨φ + ∑ iH i ˙φ,(2Ḣ i + H 2i ) − ( ∑i∇ 0 ∇ 0 φ = ¨φ,H i) 2,∇ i ∇ j φ = H i ˙φδ ji . (16.198)The dilaton equation (16.193) gives then2 ¨φ + 2 ˙φ ∑ iH i − ˙φ 2 − ∑ i(2Ḣ i + H 2i ) − ( ∑iH i) 2= 0. (16.199)The (00) component of the equation (16.189) gives˙φ 2 − 2 ˙φ ∑ iH i − ∑ i( ∑Hi 2 +iH i) 2= e φ ρ. (16.200)The diagonal, spatial components (i, i) of equation (16.189) (the off-diagonalcomponents are trivially satisfi<strong>ed</strong>) give∑∑Ḣ i + H i H k − H i ˙φ − 1 2(2Ḣ i + Hi 2 )ki− 1 2( ∑iH i) 2− 1 2 ˙φ 2 + ¨φ + ˙φ ∑ iH i = 1 2 eφ p i . (16.201)The last five terms on the left-hand side add to zero because of the dilaton equation(16.199), and the spatial equations r<strong>ed</strong>uce to(Ḣ i − H i˙φ − ∑ )H k = 1 2 eφ p i . (16.202)kThe above equations are clearly invariant under time-reversal, t →−t. Inorder to make explicit also their duality invariance, let us introduce again theshift<strong>ed</strong> dilaton (see equation (16.146)), such thate φ = e φ / √ −g,˙φ = ˙φ − ∑ iH i , (16.203)and defineρ = ρ √ −g = ρ ∏ ia i ,p = p √ −g = p ∏ ia i . (16.204)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!