Untitled

Untitled Untitled

wunderground.com
from wunderground.com More from this publisher
12.07.2015 Views

STAFF*LCDR James H. Bell, USNLCDR Benjamin L. Holt, USNMAJ Richard A. Todd, USAF*CAPT Clifford R. Matsumoto, USAFCAPT James N. Heil, USAFCAPT Roger T. Edson, USAF*LT Jack E. Huntley, USNR*LT Raymond R. Fagen, USNR*LT George M. Dunnavan, USNLTJG Robert C. Weir, USNENS Richard E. Cianflone, USNENS James W. Allen, USNENS Mary K. Kopper, USN*AG1 Donald L. McGowan, USNAG2 Stephani A. Bubanich, USNAG2 Mahlon W. Perrin, USNAG2 James A. Frush, USN*SGT Konrad W. Crowder, USAF*SGT John W. Archambeau, USAFSGT Michael P. Blomquist, USAFSGT Andrew E. Parker, USAFAG3 Beverly A. McCreary, USNAG3 Suzanne L. Silverson, USN*AG3 Paul E. Brewer, USNSRA John V. Werner, USAFSRA James W. Lewis, USAF*SRA Randolph G. Quinto, USAFAGAN Ann Lackey, USNCONTRIBUTOR: Detachment 1, lww - USAFSateliite Operations*MAJ David c. DanielsonCAPT Michael S. Risch*CAPT Marsha A. KoroseCAPT James A. SmithMSGT Tommy M. PelleySSGT Terrence M. Young*Transferred during 1981ii


page2. NEp&- Re~earch--________.___-_-__-.-__-_-__-_-_-_-_______.-_l29The Navy Two-Nay Interactive Nested Tropical CycloneModel (NTCM)Tropical Cyclone PredictabilityThe Role of the Large-Scale Environment in DynamicTropical Cyclone Model ForecastsTropical Cyclone Objective Forecast Confidence andDisplay TechniqueTropical Cyclone Intensity ForecastsSatellite Based Tropical Cyclone Intensity ForecastsTropical Cyclone Spiral Linearization TechniqueTropical Cyclone Strike and Kind ProbabilitiesTropical Cyclone Storm SurgeTropical Cyclone Formation Forecasts3. Publications------------------------------------------------l3lThe Occurrence of Vertical Tilt in Tropical CyclonesForecasting Intense Tropical Cyclones Using 700 mbEquivalent Potential Temperature and Central Sea-Level PressureA Study of Recurving Tropical Cyclones a 34 kt (18m/see) in the Northwest Pacific 1970-i979ANNEX AAPPENDIXTROPICAL CYCLONE TRACK AND FIX DATA1. LiesternNorth Pacific Tropical Cyclones-–-------------------1322. North Indian Ocean Tropical Cyclones------------------------l85I. Contractions------------------------------------------------l88II. Definitions-------------------------------------------------l9OIII. References--------------------------------------------------l92IV. Past Annual Typhoon Reports------------–------–------–------193DIsTRIBuTIoN---------------------------------------------------------------------------------l94v


CHAPTER I - OPERATIONALPROCEDURES1. GENERALThe Joint Typhoon Warning Center (JTliC)provides a variety of routine services tothe organizations within its area of responsibility,including:a. Significant Tropical Weather Advisories:issued daily, this product describesall tropical disturbances and assesses theirpotential for further development;b. Tropical Cyclone Formation Alerts:issued when synoptic, satellite ancl/oraircraftreconnaissance data indicate developmentof a significant tropical cyclone in aspecified area is likely;c. Tropical Cyclone Warnings: issuedperiodically throughout each day for significanttropical cyclones, gi.~ingforecastsof position and intensity of the system; andd. Prognostic Reasoning Messages:issued twice daily for systems in liESTPAConly, these messages discuss the rationalebehind the most recent warnings.The recipients of the services of JTWCessentially determine the content of JTWC’Sproducts according to their ever-char?qingrequirements. Thus , the spectrum of theroutine services is subject to change fromyear to year; such changes are usually theresult of deliberations held at the AnnualTropical Cyclone Conference.2. DATA SOUKESa. COMPUTER PRODUCTS:The standard array of synoptic-scalecomputer analyses and prognostic chazts areavailable from the Fleet Numerical OceanographyCenter (FLENUMOCEANCEN) at Monterey,California. These products are providedthrough the capabilities of the NavalEnvironmental Data Network (NEDN).b. CONt7ENTIONALDATA:This data set is comprised of sur–face and upper-air observations from island,ship, and land stations plus weather observationsfrom commercial and military aircraft(AIREp5). Conventional data chartsare prepared daily at 0000Z and 1200Z forthe surface/gradient, 500 mb, and 200 mblevels. The upper-level charts use rawinsondedata, AIPGZPSwithin 6 hours of thesynoptic times and especially on the 200 mbchart, satellite blow-off winds.c. AIRCRAFT RECONNAISSANCE:Aircraft weather reconnaissance dataare invaluable for the positioning of thecenter of developing systems and essentialfor the accurate determination of numerousparameters, e.g.Manual streamline analysis of the 500mb level is accomplished on the 00002 and1200Z data. This analysis is used to dclieye/centermaximum intensityminimum sea-level pressurehorizontal wind distributionIn addition, wind and pressureheightdata at the 500 and/or 400 mb level,provided by the aircraft while enroute to,or from fix missions, provides a valuablesupplement to the all-too sparse data fieldsof JTWCIS area of responsibility. A comprehensivediscussion of aircraft weather reconnaissanceis presented in Chapter II.d. SATELLITE RECONNAISSANCE:Meteorological satellite data obtainedfrom Defense Meteorological SatelliteProqram (DMSP) and National Oceanic andAtmospheric Administration (NOAA) spacecraftplayed a major role in the early detectionand tracking of tropical cyclones in 1981.A discussion of the role of these programsis presented in Chapter 11.e. RADAR RECONNAISSANCE:During 1981, as in previous years,land radar coverage was utilized extensivelywhen available. Once a storm moved withinthe range of land radar sites, their reportswere very critical for determination of smallscale movement. Use of radar reports during1981 is discussed in Chapter II.3. COMMUNICATIONSa. JTWC currently has access to threeprimary communications circuits.(1) The Automated Digital Network(AUTODIN) is used for dissemination ofwarnings and other related bulletins toDepartment of Defense installations. Thesemessages are relayed for further transmissionover U. S. Navy Fleet Broadcasts, U. S.Coast Guard CW (continuous wave Morse code)and voice broadcasts. Inbound message trafficfor JTWC is received via AUTODIN addressedto NAVOCEB.NCOMCENGUAM.(2) The Air Force Automated WeatherNetwork (AWN) provides weather data to JT\iCthrough a dedicated circuit from the AutomatedDigital Weather Switch (ADWS) at HickamAFB, Hawaii. The ADWS selects and routesthe large volume of meteorological reportsnecessary to satisfy JTWC requirements forthe right data at the right time. Weatherbulletins prepared by JTWC are inserted intothe AWN circuit via the NEDS and the NimitzHill Naval Telecommunication Center (NTCC)of the Naval Communications Area MasterStation Western Pacific.(3) The Naval Environmental DataNetwork (NEDN) is the communications linkwith the computers at FLENUMOCEANCEN. JTliCis able to receive environmental data fromFLENUMOCEANCEN and access the computersdirectly to run various programs.1


neate khe mid-tropospheric steering currents,which are extremely important to theTDO .b. The Naval Environmental DisplayStation (NEDS) has become the backbone ofthe JTWC communications system; it is theterminal that provides a direct interfacewith the NEDN and AWN. It is also capableof preparing messages for indirect AUTODINtransmission. NTCC supports JTWC communicationsby transmitting back-up AWN messagesusing message tapes from the NEDS as well astransmitting the AUTODIN message tapes. TheNEDS is also used extensively by the TyphoonDuty Officer (TDO) to request a multitude offorecast aids which are processed by theFLENUMOCEANCEN computers and transmitted tothe TDO over the NEDN circuit.4. ANALYSESA composite surface/gradient level (3000ft) manual analysis of the JTWC area ofresponsibility is accomplished on the 00002and 12002 conventional data. Analysis ofthe wind field using streamlines is stressedfor tropical and subtropical regions. Analysisof the pressure field is accomplishedroutinely by the NOCC Operations watch-teamand may be used in conjunction with JTWC’Sanalysis of tropical wind fields.Manual streamline analysis of the 500 mblevel is accomplished on the 00002 and 12002data. This analysis is used to delineatethe mid–tropospheric steering currents,which are extremely important to the TDO.A composite upper-tropospheric manualstreamline analysis is accomplished dailyfor the 00002 and 12002 data fields utiliz–ing rawinsonde data from 300 mb through 100mb, wind directions extracted from satellitedata by Det 1, lWW, winds derived from cloudmotion analysis, and AIREPS (plus or minus6 hours) at or above 29,000 feet. Wind andheight data are used to arrive at a representativeanalysis of tropical cyclone outflowpatterns, of steering currents, and ofareas that may indicate tropical cycloneintensity change. All charts are hand plotted.overareas of tropical cyclone activityto provide all available data as soon aspossible to the TDO. These charts areaugmented by the computer-plotted charts forthe final analyses.Additional sectional charts at intermediatesynoptic times and auxiliary chartssuch as station-time plot diagrams andpressure-change charts are also analyzedduring periods of significant tropical cycloneactivity.5. FORECAST AIDSa. CLIMATOLOGY:Climatological publications utilizedduring the 1981 typhoon season include previousJTWC Annual Typhoon Reports and climaticpublications from local sources, NavalEnvironmental Prediction Research Facility,Naval Postgraduate School, Air weatherService, First Weather Wing and ChanuteTechnical Training Center. Publicationsfrom other Air Force and Navy activities,various universities and foreign countriesare also used by the JTWC.b. OBJECTIVE TECHNIQUES:The following objective techniqueswere employed in tropical cyclone forecastingduring 1981. A description of thesetechniques is presented in Chapter IV.(1)2)3)4)5)12 HR EXTRAPOLATIONCLIMATOLOGYHPAC (Combined extrapolationand climatology)TROPICAL CYCLONE MODEL (Dynamic)CYCLOPS(Steering)(6) TYAN78 (Analog)(7) NESTED TROPICAL CYCLONE MODEL(Dynamic)(8) BPAC (Blended extrapolation andclimatology)6. FORECASTING PROCEDURESa. INITIALIZATION:In the preparation of each warning,the actual surface location (fix) of thetropical cyclone eye/center just prior to(within three hours of) warning time is ofprime importance. JTWC uses the SelectiveReconnaissance Program (SRP) to levy anoptimum mix of resources to obtain fix information.When tropical cyclones areeither poorly defined or the actual surfacelocation cannot be determined, or when conflictingfix information is received, the“best estimate” of the surface location issubjectively determined from the analysisof all available data. If fix data are notavailable due to reconnaissance platformmalfunctions or communication problems,synoptic data or extrapolation from previousfixes are used. The initial forecast (warningtime) position is then obtained by extrapolationusing the latest fix and a“best track” of the cyclone movement to date.b. T~CK FORECASTING:w initial forecast track is developedbased on the previous forecast and theobjective techniques. This initial track issubjectively modified based on the following:(1) The prospects for recurvatureare evaluated. This evaluation is basedprimarily on present and forecast positionsand amplitude of middle tropospheric midlatitudetroughs from the latest 500 mb analysisand numerical prognoses.(2) Determination of steering levelis partly influenced by maturity and verticalextent of the system. For mature cycloneslocated south of the 500 mb subtropicalridge, forecast changes in speed of movementare closely correlated with forecast changesin the intensity of the ridge. When steeringcurrents are very weak, the tendency for cyclonesto move northward due to their internalforces is an important consideration.(3) Thecyclone to otherproximity of the tropicaltropical cyclones is e-]alu-2


ated to determine if there is a possibilityof Fujiwhara interaction.(4) Over the 12- to 72-hour forecastspectrum, speed of movement during the earlytime frame is biased toward persistence (12-hr extrapolation), while that near the end ofthe time frame is biased towards objectivetechniques and climatology.(5) A final check is made againstclimatology to determine whether the forecasttrack is reasonable. If the forecast deviatesgreatly from climatology, the forecastrationale is reappraised.c. INTENSITY FORECASTING:In forecasting intensity, heavy re–liance is placed on aircraft reconnaissancereports, the Dvorak satellite interpretationmodel, wind and pressure data from ships andland stations in the vicinity of the cyclone,and the ob~ective techniques. Additionalconsiderat~ons are the position and intensityof the tropical upper-tropospherictrough (TUTT), extent and intensity ofuPPer-level OutflOw, sea-surface temperatureterrain influences, vertical wind shear andproximity to an extratropical environment.ZWARNINGSTropical cyclone warnings are issuedwhen a definite closed circulation is evidentand maximum sustained wind speeds areforecast to increase to 34 or more knotswithin 48 hours, or the cyclone is in such aposition that life or property may be endangeredwithin 72 hours. Warnings are alsoissued in other situations if it is determinedthat there is a need to alert militaryand civil interests to conditions which maybecome hazardous in a short period of time.Each tropical cyclone warning is numberedsequentially and includes the initial warningtime, eye-center position, intensity,the radial extent of 30, 50 and 100 knotsurface winds (when applicable) , the leviedreconnaissance platform used, the instantaneousspeed and direction of movement of thecyclone’s surface center at warning time andthe forecast information. The forecast intervalsfor all Northern Hemisphere tropicalcyclones, regardless of intensity, are 12,24, 48, and 72 hr.Warnings within the JTWC North Pacificarea are issued within two hours of 00002,06002, 12002, and 18002 with the constraintthat consecutive warnings may not be morethan seven hours apart. Warnings in theJTWC North Indian Ocean area are issuedwithin two hours of 02002, 08002, 14002, and20002, again with the constraint that consecutivewarnings may not be more than sevenhours apart. Warning forecast positions areverified against the corresponding “besttrack” positions. A summary of the verificationresults from 1981 is presented inChapter IV.possesses readability for user~ without ADPequipment.8. PROGNOSTIC REASONING MESSAGEFor tropical cyclones in warning statusin the North Pacific area, prognostic reasoningmessages are transmitted followingthe 00002 and 12002 warnings, or wheneverthe previous reasoning is no longer valid.This plain language message is intended toprovide meteorologists with the reasoningbehind the latest JTWC forecast. Prognosticreasoning messages are not normallyprepared for tropical depressions nor forcyclones in the North Indian Ocean area.For tbe-1981 season, JTWC included confidencestatements for the 24- and 48-hourforecasts. The confidence values were percentageprobabilities that the 24-hour forecastposition error would be less than 100nm and less than 150 nm, respectively, andthat the 48-hour error would be less than200 nm and less than 300 nm, respectively.These probabilities were based on objectivedata from error analysis studies of pastcyclones and were a function of latitude,longitude, storm intensity, organization andthe number of western Pacific cyclone inexistence.Prognostic reasoning information applicableto all customers is provided in theremarks section of warnings when significantforecast changes are made or when deemedappropriate by the TOO.9. SIGNIFICANT TROPICAL WEATHER ADVISORYThis plain language message, contains adetailed, non-technical description of allsignificant tropical cyclone developmentwithin the 24-hour forecast period. It isissued by 06002 daily.10. TROPICALCYCLONEFORMATION ALERTAlerts are issued whenever interpretationof satellite imagery “andother meteorologicaldata indicates significant tropicalcyclone formation is likely. These alertswill specify a valid period not to exceed 24hours and must either be cancelled, reissuedor superseded by a warning prior to expirationof the valid period.As of 1 January 1980, JTWC issued tropicalcyclone warnings in an ADP (AutomatedData Processing) format. The format allowscommands with ADP equipment to enter tropicalcyclone warning data directly into ADPequipment data bases. The format also3


CHAPTER 1- RECONNAISSANCE1. GENERALThe Joint Typhoon Warning Center dependson reconnaissance to provide necessary,accurate, and timely meteorological informationin support of each warning. JTWC reliesprimarily on three reconnaissanceplatforms: aircraft, satellite, and radar.In data rich areas synoptic data is alsoused to supplement the above. Optimumutilization of all available reconnaissanceresources is obtained through the SelectiveReconnaissance Program (SRP), whereby var–ious factors are considered in selecting aspecific reconnaissance platform to supporteach warning. These factors include: cyclonelocation and inter.sity,reconnaissanceplatform capabilities and limitations,and the cyclone’s threat to life/propertyafloat and ashore. A summary of reconnaissancefixes received during 1981 is includedin Section 6 of this Chapter.2. RECONNAISSANCE AVAILABILITYa. Aircraft:Aircraft weather reconnaissance inthe JTWC area of responsibility is performedby the 54th Weather Reconnaissance Squadron(54th WRS) located at Andersen Air ForceBase, Guam. Presently equipped with sixWC-130 aircraft, the 54th WRS, from Julvthrough October, is augmented by the 53rclWRS from Keesler Air Force Base, Mississippi,bringing the total number of available aircraftto nine. The JTWC reconnaissancerequirements, provided daily throughout theyear to the Tropical Cyclone AircraftReconnaissance Coordinator (TCARC), includearea(s) to be investigated,.tropical cycloneto be fixed, fix times, and forecastpositions for fixes. The followingpriorities are utilized in acquiring meteorologicaldata from aircraft, satellite, andland-based radar in accordance with CINCPAC-INST 3140.lP:“(l) Investigative flights andvortex or center fixes for each scheduledwarning in the Pacific area of responsibility.One aircraft fix per day of eachcyclone of tropical storm or typhoon intensityis desirable.(2) Supplementary fixes.(3) Synoptic data acquisition.”As in previous years, aircraft reconnaissanceprovided direct measurements ofheight, temperature, flight-level winds,sea-level pressure, estimated surface winds(when observable), and numerous additionalparameters. The meteorological data aregathered by the Aerial Reconnaissance Weatherofficers (ARWO) and dropsonde operatorsof Detachment 4, Hq AWS, who fly with the54th WRS. These data provide the TyphoonDuty Officer (TOO) indications of changingcyclone characteristics, radius of cycloneassociated winds, and present cyclone positionand intensity. Another important aspectis the availability of the data forresearch on tropical cyclone analysis andforecasting.b. SatelliteSatellite fixes from USAF/USN groundsites and USN ships provide day and nightcoverage in the JTWC area of responsibility.Interpretation of this satellite imageryprovides cyclone positions and estimates ofstorm intensities through the Dvorak technique(for daytime passes) .Detachment 1, 1st Weather Wing,which receives and processes polar orbitingsatellite data, is the primary fix site forthe western Pacific. Satellite fix positionsreceived at JTWC from the Air ForceGlobal Weather Central (AFGWC), Offutt AirForce Baser Nebraska and the Naval OceanographyCommand Detachment at Diego Garciawere the major sources of satellite data forthe Indian Ocean. GOES fixes were alsoprovided by the National EnvironmentalSatellite Service, Honolulu, Hawaii fortropical cyclones near the dateline.c. RadarLand radar provides positioning dataon well developed cyclones when in theproximity (usually within 175 nm (324 km))of the radar sites in the Republic of thePhilippines, Taiwan, Hong Kong, Japan, theRepublic of Korea, Kwajalein, and Guam.d. SynopticIn 1981, JTWC also determinedtropical cyclone positions based on the analysisof the surface/gradient level synopticdata. These positions were helpful insituations where the vertical structure ofthe tropical cyclone was weak or accuratesurface positions from aircraft were notavailable due to flight restrictions.3. AIRCRAFT RECONNAISSANCE SUMMARYDuring the 1981 tropical season, theJTWC levied 201 six-hourly vortex fixes and78 investigative missions of which 21 wereflown into disturbances which did notdevelop. In addition to the levied fixes,106 supplemental fixes were also obtained.The number of levied investigative missionshas increased steadily over the past fiveyears in response to JTWC’S increased effortsto detect initial tropical cyclonedevelopment. The average vector error forall aircraft fixes received at the JTWCduring 1981 was 13 nm (24 km).Aircraft reconnaissance effectiveness issummarized in Table 2-1 using the criteriaas set forth in CINCPACINST 3140.lP.


TA8LE2-1.AIRcRAFT REcONNAISSANCE EFFI?CTIVEXESSCO:4PLETED 0.sT1?, !_EARLYLATEHISSED‘roT;,L 201LEvIED VS. MISSED FIXESLE0.0PERCENTAVERAGE1965-1970 507 10 2.01971 802 61 7.61972 624 126 20.21973 227 13 3.71974 358 30 8.41975 217 7 3.21976 317 11 3.51977 203 3 1.51978 290 2 3.71979 289 14 4.81980 213 4 1.91981 201 3 1.54. SATELLITE RECONNAISSANCE SUMMARYThe Air Force Drovides satellite reconnaissancesupport %0 JTWC using imagery datafrom DMSP and NOAA polar-orbiting spacecraft.In addition, geostationary satellite data isalso available.The DMSP cyclone surveillance networkconsists of both tactical and centralizedfacilities. Tactical DMSP sites are locatedat Nimitz Hill, Guam; Clark AB, Philippines;Kadena AB, Japan; Osan AB, Korea; and HickamAFB, Hawaii. These sites provide a combinedcoverage that includes the JTWC area ofresponsibility in the western North Pacificfrom near the dateline westward to the MalayPeninsula. The Navy tactical site at DiegoGarcia continues to provide NOAA polar-orbitingcoverage in the central South IndianOcean. Their reconnaissance supplements theAir Force Global Weather Central (AGWC) supportin this data sparse region.AFGWC , located at Offutt AFB, Nebraskais the centralized member of the satellitecyclone surveillance network. In support toJTWC, AFGWC processes imagery from DMSP andNOAA spacecraft. Imagery processed at AFGWCis recorded on-board the spacecraft as itpasses over the earth. Later, these data aredownlinked to AFGWC via a network command/readout sites and communications satellites.This enables AFGWC to obtain the coveragenecessary to fix all cyclones of interest toJTWC. AFGWC has the primary responsibilityto provide cyclone surveillance over theentire Indian Ocean and a small portion ofthe western North Pacific near the dateline.Additionally, AFGWC can be tasked to providestorm positions in the western North Pacificand South Pacific as backup to coverageroutinely available in this region.The hub of the network is Det 1, lwWcolocated with JTWC, Nimitz Hill, Guam.Based on available satellite coverage, Det 1coordinates satellite reconnaissance re-.quirements with JTWC and tasks the individualnetwork sites for the necessary stormfixes. Thereforer when a position from apolar-orbiting satellite is required as thebasis for a warning, called a levied fix,a dual sight tasking concept is applied.Under this concept two sites are tasked tofix the cyclone off the same satellite pass.This provides the necessary redundancy tovirtually guarantee JTWC a successful satellitefix on the cyclone. Using this dualsiteconcept, the satellite reconnaissancenetwork was able to meet all of JTWC’Slevied satellite fix requirements. Dualsitetasking is applied in the Indian Oceanas well by using AFGWC and the Navy weatherdetachment site at Diego Garcia.The network provides JTWC with severalproducts and services. The main service isone of surveillance. Each site reviews itsdaily satellite coverage for indications oftropical cyclone development. If an areaexhibits the potential for development, JTWCis notified. Once JTWC issues either analert or warning, the network is tasked toprovide three products: cyclone positions,cyclone intensity estimates, anti24-hourcyclone intensity forecasts. Satellitecyclone positions are assigned position codenumbers (PCN) depending on the availabilityof geography for precise gridding and thedegree of organization of the cyclone’scirculation center (Table 2-2). During 1981the network provided JTWC with over 1200satellite fixes on WESTPAC tropical disturbances.Another 110 fixes were made by Det1 for tropical disturbances in the NorthIndian Ocean. A comparison of those fixesmade on WESTPAC numbered tropical cycloneswith their corresponding JTWC best trackpositions is shown in Table 2-3. Estimatesof the cyclone’s current intensity and a 24-hour intensity forecast are made once eachday by applying the Dvorak technique (NOAATechnical Memorandum NESS 45 as revised) todaylight visual data.The availability of polar-orbitingmeteorological satellites improved since theend of 1980. At that time only NOAA 6 andF-3 (FTV 14537), both sunrise orbiters, wereavailable. However, in June NOAA 7 wassuccessfully launched with the network ableto use visual imagery by orbit 25 and IRdata by orbit number 210. NOAA 7 replacedTIROS-N and is in a mid-afternoon orbit.NOAA 6 continued to function normallythroughout the year except for a brief 3TABLE 2-2. POSITIONCODE NW4SERS—— PCN METHOD OF CENTERDETERMINATION/GRI DDING1 EYE/GEOGRAPHY2 EYE/EPHEMERIS3 wELL DEFINEDCC/GEOGRAPHY4 wELL DEFINEDCC/EPHEMERIS5 PoORLYDEFINEDCC/GEOGRAPSIY6 POORLY DEFINEDCC/EPHEMERISCC=CirculationCenter5


TABLE 2-3.MEAN DEVIATION (NN) OF ALL SATELLITE DERIVED TROPICALCYCLONE POSITIO!4SPROM THE JTWC BEST TMCK POSITIONS.NU14BEROF CASES IN PARENTHESIS.PCNWES1’PAC WESTPAC INDIAN OCEAN INDIAN OCEAN1974-1980 AVERAGE 19811980 1981(ALL SITES) (ALL SITES) (ALL SITES) (ALL SITES)1 13.1 (269) 14.6 (159) 17.0 ( 9)2 18.0 ( 80) 16.6 ( 5) 9.5 ( 2)3 20.5 (435) 17.5 (217) 29.7 ( 6)4 23.8 (107) 38.3 ( 13)5 38.1 (725) 35-2 (789) 35.7 ( 8) 29.9 (14)6 42.6 (278) 55.1 ( 39) 44.6 (12) 32.7 (21)l&z 14.2 (349) 14.7 [164) 15.6 (11)3&4 21.2 (542) 18.7 (230) 29.7 ( 6)5&6 39.3 (1003) 36.1 (828) 41.0 (20) 31.6 (35)week period in August and September. During reports were received on Indian Ocean cythat time a data anomaly.developed renderingclones.the visual and IR data unusable. However,the problem corrected itself and despite6. TROPICAL CYCLONE FIX DATAover 13,000 orbits by the end of 1981, thespacecraft is functioning normally. Whilemost network sites use NOAA 6 on a routineA total of 2230 fixes on 29 northwestbasis, Det 1 now uses NOAA I as its primaryPacific tropical cyclones and 111 fixes onsurveillance and reconnaissance satellite.3 northern Indian Ocean tropical cyclonesHigher sun angle giving clearer visualwere received at JTWC. Table 2-4, Fix PlatformSummary, delineates the number of fixesimagery and more timely nodal crossingsmakes NOAA 7 more conducive to Det 1 operations.On the DMSP side, no new launchescyclone. Season totals and percentages areper platform for each individual tropicalwere attempted in 1981. F-3 is still providingascending daylight coverage despitealso indicated.19,000 orbits. In summary, NOAA 6, NOAA 7Annex A includes individual fix data forand F-3 were being used at years end.each tropical cyclone. Fix data are dividedinto four categories: Satellite, Aircraft,Besides fixes from the network, JTWCRadar, and Synoptic. Those fixes labelledalso received satellite-derived cyclone positionsfrom several secondary sources duringunrepresentative of the surface center andwith an asterisk (*) were determined to be1981. These included: U. S. Navy shipswere not used in determining the best tracks.equipped for direct readout; the NationalWithin each category, the first three columnsEnvironmental Satellite Service (NESS) usingare as follows:NOAA and GOES data: and the Naval PolarOceanography Center, Suitland, MarylandFIX NO. - Sequential fix numberusing stored DMSP and NOAA data. Fixes fromthese secondary sources are not included inTIME (Z) - GMT time in day, hours andthe network statistics.minutes5.RADAR RECONNAISSANCE SUMMARYFIX POSITION - Latitude and longitude tothe nearest tenth of a degreeSeventeen of the 29 significant tropicalcyclones occurring over the western NorthPacific during 1981 passed within range ofland based radars with sufficient cloud patternorganization to be fixed. The hourlyand oftentimes, half-hourly land radar fixesthat were obtained and transmitted to JTWCtotaled 584.The WMO radar code defines three categoriesof accuracy: good (within 10 km(5.4 rim)), fair within 113-30km (5.4-16.2rim)),and poor (within 30-50 km (16.2-2.27nm)). This year, 584 radar fixes were codedin this manner; 254 were good, 172 fair, and158 poor. Compared to the JTWC best track,the mean vector deviation for land radarsites was 18 nm (33 km). Excellent SUppOrtthrough timely and accurate radar fix positioningallowed JTWC to track and forecasttropical cyclone movement through even themost difficult and erratic tracks.No radar fixes were made by 54th WRSaircraft during the WESTPAC tropical cycloneseason and, as in previous years, no radarDepending upon the category, the remainderof the format varies as follows:a. Satellite(1) ACCRY - Position Code Number(PCN) is used to indicate the accuracy ofthe fix position. A “l” indicates relativelyhigh accuracy and a “6” relatively lowaccuracy.(2) DVORAR CODE - Intensity evaluationand trend utilizing visual satellitedata. (For specifics, refer to NOAA TM;NEss-45) (Table 2-5).EXAMRf: TSb MlNW)W13124hm.6


TAELE 2-4. FIX SUMMARY FOR 1981FIX SUMMARYWESTERN PACIFICTY FREDATS GEFJ+LDTS HOLLYTS IKETY JUNETY KELLYTS LYNNTS MAURYTS NINATY OGDENTD 11TS PHYLLISTS ROYTS SUSANTY TliADTS VANESSATS WARRENTY AGNESTY BILLTY CLARATY DOYLEST ELSIETS FASIANTY GAYTY HAZENST IRMATS JEFFTY KITTY LEEAIRCRAFT11172211174301103522620171219029130191893212DMSP11210000000000200100010000000NOAA 6&7__________________________________________ ------------- .-------------------,1012201418241895115417161621:9181020724172073011OTHERSAT28374839353228872310143132421919492642264712435350334338RADARo100323778007300:9001400450904950701211SYNOPTICTOTAL4540770922600 871 7161;411 3130300015li818215711 1::01200012 2325225471;436107221 147214113 171000 5010872-----------------------TOTAL 324 9 395 914 584 63 2289% OF TOTALNO. OF FIXES 14.2 0.4 17.3 39.9 25.5 2.7 100INDIAN OCEANNOAA 6&7 OTHER SYNOPTIC TOTALTC 27-81 27 0 027TC 29-81 1816 0 34TC 31-81 23 26 0 49__________________________________________________________________________________________________TOTAL 68 42 0 110% OF TOTALNO. OF FIXES 61.8 38.2 1007


‘ABLE 2-5.MAXIMUN SUSTAINED WIND SPEED (KT)AS A FUNCTION OF DVORAK T NUMBERAND MINIMUM SEA LEVEL PRESSURE(MSLP)‘ROPICALCYCLONE WIND MSLPINTENSITY SPEED (NW PACIFIC)T 1.0 25 --T 1.5 25 .-T 2.0 30 1003T 2.5 35 999T 3.0 45 994T 3.5 55 988T 4.0 65 981T 4.5 77 973T 5.0 90 964T 5.5 102 954T 6.0 115 942T 6.5 127 929T 7.0 140 915T 7.5 155 900T 8.0 170 884(3) SAT - Specific satellite usedfor fix position (DM~P 37 or NOAA 6, NOAA 7,or Other) .(4) COMMENTS - For explanation ofabbreviations, see Appendix.(5) SITE - ICAO call sign of thespecific satellite tracking station.b. Aircraft(1) FLT LVL - The constant pressuresurface level, in mb, maintained during thepenetration. Seven hundred mb is the normallevel flown in developed cyclones due toturbulence factors. Low-level missions areflown at 1500 ft.(2) 700 MB HGT - Minimum height of.che700 mb pressure surface within the vortexrecorded in meters.(3) OBS MSLP - If the surface centercan be visually detected (e.g., in theeye) , the minimum sea-level pressure is obtainedby a dropsonde released above the surfacevortex center. If the fix is made atthe 1500-foot level, the sea-level pressureis extrapolated from that level.(4) MAX-SFC-WND - The maximum surfacewind (knots) is an estimate made by theARWO based on sea state. This observationis limited to the region of the flight pathand may not be representative of the entirecyclone. Availability of data is also dependentupon the absence of undercast conditionsand the presence of adequate illumination.l’hepositions of the maximum flight levelwind and the maximum observed surface wind donot necessarily coincide.(5) MAX-FLT-LVL-WND - Wind speed(knots) at flight level is measured by theAN/APN 147 doppler radar system aboard theWC-130 aircraft. Values entered in this categoryrepresent the maximum wind measuredprior to obtaining a scheduled fix. Thismeasurement may not represent the maximumflight level wind associated with the tropicalcyclone because the aircraft only samplesthose portions of the tropical cyclonealong the flight path. In most instances,the flight path is through the weak sectorof the cyclone. In areas of heavy rainfall,the doppler radar may track energy reflectedfrom precipitation rather than from the seasurface, thus, preventing accurate windspeed measurement. In obvious cases, sucherroneous wind data will not be reported.In addition, the doppler radar system on theWC–130 restricts wind measurements to driftangles less than or equal to 27 degrees ifthe wind is normal to the aircraft heading.(6) ACCRY - Fix position accuracy.Both navigational (OMEGA and LORAN) and meteorological(by the ARWO) estimates aregiven in nautical miles.(7) EYE SHAPE – Geometrical representationof the eye based on the aircraftradar presentation. The eye shape is reportedonly if the center is 50% or moresurrounded by wall cloud.(8) EYE DIAM/ORIENTATION - Diameter.of the eye in nautical miles. In case of anelliptical eye, the lengths of the major andminor axes and the orientation of the majoraxis are respectively listed. In the caseof concentric eye walls, both diameters arelisted.c. Radar(1) RADAR - Specific type of platformutilized for fix (land radar site,aircraft, or ship).(2) ACCRY - Accuracy of fix position(good, fair, or poor) as given in theWMO ground radar weather observation code(FM20-V)(3) EYE SHAPE - Geometrical representationof the eye given in plain language(circular, elliptical, etc.).(4) EYE DIAM - Diameter of eyegiven in kilometers.(5) RADOB CODE - Taken directlyfrom WMO ground weather radar observationcode FM20-v. The first group specifies thevortex parameters, while the second groupdescribes the movement of the vortex center.(6) RADAR POSITION - Latitude andlongitude of tracking station given intenths of a degree.(7) SITE - WMO station number ofthe specific tracking station.d. Synoptic(1) INTENSITY ESTINATE - TDO’S analysisof low-level synoptic data to determinea cyclone’s maximum sustained surfacewind (knots).(2) NEAREST DATA - Accuracy of fixbased on distance (nautical miles) from thefix position to the nearest synoptic reportor to the average distance of reports indata sparse cases.8


CHAPTER XII - SUMMARY OF TROPICAL CYCLONES1. WESTERN NORTH PACIFIC TROPICAL CYCLONESDuring 1981, the western North Pacificexperienced the third consecutive year ofbelow normal tropical cyclone activity.Twenty-nine tropical cylones occurred in1981, one more than the previous two yearsbut three less than the annual average.Only one significant tropical cyclone failedto develop beyond the tropical depression(TD) stage and 11 tropical storms (TS) failedto reach typhoon intensity. Of the 16tropical cyclones that developed to typhoon(TY) intensitY, only two reached the 130 ktorder from a list of alternating male/femalenames found in CINCPACINST 3140.lP. Table3-1 provides a summary of key statistics forwestern North Pacific cyclones. Each tropicalcyclone’s maximum surface winds (MAX SFCWND) , in knots, and minimum observed sealevel pressure (MIN OBS SLP), in millibars,were obtained from best estimates based onall available data. The distance travelled,in nautical miles, was calculated from theJTWC official best track (see Annex A).(67 m/see) in~ensit~ necessary to be classi- Tables 3-2 through 3-5 provide furtherfied as super typhoons (ST). Tropical cy- information on the monthly distribution ofclones reaching tropical storm intensity or tropical cyclones and statistics on Tropicalgreater are assigned names in alphabeticalCyclone Formation Alerts and Warnings.TABLE 3-1WESTERN NORTH PACIFIC1981 SIGNIFICANTTROPICAL CYCLONESCALENDAR MAX MIN NUMBERPERIOD DAYS OF SFC OBS OF DISTANCE— CYCLONE —— TYPE NAME OF WARNING WARNING WIND(KT) ~ WARNINGS TRAvELLED(NM01 TY FREDA 12 NAR-17 MAR 6 100 940 22 191202 TS GERALD 15 APR-19 APR 5 60 982 18 165903 TS HOLLY 29 APR-07 MAY 9 45 997 31 171104 TY IKE 09 JUN-14 JUN k 65 967 21 138605 TY JUNE 17 JUN-22 JUN 6 75 965 22 156906 TY KELLY 30 JUN-04 JUL 5 75 966 20 115907 TS LYNN 02 JUL-07 JUL 6 55 983 18 199208 TS MAURY 18 JUL-20 JUL 3 55 990 9 74109 TS NINA 22 JUL-23 JUL 2 35 995 4 12010 TY OGDEN 27 JUL-01 AUG 6 65 975 20 154211 TD TD-11 31 JUL-02 AUG 3 20 994 7 16112 TS PHYLLIS 03 AUG-04 AUG 2 45 978 7 31813 TS ROY 03 AUG-09 AUG 7 50 986 20 83814 TS SUSAN 08 AUG-13 AUG 6 60 975 19 118015 TY THAD 16 AUG-23 AUG 8 85 965 29 192816 TS VANESSA 17 AUG-19 AUG 3 55 983 8 129917 TS WARRSN 18 AUG-20 AUG 3 45 991 10 49718 TY AGNES 26 AUG-03 SEP 9 95 947 31 171719 TY BILL 03 sEP-07 SEP 5 85 959 17 158320 TY CLARA 17 SEP-22 SEP 8 120 924 29 212921 TY DOYLE 20 SEP-23 SEP 4 80 964 14 230122 STY ELSIE 23 sEP-02 OCT 8 150 893 33 244723 TS FABIAN 13 OCT-14 OCT 2 45 990 6 147924 TY GAY 14 OCT-23 OCT 10 95 947 35 339025 TY HAZEN 14 NOV-23 NOV 10 100 956 37 295626 sTY IRMA 19 NOV-27 NOV 9 135 902 34 273227 TS JEFF 23 NOV-26 NOV 4 35 999 14 175428 TY KIT 11 DEC-21 DEC 11 115 924 40 190229 TY LEE 23 DEC-29 DEC 7 95 948 24 17101981 TOTALS 144*● OVERLAPPINGDAYS INCLUDEDONLY ONCE IN SUM.9


TASLE 3-21981SIGNIFICANTROPICAL~CLON5 STAT~STICSWESTERNNORTHPACIFIC JAN FEB WAR AFR MAY JUN JUL AUG(1959-80SEP OCT NOV DEC TOTAL AVE8AGETROPICALDEPRESSIONS o 0TROPICALSTOW o 0TYPHOONS o 0ALL CYCLONES o 0(1959-80)AVE~GE .6 .40 0 0 0 1 0 0 0 0 0 1 4.80 2 0 0 3 5 0 1 1 01 0 0 3 1 2 4 1 2 2 ; /’& ;;::1 2 0 3 5 7 4 2 3 2 29 32.3.6 .9 1.S 2.0 5.2 6.5 6.0 4.7 2.6 3.4 32.3L9S3-1*9Z3LqFORMATIONALERTS28 of 29 FormationAlertEventsdevelopedintoTropical.Cyclones. TropicalCycloneFormationAlertswere issuedfor all but 1 significantropicalcyclonesthatdevelo~dduring1981.WARNINGS Numberof warningdays: 144Numberof warningdayswith 2 cyclones: 23Numberof warningdayswith 3 or mere cyclones: 3TA5~ 3-3FSJX)UENCYOF TYPHOONS BY MONTH AND YEARYEARJANFEBMARAPRMAYJUN.7ULAUGSEPOCTNOVDECTOTALAVSRAGE(1945-58)0.40.10.30.40.71.12.02.93.22.42.00.916.319591960196119621963196419651966196719681969197019711972197319741975197600000010001001001100000000000100::001000001000::00110110111110::0100221222010011010202;222111012102:i235364:1206:112583;33644343422:30:355443:5323442343443223533:44:2113041034111202212io21010000020000171920241926212020201312::1214151519771978197919801981001000000000101011000002000002332320222243543322122:21;o21115141516AVSRAGE(1959-81).30.04.2.7,s1.02.83.33.33.01.6.617.6 ,


TABLE 3-4FREQUENCY OF TROPICAL STORMS AND TYPHOONS BY MONTH AIJDYEARYEAR JAN FEBAVERAGE(1945-58)19591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981AVERAGE(1959-81)0.4 0.1 0.4 0.5 0.8 1.3 3.0 3.9 4.1 3.3 2.7 1.1001000101100NAR101000APR111110MAYJUN0 013322 012322 2 1 1 2 32 2 10 0 0 1 2 13 23424 11 0 2 1 1 1410 0 0 1 1 1601 0 10 0310 1 00 250JUL3356475563328101 0 1 3 4 26 4 2 0 351 0 0 0 1 3 6 4 5 23431 30202 300 00 0 0 i’2 4211 0 : 1 1 4 45 4 321 0 00 0 0 0 2 5 5 201 1 2 2 2 4 5 1250 0 1 0 0 1 45 4 2 1 191 0 0 1 0 3 45 4 3 0 281 0 11 0 47 3 2 2 240 0 0 i 4 1 46 4 1 1 240 0 1 2 0 2 54 2 3 2 28.5 .3 .5 .9 1.2 1.6 4.5 5.4 5.0 4.0 2.4 1.2 27.6AUG610473968884645554417227SEP636357777334OCT445556NOV DEC TOTAL21130621123121.6262731302540343035271924TABLE 3-5FORMATION ALERT SUMMARYIiESTT3RNORTH PACIFICYEAR1972197319741975197619771978197919801981NUMBEROFALERTSYSTEMS412635343426ALERT SYSTEMSWHICH BECAMENUMBEREDTROPICAL CYCLONESTOTALNUMBEREDTROPICALCYCLONES29 3222 2330 3625 2525 2520 2132 27 322723 2837 28 2829 28 29DEVELOPMENTRATE71%85%86%74%74%77%84%85%76%97%11


. . . .+4. . ..r‘‘:’”~~ t ,..!1 ..., 1 , I I tI , 1tYkREbA 35,,. , --.. .- . . . . --,. --., .,.. --.. . ,.. . . . . --.. . .- -...- -.. --., . ... - -.. .- -.. .. . --... ..- -.. -..,,,.- -.. . ,.- -.. .>~!o?“, 1“+--l- 30T : ,?I 1 1 t t3@ I..- -.. .- -.. -- .’ ‘.,.. .WESTERN NORTH PACIFIC.. .,.TROPICAL CYCLONES01 JAN -31 MAY.@ ,, --, , ,. ----CHICHIJIMA .,. .-, .+ + +/+I # I I t , I I t I 1 1- 1 I, ,!25’F’M,m?::!.:l:’!!f,.. . . . @. . . . . . .l;:’:!::!....,,. . ..-.-...,,.. ..--..,--...,rI I , I , 1 i II .& t lx I1II I20;$ -::::- -:::- ..--::- -.,, ,*%“‘“‘ “-,’. -.,- >~. : :.. ; :, .,,: ;,. . . . .1+4‘L; 1 1 t 1 I , t, , trI 1 [ 1 r .15’●,K HOLLY> ,,, ,. .,,* ,,- -., . .,.. --.. .’, ‘“,‘b””’”.!, . --., ,- -.. .‘\’”’”- -“””’ % ~= ;’II2 -- -- -,,. -. . . . .. . .e“*”Fi?? ..~ :: ~:::- -:- - ‘:? - -1 q ●.”- -“””- -F;“”,., .- . . . . . ,...ENE TAK~Ll~Hl-1 I t ! ICfl , , , r110..- . Y:P. - -.. .1.: . . 1 . .,.1....1.. -.. .- -., .PALAU IS 8 e.- -.. . .- -.wOL EAI - -“’”’ %.7RuK - -’*’,.. . -.. . i’~.: :klMA~Ro: :1 ‘5“+r I ,, , 1, ,..- ... . .- . . . . . .-.. . .,,. ,... .-,. . . .. ..0 –’”’” –“” ..- . . 7.. . .“.— . . . .““”” ‘“t \ I x IKOSIUEr. . .‘ ‘ {W,”p : ~ ~>;E~A~ w. . .16 TARAd h- .,. , . . . . .. . -.. .- -,,, ,. -.. . .’ - .,,. - -.. ,●, ,, ,, , , , : d r o“%- -- “’” ”,- -’”’”- -“’”’- -“’”’- -’”’”- -“”’”: :..”””. . . ... . . . . . ,. . . . . .- -.. .- -.. . .- -.. .c%%“ “!?”! ::32.:: “..: :: :.- ::..:. ’.- :.:.:...:.. ”.: :_:_. ; ~ : =.: ::.:.. :_.. ___


!,, .,, , !,, , ,,, ,, .,.,. .. . .-., ..,- ----- -..,,, ..,..[ TS “SAM ‘,.j :< :1:: ::-:,.. .-.. .-,. .--,.-\”””- -“”~”- -“’ “-““””--l - - ‘~ ‘~ “- -,.. . .-,. .. . . . ..- .,. .-.,, . --!. - - .:- -,, . . .-3 :{ ~ .~. -. ‘:1.O.Y , I w‘--“T,., , -. . . . .. . . . .i’. .. .. -. . . . .t7%”- -!- -“ ‘--“””t-“3’“::H%Li”’l- ::~::~.::~:,9i.iARCU:, t’l’J’:T’??’siJ 4 tl:’t.y“.. +--——. l.l”L1‘L+[-’. -A-’+%+t’+’+. + .+. +W:KCL,. -.. d. .::> :;:. ,,, .,, ,- ,,, ,- .,, ,, -,, .,. .,.:,,,>; :,, .: :,, : :,, . . . :., . . . . . . . . .- ., b , , , , !SA(PAdt\, ,(:, ,. .,. ~ :GJ ~:::’- .: ::”. ~::::- -;:::. -::.Tsd f“t”” +””” t”’e””t’.,., .... . ,.-.. ,.:i”~’,.. .... ,. .. . ..:;j‘i:‘N?PE;


,,- -,.=”-: .,- -’‘- .- -.. -“’’$’”- .-.,,/-. -“””’-100” 105“ 1Id 115” 120” 125” 13(Y 135” 140” 145’ 150” 155” 160” 165° 170”/.../‘km$ -“; ~-. “-.“”/ J~::~. ,1, ,,>’ -“—”– ;;s “AN $$A,.. .,. .‘“”: ‘:” .: :..-:. ” /‘-A.; l;:, ,1, ,,! l,,, m%yfiwl!!:!l, ! I III u. ISAIPA I; -%L””’t””t””f ’ “t””’ ”t’”” t”” ‘t’”””+”,,,.. {o ,+. .,,. . . . . . . .- -.. .,. ... ,..,.. - -.. .- -.. .ENEUETAK\g”. . . .. ~.- -. .,.- L.. ,, G;~M. .J. J -“- L:::,‘ ‘G“’i ““v”’” t”’”’ t;(’t”’w’’o”’:”- 3’;’ “’;” - “-”..’-: : ~~ “ ‘;:” ~ “ ---’-~- ‘“- ‘-= - -‘-’- “:--” ==”-” “’”- -“i---- ‘K-~.~.~~ -


1 1 / -..-7 1 r I r ,? ,7-, ,,, ,,,,.. . ..,/-.. “TSJEPC&w0WAKE.,. .,,L*1“eT&K - .’ - -STY IRRA” ”’”. i4Aj&,,. , .,Q T;, ,, t,,,:KOSRAE,,. ,:::i—t--+-t+,.,


.! --I- -’ -- . . . -. . .. ~.. . ..,, _ .,.- ----- ..- -.. .- -.. .,, --.. .- -... -. .., 1 A !1 , , 40,. T’.....: ~.:, : “. ~::”; .’::: ;:::- -: :- -::::-.,.v- -,. . ,,, ,,i, 1TYPHOON FREDA 35’.-.. .BEST TRACK TC-01.“-.. , 12MAR-17MAR 1991 . ---- ---- . . .-.. ...- -.. . .- MAX SFC WIND 100 KTS -. ---- --- -...)+ -,,. --.. . .- MINIMUM SLP 940 MBS -““” ‘“”””” --””’”- -’”’JT “,I 1 , m 1 PI , , 30.- -.. . ,..+~ :.: --:’:;/- -j/f: : -,* 17j06Z -,.- -,.e .’.- --- -.. . . . -----65. -,* . _/~CHICHI-- JIMA.. . .. . . .“75< -- “q\’ --> ‘-”’” -,. , , , ,G1 , I - 25eIWOJIMA,.. . . .- -.. m -- . . . .T14@----’”” ”&5”’:::.150”..”155° ,, .1:5{,,,.. . . .. .- -.. . loo=- - ---m1 1 20,.. . .-, . . . -.. . . . -.. .WAKE - ““”-.8 . . . . -. . .._ -,::: -\.-. . . -.. . .- . . .-“’”’- ““”- -’”””. -.. . -.. .- -.. . -- ----- . . . . . .,50!1 , 1 I , r..- -.. -.. .# ““”- ‘.. . -,, , . ...,,,,,#-%,LEGEND -‘“’”’-; ------ - --:. . .. . . . .. . . .H 06 HOUR BEST TRACK POSIT -.“, ,.. -.. --A SPEED OF MOVEMENT,.. . . . . . . . . . . . . .B INTENSITY.aC POSITION AT XX/OOOOZTRUK000 TROPICAL DISTURBANCE --. .,. . . .● ● * TROPICAL DEPRESSION-- TROPICAL STORM -1 ,,~ P— TYPHOONe SUPER TYPHOON START “.”””o SUPER TYPHOON END --’””’- ““””+W EXTRATROPKAL ---- . . ,.. .35 ./#- . . . . . -- . $TA.A--● ● ● DI!jSIPATING STAGE.35 ,-/. . . . . . . . . . ‘! . . . . -FIRST WARNING ISSUED “:”” ““”’ ““.% LAST WARNING ISSUED ‘40“.. . . . .. . . . .- ,. ,. .,8 ,,, ,% ‘“”--v’ --’’” --”u’ :.* ~2,mz. .. . . . . :: :’..w.. --..””- -“”’” ----,..- . . . . . . . ---- .. ---- . . . -.. . ... . . . .%,. -.. .. ,. .-. . .-. .: :? $j; : ; --::::- -::;: -.;;;: _y :5010. . . ~. -- ...6- ?og.~ -- .. . . . -.. , -: ..., .. . . ----- -. ... . .,&{, .,1014(Y 145° 150° 155” 160° 165° 170” 175” 180°16


TYPHOON FREDA (01)Typhoon Freda, the first tropicalcyclone of 1981 and only the fourth typhoonSlnCe 1959 to occur in March, clevelapedvery slowly within the near–equatorialtrough that shifted briefly north of theequator in early March.Remaininq quasi-stationary near theGilbert Islands just north of the equatorfor nearly three days, the disturbancefinally began to move northwestward anddeveloped slowly as it reached higher latitudes.Although the upper-level synopticpattern with strong unidirectional southeastflow (Fig. 3-01-1) was unfavorable fordevelopment, noticeable improvement in thesatellite signature led to the issuance of.,..Ja Tropical Cyclone Formation Alert at111900Z. The first warning on TD 01 wasissued six hours later as the disturbanceapproached the southern Marshall Islandswhen synoptic reports and satellite imageryindicated further development.Beginning with the first warning, JTWCforecasts were consistent in predictingrecurvature west of Enewetak Atoll. Thistrack was based on an apparent break in themid-tropospheric subtropical ridge along160E between the mid-Pacific high and alarge high pressure cell over the PhilippineIslands. This break was later confirmed byvaluable synoptic data received from reconnaissanceaircraft flying to and from thedeveloping cyclone.t !i--i3ol‘“m””.j{‘w!..~I 1: I LIT,H, ,“ ),Ijm ?h -1\ I “\PAL.. I,8l\ \ltSAiPAE>,;.”>1“’””: -w.%, ..,.:1“ii0“FTGURE 3-01-1. ‘ZOO-rob&OLeaml?inL anolqb-ib at131200Z. M x%.i.b time,the TftouJ patternWOA &t.iLlptinmily mhoci.atedtih the mi.d-Patid.ic tige withtie. indition 06 .takge-bcale OU41OW oven F::edaa-ta%i.hlevel. W&d data am a combinationo~ RA08S,A?REPS,and ha.ZeU-Lte de.zivedwindb( v ) andbLow-066 wind tietionb [+1. Wind bpeeh oAein knolb.17


The strong southeasterly flow aloftresulted in considerable vertical tilt duringless than normal for a disturbance that haddeveloped to tropical storm intensity 48Freda’s northwest track. The 700-mbhours earlier. Although no synopticcenter was consistently observed 15 to 25observations or damage reports were receivednm (28 to 46 km) north–northwest of thefrom Enewetak, the situation could have beensurface center. This poor vertical alignmentfar more disastrous.combined with the absence of stronguPPer-level OUtflow channels resulted inIn contrast to the extremely slowher extremelv slow intensification. Thisdevelopment daring the first three days ofproved fortu~ate for Enewetak Atoll which her existence, Freda intensified rapidlylay directly in F’reds’spath. Freda passed once north of the ridge axis and in a15 nm (28 km) west of the Atoll with 55 kt more favorable upper-level environment(28 m/see) sustained winds, considerably (Fig. 3–01-2). Contact with the southwest-,-.V4A . ..,.+’””+1WO JIMA$WIIi’ ./i : “Ai 1+If, ]/; s, I IH15“ I10”,., .-..— -\1 -k \h 1“1 I+. .,, ,.wF7GURE 3-01-’2. 200-mb&3wan&ne anoly~~ at 1500002depiting a d.fuzmat-ic changein the uppe,t-tevct ,&owpoa%ztnw.ilhthe oaz@ow oveA Ftedanowthe pzimaty~eatute. Thewe@u&j jet haAdipped iu 60JLbou-thOA ‘Z5Np.mou.id.ing a v.igokowsouZ&fLowchannel .totheno.m.theiufjjoJLFaeda. Uinddata tie a combination06RAOBS,AlREPS, and mW-?-Lte dtived aknh i ~ )and b.tow-o~dwind d.ilec.tioti ( e 1. Windhpeecbane in bno.Z5.


erly jet north of her provided a v~gorousprimarily by the high surf, estimated to beoutflow channel to the north. Withover 20 feet, generated by Freda’s closemultiple outflow channels to the environmentalflow, Freda intensified from 65 ktpassage.(33 m/see) to 100 kt (51 m/see) andAs Freda moved further north anddeepened from 975 mb to 940 mb within 30approached the core of the jetstream, thehours (Fig. 3-01-3).strong mid-latitude westerlies responsiblefor her rapid intensification also causedUnlike Enewetak, Freda was at her maximumintensity of 100 kt (51 m/see) when sheafter reaching maximum intensity, Freda’sher eventual weakening. Forty-eight hourspassed within 65 nm (120 km) of Wake Island.convection was sheared off and the low-levelWake reported maximum sustained winds of 50circulation moved quickly northward and waskt (26 m/see) with gusts to 75 kt (39 m./sec) absorbed into a developing extratropical lowat 152300z. Damage to the island’s runway pressure system.and support equipment was extensive, causedFIGURE3-01-3. TgphoonFkedaat gO-k.t14Jm/4ec).in-tJznA.Lty 390 nm [722km]bou.thwe&t 06 kkztzeV&and,14 Maxch 1981,212CZ. (NOAA6 WL&lafinugtiyl19


]., . . ,“. .. . . . !.,,“”. . . . . .T1P.,b. *L+,.. , .,, ,..12 ,, 12:+ .,. .. . . J .)”’ Thi ** ,,,..“.#..... . . ..,. , . . .... . . . .-l . . .. L.. ----- -’. - -- -TROPKALSTORM GERALD..- . - -..CHl?Hi ““”’ ““’” ‘“”” ‘“JIMA . -. .,.. . . . . . . -..I , ,. I I , , I 1 4QBEST TRACK TC-02IWO JIMA--,. *15APR-WAPR 1981MARCUS ““”” ““MAX SFC WIND 60 KTS GOQ” &.’ ,-00’ ,~~.’ ,:@”~“:’44.’” ““”+ 1 MINIMUM SLP 982 MBS :1’ ~&/:f:::: J:: f::: ~5”:. .:fo. ”1~:-f●1 , I 1I I 1:, 1 1 J E!cfl I II● ✌✌✌ ✌✌✌✌✌✎✎+“”” +’ ●+ t t✌✌✍ ✎ ✎✍ ✎ ✎ ✎ ✎✍ ✍✎✎✌☛●✍✍✎✎ ✎ ✎✍ ✍✎..-.;30B -‘“””- ‘“””- ‘“”- ““”” “,.- -.. .- -..*,,. -. . . . .-..,,- . . . . .- -.. .- -.. ./35 --“- -“’”I (. , I 1 1 1 , , 1 , , 1 1 , ) ,I 1 1151, 1 r , 1 , 1MANI-.“D- “’”’”- ‘“’”- ‘“”’”- -“””- -’”””- -“” .;:- -:::- -::::- -;:”:” -::::- -:-.. .-.A . . . . . . - . .+...-... %-“11 I e I I I..- . . .- -. 4*’ -p ““”””’’”””EN ELfiTAK”+Icfl:t~Ll~T-ITmt,r ,v , 1 1 ,7/ I/d .t7‘ , r, }IdIII . I I,.. - -.. .- -.rL.. .,l. -1 1- . . . L‘:’45““KW#JaALEIN . -, . . . . . .,.- -.a:,.(,,.4.--....- L “-’-.”87”-. ...% ) ~ “,j&El ~~~~ ~~~~ ~AgRo.Of c.. :. ..; ;,, .,: ;,,.,,,. .MS SPEEO INTENSITY10T44.sT$5 ly T&J16+7 &&zD19/18Z 25●●\.****,*19/12z 30 15+ : .’” 15?&i $5●T& lkf01~ ~ 06 HOUR BEST TRACK POSIT,.- -.,, . . -. 30B. -..- -..’A SPEED OF MOVEMENTB INTENSITY. w. ~


TROPICAL STORN GERALD (02)A developing mid- to uppper-level circulationsoutheast of Ponape became evidenton satellite imagery on 12 April. At thistime, the cirrus outflow pattern wasextensive and the cloud system displayedgood curvature. A surface circulation,however, was not apparent until the 15thfollowing further significant improvementof the satellite signature. A TropicalCyclone Formation Alert was issued, vice awarning, at 150000z because island stationsin the vicinity of the circulation reportedthat the minimum sea-level pressure was astill relatively high 1009 mb. Eight hourslater a reconnaissance aircraft observed avery tight surface circulation with maximumwinds of 30 kt [15m/see) and a minimumsea-level pressure of 1000 mb. Basedon this new information, the first warningon Tropical Depression 02 was issued at151200z.Several factors influenced JTWC toforecast that Gerald would reach typhoonstrength. First, upper-level wind analysesshowed an extensive upper-level outflowpattern assocated with Gerald. An anticyclonewas located near the system’scenter and outflow was unrestrict~d andextended well into the Southern Hemisphere.Second, low-level cross-equatorial inflowbecame fully established by the 15th.Third, reconnaissance aircraft reported700-mh center temperatures of 21°C. Thisobservation was 11° higher than the environmentand higher than temperaturesnormally observed in a tropical cyclone atGerald’s stage of development. The highamount of latent heat was being released,which usually indicates impending intensification.The reason that Gerald did not developas forecast appears to be rooted in a radicalchange which occurred in the upper-levelflow pattern. As previously mentioned,Gerald began with a well-defined upper-levelanticyclone that afforded excellent outflowchannels in all directions. Steady intensificationdid occur until 170000Z when asynoptic-scale upper-level anticyclone begandeveloping east of Gerald near 10N 155E.This anticyclone continued to intensify andincrease in areal extent as it shiftedslowly to the soutneast. Gerald’s outflowchannel to the east became restricted as thesouth and southeasterly shearing winds aloftincreased in strength. As a result, Geraldbegan weakening as he passed about 70 nm(130 km) to the east of Guam at 1809002.The Island received ketween 3 - 5 inches ofrain. Andersen Air Force Base reported aminimum sea-level pressure of 1005.7 mband a maximum wind of 49 kt (25 m/see) ingusts.After passing Guam, Ge”rald’sconvectioncontinued to shear off to the northeast asthe exposed low-level circulation center(Fig. 3-02-1) meandered northwestward whereit was eventually absorbed by an extratropicaltrough moving eastward across thePacific.FIGURE 3-02-1. TIwp.ic&SzWunGaa.&iOA an expohed.F.o#-Lzvet &c@a.tion centmnotih o~ Guam,20 Ap&i,2198T,22282. (NOAA 6 vkiutimagezy)21


JTWC’S better than average forecasting developing Gerald. Thus , the initial foreofGerald’s track was due in no small partcast track called for recurvature well toto the extensive 500-mb synoptic track data the west of Guam. Aircraft data on the 15thprovided by the 54th Weather Reconnaissance defined a small anticyclone north of GuamSquadron. Figures 3-02-2 through 3-03-5 (Fig. 3-02-2) which supported the subsequentshow the evclution that occurred in the mid-forecast of passage southwest of Guam belevelsteering flow as indicated by aircraft fore recurvature. ~ecause this was thedata.first time this cell had been analyzed,there was no way to determine if the cellAvailable synoptic data, although was moving or qvasi-stationary. The 500-mbsparse, suggested that the subtropical mid- data 24 hours later (Fig. 3-02-3) showedtropospheric ridge was weak north of thethat the mejor break in the ridge stillexisted to the west of Guam; thus, recurva-FIGURE3-02-2.The 151200Z Apti 19gl500mbbl&almFiKeUna@zb. Olti~c! me a Combimlt.ion06 MOBS, AlREPS, and ha.tetfit’zdtive.d uindb(~). W.ndhpeedb tie.inhnofi.FrGu2E 3-02-3. The 161200ZA,wii.t 19.$15U0-mb~tmamfineandybib. Winddataate a comb.i.nution06 RAOLZS,AlREPS,and bU.t~’2 duived windb[y]. (JIMhpeedbtie in kno.tb.22


ture west of Guam still appeared to be thecall for passage east of Guam, and, indeed,best forecast. By 1712002, however, it be- post-analysis shows that Gerald had actuallycame apparent that the anticyclone north ofbegun to follow a more northward track aboutGuam had shifted farther to the east, allow- 12 hours earlier. The mid-level analysising the break in the ridge to re-orient it.- at 1812002, which combines both 400 and 500-self north of Guam (Fig. 3-02-4). At that mb aircraft data, shows Gerald’s mid-leveltime, the forecast track was altered tocirculation being absorbed by the long wavetrough (Fig. 3-02-5).Y-b’ .1-..I I 1> \ \1;-. ~::: ~t::: f’1:anti . . .. .tOSRAE1“::: t’ . .,.. .4 4 +-+-+FIG&E 3-02-4. The 1712002 Apz.i.l19gl 500-mb&tzeam&.neana.tybibẆind datatie a combinationohRAOBS, AIREPS, and za2_e dtiued windb (~].Wind bpeedb tie in knoti.t,.. .i=-\i r. 1,, ” 7.... .I.x I /?. I 4.l. ,. !ll, ..,..L, ,,l_,, ,1, !. !l, .-l. l!..l.. :1FIGURE 3-02-5. The lg1200ZApzit 1981mid-.teuti&tean&ineana.&jb.i.b bed on 400-and 500-mb a.OL-WL@.t xeconnaibboncedata.23


“J -- - J-“- -’””- ‘“””- ‘“,.. ...- - ,.. --. ...~ 1,- -,, .. .-.. .. . . . . . .,. ..- ---. .,.- ----- ------.. . ,- -.. . .- -.. .-,., -. . . . . -- . . . . .----~l&P~AL STORM -‘“””I , .. ..- -.. . ---- . . . -,, .- MAX SFC WIND 45 KTS .-,.,.. --.. . 4: :., . .. ..- -, ---- ------MINIMUM SLP 997MBS --’””,,,, .I““”’r::l @::TO::::T O:::’r”:’!o:: ”T5”:::’100”i!1”’1’LEGEND~ 06 HOUR BEST TRACK POSITA SPEED OF MOVEMENTB INTENSITYC POSITION AT XX/OOOOZ000 TRoplcAL DISTURBANCE● ● ● TROPICAL DEPRESSION.,,.-- TROPICAL STORM— TYPHOON* SUPER TYPHOON STARTO SUPER TYPHOON ENDw ExTRATROPICAL● ** Dissipating STAGEḃ . %.- -- ..#T t j_t~,~RA,A FIRST WARNING ISSUED“t” ‘+”+ t’””tLAST WARNING lssuED,.. +, ..,.+,..+ +’+”+’” +“””+”””m’ ‘4Q‘~c’‘“r- ““r●.“.%! 0‘ IrTv-“” ”,- -.’- -“”- -“’”’y:, +,< =.,..- ---- -“ .w .’- -’.’- .“”\*.. ..,, .,. :0’$?=.5 J..._ .::: _.:: _: ::. Y..A. . ... -


TROPICAL STORM HOLLY (03)Development of Tropical Storm Holly followeda ten-day period cf relative calm inthe tropical northwest Pacific Ocean. Hollywas interesting in several ways during herlifetime. Southern Hemisphere interaction,intensity fluctuations, weak mid-levelsteering flow, and strong upper-level shearwill be discussed in relation to Holly’sdevelopment and dissipation.The source for the initial energyimpulse in the development of TD-03 is aninteresting point for speculation. A reviewof satellite imagery back to 21 April showedthat varying amounts of convection existedalmost continuously in the region of 5.ONfrom 160.OE to 165.OE from 2112002 to2600002. Satellite data suggest that thisconvection was related to a fairly activeconvective region just south of the equator(5.0-10.0s, 160.OE-175.OW). BY 2300002,satellite imagery showed that the southernhemisphere tropical system was interactingvigorously with a rather strong mid-latitudesystem. At the same time, the northernhemisphere convection increased. Althoughagain weaker, some curvature in the convectivepattern was noted by 2500002, and aweak, broad low-level circulation developedby 2512002 near 4.ON 169.OE. This circulationwas not analyzed consistently prior toHolly’s formation. Sparsity of data andweakness of the circulation may have preventeddetection of the circulation insynoptic data. Undisturbed easterliesexisted in the area prior to development ofthe low-level circulation center. The surface/gradientlevel analysis showed crossequatorialinteraction, and with the evidencefrom satellite data, it appears thatTD-03 was initiated through interaction witha southern hemisphere system.The initial satellite alert by Det 1,lWW on the disturbance which produced Hollywas issued at 260000z. Continued improvementof the convective signature led toissuance of a Tropical Cyclone FormationAlert 2802552. At 2901532, the first reconnaissanceaircraft investigative mission wasflown into TD-03. TD-03 was well defined atthis time, and the circulation was closedeasily at the surface and 1500-ft (457 m)level. The extrapolated central pressurewas 1003 mb, while the maximum observedsurface wind was 25 kt (13 m/see) . By282106z, the circulation was also evidenton satellite imagery as an exposed low-levelcirculation (Fig. 3-03-1). A Dvorak satelliteintensity analysis showed a weakeningtrend for the past 24 hours and forecast thetrend to continue.Early fluctuations in the satellitederivedintensity analysis produced thefirst interesting characteristic associatedwith TD-03. By 3000002, a steady trendtoward intensification was established. By0103002 May 1981, both aircraft and satellitedata suggested possible development ofa banding-type eye. It certainly appearedthat Holly was on the verge of becoming amajor troPICal cyclone; however, during thenext 24 hours, Holly’s satellite signatureagain weakened. A maximum intensity of 45kt (23 m/see) was reached at 0112002 andwas maintained for 24 hours before the finalweakening trend started (Fig. 3-03-2). Fromthis point, Holly gradually weakenedalthough there were continued fluctuationsin the amount and intensity of convection.Figu/vz3-03-1. Expowd tow-level ticu-2aaXon 06TV 03 apptoximutelg5 how pz.ion.toa.ihcM&t.inuebtigatiue minion, 28 Ap?uX 1981,2106Z. [NOAA6 wkial.imagezy)F.LgoJce 3-03-2. Ttop.icul .StOmnHoUy du,ting-thepeh.iod 06 maximomitieniity,1 May 19gl,12382.(NOM 6 ui-watim agag)25


A.second interesting characteristicassociated with Holly was her extremely slowmovement. From 3000002 through 0200002,Holly averaged a forward speed of 11 kt(20 km/hr); from 0200002 through 0300002,the average speed was 6 kt (11 km/hr); andfrom 0300002 through 0600002, Holly’s averagespeed was slightly less than 3 kt (6 kmj”hr) . Due to sparseness of data, it is impossibleto state with complete certaintywhy Holly slowed so dramatically. The surface/gradientlevel and 500 mb analysis, however, offer possible explanations. At thesurface/gradient level, Holly’s path wasacross the main stream of the northeast traderegime. The stream was significantlystronger on the north side of Holly, andthis “crosswind” apparently helped in theretardation of forward speed as far as thelower tropospheric steering was concerned.When Holly finally began to accelerate, the. ..trade winds were deflected more easterly andmore toward a direction parallel to Holly(Fig. 3-03-3).The second possible explanation for thesudden deceleration and extremely slow movementlies in the mid-troposphere. Windanalyses at 500 mb consistently showed weaksteering surrounding the cyclone’s environment.The weak flow was due in part to acut–off low which was located near 30N andbetween 155E and 165E during the period ofHolly’s slow movement. The gradient betweenthis cut-off low and the ridge placed majorwind currents well northeast and northwestof Holly’s 500 mb cyclone. This gradientslackened just north of Holly and winds thatwere not considered storm induced generallywere 10 kt (5 m/s) or less. This was clearlyevidenced by reconnaissance tracks flown>—,WA” / /’ /(a)(b)Figu.w3-03-3.Su4~acc (~)/gtitieti (+)level anatyati: [a) at 0200002 wkich aw typicaldunZnglfol-f?g’~ peziud 06 Mow movementand (b)a-t0700002~how.ingthe pattezltm Hdlg begaj?toaccelatafe. Wncb ah.ein knoti,


north of Holly. Furthermore, these sameanalyses showed Holly remained south of theridge in the weak easterly current. Abreak in the ridge never occurred in suitableposition to allow Holly any other possibility(Fig. 3-03-4).The final interesting characteristic wasHolly’s failure to develop a significantoutflow pattern. At O1OOOOZ and again at0409002, Holly appeared to be developing agood outflow channel to the northeast. Oneach occasion, however, the outflow was notmaintained and a southwest outflow channelnever developed. The 200 mb wind patternwas fairly strong throughout Holly’s lifetimewith a large amplitude ridge anchoredoff the Asian coast. The position of thisridge forced additional pressure on the preexistingsouthwesterly subtropical jet whichhad been lying just west of Holly. Convergenceof the two upper level wind streamsinduced a 40 to 60 kt (21-31 m/s) wind maximumjust northwest of Holly’s upper levelcenter (Fig. 3-03-5). This persistent featureeroded Holly’s convective organizationand 0621252 satellite imagery showed atotally exposed low level circulation withthe formerly associated convective 50 nm(93 km) east of the center. Once thisshearing took place, Holly eventually spundown and dissipated over open tropicalwater.Tropical Storm Holly never reachedtyphoon strength as originally expected.The intensity fluctuations, weak mid-levelsteering, and shearing flow at both low- andupper-tropospheric levels all contributedto Holly’s eventual demise.(Lt,):ty1 %’11’AF.iguze3-03-4. 500mb A.tz&ne cWUL&Jbh al05120CJZẈA anolq~tiu -typicato~ the pa-ttotneti tingduzingHotly’b tidtie. Wind datatic acombination 1706 RAOBS,RECOIJ,and hatell-iteddvedw.ind4[~). Windhpeeb ate in hnoti..——-.,.Flguze 3-03-5. ‘ZOO mb Mmanilne ana.tg~bal0312002. Winddata ane a combition o~ RAOBS,AlREPS,and m.teUite-da-ivedwinh (%) andblow-o66 wind chketioti ( +). UindWceh mein knoti.27


:,,. ....‘- tL,;j. . ..-.. . . . . . . ,./; -


TYPHOON IKE (04)Typhoon Ike was one of several recentexamples of tropical cyclone developmentover the South China Sea during the end ofthe monsoonal transition season. Severalcharacteristic features have often beenobserved by JTNC forecast~rs. Both in thetropical cyclogenesis and during the lifetimeof the system as a tropical storm andtyphoon, These include:1) Tbe system becomes initiallyevident orisatellite imagery as a mid–tropospheric monsoonal depression withfluctuating associated convection.2) The system is often initiallyslow to develop a closed surface circula–tion, despite persistent associated convection.3) The system is also slow tointensify, even after evidence of surfacedevelopment.4) The system frequently maintainsa broad asyrmnetricalwind distributionthroughout its life cycle.5) The system is usually shortlived,with repeated interactions withnearby land masses.Ike was typical of this pattern anddisplayed all the above characteristicsduring his development. The first evidencethat Ike may develop occurred on June 8th,as the 080000Z surface analysis indicatedrelatively lower surface pressures just westof the Philippine Islands. Based on thisdata, and satellite imagery which indicatedcontinued convective support, a TropicalCyclone Formation Alert (TCFA) was issuedat 0806002.Ike had a difficult time persisting asa tropical cyclone as steady upper-levelshear displaced Ike’s 700 mb center as muchas 60 nm (hi km) southwest of the surfacecirculation. Finally, on 9 June, Ikemoved into an area of decreased shear aloft,which allowed vertical alignment to intensifythe system. The first warning was issuedat 090000Z and Ike reached tropical stormintensity at 1000OOZ (Figure 3-04-1). Inthe meantime, a mid–latitude, mid-troposphepic trough over Asia continued propagatingeastward, and Ike accelerated to the north–east, steered by the increasingly strongsouthwesterly flow. Intensification continuedduring the acceleration process.Fi.gute3-04-1. Thopi.cd @2J@bbiOtI 04 ab .Lt begantodevctopand conboli.da-tc .i.tA abbot.io-tedconvectionuhi..le ove.JL theSouth China Sea, 9 June 1981,23362(NOM 6 VtiUd-&l~#L~).29


Only one aircraft reconnaissance missionwas able to penetrate Ike due to geographicaland political constraints. This aircraftfixed Ike near the stormts peak intensityjust prior to landfall over Taiwan.The crew reported that Ike*s minimum sealevelpressure had decreased to 967 mb, 700mb winds of over 60 kts (111 km/hr) weremeasured, and aircraft radar indicated partialeyewall formation. Based on the abovedata, it was concluded in post-analysis thatIke reached minimal typhoon intensity nearthis time. Less than 12 hours later, Ikemoved ashore over southwestern Taj.wan.Ike weakened significantly while traversingTaiwan but emerged over open waternorth of Taipei around 1315002 with a small,persistent knot of central convection. Thisarea of convection dissipated as Ike becamean extratropical low at 1400002 (Figure 3-04-2).Subsequent press releases reported minordamage over Taiwan due to heavy rains andflooding which accompanied Ike. Eight stonnrelatedfatalities were reported, four fromTaiwan and four from the Philippine Islands.F-i.guzt 3-04-2. Taopica.1s+Ozm Ike m a pattiA&jexpo~ed -?ow-teuci? wmulutan “ a ha begane.uh-.fmp.ika.t ttan&iXon,13 3une 22452 [NOAA 6 v.i.watimlugel.gl.


(This page left blank intentionally)31


110” 115” 120° 125° 130 135” 140° 145° 150°1. - ,:{. -::- . ,,. , . -.. .- -...- -.. . ,.. . . .--/ /.,. .-..”:- .:”’I ,7’.- . . . . .- . . . . ..- -.LEGENDt -t. .. . .32


TYPHOON JUNE (05)The process for genesis of tropical cyclonesthrough interaction with a tropicalwhich prompted JTWC to issue a formationted an outflow center was beginning to formupper tropospheric trough (TUTT), (Sadler,alert at 1701002. The disturbance then1976), was evident during the early developmentstages of Typhoon June. A TUTT wastures were evident on satellite imagery ofdeveloped its outflow aloft and banding fea-established over the Philippine Sea early in1706002. At that same time aircraft reconnaissancealso found that the disturbanceJune leading to the generation of a tropicaldisturbance over the Palau Islands.had tropical storm strength winds. Subsequently,the first warning on Tropical StormOn the 13th of June a cell within theJune was issued.TUTT was observed on satellite imagery northeastof the disturbance resulting in improvedorganization of the disturbance as thethe Ryuku Islands with the ridge axis extend-A 500 mb anticyclone was positioned overTUTT cell tracked westward. Surface synOpticreports indicated no pre-existing circu-warning was issued. The anti-cyclone remainingover much of China at the time the firstlation on the surface associated with thised virtually stationary as June trackeddisturbance. The general flow pattern wasnorthwestward toward Taiwan. During theconverging in the area of the disturbance,first 24 hours after the initial warning Junethen continuing northwestward into Typhoondid accelerate, but slowed again to her originalspeed the following 24 hours. TheIke.area in which the acceleration occurred wasBy the 15th the TUTT cell was northwestpractically void of wind data at the 500 mbof the disturbed area and the potential forlevel and therefore no suitable explanationdevelopment of a tropical cyclone was great-can be made for this occurrence.ly improved. The area of disturbance wasoptimally positioned with respect to theIt is interesting to note that the TUTTTUTT cell, i.e. under an upper level diver-cell which helped form June moved ahead ofgent area which served initially as an out-her along a parallel track until she hitflow mechanism. Nevertheless, progress in Taiwan. June maintained a position southeastthe development of the cyclone was very slow. of the TUTT cell throughout this period.Aircraft reconnaissance on the 15th indica- Furthert June intensified to a maximum of 75ted that a weak circulation was located 200 kt (39 m/s) while tracking behind the TUTTnm north of the Palau Islands. cell- Satellite imagery at 191029Z (Pig. 3-05-1) showed Typhoon June at her maximumintensity.Late on the 16t!hsatellite data indica-FIGURE3-05-1. SateW+.Lmage/y at 19?029204Tgphoon Juneagak a.t2umnga maximum.l.nzenb.iilj 0675 k..t(39m/hec]. lMOM6.i.n&@t?cftigetyl33


June hit Taiwan with winds of 75 kt (39m/see) . Radar observations at Hua-Lien (WMO37918) provided essential information toJTWC when June began to deviate from a northwarddirection toward a point 40 nm (74 km)southeast of Taipei. Figure 3-05-2 is apicture of the radar presentation taken atHua-Lien at 0500z on the 20th (photographcourtesy of the Central Weather Bureau,Taipei, Taiwan), when June had an intensityof 75 kt (39 m/see) 9 hours before landfall.June was forecast to recurve in all buttwo warnings. The initial reason for recurvaturewas based on a 500 mb trough that wasexpected to move over Eastern China, withthe anticyclone over the Ryuku Islands movingeastward. As June neared Taiwan it wasapparent that these forecast upper air movementshad not taken place. June’s forecasttrack was then changed, for two warnings, toreflect the strength of the anticyclonenorth of her and indicating a more westwardtrack with landfall over China.Another reason forforecast track was therus plume extending tofrom June. Typically,days, in advance of the event, a cirrus plumeis seen to extend northwestward from a tropicalcyclone that will soon recurve. Theplume generally extends far downstream inthe direction of the upper level winds,which greatly influence the direction andspeed of the tropical cyclone after recurvature.June did not exhibit a cirrusplume either before or after recurvature.Later upper air data indicated that anew anticyclone formed over China at 500 mbwith a resultant weakening in the ridgebetween the anticyclor’esover China and theRyukyu Islands. Recurvature was again forecastbecause of this change at 500 mb.the change in thelack of a large cir-the northeastwardseveral hours, orJune began to weaken gradually afterrecurvature. The 500 mb anticyclone thathad formed over China and allowed June torecurve, moved southward as a trough approachedChina’s coast. As June neared Japan,she began to interact with a weak frontalsystem extending southwestward and entrainc~ld air supplied by the ‘mu@. At 12002on the 22nd-~he fin;l warning-was issuedon June as she became extratropical beforetracking over Kyushu.34


,,!, ,,, ,, ,,, , ,,, , ,,t t“.%-”+”””,,.:


At 2812002, satellite imagery once againshowed an area of increased convection, thistime centered near 14N 135E. The 2812002synoptic reports and subsequent satelliteimagery showed improved organization! thusat 2820002, a Tropical Cyclone FormationAlert was reissued. Figure 3-06-2 is a NOAA6 image of the disturbance near the time theformation alert was issued. During the following28 hours, further development wasevident and the alert was repositioned. At2922412, a Dvorak intensity classificationof T2.5 was provided by the Det 1, lwwNimitz Hill, Guam, and the first warning onTD-06 followed at 3000002.Fi.jum3-06-2. Aweak &OUdb@t?M COlt~Uklb bLOImdwetlopingOtt thib Aa.ttit ~~ 60fl 2$23042June. (NOAA6vh@tigW]Figu.tc3-06-3. A wakened K&y [TU-06] mou.@though -t& centxal Plvi.Lipp.Lneb(3023592 June). M-.thoughKeU.g had .Lohf bOIIWZ 06 hib eal.-!2ain.tenb.Lty,Zhe mUeme 06 enengqin heavgpteci@taa%n caubedwkn.hm {Loodingand humanhU&~kVI.&J M cannotbc wucta.ted Xo obbe.nuedbuzdace windb and ptebbl&W.b. (NOAA bvi4ud.iww9)Synoptic observations from reportingstations along the southeastern coast ofLuzon and Catanduanes Island (WMO 98447)indicated that TD-06 made landfall at, ornear, tropical storm strength, at 3012002.Thus, at that time TD-06 was upgraded toTropical Storm Kelly. As Kelly tracked overthe central Philippines, the low-levelcirculation pattern became disrupted and theobserved wind speeds lessened, so that by31OOOOZ, Kelly was downgraded to TD-06. TD-06 tracked directly over Mindoro Isiand anddespite having lost some of its earlier intensity,the combined effects of heavy rains,flooding and mudslides left thousands homelessand nearly 200 dead, Figure 3-06-3shows TD-06 (Kelly) over Mindoro Island.Within hours after TD-06 moved into theSouth China Sea, it regained its low-levelcirculation pattern and resumed its interruptedintensification trend. At 0118002,TD-06 was upgraded to Tropical Storm Kelly.(In post-analysis, Kelly first attainedtropical storm strength at 3006002, wasdowngraded at 3018002 and was upgraded atO1O6OOZ. This is fairly typical of poststormanalysis since the supporting synopticdata are received at J~C after tTiewa”rninghas been issued for the synoptic hour; thus,the upgrading and downgrading usually followon the next warning) .From the first warning on TD-06, ane“ventualtrack towards the north was anticipatedonce the system entered the SouthChina Sea.. The 500 mb pattern over Asiawas fairly weak and the numerical modelforecast series indicated a rather deeptrough moving into the region. As Kellyapproached the South China Sea, the O1OOOOZ500 mb hand-analysis (Fig. 3-06-4) showedKelly in a favorable location for movementto the north. What followed in the first24 hours, however, was a virtually westwardtrack. Figure 3-06-5 shows the 500 mb patternjust 12 hours later (0112002). Inreconstructing the situation it is evidentthat the northward current moving aroundKelly’s eastern periphery actually aided inbuilding the ridge to the north, such thatthe ridge line kept moving west with Kelly.Eventually this process abated and near0212002, Kelly began moving towards the38


IfKm1.+Figuu?3-06-4. M 0100002,a hkom.twave though.LAevidentextendingboutkoatdintotht Gu& oi Tonkinand a bouthe.ttg@xo h well ti.tabtihednoti 06KeFR.ywti.twmd fo the a%ough. Ana&jzed wind datatie a combination06 mawinAonde and &GI@ hepoti& -the500 mb Lev&.tF.@.e 3-06-5. 8g 011200Z,the 500 mb ana@i.Adtouua @@wing 04 tit ~hoxtauve notthtoa~06Ket.tg.HeighthJ&A.06 2010 30 matem ahe wnnon.thJLOughou.t tie hegion. Thi.612 hotiCha~12hWuMng, houwvti&&Aequti dokemti continued .to60h~ evti mw%wzhd movement[Aee Fi.gwce3-06-6].


northwest. Figure 3-06-6 depicts the officialJ“TWCforecasts for Kelly. Note, thepersistent trend in virtually every warningissued of Kelly having an increasing northwardmovement.At 0200002 (in post-analysis, 021800z),while moving to the northwest, Kelly was upgradedto typhoon strength. The 030300zsurface observation from the Paracel Islands(WMO 59981) indicated a windshift to southeasterlywinds of 74 kt (38 m/see) and a sealevel pressure of 970.8 mb. It was duringthis period that Kelly is assumed to havereached his maximum intensity of 75 kt (39m/see) . Subsequent satellite imagery indicatedweakening convection with cirrusoccasionally masking the eye. BY 0318002,Kelly had reached the southeastern portionof Hai-nan Island and the eye was no longerevident on satellite imagery. After skirtingalong its southern coastline, Kellymoved away from Hai-nan and lost much of hisstrength, resulting in downgrading to tropicalstorm strength at 040000z. From Hai-nanto the coast of Vietnam, surface reportswere sparse but there is little doubt thatKslly no longer had the low-level windswhich were evidenced the preceding day.Interestingly, at 040629z (Fig. 3-06-7),Kelly briefly displayed a large ragged eyewhich was observed to be opening to thewest at 040900Z. There remains a possibilitythat Kelly may have regained somestrength in the Gulf of Tonkin. However, ifKelIy did, it must have been short-livedbecause hourly reports from Vietnam neverindicated any significant or well-organizedwinds prior to, or after, landfall, whichoccurred about 100 nm (185 km) south ofHanoi at 0418002. The last satellite fixreceived for the remnants of Kelly was at05000Qz, positioned along the Vietnam-Laosborder.Fiquw 3-06-7. A magged qe A appwrm.t on 04062923u.?ghatWiZe.Onagatifah Ket-!ymov tiuw.iiwdintheGuL6 o~70nkin. Th.iAqe @atute~ 6hoti-.L.&edand ob~e-tved ti did not&weaA Edlulingth.d@a6e. (NOAA7@.uaLimagcy}40


IsṂ11 ,2II13I L4 idl.1(‘“”Yl!!\\\IllH +++,::04.++20(/+TAIWAN++.+++\.O +.lUZON++125++++,+ +15125.-N +..n. m +++++10 ●110+ + + + 10+JJ5. + .Ad+Figtie3-06-6. O{{icid J7WC dohecabd VLVLAUAthe&&a.t bti.ttick dofiKelly. Note .thtobvioub &-dinaa%on to {okem.t a no-d movementtlmoughoutKet. ty’buwtnlngptid.


.-,. .--... I . ..,. ..--,..--...-.,. ,-.,.I I r ,$+.+...-,0’ ‘‘Q”- ‘“””- ‘“”- -“J ‘“” ‘“”- ““”,.. . ..- ... . _-.. . .-,, ,--., . --,,‘: ‘ - ;:‘;:--::SHANHAIO,..’ - -....- -, . ..- -. . ..- . . . ,,.-, 48 3ol I “of.,. - -.. . . -,, ,- -,, .+ . . + . ...’..... ~@+!:... -,, -,,,,- -1,. ,.. -,.+ .,, .- -.,i ““r 1 ,L .,t-’- ,,, ,,.4--1~.....cl-+,...,..,,, .,, 1 1 , , , ISA1’PAd , 1.,. ..,. ..,.. . ..,,.. ,,..4,,!‘GUM”’”- ““ ‘- .’””r. . . . . . . -,, ., . . . .*“ I I I IIQ )’ s“.1 , , rf- “1 ---- I lal)3~.L;rA”- L. .,..- -. . ..- -, .,,- .,, ,,I I ““’r.:IPLl~Hl _, I,,.l&-l-(‘F’ ..*. ,.,, c.;. .;O .&;.o:‘- .oh:”-- : :AMH- -::::. .: ’.::. .: :!! -: +,.●,- ... . .- .,, ,. . .PiLAU IS 8~?- ‘OO”. / ~--- -- -- -’,. ..- . . . . . . - -. . . . ... . . . . . . ol-- W;L%” ~(..; OO:~Oo-~%i --2~, a.. . .. .... . ,. -., . .- -FQtAAPE-O Qoeo.. . . -,.;“- “:”;;” -::’:- ‘“:.,’OO1 i 1 I1 .,0 .,a+.::ENEUiTAK1 , Q ,““- ““’”” ““”- ““”“’”””’ - ;z~~ - : ‘“’RAE,.. . . ... : . . . . . . . . . . . . . . . -..W 06 HOUR BEsT TRACK pOslT . ..- ----- -- --- -’- -h. ~~; . i A SPE@ OF MOVEMENT..!. --.. .B INTENSITY., ,’,’ ‘,’ .,.’ .’,’, 1, t~ c POSIT~i, 1 , I L?’*-“-Ttimlr~u”~n.rl.Al nlcTllDnAT XX,ODOOZ“,-. ”-”..,.-.ANrc 11 ‘ -AQ& .,.- ., .,.. .Lc● O TROPICAL DEPRESSION9 “’” “’” ““’-- TRO~lCAL STORM. ..q.’,- -.’”- -., - -,. .— TYPHQON.- SUPER TYPHOON START?O SUPER TYPHOON ENCSr ? u .-%w -w -;:::” I %’ - ‘:::”!I)v 1 I -:””# EXTRATROPICAL, I rN[ ,I , th , D r bl$. ~ ● * DISSIPATING STAGEJ’-.& FIRST WARNING lSsUED< “d’ ‘~””- -“’””- -’”~~”. ‘“ “’””’:’”’”$ LAST WARNING ISSUED .~.... -. .’’,.,e - =jJr : :! ::: ::”’>;


TROPICAL STORM LYNN (07)Following on the heels of Typhoon Kelly,Tropical Storm Lynn was the second storm inthree days to devastate the PhilippineIslands. Packing winds of 45-50 kt (23-26m/see) , Lynn’s 30 hour track across thenorthern Philippine Islands brought torrentialrains and accompanying mud slidesleaving 18 persons dead and some tens ofthousands homeless.Lynn was first detected on satelliteimagery at 2700002 as an area of enhancedconvection just south of Ponape. This areawas part of a weak equatorial trough thatextended from Ponape northwestward to justsouthwest of Guam, where a second activeconvection area existed that later becameTyphoon Kelly. A broad scale upper leveldivergent pattern existed over the entireregion south of a Tropical Upper TroposphericTrough (TUTT) located near 15N 160E.During the next several days both disturbancestracked westward under the influenceof the mid-to-lower-tropospheric westerlycurrent south of the subtropical ridge.While the disturbance near Guam eventuallyintensified to Tropical Storm Kelly, thedisturbance near Ponape continued to showmarked variations in its convective activity,due in part to the degree of vertical windshear that existed over the disturbance.Although synoptic data indicated a 1010 mbsurface low as early as 291200z, an analysisof 200 mb satellite-derived winds between.2700002June and 0200002 July indicated thatthe north-south flow across the disturbancevaried from as little as 10 kt (5 m/see) toas great as 35 kt (18 m/see) . This largeshearing effect appeared to prevent anysignificant development of the disturbanceduring this period.By 0200002 the upper trough had extendedwestward to a position just to the northeastof Kelly in the South China Sea and a TUTTcell observed near 20N 128E finally blockedthe strong shearing pattern (Fig. 3-07-1).A Tropical Cyclone Formation Alert (TCFA)was issued at 0203002 when an upper-levelanticyclone could finally be identified overthe disturbance. Development was stillexpected to continue slowly since satelliteimagery did not indicate a strong centralconvective region. Aircraft reconnaissanceat 0205302 could only detect a weakly organized1005 mb circulation pattern.Figuu 3-07-1. 0200002I&g 1981,200 mb &tIceami?ineanalq~h wpaimpo4d on 4tie.?.Uepictu.fuat0121552o.nd0123362. TkiA &@te depiti the TUfTceLPA in mlaliotilzip .tothe developingAXOIUMK&Qand Lgnn. (NOAA6 u.iAtiimage-y)43


By 0218002 satellite imagery indicated amuch improved central convective region andthe first warning was issued. Seven hourslater at O3O1OOZ aircraft reconnaissancefound that Lynn had already reached tropicalstorm strength with 40 kt (21 m/see)surface winds and a minimum sea level pressureof 998 mb.As Lynn skirted the northern edge ofthe eastern Philippine Islands, she abruptlyslowed from 16 to 7 kt (30-13 km/hr). Thiswas partially due to the disruption ofLynn’s circulation pattern over the mountainousterrain of the Philippines and theslight northern retreat of the 500 mb highwhich temporarily slackened the steeringflow across the storm. Also during thistime, a large influx of moisture from theSouth China Sea caused a massive build-upa tropical depression, with an intensity of30 kts (15 m/see) and a central pressure of997 mbr and the final warning was issued.of cloudiness along Lynn’s southern peripherywhich, in turn, caused Lynn’s circularconvective pattern to become distorted.This made it very difficult to locate Lynnwith satellite imagery. It was not until0406002, when a strong central dense overcast(COO) had developed (Arnold, 1974) justeast of Luzon, that Lynn could again betracked reliably. Figure 3-07-2 showsTropical Storm Lynn and her COO just aftershe made landfall near Baler, Luzon (WMO98333).With the formation of the CDO, Lynnappeared to have gained back some of theorganization that she had prior to reachingthe Philippines. This seems to have enabledthe storm to be more easily advected in thesteering flow as Lynn quickly increased herspeed to 13 kt (24 km/hr).


With her speed increased, Lynn lostlittle of her intensity while crossing theisland of Luzon in less than six hours.From Luzon, Lynn followed a fairly climatologicalnorthwest track across the SouthChina Sea. JTWC had very little troublepredicting her direction of movement as the500 mb high over Asia was now 100 m higherthan it had been a week prior with TyphoonKelly.Like Kelly before her, Lynn was predictedto become a minimum strength typhoononce she reached the central South ChinaSea. However, with the increase in strengthOf the Asiatic high, the flow at 200 mb alsoincreased. By 0512002, Lynn had reached aposition just north of where Kelly obtainedtyphoon strength. As can be seen in Figure3-07-3, Lynn’s outflow was restricted in hernorthwest quadrant as 70 kt (36 m/see) easterlieswere observed only 420 nm (778 km)north of the storm. It was not until justprior to making landfall on the south Chinacoast that the easterly winds north of thestorm abated to only 20 kt (10 m/see) andsatellite imagery indicated that Lynn*soutflow had improved. By this time therewas little room for much intenslficantion.Lynn finally made landfall near Shang-Chuan-Tao, China (WMO 59673) at 0622002 90m (167 km) west-southwest of Hong Kong.Maximum sustained surface winds at landfallwere estimated to be near 55 kt (28 m/see)with a central pressure of 983 mb.‘- -“-b,A ...-45


TROPICAL STORM NAURY (08)At 0000Z on 14 July, satellite imageryrevealed what was to become Tropical StormMaury within a convective area near llN 137E,about 110 nm (204 km) north-northwest of theisland of Yap (WMO 91413). Southwesterlylow-level flow moved the disturbance at 05kt (09 km/hr) during the initial 48 hourperiod. A 500 mb ridge influenced the systemthereafter and accelerated it to 14 kt(26 km/hr) by 1700002. A mid-level circulationwas identified on 1612002 satelliteimagery and could also be analyzed on the500 mb charts. The disturbance slowed andmoved west-northwest under the influence ofthe 500 mb ridge located to the northeastwhile south-southwesterly monsoonal flowcontinued near the surface.A Tropical Cyclone Formation fiert wasissued at 1716002 when syriopticdata indicatedwinds associated with the disturbance,then located near 20N 128E, had reached 25kts (13 m/see). Pressures within the disturbanceand the surrounding environment were1003 Mb.The first warning on Tropical Storm Maurywas issued at 1800002 based on several shipreports in the area at 171800Z. Once thedisturbance became enhanced by the monsoonalflow, and the central pressure dropped to999 mb, the system began rapid movement;once again being totally steered by the 500Mb flow.Aircraft reconnaissance of the stormshortly after the first warning found the 700mb center displaced to the north-northeastof the surface center by 50 nm (93 km) ,indicating the storm was tilted in that direction.Figure 3-08-1 depicts the exposedlow level circulation, near 21N 128E, to thesouthwest of the main convection. The exposedlow level circulation and displacedconvection gave the appearance that Maurywas moving to the northwest of his previouspositions, The vertical alignment of thesystem eventually improved and the entiresystem moved northward under the influenceof the 500 mb ridge, as Figure 3-08-2 indicates.The 181816Z position was near 24N127E.FIGURE3-08-1.TzoP&al S-?WLMMUUY at 35 ktb [18m/hec) intutbtig, 18 JULY 19~1,05?3Z. kkzukg’hlow-Levflcente-tUKL5expobed ~0 .tht bOUthWtbt 0~ tht?mutn convect-ion.[NOAA7 vibudimzgw]47


Following this northward movement, thesystem was forecast to track to the northwest,toward China, as indicated by steeringaids from Fleet Numerical Oceanography Center,Montery, California. An apparent weakridge over China turned out to be muchstronger than originally believed and Maurywas diverted toward Taiwanr as shown inFigure 3-08-3, when the position was analyzedto be 25.5N 124E. Aircraft reconnaissanceof the storm at 1905432 found the 700mb center continued to be displaced from thesurface position, but now by 45 nm (83 km)to the west-southwest. This precession ofthe 700 mb center and erratic motion of thesurface center presented a great deal ofdifficulty in forecasting the movement ofthe storm.The Storm center made landfall on thenorthern tip of Taiwan at approximately191OOOZ. Maury caused heavy flooding in thenorthern and central portions of Taiwan,leaving 27 dead and many others missing orinjured. The flooding was the worst of thisyear in Taipei City, according to Taiwanpress reports.Maury then moved into the FormosaStraitr still maintaining tropical stormstrength, but the intensity was now reducedto 35 kts (18 m/see) following its interactionwith the orographic features ofTaiwan. Maury made its second landfallapproximately 30 nm (56 km) south-southwestof Fu-thou, China, at 1921OOZ. Three hourslater, at 2000002, Maury was downgraded to48


The remanents of Maury did not completelydissipate over China as expected, butcontinued inland and began tracking towardsthe southwest, eventually re-emerging inthe Gulf of Tonkin. The remanents wereidentified as being over water based uponsynoptic data at 230600z, at which time thesystem was again discussed in the SignificantTropical Weather Advisory. The convectiveactivity lagged behind the surfacecirculation until the surface circulationmoved into the Gulf of Tonkin. A TropicalCyclone Formation Alert was issued at231200Z; synoptic data indicated the lowlevel system had recurved northward to makefinal landfall, approximately 30 nm (56 km)southwest of Yin-thou, while the convectiveactivity continued to move to the southwest.The remanents of the surface circulationthen followed orographic features inlandand could no longer be distinguished after241200z. The convective activity went overland south of Nam Dinh, Vietnam at 240000z.These cells finally dissipated in the mountainsof Laos at 241200z.FIGURE3-08-3. TllOp&& ~OhM hkwy bhowedwebtidmowm?ntutthetime o~th.iAimageky,Ig July 1981,23052. Mauk.g10 hoti bedoze mztig .2and@.&tat thenotihwtip 0{ Taiwn. (NOAA6 V.i.4U(Z?_@!21LIJ]49


.A~ f ‘. -, / ~ LA,, WARNING ISSUED + .U”-’w---p. ,~.I ,I-’+-1 LI I I CR. c ./’ I I I I \,.50


TROPICAL STORM NINA (09)Tropical Storm Nina eventually formed throughout the warning period. Initiallyfrom a leeside surface low in the wake of moving at 12 kts (22 km/hr) as it roundedTropical Storm Maury (08). The disturbance Taiwanr the storm slowed as it approachedwas first detected on 21OOOOZ July synoptic land. Nina had weakened to tropical depreschartsnear 24N 122E; to the east of Taiwan.sion strength when landfall was made atThe disturbance moved within the monsoonal 2218002, 30 nm (56 km) northwest offlow from the southwest until the vertical Hsia-p’u, China. The final warning wasdevelopment became entrained into the westwardflow around a mid-level anticyclone tothe east.When the system began toward around the northern tipSignificant Tropical Weatherdrift northwest-Nina started out as an exposed low-levelof Taiwan, acirculation with convective activity to theAdvisory was east. During the warning process this trop-The Tropical Cycloneical cyclone was not forecast to reach tropicalstorm strength; however, in postanalysisNina was upgraded to tropicalstorm strength for the initial 12 hourperiod. A 35 kt (18 m/see) ship rePOrtoriginally considered suspect was laterverified by several other ship reports ofsimilar wind speed, but not in time to beincluded on the second warning.is=ued at 22000iz.Formation Alert was then transmitted at2201OOZ when synoptic data indicated asurface circulation was located near 25N123E. The first warning on TropicalDepression 09 was subsequently issued at2206002.Nina maintained a northwest trackissued at 230000z, when the system was 35 nm(65 km) inland and orographic effects wererapidly dissipating the system.51


mIQ


TYPHOON OGDEN (10)Typhoon Ogden developed near 23N 151Ewhen a circulation formed under a pre-existingconvective area. Development of thiscirculation triggered TCFA issuance at2622002 Aug 81, however, the area had beenconnectively active during the previousforty-eight hours. Once the circulationformed, very gradual intensification followed.A well-behaved storm track ensuedthat posed no significant forecast problems.The initial warning on TD 10 (2706002)carried a gradually recurving track to theeast of Japan. This forecast was based onthe apparent existence of a break in the 500mb ridge to the northwest and the approachof an apparently significant trough in thewesterlies. Forecast aids were in disagreementon the forecast track. Climatology andthe current synoptic situation influencedthe choice of the recurve track over anorthwest to westerly straight track. Threewarnings were issued with the recurve forecastbefore a change to straight northwestmovement was decided upon. The change wasprecipitated by two things; synoptic datashowed the approaching trough was not asstrong as anticipated, and the ridge to thenorth was building westward ahead of TD 10.No further changes in track were required asTD 10 responded well to the steerinq currentson the south side of the ridge.Favorable outflow conditions were neverestablished for TD 10 and this perhapsexplains the very gradual intensification.Twenty-four hours after TD 10 formed, tropicalstorm strength was reached, however, ittook another sixty hours for then TropicalStorm Ogden to reach its maximum intensityof 65 kt (33 m/s) thus becoming a minimaltyphoon (Fig. 3-10-1). Ogden was upgradedto typhoon in post-analysis based on a combinationof aircraft and land synoptic data.Ogden crossed southern Kyushu between3016002 and 3021OOZ and weakened significantly.Ogden still possessed tropical stormstrength winds when it emerged into the EastChina Sea. Weakening continued as Ogdenheaded northwest toward Cheju-Do Island andthe Korea. Peninsula. Succumbing to upperand mid-level shear, Ogden finally dissipa~as a significant tropical cyclone over theYellow Sea along the west coast of Korea.(a)(b)FIGURE 3-10-1. a] TILop&d StomnOgdenal 292259ZappfLoximateLy twdw hoti ptiotto beachingtyphoonh.tteng-th. in.temiity a% XhiA-timew 55 .kt(z?~m/b].(NOM 6 u.iAuaZimagekgl b] TyphoonOgdenat 300957znut the time o~ maxinnuni.n.tenbi.ty, 65 & [33mlb).(NO&46 inij~edimag~]53


: —7---,- ‘- - -‘ -,. .:_ ---- _. ..- . .J’-? .) . -.i-iql$4,rk- ‘-- -1}1 ‘L, I~~~~~ [. . . . -~“* T--’- -#&B - -- -- -- -d- -:::- -:::- -: ‘--:, , t I1 1 4.,,, , , !45. . ... .,. _,, ,. _, -45” -““””- ‘“”’- ‘“ “- ‘“t-130T : “’?. .I4::. .,.. . . .i,- “:40 - “ “’- ““..- -,, . .- -.. . - -,*; - -,, ,,-35B- -“’ ””.- ‘“”.4 , 4..::. -;.:. -:;:’= -: ‘:. _:“.G%;HA -_., .,. -., ..- - ?::! ~ ~.:,~-TiFA” ““’” ‘“”” ““” “’”’-i-I?a, , I1 1 0 b , +. IWO JIMA - -, .,.- -.. a . .,., -.i4ARCUS “’-1- -t . . . ,. -1- -r.,,-r +130 135”” I-4 0“’ 145° 150° 155°16@, ,,15°,,170. . - -.. . . . . . . . . .+20?,.. .,. . . . . .- . . . . -.. . -.. . . . .I, , f , r. . . -., . . . -.. . ,- . . . .- . . . .- -,. ,- -.. .- .-1. . . . . . - . . .. . . ..- .,, .. . . . .- . . . .*157 , i, A 1r 1 1SAiPAd,.- -.. .-.. . . . . .- -..‘:’ ‘“wTROPICAL~;~~~’OcV#f\LIS,.. . --., . .- -., , .- . .403AUG- 04AUG 1981 : :“GUM”””’. . . . . . .-..MAX SFC WIND 45 KTS?.... ..- -.. . -- . . . . MINIMUM SLP 978 MBSLEGEND~+lcfl, , ,,~ 06 HOUR BEST TRACK POSIT . . . -.,. . .- -.. .-,. — . — —A SPEED OF MOVEMENT~–”,.. --,. . .-.. ,. -.. . . KW.AJALEINB INTENSITY,.. C POSITION AT XX/OOOOZ): .0. TROPICAL DISTURBANCE. . . TROPICAL DEPRESSIONH 5°4 -- TROPICAL STORM~ — TYPHOON+ SUPER TYPHOON STARTO SUPER TYPHOON END+&‘4+++ EXTRATROPICALd “~ %iip(&;i?GA&EOA LAST WARNING ISSUED‘2%eWAKE.4WOLE~ --“’. .TRUK.,. :MA.PONyPE,.. . . . . . -. . . . . . . . . . . . . . .[l tI , Q ,,I“KOSI(AE..- . . . . .- -.. . . .- -.. .- -.. . .- -.,.. . . . . . . . . . . ++4++-444-+.w .’.- -’ ..- L....- -..,.- ~,- -,: . ::::. .:’: ::. -::::. -:t+ , 1 I.,. .-.. .- . . . . .- -.,$:”; --#r :;


TO-11 AND TROPICAL STORM PHYLLIS (12]The genesis of TD-11 and Tropical StormPhyllis were associated with one synopticfeature, but the extent of development ofeach was significantly different. The systemsare being discussed together to contrasttheir early development and therebycome to some understanding as to the inabilityof TD–11 to mature into a significanttropical cyclone. A brief discussionof Tropical Storm Phyllis will then follow.On 30 July a monsoon trough developedthat extended from the Northern MarianasIslands southwestward toward the PalauIslands. Two surface circulations wereembedded at opposite ends of the trough. Amid-level cyclonic circulation was locatedover the northeastern portion of the troughwhile upper-level data had been indicatingthe presence of an anticyclone over thearea.Development of a significant tropicalcyclone was potentially high because of thevertical relationship of the upper levelanticyclone to the mid-level and surfacecirculation centers. Consequently, a formationalert was issued at 3103OOZ for theNorthern Marianas area. During the ensuingnine hours, satellite imagery showed evidenceof strong upper-level outflow and shipdata near the circulation center reportedpressures of 997mb; thus JTWC issued thefirst warning on TD-11 (Fig. 3-11-1).FIGURE3-11-1. TV-11em.tyin .&2 development on30JULY 19tl, 22362. [NOAA 6 .in&uztedtig@j)55


A decrease in the upper level organizationwas evident on satellite imagery as theanticyclone receded slowly northeastward.Although the mid and upper level featuresthat helped form TD-11 were still present,by 1 August they appeared to be displacedfrom the vertical axis of the depression.TD-11 was tracking northeastward at a slowerrate than the urmer level anticvclone andeventually enco~ntered upper le~el windshear caused by the anticyclone which disassociatedfrom TD-11 on the 2nd of Augustand moved well to the northeast. The finalwarning on TD-11 was issued at 0200002.Aircraft reconnaissance observations onthe 1st of August (Fig. 3-11-2) revealedTD-11 was not as well organized as when thefirst warning was issued. A circulationcenter was evident at 1500 ft. but the surfacewinds were indicative of only an elongatedtrough extending from TD–li to the secondcirculation north of the Palau Islands.dddIffEzlThroughout the trough in general, surfacepressures were low with weak pressure gradients,thus accounting for the weak windfield about TD-11 whose central pressurecould have supported much higher winds hadit not been embedded in the trough.While attention had been focused on TD-11, another surface circulation, located inthe eastern-most portion of the monsoontrough continued to persist. The upperlevelanticyclone was now providing the outflowmechanism required for further development.A formation alert was issued at0223002 for the area northeast of theMarianas Islands. By 0306002 aircraft andsatellite recomaissance provided evidencethat the circulation had already attainedtropical storm intensity and the firstwarning on Phyllis was subsequently issuedat that time.The two features most directly respons-I ~V:sw514518% + + + + V-5 + \+ +18V:s ,/I \+ +++ +\220/mFIGURE3-11-2. P.&7.t 06 aimlalwmconna.bhancedataat tht 1.500&t.Lad and Awt{acc 04 TO-11 on.tha ~4t04 Aqu.bX.56


ible for the lack of development of TD-11and the intensification to Tropical StormPhyllis were the location of the upperlevelanticyclone and the elongation ofthe monsoon trough as the anticyclone movednortheastward. Initially both circulationswere favorably positioned under the upperlevel anticyclone. The intensification ofTD-11 was retarded because the monsoontrough elongated, thereby restricting strongsurface inflow from the east. Further, TD-11 did not have the advantage of a strongmid-level steering current and was thusunable to maintain its favorable pusitionwith respect to the upper level anticyclone.This resulted in an increased vertical windshear and eventual dissipation.was able to mature into a significant tropicalcyclone.Phyllis initially tracked northward at11 kt (20 km/hr) and intensified slowly. hinteresting feature in the vertical structureof Phyllis after she attained tropicalstorm intensity was that the convectionwas mostly limited to the eastern periphery‘f her circulation center, (Fig. 3-12-1).Typically, this is suggestive of the cyclonehaving a tilted vertical axis.The convective activity decreased asPhyllis advanced northward toward colderwater and encountered increased verticalwind shear. By 0418002.Phyllis beaan toweaken rapidly and the final warning wasPhyllis, on the other hand, was able tomaintain a favorable position with respect issued. The remnants of Phyllis continuedto the anticyclone aloft. Located withinto track northwestward and later merged withthe monsoon trough and exposed to strongan extratropical low pressure system offsurface inflow in three quadrants, Phyllisthe east coast of Japan.FIGURE 3-12-1. The exposedf.owlevelcitda.tionCULWL o{ Ph@LiA on 3 Augub.t1981,04102. Theconvetivcac.thly .iA.!%ited-toIhe eaAto~ hctcenttio~ ticuta,llon.(NOAA7 ..imati. magq]57


, ,,I,,/bf,’‘f.:.-.. ..,, .,., ., .,. .’”,,, ,, 1 . ...1... -..iTROPICALSTORM ROYBEST TRACK TC-13 1-O4AUG-O9AUG 1981,,- -.,4,Q. ~8iMAXSFC WIND 50 KTS .-, . . . .. . . . . .MINIMUMSLP 986MBS -- ~ ~ sHAN~:HA!O* ~~~~-,, , 1 I I I I b30T+7- ,, . . . . .. . . ... ..,, - il ,.,’ ..’. . . .i,.. ‘ b.:!::: :L::V:::L:YDTGSPEED INTENSITY0300Z 2580400Z 2580406Z 2580412Z 3016.17-15-1!5 1!6TCFA\O “ “ “>_w+0● O.003 .“● .“o.”● ● .*V’14. -1i4 115 116(\00*04/12z“b” +’”+ ””’MA “t”” ”’+” ””’ t””””4SE17N1615MN116.5E, , $ 1 , , , , , kI , ,@ 1 ,,.. . . . .- -., . ., ~ARcu-. IWOJIMA @ . . . . . .,,. , + ,.. . . . . . . -135”’~~~”’M50::,1,.. . . .Tgo”, 755”, ?,.. . --.. . . .,.. ..,’ ,.,’ -t t , 1 t o 1+ , I 1 ,,., . . . . . .- -., . .- ... , .,.. ..,. .,.. . --.. . ,- -,. . . . . .,,, ..’, “. ..- -.. . .- -.. ..., ..,, .,’ ‘,... . - -.. ,- -.. , .,,, ..,, . .,i 8 ,t t ), 1 1 1 I , t 1, I! ,SA{PAd,,. , -- ”... --, ,, -.. . .,.. .,,’8. . . . . . . .,.GUJLM,.. . ---- ,. .. . . . . LEGEND,.. .. . . . . -- .. . .~ 06 HOUR BEST TRACK POSITIJLIT,HIti I , , 1 A SPEED OF MOVEMENT,,. , -- .B INTENSITYY:P . --, ,. --C POSITION AT XX/OOOOZ!. . . . . . . -! .,. - -. I . . . TROPICAL DISTURBANCEPiLAU IS 8,.. . . . . ,- -. .1 ● ● * TRoPICAL DEPRESSIONWotifl--TROPICAL STORM,.. . . . . .,,.-- i — TYPHOON, , ,I 1 * SUPER TYPHOON START,,. --.O SUPER TYPHOON END... . ..,’+++ EXTRATROPICAL... . -. . . .- ... , ,. -, ● a● DlsSIPATING STAGE.,, , --.. . ,- -.. . A FIRST WARNING ISSUEDA LAST WARNING ISSUED. . . - --.. . .t I I , I I, r 1 , , [ I ,,- 1


TROPICAL STORM ROY (13)Tropical Stormwarm water east offew days of Auqust.Roy was spawned in theVietnam during the firstOn 2 Auaust, a lowlevel~irculat~on center bee~me evident fromsynoptic reports in the region. For thenext two days, the disturbance tracked slowlynorthward and on 4 August, it acquired anoticeable central convective feature. At0405152, a tropical cyclone formation alertwas issued and in the 13 hours which followed,the disturbance was upgraded to TropicalDepression 13 (0412002) and Tropical StormRoy (0418002). Figure 3-13-01 shows thedisturbance on infrared satellite imageryat the time the decision to upgrade to warningstatus was made.For the next 36 hours, Roy slowly intensifiedand reached a peak intensity of 50kt (26 m/see) on 6 August.. During thisperiod of intensification, the upper levelfeatures associated with Roy began to movewest of the surface center, under the influenceof a moderate mid- and uppertroposphericshearing current. Figure3-13-02 shows ROY’S low-level centeremerging from the main convective fe~ture.From 6 August to Roy’s eventual dissipationon 9 August, the system existed as anexposed low-level center with most of theconvection displaced well west of the lowlevelcenter.Roy’s track through the South China Seawas difficult to fully anticipate. From thebeginning, Roy was expected to track slowlytowards the north-northeast then turn to amore northwesterly heading. However, in theinitial stages, Roy moved steadily northeas~ward. Roy’s movement appeared to be relatedto the combined effects of the low-levelmonsoon flow east of Roy’s center and thegeneral alignment with a mid-tropospherictrough which extended southwest from TropicalStorm Phyllis. On 6 August, however, themid-tropospheric trough closed-off northeastof Roy and the system gradually turnedtowards the west in response to the resetablishmentof the Asian high pressure ridgeover southern China. Eventually, Roy weakenedas a significant tropical cyclone inthe northwestern South China Sea prior tocrossing Hai-nan.F7GURE03-13-1. NOAA 6 TR 041124Z AUG 81The cwt,zatconvectivedea,tuteb OVVLthe developingT)LophuP. .$tO~ Roy. Wed on .tluhimagag (041124zAug 81)and Aome Aynowc bkp xepohtb in tie vMtiy,the deti.ion.toi.bbuet.zopicat cycloneLU?JWL@b WA made. (NOAA6 .in&umed&ag#y)FIGURE03-13-2. NOAA6 US 052340ZAUG glV.&ia.2mtet.Pi,te inmge,ydotthe @.b.t tie bhOWbRoy ab a pa&tiakUqexpobed low-level dmuld.ioncetieh. (052340ZAug g]] Outingthe 24 hoti which,jo.Plowed,Roy uwuld become @My expobed and woutdbegina gtaduutweakeningtiend. [NOAA 6 VJJuolhag q]59


f’g’ga~/ .,- : + >. #--‘“- -- -“+ “’”” ““’...- -.. . .- -.. ‘: --“”+.-.,!ba a- +,,, --.. . .--.. . +:O. . .,- -.. . .- -.. .- -’- -:+- -.. -? .55/55. ..’-..- -.. ./40 - - -“ “- ““””’-‘AA”- ---- -.,‘l, “12t●1’ tt.,?? f. ?+ ,-b--/-+, ‘b r .7.- -.. .J’--(. J. J 3@ .’.8/L/IQ’7/- - 3=t 35’ / ( py):d ,.. .- &~ gj :5;: ::tttd- ,.- -.. . . . . *. .,- -.’./8.1 , [,.. . .@. .t .tCHICHI+...5I I 40 ) , %(3 4, I?x .!lg) ,- .


TROPICAL STORN SUSAN (14)During the week (27 July-3 August) priorto the formation of Tropical Storm Susan,the monsoon trough had been well establishedin the West Pacific along 20N. When TropicalStorm Phyllis developed near 26N 147E on3 August and subsequently moved north, theprevailing low-level southwest flow southof 20N diverged into two channels; one continuednorth moving with Phyllis, while theother pushed further east to help establisha weak trough in the vicinity of Wake Island(WNO 91245). Tropical Storm Susan formed inthis weak trough.The disturbance that was to become TropicalStorm Susan first appeared on satelliteimaqery at 062136Z as an exposed lowlevelcirculation approximately 60 nm (111km) north of Wake Island (Fig. 03-14-1). Atthe time, the separation of the convectionfrom the surface circulation, due to verticalshear, suggested that only a weak disturbanceexisted in the area. During theearly morning hours prior to this visualsatellite sighting, Wake Island had beenreporting heavy rainfall with s?uthwestwinds as high as 45 kt (23 m/see) ; however,it was felt that these reports were morerepresentative of the strong convection inthe area than of the exposed surface circulation.When Wake’s winds subsided duringthe next several hours to only 15 kt (8m/see) , and there was little aPParent movementof the circulation center, it was deemedunnecessary to immediately issue awarning of this disturbance. Instead at07031922, a Tropical Cyclone Formation Alert(!CCFA)was issued with the expectation that,providing the strong upper level flow acrossthe region subsided, enough convection woulddevelo~ around the surface circulation for asiqniflcant tropical cyclone to form.During the next 24 hours little changedin the synoptic situation. Althougn newconvection had begun to develop approximately100 to 150 nm (185 to 278 km) to thenorth and east of the exposed low-levelcirculation, 200 mb satellite-derived windsover the region still indicated strong 40kt (21 m/see) flow from the north. When the080015Z aircraft investigative mission couldfind only 20 kt (10 m/see) winds in possibly“one of several circulations in the area”](992 mb sea level pressure), it was decidedto reissue the formation alert. However by081200z, the convection on the periphery ofthe surface low appeared to have strengthenedwhile satellite imagery indicated thatthe strong vertical shear had weakenedenough for an upper level anticyclone todevelop; consequently, the first warning onTropical Storm Susan was issued.Initially, Susan tracked north along atrough induced by convection left behindfrom the passage of Tropical Storm Phyllisa week earlier. Once she reached 30N 164Eat 091200Z, Susan did not recurve as originallyforecast but turned toward the northwestin response to an approaching weak coldfront. It was during this stage that Susanreached her greatest intensity of 60 kt (31m\sec) (Fig. 3-14-2). By 1018OOZ theapproaching frontal system weakened enoughso that Susan no longer responded to itspresence. However, cool dry air from theremnants of this front appeared to entraininto the circulation center and by 111200zvery little convection remained. Susan nextturned toward the west-northwest in responseto a new frontal system coming off Japan(also increasing its convective activity).This time, however, the frontal system didnot weaken before reaching Susan; and by130000Z Tropical Storm Susan had become completelyentrained into the front and quicklymade the transition into an extratropicalsystem.-+-..-. . . .,5.. . .*F.igute3-14-1. The i- b.@eA 06 Tto@&z? %OMISu&zn jti.t notih o~ W& lbland at 6 Augu&t21362.[NOAA6 utiual.imag~)IRANOOLPH A. FIX, 1 Lt, USAF: Aerial ReconnaissanceWeather Officer (ARWO).F.igu,te 3-14-2. TJLop.icat S-tomSwan jut ptiot.topeak.i.ntenbi,ty on 9 Augu&tZ20tZ. Note howtkeconvect-ion &s &pLaced @m the dmddion ctiti.A weak CO.(M@ont con be ~eenapproaching&omthe notihwat. INOAA6 .in@ned.imaqetul61


k+ ,., .... .,./-+ .., //,?7’L 1 8L‘1-t..“SEOUL .“,.. .70”” ““’” ““”” ‘“”... , . .--.. ./7$ A..., -L -L L-u _. ,..U.. .L.# ~—.- +ki~1’‘mF!!Tv#Y75tt,... 2,L’. .5\.-.-2q),i-l=:L$[-- ‘--.. , . . . . + 5. .2 D.. .>. .aI---+t -t/-l.l,f-u,-., . ,, ‘@&A-.-’, . -,, ,. -, ..&,...+. . . .-\bs:’ :;31 I , I 1 ,vT 1P. &f 8’. ;5-. IWO JIIMA 7?. 9>. o ●J6 : 5:4 +.


TYPHOON THAD (15)The monsoon trough was particularlyactive in mid-August, and within the 48 hourperiod beginning 16 August three tropicalcyclones were spawned. Typhoon Thad, thefirst of the three, was initially evident on10 August when surface synoptic data indicateda we~k circulation was embedded in thetrough near 18N 130E. The circulation wasfirst cited in the Significant TropicalWeather Advisory on 15 August when satelliteimagery indicated limited outflow had developedabove the surface circulation. Theoutflow was initially the result of a 200 mbridge that had built westward over the surfacetrough. Continued improvement in theoutflow prompted the issuance of a TropicalCyclone Formation Alert at 1518002. Aircraftreconnaissance data, which located thecirculation near 19N 132E, provided thebasis for the alert area being moved northeastand reissued at 160530z. Analysis of160000z 200 mb synoptic data showed that ananticyclone had developed in the ridge overthe circulation, enhancing the outflow patternnecessary for further intensificationof the disturbance.Satellite imagery eventually indicatedbetter organization of the system, thus thefirst warning on TD-15 was issued at 161200Z;TD-15 was initially forecast to move slowlynorthward then accelerate to the northwestas it came under the influence of easterlywinds south of the 500 mb ridge. By 170600Zboth aircraft and satellite data showedThad’s movement was to the northeast inresponse to a weakness in a 500 mb ridgewhich had developed over Japan (Fig. 3-15-1).Forecasts of this 500 mb feature maintainedthe weakness over Japan anclthe forecasttrack for Thad was adjusted from northwestwardto northward to reflect the new steeringpattern. Recurvature was expected eastof Japan.By 180000z Thad had reached typhoonstrength and developed a ragqed eye thatremained for 80 hours (Fig. 3-15-2).As Thad neared 30N, analysis of 500 mbdata established the likelihood that Thadwould interact with a progressing long wavetrough just south of Japan, where recurvatureand subsequent acceleration were expected.Post-analysis has revealed severaldeficiencies in that conclusion: the troughdid move eastward over the Sea of Japan lateon 21 July; a rapidly building ridge east ofThad caused the trough to stall northwest ofThad; coincident with the stalling longwave, a weak short wave moved through thetrough and caused a rapid, unforecast,deepening. The entire trough system generated500 mb height drops of up to 100 metersin 12 hours. This rapid deepening, combinedwith high pressure in the ridge to the east,established an intense 500 mb pressure gradientover eastern Japan with resultant windspeeds as high as 65 kt (120 km/hr). Thadtracked northward under the influence of the500 mb flow, was entrained into this area ofhigh winds early on 22 August and acceleratedvery rapidly to the north over easternJapan, rather than taking the expectedrecurvature path. Thad’s speed cf advanceaccelerated from 10 kt (19 km/hr) at 2200002to 45 kt (83 km/hr) by 2300002.Post analysis has shown Thad started avery rapid extratropical transition near 32Nthat continued as the system acceleratedalong the eastern side of the trough. Therapid acceleration, and an associated rapidentrainment of cool dry air, completed thetransition by 231200Z, at which time satelliteimagery indicated Thad had merged withthe trough over the Tatar Strait and was nolonger discernible as a tropical entity.., f .-, l’, I1/1>. I IFigtie 3-15-1. 500mb bakeamtine anatybib {o%1~12002~howingthe mujo~bynoptic{emlucebuponwhichthe fwmu.tva-tume dotecab.t w ba.bed. Wind datatie a wmbinati.on 06 mw.konde and a.iAcIu4& teconna.i.bbancedata. Windbpeedbtie.inknotb.Figuze 3-15-2. Vima.2mte.?-!.de intagetgf@om202259Z&g tl hhotingThud at 80 knotb (41m/beC).intetwitg, tihhaggedqe. [NO~6U~@~9~gl63


,.,,.. .. .-7’“- ‘ ~ (f. -‘“ - ~~“-‘-TT-rtt t T:t,.-.,, ..,.:.~, ...,., .,. ,,, .$’P’ t t t t t : t t{.. J m.,..ti)’ ‘xdL“ ‘:’~


TROPICAL STORM VANESSA (16)Tropical Storm Vanessa developed approximately60 nm (111 km) south of Marcus Is–land (WMO #47991) during a period of enhancedconvective activity within the monsoontrough. Despite diurnal fluctuations, theincreased convective activity was evidenton the satellite imagery of 12 August andcontinued to increase over the next severaldays. Furthermore, surface synoptic dataand satellite data confirmed the merger ofthe monsoon trough with a pre-existingnorth-south oriented trough near 170E thathad been in evidence since 7 August. Thissecond trough was particularly intense dueto prior passage of Tropical Storm Susan(14). Weak circulations and minor distur–bances were detected along the entire lengthof the merged troughs and investigativemissions were flown to several of them. Thefirst disturbance to intensify significantlyproduced Typhoon Thad (15), while 18 hourslater (1706002) the first warning was issuedon Tropical Storm Vanessa (Fig. 3-16-1).FTGUK 3-16-7a: Active motioon.ttoughOA it appeahedptioh to deu+opnwnf 06 Thop.i@?.WoznihWAAU. [71TD-15(Thad),[2) &it-ialTCFAand [3) akeawhtieTU-16(Vaneb4a] developkd.Photoh moAa.ieu&@conbeakiveNOAA6 paAA@ ~oa 152131Zand 152312Z,Aug 19S1. [NOM 6 vibudtiagmgl


al 01,C# 1 1- 1 + 5“+m t 1 1 1 L II \ I k \ , , KA--19VI4~-‘&N’):5.’~B. ~.~..# ..,i&, &,.,. . ..,.#v: :.. :.: ::- .: :::. ::::. -,” ..,.. .- . . . . ..,.,,.‘:*‘::‘,,,~~~~~ :t$A41Aw+... .-.. . . . .,. ,.. i’”” . . .v‘@i” “E’:0●‘a. - -~. -,, -..~.- --- -“- .- “--.< -;, . .we l. m.. -J . . .. ~ ...++...+ ,,+. ,.+. ,,, jFIGURE3-16-lb:The 170000Z,Aug 1981&@ace~lfgtio%?n.t-levd (dddu{fl w-tnddola and&t@amfQne ana.@.LA depi.ding the monboon.ttough.(liddpeecbate in kno-tb.o“


An initial Tropical Cyclone FormationAlert (TCFA) was issued at 1505252 for aIt is interesting to note that althoughVanessa was vertically aligned, littlecirculation near 20N 149E which, in thefurther development took place after Vanessaensuing 24 hours, weakened. This TCFA was was completely free of the surface trough.superseded by a second TCFA at 1606172 forTwo factors probably contributed to nonacirculation near 24N 155E. Re-analysis ofall available satellite data for the perioddevelopment:shows that the circulations were separate a.entities and were related only because theydeveloped within the same trough. Furthermore,re-analysis also reveals that therewas a primary and a secondary circulationpresent when the second TCFA was issued.The primary circulation was totally obscuredby dense overcast and was not initiallyapparent. Initial satellite fixes werebased on the partially exposed secondarycirculation. In actuality, the primary circulationwas located approximately 60 nm(111 km) to the south of the satellite fixes(Fig. 3-16-2). The troublesome secondarycirculation was no longer discernible after b.approximately 12 hours and satellite analystswere able to locate the primary circulation.Enhanced convection and the intensetrough were the key low level features contributingto the genesis of Vanessa. TWOother contributory features were a midtropospherictrough and an upper level anticyclone,both of which were in positionsfavorable for.tropical cyclone development.Initially, Vanessa had outflow tothe southwest and the northeast.The wind currents exiting the Asianlandmass split with the major currentbeing diverted north of theridge while the weaker currentpassed south. This weaker southerncurrent was not sufficiently strongenough to maintain the northeastoutflow channel and no other outletswere available to connect Vanessato the westerlies. Thus, onlysouthwest outflow was maintained.In addition to the loss of an outflowchannel, Vanessa’s northeastwardprogression was blocked bystrong ridging associated with alarge 500 mb anticyclone over.theMarshall Islands. The ridge forcedVanessa to steer due north. SinceVanessa initially formed at a,ratherhigh latitude subsequent northwardmovement brought her rapidly intocontact with upper level shearingcurrents.The mid-tropospheric trough approximatedthe position of the surface trough. Severalcirculations were embedded within thistrough, including one over the surface positionwhere Vanessa formed. In the uppertroposphere, an anticyclone had existed overthe area since 15 August. Vanessa, therefore,possessed the vertical alignment of amature tropical cyclone from her inception.(Similar conditions existed during the formationof Tropical Storm Phyllis (12)).By 190000z, Vanessa was devoid of convectionand the extratropical transitionwas completed. The completely exposed lowlevel circulation continued to be visibleon the satellite imagery for sometime as itcontinued to track north and eventuallymerged with a mid-latitude system near 40N165E. It was finally no longer discernible.as a separate entity by 21OOOOZ.FIGIIRE 3-16-Z. Sa.t@?iXei.mzgezg(oh 1621OLIZ,.@~1 &hoting.thtexpobed becona’my ticuht.ion aufthe convectiveOJLeabocia.ted @h the developingTO-16[ VanUAa). (NOM 6 v.iwdtig~y)67


,,,A.\‘i;l“’’’’” l’” ‘S’’’lal ‘l’) ln,a~ ill’,.. . ... , . . ... . ,,, .,. .,, . ,,.... - -.. . .- -,. . . . .,. . .- -.. . .- -,, ,; i ‘:: ‘,, yj “i ‘~y’ :1 ‘“” ;-: . “; ,:,*,Q ,08..- . . . . . .@.,. - . .- -,. ,., 1..- -.. . ,- -,, . ,,. . ,.. - . . . . - -,. . ,- .,. . -.. ,- -.. . . . -.. ,. -.. . ,- -,. . SHAN< ,HA!O, ,,, .,.- -. ..,. ... ,,- -.*, .Qe ●30‘, +., ,,. . ,,, ,-2 , I 1 )1 [ , , i. .#* .,, .7,...+.. . . .,.. .Ic!-cWAiL ---l&:\:~t ~ ,-,, . ...—. , —.. —~~ A“.-+.~?%+;,+7t-i+ONGKcf&&=’ “..% j ~=o ------- ‘‘-’ ‘-=’..0)m, ! I 1 t , I I t I t,{, I # t 1/ , \, 7);~ ‘. m .,C-”n. .- ‘J ‘/’!l. . . . ,.. . . . PT. $LAIR1I , II%’IIt...+”., tlm ,iI,‘/ qnyt”’””t/!.1 4 v’A+ ““ L’-///lx” ‘t t“ +. . LEGEND~ ~ 06 HOUR BEST TRACK POSITt~li


TROPICAI.STOW WARREN (17)The disturbance that eventually becameWarren developed within a monsoon troughthat extended across the South China Sea onthe 14th of August. Strong vertical windshear, caused by northeasterly flow at the200 mb level, inhibited development of thecirculation for the next three days. By the17th of August the 200 mb wind field weakened,allowing upper level features to develop,surface pressures dropped below 1000mb,and convective activity south of the disturbancecenter increased. Consequently aTropical Cyclone Formation Alert was issuedat 1715002.The system was initially tracking westwardat 05 kt (9 km/hr) under the influenceof mid-level easterlies generated by a stationary500 mb anticyclone positioned overSoutheast China. This anticyclone pkrsistedthroughout Warren’s life cycle and its intensitychanges were responsible for thevariable speed of movement (between 2 kt(4 km/hr) and 5 kt (9 km/hr)) seen prior tothe storm striking Hai-nan Island.By 1806002 satellite imagery showedthat Warren had developed an upper leveloutflow center and the first tropical stormwarning was issued. Most of the convectiveactivity was located south of the surfacecenter as were the maximum surface winds.Synoptic and satellite data also indicatedthat Warren’s vertical axis was tiltedsouthward as he tracked over Hai-nan.After passing over Hai-nan, Warren emergedinto the Gulf of Tonkin. Warren continuedto show indications of increasedorganization and intensification as hetracked over the warm water in the Gulf ofTonkin. At 18002 on the 19th Warren reachedhis maximum intensity of 45 kt (23 m/see)while over the Gulf (Fig. 3-17-1), a typicaloccurrence for most tropical cyclones thatmove into the Gulf of Tonkin. During thesummer months the gulf water becomes extremelywarm and thus provides excellent sourceof energy for transiting tropical cyclones.Warren made landfall near Nam Dinh,Vietnam, on the 20th of August and weakenedrapidly. The final warning on Warren wasissued at 1200Z on the 20th as it began todissipate over Vietnam.FIGlfRE 3-17-1. 7fio@2d~0/utfk&WtlWi.tfl matibtidacewid o~ 45 ti (23mfbec]pk.iok.to land@.LlOlj20Auglld,O1O2Z. [NOA4 6uA@?-imuc3uuJ)69


J,.,,. . .ir,/=“ ,+,- -... -.. . . --,. . . . . . ., . . . . .~n.! /--7 1--1 , ~J(J,, I1 I +1~_y. L&b ‘ ‘!w~:]BE1ST TRACK TC-18,- -. ... --. ,J . . . .- *,~- , -:-- J-,*4 26AUG -03 SEP 1981 :’”. ----““- ‘“’””- ‘“ MAX SFC WIND 95 KTS -“’”””,.. . ------Sn MINIMUM SLP 947 MBS ‘“”’-.. ,..1 1 ,1 , I , 0 tm--’l-,., ., ----,ti- -.. : :.. : :“::: :,:: ;:”:” ‘“ :,,l“””’ ,-, “’.,- . . .1::: .-. . . . .--..i:::: /’” . +’”110””. ..- ----- -.. . -,, ..-,W, , -- JIMA,, ,, -- .,. . -,, . ,. -, ,,2 , , I 1 1 , t t 1, ..”/“1,yyA~A* t-,”105° ““t@i.iARCUq ““”” ““”.\,,j)(Y. . . . . . . . t.$\\ . . . . . . . . . .‘/ ‘..\ .,..., ..! ..,,. .. .2 T.. LEGEND1.t; H 06 HOUR BEST TRACK----- -- .. A., . . .. r..*F ,,/f:A 5FWXS ur muvcmm IB INTENSITY/0’1.,“,,.l“””J--f+ . -++4EX’●?* DlsC POSITION AT XX/OOOOZoeo TROPICAL DISTURBANCE..0 TROPICAL DEPRESSION-- TROPICAL STORM— TYPHOON* SUPER TYPHOON STARTe SUPER TypHOON ENOPOSIT, 1 1-/ ,.-, f-A ,= , / / I I I {md / 1 , i 1, / 1= li?c$--?+-Q3;- ‘::::.’:/\.! !.


TYPHOON AGNES (18)In mid-August, after several weeks ofactive cyclogenesis near Wake Island (WMO91366) which spawned Tropical Storm Susan(14) and Vanessa (16), an upper-level ridgebuilt over the latitudes north of the MarshallIslands and further activity was suppressedfor several days. At 2300002, satelliteand upper-level wind reports showedevidence of an upper-level trouqh buildingwestward from the dateline and during thenext 36 hours, a well-defined Tropical UpperTropospheric Trough (TUTT) cyclone developedin the vicinity of Wake Island. This uppercyclone induced an area of extensive, butyet unorganized, convection southwest of theTUTT cyclone. Gradually, as the convectivearea moved westward, a weak upper-levelanticyclone became evident northeast of Guam,Concurrently, at 2512002, the mid-troposphericwinds reported from Guam becamenortherly, and 12 hours later, shifted tosoutheasterly as the system moved just northof Guam. On 26 August, while a reconnaissanceaircraft conducted the initial investigationof the developing system, the 2600002synoptic data indicaced a possible low-levelcenter approximately 150 nm (278 km) northwestof Guam. Based on these data, aTropical Cyclone Formation Alert was issuedat 2605002 and,at 2613807Z,the investigatingaircraft located a 1006 mb surface center215 nm (398 km) northwest of Guam. Duringthe subsequent period, satellite imaqeryshowed improving convective organization and,at 2618002, the first warning was issued forTropical Oppression 18. (Figure 3-18-1shows TD-18 shortly after the first warningwas issued) .FigwLt 3-Ig-1. TIop.id Vcpmubion 16 at 2622212AUG .Locatecl 360 nm [667b-m]wti.t-notihuut06 Goam.ThLA .i.maguy ~houua pou%z&ty expo~ed .Low-leuelticulat.ion on the notih~.i-de 06 an ex,tetiiuemeaofjconvection.(NOAA6vi&uzlimagtiy)71


At 2706002, TD-18 was upgraded to Tropi- ‘cal Storm Agnes when aircraft reconnaissancedata showed a 994 mb sea level pressure atthe center and measured winds of 46 kt (24m/see) at flight level (15130 ft (472 m)).The first three warnings on Agnes (TD-18)forecast a westward trajectory toward theBashi Channel, south of Taiwan. Eowever, by271200Z, the analyses and numerical prognosticseries indicated that the 500 mb ridgenorth of Agnes had not built, and would nOtbuild as far west as originally thought.Thus, the forecast track was changed to amore northwestward direction toward Okinawa.While moving toward the west-northwest andintensifying along climatological norms,Agnes was upgraded to a typhoon on the2900002 warning. At 300600z, Agnes passed90 nm (167 km) southwest of Okinawa and thenbegan a turn toward the north along thewestern periphery of the subtropical ridge.(Figure 3-18-2 shows Agnes south of Okinawawith maximum winds of 85 kt (44 m/see) andintensifying). At 31OOOOZ, .170 nm (315 km)northwest of Okinawa, Agnes reached a peakintensity of 95 kt (49 m/see) which wasmaintained for 12 hours then, after 3112002,all available data indicated that Agnes hadbegun a weakening trend.F.igu,zc 3-18-2. TyphoonAgnti [20054~7AUG],locatedjl&bOuth 06 Okinawa,wi,thmaximumti 06 ~5 ti(44mfbeC] and apptoatinghm twztium inteti~ 0695 U (49mlbec). Agntihad developed a laxgebanding e.yewhich ihttitiagag and ai.JLOta&dutaumld bhow a.4a muchmohe compact cewtml dea.tu.ze.(NOAA7 u.i.bual..hnag~)72


Prior to 0206002 September, the forecastscenario had anticipated Agnes would interactwith a mid-latitude trough south ofKorea and then accelerate northeastward.However, ,as Agnes moved north of 30N, therewas no evidence of the anticipated acceleration;instead, there was increasing evidencethat Agnes was losing much of her deeplayeredconvection and a premature extratropicaltransition was underway. (Figure3-18-3 shows the O1OOOOZ September 200 mband 500 mb streamline pattern near Agnes) .As Figure 3-18-3 indicates, there weresignificant opposing mid– and upper-levelcurrents over Agnes and by 01C900Z, satelliteimagery showed the last evidence of anuPPer-level circUlatlOn pattern over Agnes.In post-analysis it was determined that Agneshad lost much of her tropical characteristicsby 0118002. However, since there were noaircraft or synoptic data close to Agnes toconfirm this apparent transition, warningswere maintained until 0306002 at which timesynoptic data from Jeju-Oo (WMO 47184) confirmedAgnes’ character and that the threatas a significant tropical cyclone to Koreaand Japan had passed. Although the systemremained well south of Korea until 3 September,much of the southern portion of SouthKorea was being inundated with the heaviestrecorded rainfalls in this century, up to28 inches (approximately 71 cm). This adverseweather preceded the low-level centeras the heavy rains and thunderstorms weresheared northeastward over Korea. Becausemost of the earlier forecasts had predictedAgnes moving over this region by this time,much of the potential damage from theserains may have been averted by the precautionstaken well before the heavy rainfallsand flooding began. Finally, as a relativelyweak wind system, the extratropicalremains of Agnes passed through the KoreaStraits and into the Sea of Japan on 3 and4 September without any known reports ofsignificant wind or sea damage in the region,F.iglule 3-18-3. At 010000ZSEP,TgphoonAgnehWUAZmaXed neah 30.2N123.2Ew(thmuxinumw.i.ndh o~ 85 &(44mfhec). HowevM, a AZ%Ong200mb &Low o~ 401050 H [21 h 31 mjhec) UM.A evident ovez the 500 mbCL4edAti.on.ThiApoa%m.n,a.tteadgunde,tatuj~0.1 24how, continueddotthe next36 how akting whichAgnehZo&Z ha fiopicd cha.tacten,&t&A and weakenedcyclone..toawuzk extzaa%opica.t73


l“:rl’’’’ ,.. l’’’’’ ;., l/’r’l:l’”L’rr’ ,.. ,. Pf. l’” .. l.... ‘.@:H.IT:l’M-”r NAN””+“r’~~~+ “+..+,.,./’+/ ..+. .,+~v. ---- --- -, .;/ ,7- -- - :- --..--.. .--.. 4- -- -’””- ““- -“””-, [ ,d.&Q?-.#w’. - _’. - -.. J .,, ,.-4 1 ,.4,+ I~/,,b“ /- - *07bz” -“”’- -“””- -“”’- ““””-+07,*-,, ,,- -,, .,- --- --- -“L. ..,- -,, . . ----- ---- --- -..1 I---- -...+”--“- -“- -“’””--;’”- -’”’”- ‘“’”’-.,, ,- .,, ,.- -,. .,- -,, , .- -, 06 --’”- -“”””- -“’””--., . -- ,,, -----_ ”:,: ----- ---..-: ::: .;:: -.:’”:TYPHOONBILLBEST TRACK TC-1903 SEPT-07SEPT 1981MAX SFC WIND 85 KTSMINIMUM SLP 959MBS +,,. --.. .,.. , .... ,. -.. .t 1 I1.-, . . . -.. .+125° 13(Y’~.t’-f- -r-ti!i6J’MA” / “ ‘ ~+~ Iv” ‘-~- ‘“””” ‘-””’”LEGEND ‘“”” ! : r If?’”” ,x U$luu t K@ a9 A- -.. .- -.. .,,_ ---- -,l-+ 06 HOUR BEsT TRACK pOslT --“.”- --”A SPEED OF MOVEMENT ,..B INTENSITYC POSITION AT XX/OOOOZ -‘“”””- ‘“””J5B - ‘ “- -“””. . . TROPICAL DISTURBANCE . ,., .,..● . . TROPICAL DEPRESSION,A 1 1 I 1 t , I I, ,-- TROPICAL STORM,rSAiPAd— TYPHOON ,.- -.. .- . . . . --,. .,. ..,.* SUPER TYPHOON START .40 SUPER TYPHOON END GLL&y””’” ““’ “’” “’””+++ EXTRATROPICAL..- . ..! .- -.. .- -.. -.. .● ● , DIsslPATING STAGE“eEN EUETAK* FIRST WARNING ISSUED ,,lH, -‘“”””’- ‘“”” ‘“; ;;’: , ,-A LAST WARNING ISSUED [ I G I , , , IYap.+....+... “+”””+”””+-..I“fi+ ,/:p:;/,,,,~, ... -Jq::f:!,::/:kN? .... ..” ““’0’●5’- -..\;, ,, *, .-.,8...,,. . . . . . . . . ..s. 1,,.,0.0s,.. .-r-.3 170” 175”,,. ,. -.. .[, ,9WAKE - -’”” “’”’,.. - . . . .-, . .,,.. . .-. .I , , !1 1 I 1 t... - . . . .,. . . . . -----.,, . - -., . . . .,., . - . . . .-. .,I 1,.. ---- .KW~JaALEIN ,,, ,,., . ~.+___MAJUHU. . . . . .,,t:””,, .!, t ,!!. .,.,.r,..,,


TYPHOON BILL (19)Without the benefit of satellite dataTyphoon Bill may have gone undetected sincethe initial disturbance formed 295 nm (546km) east-southeast of Marcus Island (WMO47991) and only came within 120 nm (222 km)of that island at 06002 on 3 September. Thedisturbance was never discernible in thesynoptic data observations from Marcus Island.Bill remained a compact system throughoutits duration. Figures 3-19-1 thru 3-19-4illustrate the life cycle of Bill from a timenear the first warning until its final hours.The steering for Bill was provided by theflow around the mid-tropospheric sub-tropicalanticyclone to the east. Speed of advance(SOA) forecasts were particularly good duringthe period of Bill’s recurvature and eventualextratropical transition when Bill graduallyentrained into the mid-latitude mid- andupper-level westerlies. Using a method developedby Burroughs and Brand (1973), operationalSOA forecasts were extremely close tothe post-storm analysis values.Unlike larger storms which tend to createtheir own environment and move sub-tropicalsystems out of their way, Bill reacted to theenvironment and maintained a tight gradientbetween himself and the anticyclone until hewas north of 28N at 0512002, where weakeningbegan. Once this occurred, the maximum observedwind speeds correlated quite well withthe wind/pressure relationship of Atkinsonand Holliday until-extratropical transitionoccurred.First detected at O1OOOOZ September,Bill’s convection covered a small area,approximately 150 nm (278 km) in diameter,and had an associated small mid-level cycloniccirculation. This mid-level systemslowly built down to the surface and thendeepened rapidly. Environmental pressureswere generally near 1009 mb; however, aircraftreconnaissance at 030807Z found a993 mb central pressure and winds of 70 kt(36 m/see) northeast ~f the center. TheAtkinson and Holliday (1977) wind/pressurerelationship indicates that a 993 mb centralpressure would support a mean maximum windof 45 kt (23 m/see) . The higher wind speedin Bill was the result of an extremelytight pressure gradient between the stormand a subtropical ridge to the northeast.HGURE 3-19-1. ,TJLoP.id ~OMl ~fi &t 50 & (26m/AtC) hI-@I.A.Lty, 3 .Sap.temba1981,16052. Th.iA-imqI ‘W dfzow-tti 8.i.UWA a compact 4 ybtem in the&V&y btigti . (NOAA7.int(wadhwwl75


FIGURE3-19-2, TgphoonW at g5 & [44m/bat}i.nfenbi.tg, 5 Sep.temba19gl,17242. Th.ib&gagAonM &W al peak intendtg kaA mnwined a compactb!i~~~. (NOM 7 .@uvwd .imugcty]76


FIGURE 3-19-3. Typhoon Bi4Y d 75 k.t (39 mlAec).in&v@ty, 6 Septembu 79gl,,042gZ. fkteRi.Utibegintigto etin coLdCWL &com.tht&Lon.tal Ay&tt?Mto -thenow%. (NOAA 7 ViAUd ti9WY]FIGURE 3-19-4. ThoP.&a2 .%tOIJll &i-t-t at 40 kt [20rnf~ec].intw~, 7 Septembw 1981,0416Z. Tti*W bhovJd - jubi ptioh z% the ibhuanceo~ theRa&twtn.i.ngand the extIw.&op.&aZ tititionlng .iAalmo~~ comple-te. [NOM 7 viwd .inuge-fey]77


.,,{ . y ,lL/A .G~, -M . . . . .,, . ... ,.., jib ,L~f f“,;,●:$-:. .&:1; :. -“’”:. ABEH .’. :,● 1 II d+= 1; , ti o .10 .10J U m ihlmwcllv 1..//1.w“. ‘WJ%.A l . . .. L.. VA. !’A. . .. T., ,, T.,. ,7, . .Ẏ . _’j=j~’*~E? POSITION AT XX/OOOOZJfi..l:-NT+--T; ”i”5wz””w ””””’”’”. .T“;~,i,,,c.QT - .0. .,.. . . .wOEEfl --“””.TRUK . . -..&. . -- TROPICAL STORM. . . . -..!. . -.. . ,. -., . .- -.. .* I I- SUPER TYPHOON STARTr 1 r , , t0 SUPER TYPHOON END


TYPHOON CLARA (20)Clara was first detected on satellite under the upper level trough and furtherimagery at 16002, 11 September near Ponapedevelopment was not evident based on satelasan area of concentrated convection embed- lite imagery during 13-14 September. Howdedwithin the monsoon trough. No develop- ever, near the end of the initial 24 hourment was noted during the next two days asperiod, convection flared up and the disturthedisturbance tracked westward at 9 ktbance began moving west of the trough so the(16 km/hr). TCFA was re-issued at 1419232.A Tropical Upper Tropospheric Trough(TUTT) had been evident on the satelliteimagery and was analyzed from synoptic dataon the 200 mb streamline analysis northwestof Guam for several days. This feature hadinduced a large area of upper level divergencein the vicinity of the disturbancewhile some troughing and vertical wind shearwere induced by a second TUTT cell analyzedto the northeast of the disturbance. Therelative position of the disturbance to theupper level feature prevented significantdevelopment by restricting available outflowchannels.As Clara continued westward and movedpast the trough axis it became apparent thatthe potential for significant developmentwould increase as it moved into the upperlevel divergent area induced by the TUTTnorthwest of Guam. Satellite imagery at1318002 showed increased convection and organizationwhile synoptic re~rts indicatedsurface winds of 15 kt (8 m/see) near thecenter of the convection. As a result aTropical Cyclone Formation Alert (TCFA) wasissued at 131935Z.During the next 24 hours Clara rerainedAfter passing about 210 nm (389 km)south of Guam, slow but steady intensificationtook place as a 200 mb anticyclonebecame evident over the disturbance based onstreamline analysis on 15 September. Thefirst warning was issued at 150600Z with astraight westerly forecast track based onthe 500 mb steering flow induced by a midtroposphericridge north of Clara. Claracontinued to track west-northwest and attainedtropical storm intensity by 161800z.The warnings issued between 15 and 18September continued to forecast Clara totake a westward track to eventually crossLuzon while, in fact, Clara was moving westnorthwest.The forecast reasoning appearedsound based upon synoptic analyses that depicteda large sub-tropical ridge to thenorth of Taiwan, producing a strong easterly500 mb steering flow over Clara. However,streamline analysis of the 500 mb chart onthe 18th showed a weakness in the ridge westof Taiwan with a second anticyclone oversoutheast China. As a result of this newanalysis, future forecast tracks steeredClara towards the break in the ridge witheventual recurvature west of Taiwan in responseto the deepening trough moving intosoutheast China.F.@uxe 3-20-1. Typhoon c.&AJzo.t 0521z, ~9 Sep@nba1981,&t ]75 kt [5gm/Aec],16how btdote Mobbingthe notihm tip o~ Luzon. [NOM 7 vhua.t.imsgtiy]79


During this same period Clara had intensifiedrapidly as she attained her maximumsurface winds of 120 kt (60 m/see) sixhours prior to crossing the northern tip ofLuzon at 1922002 (Figures 3-20-1 and 3-20-2).Upon entering the South China Sea it becameapparent that Clara was not going to recurvebecause the anticyclone over southeast Chinahad moved northeast displacing the weaknesswest of Taiwan and preventing recurvatureto the north. Clara responded to thesechanges and remained on a northwest trackmaking landfall 140 nm (259 km) east-northeastof Hong Kong at 2120002. After makinglandfall Clara dissipated rapidly as sheaccelerated inland into hilly terrain.Fi.gaht 3-20-2. TgphoonC&aIUZat J937Z,20 Sqztembu1981,a-t85 kt 143m/bi?C], aboti 24 h~ UIWLcnoA&Lngthe nozthehntip o~ Luzon and appZoti’@3.50 nm (657 km) no-t oi Ma. (~o~ 7-i.@uvceri.imagwg)80


Clara was a devastating storm as shecaused extensive damage to property andcrossed northern Luzon causing widespread crops. A Philippine Navy destroyer and adamage and loss of life in eight northern cargo ship sank 330 nm (661 km) north ofLuzon provinces. Torrential rains caused Manila leaving 68 persons missing (Fig.floods which left thousands homeless and 3-20-3).F.LgwLe3-20-3. U. S. Navy pex.bonn~Me 4een onboatd-thePh.i.iXppkne Navy Ve-btzoqat Va.tuKalan.@auJdwing tcmve,tq opez.atinnb. ThedcMtogm w&onecd aground on Calaganlbhmi by Tgphoon Cta.ta.(U. S. May Photo bg PH2 P. ?3.Soutatl81


)1oanmrvy ., .,.. . .N131vrv”Mn,@ . . . .,, I r , t,.. . - . . . .- -,. , ,. -.,,. . . ... ,- .,. , .- .,t3dVNW.0. .SSW *96 dlS WfiWINIWt“’’F’\’’’’if10 si’’’’1t”’?19’d’ t”’’?19’,. ..- -.. . .’~~ . -..,. - -., .- .,, , .- -.,,. .. ,. . . . . .- .lZ-21 13Vtil ma i -“’:@;1)2;2 ~)E, 1 I I ,, 1 t. . . . - -...,. - -,, , ,. .,, . . ...- ... . ,. -,, .,.. , - . . . “.- .. . . - ... . .- -. ~. ..-. . . . - -,, , .- -, ”,,. . . . . . .- . . .-:‘T’’’!”AIISNUNI1N3W3AOW dO a33dSllSOd XWiU 1S38 MnOH 90 MaN3931$●**4440+—--● ✎☛0.03av\L. oP ,+;‘d,”.. ..ma). . . - -., . ,- -..- -.. .,.. - -! . . .. . . . - -,, . ,., . - -., . .- -.. . .- -.. .x,., - -.. .,.. .,,. . . .%s --””’- -“”- -“”’- -’””,.. . _ _.w+—t+—t— ~;n. ..” # - -,. .-, .!“ ““”’ “’””... .-.w;08L .&L1 C.OL1 .s91 .091 .$s1 .0s1 J2P1 .Obl &El JXl .GZL .4


TYPHOON LKIYLE (21)Typhoon Doyle was the second midgetstorm of the 1981 season and followed (TyphoonBill (19), the first of the midgetstorms) by less than three weeks. Lbyleand Bill were very similar in size, intensityand track. Doyle was also unusual inthat all of the warnings were based onsatellite imagery analysis.Doyle was first detected as an apparentmid-to-upper-level disturbance early on 18September near 25N 178E. The disturbancebuilt down to the surface as it driftedwestward at 8 kt (15 km/hr) . A TropicalCyclone Formation Alert was issued at1906002 when low-level cumulus bandingbecame apparent on satellite imagery. Thefirst warning was issued at 2006002 basedupon Dvorak analysis of visual satellitedata which indicated that Tropical StormDoyle had an estimated intensity of 35 kt(18 m/see).Doyle initially tracked west-northwestthen recurved around a mid-troposphericanticyclone. As Doyle recurved he becameentrained in strong westerlies and acceleratedrapidly northeastward. Doyle thenstarted to weaken over the cooler watersnorth of 30N, finally losing tropical characteristicsnear 3SJN 172E when the systemmerged with an existing front. TyphoonDoyle was never larger than 180 nm {333 km)in diameter, even though the maximum intensitywas 80 kt (41 m/see) (Fig. 3-21–1).83


120” 125° 130° 135” 14P 145’ 150° 155” 160”+ B INTENSITYC POSITION AT XX/OOOOZ, 0.. TROPICAL DISTURBANCE● ** TROPICAL DEPRESSION-- TROPICAL STORM( — TYPHOON0 SUPER TYPHOON START+ O SUPER TYPHOON END+++ EXTRATROPICALsat DISSIPATING STAGE* FIRST WARNING ISSUED* LAST WARNING ISSUED5T.__.J/..+


SUPER TYPHOON ELSIE (22)Following the northward progression ofTyphoons Clara (20) and Doyle (21), the nearequatorial trough became very weak and diffusewith very few areas of concentratedconvection during 19 and 20 September 1981.By 2106OOZ two areas of significant convection,one near 10N 170E and the other near5N 155E, signaled the re-establishment ofsubstantial activity. The signal, however,appeared to be false, as convection alongthe trough dropped dramatically during thesubsequent twenty-four hours. One smallconvective area, approximately one degree indiameter, remained near 8N 150E at 2206002and surface/gradient level wind data at2200002 identified a weak but well definedassociated circulation. At 2307002 an initialTropical Cyclone Formation Alert (TCFA)was issued for this convective area followingfurther definition of the disturbance bysatellite data which showed a fairly wellorganized upper-level anticyclone (ULAC)located above the low-level circulation.This action was taken despite the failure ofaircraft reconnaissance to find anythingsignificant. A second TCFA was issued at2407002,following a more successful aircraftreconnaissance mission which did locate thelow–level circulation. Continued improvementof the satellite image, supported by theaircraft findings, culminated in the issuanceof the first warning on TO-22 at 241800z.In retrospect, Elsie (Fig. 3-22-1) was avery well behaved cyclone. The major pro-Fi.gwce 3-22-1. Tti 2805202m.te2.&iXe photo hhouuSupeJLTyphoon E.X.ejuAta&timac!aing a peakintatitiy0{J50k.t(77mlhecl, At .thd .Z.ime ECb.teWA Located 615nm [1139km]wut-not.tkwtit06 Guam.{NOAA7 VibU.dti’@85


luate each segment of the track, the apparentforecast reasoning at the time, and the per-formance of the one way interactive tropicalc’yclonemodel (OTCM) in predicting progressioninto the next segment.blem faced by JTWC was one of timing thesignificant segments (Fig. 3-22-2) of Elsie’strack, each of which represents a differentresponse to the surrounding environment. TheaPproach of this discussion will be to eva-cl” 175° 130” 135° 140” 145° 150” 155”c0..1 ●**--— TYPHOON* SUPER TYPHOON STARTO SUPER TYPHOON END> +44 EXTRATROPICALo** DISSIPATING STAGE~ ~ FIRST WARNING. A LAST WARNING ISSUED /l—/- .d,06 HOUR BEST TRACK POSIT ~ ‘“ “- ~ “- “G-#SPEED OFMOVEMENT.- . . .+. -.,INTENSITY+$POSITION ATXX/OOOOZ,.. - -.TROPICAL DISTURBANCE - ““”$+TROPICAL DEPRESSION#I I . , 1- 1 ,TROPICAL STORMI6I,% :: f:~-:+$ +-I--*-“’ ‘“ “j ; 2500002., 2612002, b1 1--t‘+”.“. /.,n“J. . . ..-~,“1“+j% ‘\”””’?.*.J2. ...412 53%%“”1:‘>,.“T,&t I ml--i-q&‘0’””’P-lfl- ..+1cn---l-b.~. ...%l-’-?v“”” .,.,,,! - ! ! .-0! .A’Ak “’{’-V‘ti~T?-Ts --------=4s2!,.., 1 , 1 1234525000022612002261S00227180022812002~2v.. -., ,,- ‘-6 30060023018002NOT AVAILASLS. . . .t 1 1 1t,,. ~. ,. --. .- .~M’ ““”’ “’●’””” “’””,..“’1 1 1 1 1 11 1tY:P. -. . . . . 24 90;0 --00 ‘“’”-SEGMENT J-. ,.., :-. ---PALAU IS 8e.wOLEAI+“t” . . t . . . t,!. . ,.!! ,,, , ,,!. .Figwrz 3-22-2. E.U.it’btittiCk ovet.taqed wilhJTUC and OTCM ~onecadh. FoAecadb .i.iZ&A-ixded htiebnmkd &i.gn.idicant changti in E.hie’b di.tehon o{Inovemelzt.xlTRUK ‘t. ‘-, !!. ! II;,,“Pm


Segment #1 (2418002 - 261800z Sep 81):During this period, which begins with theissuance of the first warning, the JTWC 500mb analysis placed the subtropical ridgeaxis between 20N and 23N with no breaks alongElsie’s predicted track. Analysis from FleetNumerical Oceanography Center (FNOC) agreedon the placement of major 500 mb synopticscale features. FNOC’S 500 mb forecast builtthe ridge and the resultant OTCM predicted awest-northwest track. JTWC continued thisforecast trend through warning No. 9, issuedat 261800Z.Prognostic reasoning bulletins were callingfor an eventual shift toward a morenorthward track, however timing was the bigfactor. JTWC’S analysis showed the buildingof the ridge; aircraft reconnaissance tracksnorth of Elsie continued to yield support tothe JTWC forecast. FNOC’S forecast did predictmovement of a major 500 mb trough eastwardover Japan. Height falls associatedwith this trough showed up on JTWC analysisat 2600002, coincident with the appearanceof a break in the ridge near 20N 135E, aposition northwest of Elsie’s 500 mb cyclone.The break was most likely induced by thetrough to the north and the presence of Elsieto the south of the ridge.Interestingly, the OTCM made its firstchange in track at 2612002 by suggesting amore northwestward track. By 2618002 theOTCM had definitely locked into a northwesttrack, however, it was not until warningNo. 13, at 2718002, that JTWC’S warnings relinquishedwest-northwest movement for themore northwestward track shown by the OTCM.Segment #2 (2700002 - 301200z): FNOCand JTWC analysis of 500 mb data, and supportfrom aircraft reconnaissance, continuedto confirm the break in the ridge, which wasfostered by the deep trough over Japan andElsie’s enlarging 500 mb circulation. Respondingto this induced trough, Elsie beganto track north-northwest for a period of 48hours. JTWC forecasts through this segmentof Elsie’s life not only predicted the movementtrend well but also predicted transitioninto the next segment of Elsie’s track,the recurve.Warning No. 16, issued at 2812002, representedthe first warning that truly fitsthe segment 2 profile and predicted thechange of track to segment 3. FNOC analysisand forecasts, as well as the JTWC analysis,defined the synoptic pattern extremely well,such that the JTWC forecasts were very consistentin their call for recurvature.Post-analysis has shown that in anticipatinga recurve, JTWC’S forecasts were conservativewhen compared with the OTCM and theactual storm best track. The conservatismof JTWC was based on the belief that theweak 500 mb winds (15-20 kt (8-10 m/see))south of Japan would allow Elsie to penetratefurther north before encounteringwesterlies sufficiently strong enough tocause deflection northeastward. FNOC forecastsalso showed no major trough movementat 500 mb that might lend support to anyother forecast track. In fact, FNOC forecastsgenerally favored development of azonal flow over Southern Japan. OTCM forecastsalso drove Elsie northward towardJapan.FNOC forecasts of a trough moving eastwardoff Asia did not indicate deepening,thus the most representative forecast wastoward Japan. However, significant deepeningdid occur; the OTCM forecast for 3006002Sep (Warning No. 23) was the initial indicatorof this influence on the forecasttrack. JTWC’S forecasts had predicted therecurve all along, but now began to convergeon a tighter recurve pattern and finallystablized, by warning No. 25, at 301800ZSep.Segment #3 (3018002 - 0205002 Ott 81):This portion of the storm track began withElsie accelerating rapidly northeastward andended with extratropical transition. TheFNOC forecasts, once they picked up thetrough, deepened it significantly, as analysesat JTWC and FNOC eventually bore out.Elsie accelerated up the leading edge of thetrough and by 0206002 had transitioned intoan extratropical system. It is instructiveto note that not until warning No. 30,issued at 0200002, did JTWC make its finaltrack change and forecast the disturbance tomove north-northeast, up the back of theridge. The OTCM had predicted this tracksome twelve hours earlier at 0112002.JTWC warnings up to warning No. 30 continuedwith the northeast track thus sendingthe system through the ridge. The JTWCwarnings that continued to forecast eastwardmovement did have sound basis, since Elsieismovement as indicated from satellite andaircraft data continued to be northeast.This movement also placed Elsie within asteering regime that, based upon 500 mbanalysis and forecast, should have kept Elsiemoving northeast. The problem was the resultof sound forecast logic based upon a faultyprognostic chart series. The 500 mb forecastseries failed to adequately handle an advancingtrough and the rapid building of theridge ahead of Elsie. Once these forecastsbegan to reflect the changes, the JTWC forecasterwas faced with making a decision basedupon two significantly different 500 mb patterns.The first was the consistency of thelonger established forecast trend, with itsnear zonal pattern, and the second was therather abrupt change to this pattern whichwas first suggested in the 36 hour 500 mbforecasts valid at 0212002. The apparentradical change in 500 mb steering caused bythe sudden deepening of the trough and amplificationof the ridge was not “bought” by theTyphoon Duty Officer, the OTCM did however“buy“ the change by 0112002. This finaltrack predicted by the OTCM was followed byElsie through her extratropical transitionand subsequent merger with mid-latitude,migrating systems.The OTCM handled the final segment ofElsie’s life quite well just as it did withthe earlier stages. In summary, this singlecase study indicates that for this particularcyclone, the OTCM appeared to “sense”the environmental changes to which Elsieresponded from 12-24 hours prior to thembeing reflected in the JTWC forecast.87


L . ..... ,,-tt t t1 J. 1TROPICALSTORM FABIANBEST TRACK TC-23130CT - 140CT 1981MAX SFC WIND 45 KTSMINIMUM SLP 990 MBS:~$”1Q,. . .1“”,+,,. .sHAN HA!o ,.‘X.1”t“’”” tt,.,OJco* k, ) 1re. ....-....-,.. -....-.,1!!!. .,t ........-F.. ,.,....● . . TROPICAL DEPRESSION-- TROPICAL STORM— TYPHOON* SUPER TYPHOON STARTO SUPER TYPHOON END++4 EXTRATROPICAL. . t DISSlpATING STAGE~ FIRST WARNING ISSUED%,& .... .,.#,.-“{~:“/:*:~QQ;;;;[


TROPICAL STORN FASIAN (23)On 6 October, satellite imagery indicatedan area of active, but unorganized,convection northeast of the Palau Islands.During the 5 days that followed, the convectivesystem moved westward and remainedunorganized until just prior to making landfallon Samar Island. As it tracked overSamar, Cebu, Negros and Panay Islands, thedisturbance lost much of what little convectiveorganization it did have, howeverduring this period, the affected centralPhilippine Islands reported torrential rainfalland flooding, although surface reportsshowed virtually no low-level wind circulation.When the disturbance entered theSulu and South China Seas, it once againshowed signs of reorganizing and at 1211OOZ,a Tropical Cyclone Formation Alert wasissued.As it traversed the South China Sea, thedisturbance continued to develop althoughavailable surface observations showed smallpressure falls near the system. Reconnaissanceaircraft at 1306002 reported a 1002 mbcenter pressure and a closed circulation,prompting the first warning for TropicalDepression 23. Subsequent satellite imageryshowed continued convective organizationand at 1312002, TD-23 was upgraded toTropical Storm Fabian. The storm continuedto intensify during the next 12 hours,reaching a maximum intensity of 45 kt (23m/see) at 1400002. Figure 3-23-1 showsFabian while at maximum intensity and 9hours prior to making landfall just south ofCam Ranh Bay, Vietnam. As Fabian moved intoVietnam, surface winds weakened rapidly andby 15 October, the system could no longerbe detected from synoptic reports or onsatellite imagery.F.@w 3-23-1. FOWLdayba,$tem.initidetection,Twpi.ca.t StomnFabian.iAlocated100nm (lg5km] WAX06 Cam RuthBag, V.&Xnam,LIZa peak.in.tenbitg 06 456X (z3m/~ec]on-thd 140005zVtcembtimMW.te&a9L. (NOAA6 vimidimagwyl


,----- ,.. -- ,;; ‘:; .- !,, ,,,, ,-— ...-,- . . . . . .,. . ,,. . -.,--” /- :-L..i J’;>-’-’: -, -,- -.. . .- -.. .- -,, . .- -.. ., I1I .3 .,. LEGEND‘~ 06 HOUR BEST TRACK POSITA SPEED OF MOVEMENTB INTENSITYC POSITION AT XX/OOOOZ,., . 0.. TROPICAL DISTUREIANCE. . . TROPICAL DEPRESSION-- TROPICAL STORM— TYPHOON,4+ SUPER TYPHOON STARTO SUPER TYPHOON END ,,. .JLL--Tl.ll.ll–4++ EXTRATROPICAL,.“f ;iy;wJllfi&_,.. . . . ...,1 . . . .110”115° .‘/,.. .,..SHAI., I r !!,+00”””1+50””1.””/. .TYPHOONGAYBEST TRACK TC-24/II 140CT -230CT 1981,r,65 ..,, ,.- -.,IWO JIMA @- ... .:,75.50 ~.. T,, MA R.cuT..l\. ..\ l/.. .l, J-/, . . ..L.&T’. . . .‘).5‘/Ii !i--‘2+‘+‘“”’””~’” “’ - ““”” :’+ -35” t..95. ,.. . (012. .- -.. ? ! Y. \+DTG SPEED INTENSITY ldw5 ‘w “O ‘ 10.s . . . .,. ,. /.// 11 ,1-,.’ - .1(5< .4*2A‘“ IL-,-~7la18 .1618Z 55KTS‘9,0.9 ;[_j:i :, :1:.. - -8“o””:;;\ /l:*- n?


TYPHOON GAY (24)Typhoon Gay was a harbinger of goodtidings for the island of Okinawa, providing5.89 inches (14.96 cm) of rain as she passedsome 95 nm (176 km) to the southeast.Locked in a severe drought, Okinawa residentshad been suffering under strict waterrationing.From its inception within an abnormallylarge convective area Gay was far from astraight forward system. Early satellitefixes were very unreliable, resulting in thevectoring of aircraft reconnaissance to thewrong portion of the convective area. Postanalysishas shown the actual “center” ofthe developing system was far to the westsouthwestof where it was believed to be.Figure 3-24-1 shows the system shortly afterinitial warning.Figute3-24-1. TKopicaL Vepmmion 24 (Gay],14Oc.tob~1981,16142. At.t/dtie -the i.nLt@2-g &h utti 06 30 M [15mldecl had been.ihbucd. The Ag&tem w qu.istig upgmuied to .ttop-katM2ulJn &ta.tlLA. The ci.zcutktton cent~ wcu apptotima-te.Q100 nm (1~5km} eab.to~ Guam. [NOAA7in@zted i.magety)91


As Gay became better organized she becamesomewhat more predictable, with aforecast for a generally westward track andfor an eventual recurvature around the westside of the prevailing mid-troposphericanticyclone. Figure 3-24-2 shows Gayduring a period when she took the slightsouthwest jog and loop shown on the besttrack in response to an eastward buildinganticyclone upstream from Gay’s location.Typhoon Gay remained a fickle systemurtil reaching maximum intensity (Fig.3-24-3) when a large eye finally developed.Until this timer the center of Gay wascharacterized by an unusually large area oflight and variable winds, further contributingto the problems of accurate location.Fi.gwLe 3-24-2. Tho@d.%ohltl&Uj, 17 Octobe)c 1981,0503z when bhe began the &igh.t bouthweduwd mowemetatand even.tmUy looped. (NOAA 7 V.LMRL tigw)Fi.gute3-24-3. Typhoon(%MJ,20 Octobti1981,O61OZatmztium.intenbi.tgod95k.f[49mfhecl, .bcated;P&-@7’ 420 ~ f 778 fun] U.5t-houthewt 06[NOAA 7 U.dld -&K@tg)92


Following recurvature and passage to theeast of Okinawa (Fig. 3-24-4), Gay continuedaround the western side of the mid-Pacificanticyclone and accelerated toward Japan.Eventually passing within 30 nm (56 km) ofTokyo, Gay brought extensive rainfall tothe central regions of Japan. YokosukaNaval Facility reported peak gusts of 60 kt(31 m/see) and 9.38 inches (23.8 cm) ofrain over the 24 hour period of Gay’spassage.A low pressure system north of Japanrapidly drew Gay northward and quicklyinitiated an extratropical transition withGay merging completely with the existinglow center.Figu.m?3-24-4. Typhoon Gag, 23 ktobeh 1981, 0559zbheaking Xhe &tough% on W&uuoa; cwtIvLoca.tLon hborne 120 nm { 1t5 km] eat-~outhea.t 06 the .Mand.(NOAA7 u.i.wa.timagtig)93


co.P + t. . --., . .-., ,.. ---- -.. .. . . . .-,, . ,. ... ,_., ,,- -.,. ..- -., . . ,., .--.. .- -- ----- ---- -- -- -’- -‘- -’”’#a$’” ‘“””- - ““ - -“”“, X4.klA. -., ,., - -, ... - ,W:! .-. ..,. -,. -,,115°+.. .+ . ...+ .& . . .. L.... -L=? 1! I , , Y QU ,till/.1,1.FK?!i’al\\i.1. . :,’:!:rI :~“Amixiiklw’fvixl )-r,4.r 1’::( ~:::- -::4::-,.- -.,..- -..,‘. “.” ‘“. .“1+1 --MT::::t.,, 16. .,.. , .LITHI#,.. . .. . .$ : ; ; ;WOLEfl,:, , -.. , . ,r-’+l‘GU MLEGEND.,.,.,.-r16(I# I~ 06 HOUR BEST TRACK POSIT)“A SPEED OF MOVEMENT,PEB INTENSITYC POSITION AT XX/OOOOZ. . . TROPICAL DISTURBANCE ~. . . TROPICAL DEPRESSION-- TROPICAL STORM— TYPHOON+ SUPER TYPHOON STARTO SUPER TYPHOON END I+++ EXTRATROPICAL. . . DlsslpATING STAGE -’-tk FIRST WARNING ISSUEDA LAST WARNING ISSUED.,.Lh’$1 i


TYPHOON HAZEN (25)Following two weeks with no tropicalcyclone activity in the northwest Pacific, adisturbance associated with enhanced convectionbegan to develop in an,elongated trougheast of Guam. At 1223472, November a TropicalCyclone Formation Alert (TCFA) wasissued as the system’s circulation patternimproved and an increase in convection wasevident from satellite imagery.Aircraft reconnaissance on 13 Novemberwas not able to close off a circulation, butthe convective features and the satellitesignature remained strong, so the TCFA wasreissued. Aircraft reconnaissance data at1400002 found a closed circulation with maximumsurface winds of 35 kt (18 m/see), thusthe disturbance became Tropical Depression25, with the first warning being issued at1402002. Aircraft reconnaissance later thatevening reported the surface pressure haddropped to 990 mb, prompting upgrading toTropical Storm Hazen with estimated maximumwinds of 40 kt (20 m/see) . Satellite imageryat this time showed the development of anintense, 150 nm (278 km) diameter, convectivemass.Forecasts during the early stages ofHazen”s rapid development predicted movementto the west-northwest at 7 kt (13 km/hr) inresponse to weak steering flow in the midtroposphere.Hazen was expected to becomeentrained into a frontal boundary associatedwith a strong mid-latitude low pressure systemeast of Japan. However, this did notoccur; the front weakened and moved to theeast. A mid-tropospheric ridge began buildingbehind the front, causing Hazen to takea westward jog and eventually forcing asouthwest track as the ridge intensifiednorth of the storm.Tropical Storm Hazen’s southwestwardpath took it over the northern tip ofSaipan between 1503002 and 1506002 (Fig.3-25-l). Maximum sustained~winds of 35 kt(17 m/see) with gusts to 62 kt (31 m/see)were reported by the Saipan weather office.Minor structural damage and many downedtrees and ~wer lines were reported.F.igu,te 3-25-1. TRop.iu2Stomn Hazen at 55 I&t (2Sm/~ec) hkn.&&j 110 nm (204 km) notiheat 06 Guom~ho~ a{tu tiok.ng Saipan, 1504302 Novemba.(NOAA 7 vhtdlmaguyl


Hazen then passed 60 nm (111 km) northof Guam at 151200z and began a more westerlymovement. Winds near the center were estimatedto be 55 kt (28 m/see) at this timebut only the weaker southern quadrants passedover Guam, where winds of 15 kt (8 m/see)were reported with some heavy showers. Thesesynoptic reports provided verification thatHazen was a very compact storm with windsof over 30 kt (15 m/see) extending no morethan 30 nm (56 km) from the center.Hazen was upgraded to typhoon strengthat 151800Z, 3 hours before aircraft reconnaissancereported surface pressures of 957mb and estimated surface winds of 90 kt (45m/see) . After passing Guam, Hazen rapidlyintensified to his maximum intensity of 100kt (50 m/see) as it followed the more westwardtrack. Early on 17 November Hazen beganto interact with a mid-latitude troughand was drawn northwestward into an area ofincreased vertical wind shear. Hazen weakenedas the upper-level outflow channels tothe north diminished. As the trough passedto the east, Hazen resumed westerly movementand reintensified (Fig. 3-25-2).Fi.guu 3-25-2. Typhoon Hazcn a.t 85 k.t”(43/Ace).&&n&i@ 640 nm (11~5 h] wed o~ Ciuun. itazen4X~een hate intmting wi.ih the tiough tha,t euen-&z.Uy weakened Ifazento .thopi.col &Zomn btiength,1705492 Novembu. [NOAA 7 v.AaLimagtiyl96


As Hazen approached the Philippines aS1OW weakening occurred as part of his cir.culation was interrupted by the mountainousterrain of the islands south of Luzon.Hazen passed just south of CatanduanesIsland (WMO 98447) at 1912002 (Fig. 3-25-3)and entered the South China Sea 18 hourslater. Highest recorded winds were 65 kt(33 m/see) at Catanduanes Island. As Hazenentered the South China Sea no intensificationoccurred over the warm water due inpart to the severe interactions between thelow-level circulation and the mountainousterrain of southern Luzon; the loss ofstrength just could not be overcome. Hazencontinued to weaken as he tracked towardHanoi guided by a weakness in the 500 mbridge that was evident upon the 2112002streamline analysis. Hazen continued tomove toward the weakness, eventually makinglandfall 150 nm (278 km) east-northeast ofHanoi and then dissipated over the hillyterrain of southeast China...F.tgu.te 3-25-3. Tfiopi-cd stow Haz~n at 55 k-t (23ttt/bCC] 125 nm [232 km] Aouthu$ Od W wemoving Aou.th o{ Luzon, l~~801Z Nouwb~. (NOAA 7&lfJluZed .ima@g)97


t“ t t~J--t-t-LEGEND~ 06 HOUR BEST TRACK POSITA SPEED OF MOVEMENTB INTENSITYC POSITION AT XX/OOOOZo.. TROPICAL DISTURBANCE● co TROPICAL DEPRESSION-- TROPICAL STORM— TYPHOON* SUPER TYPHOON STARTO SUPER TYPHOON END4++ EXTRATROPICAL“~ ?1ij;pl!4’&flGA%.IED 1~.T!T LAST WARNING ISSUEDI.+ 4+155°, lyf. 195°,,. . . .,. . . .14201I. . -.. ...- -..@WAKE.- -.. .,- ...1 , , , #,,. , . -.. .- -.. .. . .!“ ,t. . . . 1.I’”*1 , ,r1LN:p;..,.!I-””d”” . ..O ●;.[...19/0OE%P~AK >1 .- -- ,ti, \ 1 r “TCFA , I 1 ,v arI,tw-uIII .. . . o-ABE ~..q5c>o .,,. . .KWAJ$,LEiI1 1 II


SUPER TYPHOON IRMA (26)Super Typhoon Irma was the second ofthree tropical cyclones (Hazen(25), Irma(26), and Jeff(27)) to form in an activeequatorial trough between 150E to 170E near10N during the middle weeks of November.Reaching a maximum intensity of 135 kt (69m/see) and a minimum sea-level pressure of902 mb, Irma was the strongest of the threestorms, and fortunately, also the best “behaved”and the easiest to forecast.when the area of enhanced convectionthat eventually became Typhoon Hazen formednear 10N 165E on 10 November, a zone ofstrong convective activity, located between8N and 10N, stretched eastward from 165E to150W. During the following week, westwardpropagating cloud clusters, as referenced inRuprecht and Gray (1976) supported by convergencein the low-level easterly flow plusa strong upper-level divergent pattern,could be seen forming and dissipating alongthe entire zone. Throughout the periodneither the data-sparse regions east of 170E,nor the satellite data, suggested the existenceof a low-level circulation. Synopticdata along the western periphery of the zone,between 160E and 170E, did indicate thepossibility of several minor troughs, orsmall circulations, propagating from theeast. Similar synoptic situations existedfor each of the three systems, i.e. Hazen,Irma, and Jeff; there was also a fourth circulation,detected on 12 November near 10N161E. This latter system quickly dissipatedbecause of the immediate proximity of thedeveloping Hazen, a stronger cyclone.The convective disturbance that spawnedSuper Typhoon Irma was first mentioned inthe Significant Tropical Weather AdvisoryBulletin (AEEH PGTW) on 15 November. Synopticdata indicated a circulation east ofPonape (WMO 91348) at 7N 163E and satelliteimagery showed that a westward moving cloudcluster in the area beginning to develop anupper-level anticyclone. However, as thesystem moved north and then west during theensuing three days, the convection fluctuated,then weakened greatly. A large clearsubsidence region which extended 600 nm(1111 km) eastward from Typhoon Hazen seemedto hinder any further development (as it didfor the 12 November circulation) . However,by 181200Z Hazen had moved far enough to thewest for the convection to once again increasein intensity as well as organization.A Tropical Cyclone Formation Alert (TCFA)was issued at 181641z (Fig. 3-26-l). Thefollowing morning, an aircraft investigativemission found a central sea-level pressureof 1003 mb with 30 kt (15 m/see) winds andthe first warning was issued on TropicalDepression 26 at 190000Z.FIGURE 3-26-1. TRopicai? Dcptti&ion 26 appaoxima.tt%y300 nm [556 km] w.t 06 L%am juZ &O%~O the @Atw. Note the good outdlom pa.tttin developingwith.tti ~g~tem,1~ Novemb~, 2156Z. [NOAA 6in~med tiga.g)99


FIGURE 3-26-2. TILop.&al ~OJIJIIhml VM?.LVL h dObLb.tappkoack to Gum, 19 Novembti,2132.Z.Th& wt.enbiono~ ctouh jub-tnohth04 l?omam abbotied with a@onta.t by4f’2m A.&h uub uf.bo neitiz i.tb ctohtbt ap-Paoach -to Guam. (NOAA6 v.ihualAna.g+?hy)Tropical Storm Irma passed just north ofGuam at 1822302 (Fig. 3-26-2). Fortunately,at this time, the storm was intensifyingvery slowly and the strongest winds wereaway from Guam, in the northeast quadrant.In fact, Guam did not receive its strongestwinds until nearly 8 hours later (29 kt (15m/see) , with gusts to 43 kt (22 rn/see), atthe Naval Air Station, Agana) when the stormbegan to deepen west of Guam.Based upon the experience gained fromTyphoon Hazen, JTWC’S initial forecasttracks ignored the temptation to forecastan early recurvature into an advancing frontjust north of Guam. Although westerly windsnorth of 20N were in excess of 60 kt (31 m/see) and 80 kt (41 m/see) at 500 mb and 200mb, respectively, it was deemed, that as inthe case for Hazen, the strongest westerlywinds associated with the froqt would passtoo quickly to affect the storm. Furthermore,it was predicted that the strongnortherly low-level flow beyond the frontwould force the storm back on a more westerlyor southwesterly track. (JTWC’S forecasterrors for Super Typhoon Irma of 76, 118,and 141 nm (141, 219, and 261 km) for 24, 48,and 72 hours, respectively, were excellent -nearly half the long-term mean) .When the frontal system passed Irma andmoved off to the east, the ridge at 500 mbbuilt to the north and west of the storm.This ridge persisted along 18N throughoutIrma’s track towards the Philippines. Althoughthe ridge was quite narrow and elongated,it appeared to shelter Irma from theeffects of the strong westerly flow north of20N. JTWC was able to monitor the strengthof this ridge with the aid of several 500 mbsynoptic tracks flown by the 54th WeatherReconnaissance Squadron (Fig. 3-26-3).100


-2?7’-i-i1.FIGURE 3-26-3. The 2100002 h!ouembti 500 mb itk~-’&W2 iVZU&Jbh. Wind Ap4Zed.3OJLein kno.tA. Vatataken along 14N LULea JTWC mquated 500 mb ~ynopfictick.The 202254z weather reconnaissance missionfound that Irma’s pressure had droppedto 968 mb with 68 kt (25 m/see) surfacewinds (85 kt (44 m/see) , 700 mb flight levelwinds) and that a 40 nm (74 km) diameter eyehad developed. (In post-analysis, Irma wasupgraded to typhoon status at 201800z). By2109OOZ, aircraft data was applied to JTNC’Sempirically derived relationship betweensea-level pressure and 700 mb equivalentpotential temperature (Dunnavan, 1981) andsuggested the potential for rapid deepeningbelow 925 mb within the next 12 to 36 hours.Twenty-four hours later, the aircraft reconnaissancemission verified this predictionwith a 905 mb minimum sea-level pressure,low enough to qualify Irma as a Super Typhoon(Fig. 3-24-4). It is interesting tonote that during the time of Irma’s greatestdeepening, another cold front had passedapproximately 500 run (926 km) to the north.The 200 mb data indicated a 120 kt (62 m/see)jet maximum, associated with this fastmoving front, had passed just north of Irma(at 30N). This jet, along with a 50 kt(26 m/see) easterly flow to the south of uIrma supplied her with two excellent outflowchannels. Irma remained at super typhoonstrength for near 16 hours before slowlyweakening as the western half of the circulationfield began to interact with theouther edges of the Philippine Islands.Although Irma steadily weakened beforemaking landfall at 240900Z with 85 kt (44 m/see) winds about 60 nm (111 km) northeast ofManila, she still caused widespread destruction(Fig. 3-26-5). Reports from thePhilippines indicated more than 200 deathswith hundreds injured and a damage estimateas high as $9 million. This included thealmost total destruction of 4 coastal townsin the province of Camarines Sur, 170 nm(315 km) southeast of Manila, due to 50 foot(15 m) storm surge waves and the capsizingof a ship in Manila Bay.101


102


As Irma approached the Philippines, JTWCcorrectly predicted that she would begin tomove in a more northwesterly direction towardsa break in the ridge just west ofLuzon near 20N 118E. Synoptic data overSoutheast Asia indicated the approach of asignificant trough as evidenced by southwestwinds of 70 kt (36 m/see) at 500 mb and 80kt (41 m/see) at 200 mb occurring as farsouth as 20N. These indicators seemed topresage a situation that offered the bestopportunity for Irma to recurve.Irma lost her typhoon strength winds at2412002 just before entering Lingayen Gulfand the South China Sea. Aircraft reconnaissanceten hours later found the stormmoving north and poorly organized withstrong convection and winds only on her northside. By 2509002, Irma’s upper-levels beganto shear towards the northeast and Irma beganto recurve into the Luzon Straits inadvance of the trough moving off of Asia.Irma managed to linger on for another twodays before finally becoming absorbed into acold front at 2700002 just south of theRyukyu Islands.


LEGENDt%~..,... I . . . ... 1 . t “t . t . . . t“ ,. i.:” ,...0=+,.. .,‘* .


TROPICAL STORN JEFF (27)Tropical Storm Jeff was first detectedas a distinct surface circulation throughsynoptic data analysis on 18 November. Jeffdeveloped from the second of two majordisturbances that formed in the wake ofTyphoon Hazen (25). The first disturbance,Super Typhoon Irma (26) , was a determiningfactor in Jeff’s development, intensity andtrack.The first warning on Jeff was issuedon 23 November. This was during the periodthat Irma dominated the wind fields of thewestern Pacific (21-25 NOV) . Irma’s stronglow-level inflow was the major steeringforce in the early part of Jeff’s life ashe followed Irma across the Pacific (Fig.3-27-l). Strong outflow from Irma createdan upper-level east-west ridge that stretchedacross the western Pacific. Because ofthe expansiveness of the ridge and the smallareal extent of JeffBs convection, he wasprohibited from reachinq favorable outflowchannels.Jeff, due mainly to a lack of upperlevelsupport, never intensified beyondminimal tropical storm strength (Fig. 3-27-2).Jeff’s initial movement, as a weak di~turbance,was northwest towards Guam, followingthe low-level flow into Irma. Jeff reachedtropical storm strength on 23 Novemberr justafter turning west towards Guam, eventuallypassing 15 nm (28 km) north of the island.Jeff’s westward acceleration, just prior toreaching Guam resulted from a mid-troposphericridge that had built eastward fromTaiwan. Maintaining an intensity between 30and 35 kt (15 to 18 m/see) , Jeff continuedwestward until the forecast recurvaturethrough a break in the ridge occurred near130E. Jeff dissipated over water on 26November due to increasing upper-level windshear. The final warning was issued whenaircraft reconnaissance could no longer discerna surface circulation.I I .. IFIGURE 3-27-1. .Wz{ace (~)/gMti@ (=1Leu&L &tiea.mL.ine andy&i.6 ~ok 230000Z NOV bhOW@ z%c&wJ-&ue+3 I$LOW into SupeA Typhoon Dvna. Th.iA ~lowpa2tanacXed aA&w+kveLbteaing iohk~d.: --f-. .~.;,:.:,:,~ ... # .: ;iti;’’: fl”’’’i’t”’t’ ‘; ’’’’’ ”- fi-FIGURE 3-27-i?. 200 m b.tteUn&h? Wldtfb.d d 2212002Nouembti. No&?-the bmadtigeac.to~h a%ewtitexnPad&ic. Wind data axe a combination Wonde,AlREPS, anddczte.U.LZe dtivedwti [~ ].105


~1 \..\DTG SPEED lNTENSITY819/002 80 17’619/06Z 754 1619/12Z 70419/13z 60 15462orl/ooz 50.’EXTRATROPICALDISSIPATING STAGEFIRST WARNING ISSUEDT=?I*,+j3$5p?. D‘.%.?’: ,%’LAST WARNING ISSUED,- -., . -... . .- -., . .-.. ...- -.. . . .. . .. .-..--.. . .- -.. . -., . .,,. ,., .. .-.. .- -.. .- -.. . ,- -, . . -..t ,r r r r I I (6.T%- -- -“’ ”,” -’- -’””,...,. . .--.‘\%*,--e,.. . .~.’- -. ”,- -.. - ._ ... .- ,,,.-., . .1 } t?1 A I I ‘“. I kwQe+-JrJ 1


TYPHOON KIT (28)Typhoon Kit was unlike most Decembertropical cyclones in that it had a prolongedlifetime (40 warnings) and attained a maximumintensity well over 100 kt (51 m/see).Kit’s origin was not uncommon for late seasontropical cyclones; during early Oecember, thewinter near-equatorial trough had establisheditself south of 10N as the tradewind easterliesmerged with northeasterlies from higherlatitudes placing the westernmost extensionof the trough in the Philippine Sea. Eastward,lighter winds were observed turningcyclonically within the trough and, as earlyas 4 December, surface analyses suggested apossible low-level center developing southwestof Ponape (WMO 91348). on 7 Eecembex,the Significant Tropical Weather Advisory(AEEH PGTW) discussed an area of disturbedweather southwest of Truk Atoll (WMO 91334),but the associated convective pattern andobservational data were not conducive tofurther action for another two days. At091930z, based primarily upon the improvedconvective organization as revealed onsatellite imagery, the first of three TropicalCyclone Formation Alerts was issued.On 10 December, a reconnaissance aircraftconducted an investigation in the we’sternperiphery of the trough and the opportunityto close off a circulation center was lost.Satellite data (Fig. 3-28-1) and subsequentaircraft reports suggest that the centerexisted just east of the area investigated.At 101845Z, a formation alert was reissuedfor the same general area. Later satellitedata and aircraft observations indicatedthat the center had moved northward, thusat 102325z the third formation alert wasissued. Reconnaissance aircraft finallyclosed off a circulation center near 10N 148E(110348Z) and at 110443Z, the first warning’on Tropical Depression 28 was issued (Fig.3-28-2). The 111200z warning upgraded TD-28to Tropical Storm Kit based on aircarft data(l10723Z) which indicated tropical stormstrength winds in all four quadrants.F.QuILe 3-28-.1. Ative cmve~nmuwwd adeveloping kho-&evet cen.tu. W@ W pw.iod, aZ.SQOtibSnU ainaadtinveb.ti.ga.ted Zhewtanmohta..tea but did not @ash the convective cen.tm u depictedon &zteL&Lteimagvy, 1004432 Vewmbm. (NOAA7 Vi.mat.inlagety}Figuh,e 3-28-2. Tkop.LcaLUepta&&m 28 at.thetimeoftie &0L4.t&ng. Note the extended CiJLJUU C&X&on theuti.teznhide. SiX.onguppet-tevet ea4.telXia3UWU.U cotie to ewi.t comZ&x.abLe P.vahme onTV-28 [W} dot anothel 2 1/2dagh. TM,, mob.t o~the abbo~ed convection w &placed in ticwebte,tnalo-.il@ui4 o~ the &cuLatiOn, 1I0430ZVecembm. (NOAA 7vi.Aua.t.imagwyj107


The initial warnings indicated that Kitwould track slowly north-northwestward untilapproaching 12N then, as the system interactedwith mid- and low-level easterlies, amore westward track was anticipated takingKit just south of Guam. Although Kit maintainedthe forecast track, the speed of movementremained at or below 4 kt (7 km/hr) forthe first 30 hours of warning status. Havingnot fully anticipated the exceptionally prolongedslow speed, all reconnaissance aircraftwere evacuated to Clark AB after the120849Z fix to avoid the expected destructivewinds on Guam. As a result, warnings issuedduring the ensuing 25 hours were based entirelyon satellite data. Howeverr duringthis stage of development, Kit was not wellalignedin the vertical and the main convectivemass was displaced to the west of thelow-level center. Thus, nighttime infraredimagery had to be scrutinized for subtle detailswhich could help locate the low-levelcenter. Figure 3-28-3 is typical o% thenighttime infrared imagery used to fix Kitduring this period. Thanks to the effortsof satellite operations personnel from Detachment1, lWW, Nimitz Hill, Guam, the fixesreceived during this period were highlyaccurate (never more than 15 nm (28 km) fromthe final best track) and the warnings issuedfrom this data followed Kit closely as shefinally accelerated on a west-northwest tracksouth of Guam.Just after Kit passed south of Guam,reconnaissance aircraft indicated a centralpressure of 992 mbs which revealed that noappreciable development had taken placeduring the 25 hour period between aircraftpenetrations. However, during the two daysthat followed, Kit intensified and reached apeak of 105 kt (54 m/see) before weakeningslightly to 95 kt (49 m/see) at 160600z.Figure 3-28-4 shows Kit early in this intensificationperiod. During this period ofFiglule 3-28-3. In@vuzd inw.gehywhich~howhTaop.icalStofvJI ~’b &vcge conwmtiveWbb, howeveh,the@&~=:hadeA on the eabteknAidehhcw lowm. lltL&.&gthe beda.ta, V& 1, lkWbddkli.te andgb.t.b ptov.ided acwra.te @eb &g at%n~t~ptid wtihou,t a-i.t&’@t $i%ti , 1210032. (NOA4 6 .i.@med .imagvyl108


F’igwLe 3-2,%-4. An .inten&i&@? Typhoon U, .&ma-ted165 nm (306 km] wed 06 Guam. Note ihe textiitedCtoud pat.t.vwl. O&ten he&?A.ted to ab ghavitg u&vu,.thae &atJ.uLeA ate daequenttg beenin @&f.2y devel.op-ing.tzop.icd cqetoneb &ok .to the developed otfan eye. About 14 houm I.oXe.t. K.il’b eue w Li.tA.tdetected, 1322192 Decemba. i NOAh 6 vi.buz.t iiagtig]intensification, Kit turned sharply northwardand once again slowed to a speed of movementof 4 kt (7 km/hr) . Kit’s northward movementpresented JTWC forecasters with a majordilemma. From the very first warning, Kitwas thought to be an eventual westward mcver.The strength of the low-level northeast surgeoriginating over Asia had previously dictatedthe tracks of Hazen (25), Irma (26) and Jeff(27). There had been no appreciable changein the mid-latitude wind regime since thosetropical cyclones, thus, a similar scenarioseemed very appropriate. But Kit’s movementwas seemingly in defiance to the synopticsituation. When the 1420052 reconnaissanceaircraft data located Kit at 14.3N, the141800z warning was amended to show recurvature.However, at 1500002, the synopticdata showed renewed strength in the northeastsurge (Fig. 3-28-5) and accordingly, near1512002, Kit turned westward once again. At1612002 the forecast that abandoned the conceptof eventual recurvature was issued.With hindsight it is fair to say that virtuallyall the ingredients were present toallow Kit to recurve~ except one. Theeffect of the low-level flow could not beovercome, and despite the presence of a midlatitudetrough just north of Kit, there wasa limit to her northward movement.Following the resumption of a westerlytrack, Kit began to reintensify as she movedinto a position that allowed strong upperlevelwesterlies to provide an excellentoutflow channel to the northeast (Fig.3-28-6). At 1708302, a reconnaissance aircraftmeasured a 924 mb central pressure, orapproximately 115 kt (59”m/see) maximumwinds based upon the Atkinson and Holliday(1977) pressure/intensity curve. During thenext two days, as Kit began interacting withstron~er mid-tropospheric westerlies, shestead~ly weakened and by 1918002, had losttyphoon force winds. On 18 December, Kit109


II64Mw4Y’-%Q-Y”7i’”’+/‘rt.,,, t:::t,,:, t,:, f:::],,:. .F.igwLe3-2g-5. Swtdacf2 andgmuiien.tleuetdataat150000z Uecemb#z wilh M%eamtint anatghi.b ~howing anew~uzge06 highptemtie movingo&j o{ notihm.teznchina. lkmingthe do.ttow.ing 12 houtphod, .thibbwzga e~hetivetly dmed-oijd any po.ten.tial tjo~ Kit totecuzve and onceagtinioaeed hti on a WLAtihmk.,Figwce 3-28-6. Typhoon W neazpeak .&tenbi.a2j (115U [59 m/Mel]. ~iXtl&&J &O{ Ki.t ’b Ol@tOW.ihinto the uppet-.Lev&web-tem(?.ieb. ThibA tie mobtcommonpatte.ftn tjoa.ta.te b&Z40t2 tgphoovu al highen&ztitudeb, J70502ZUecembm. (NOAA 7 ui.wd.imagmg)110


was once again in position where, because ofthe presence of a deepening trough overeastern China and a break in the northeastsurge, she might again jog north and pssiblyrecurve. Thus, from 1806002 to 1918002,the forecasts showed an increasing tendencyfor a track toward recurvature near 125E.However, by 2000002, it became obvious thatKit’s low-level circulation had failed tolink-up with the approaching shortwave troughand the track toward recurvature was onceagain abandoned. It was about this time,that aircraft and satellite data began showingKit’s low-level circulation center emergingon the southern edge of the main convectivemass. Within hours, Kit’s mid- anduPPer-level features weakened and begandrifting northward into the shortwave trough.The low-level center, now fully exposed,turned southward under the influence of lowlevelnortherlies which followed the shortwavetrough off of China. At 2007432, areconnaissance aircraft located Kit’s lowlevelcenter 110 nm (204 km) south of the2000002 warning position. The 2007432 aircraft,as well as 2005202 satellite imagery(Fig. 3-28-7), showed Kit’s entire circulationpattern enveloped in a heavy stratocumuluscloud deck. Later infrared imagerycould not identify the circulation center,but at 2021572, the final reconnaissanceaircraft mission located a weak low-level,center near 13N129E. Downgraded to TropicalDepression 28 at 201800z, the fortieth andfinal warning was issued at 21OOOOZ. During,the 36 hours which followed, a weak low-levelcenter could be identified moving southwestwardinto Mindanao, Republic of thePhilippines.111


I ,,,H::S9W8ti6 dlS WflWiNIW “ .“Sl)l S6 aNIM 24S XVW1861xa 6Z -33a &Z6Z-21 13V?11 lS3d-#., .--, . . ... .,, . . . . “v; ,, -- -:/,.. ,., ,. ... , ,- .,, ,- .,, ,L I 1 I I 1 I ,,*., ~ iy”. .Nvn~ , - -., ..- -,, ,.- _., .,- -, .,,,, ,.. . ... ,. -,, , .,, . ,.,NOOHdAl ● - - 0°22”-““”’- “’””- “’”- ““”- -“’”’- -“’””;..’ &j -., b.’ . *“ +;,; - - -’- --- . . . . ... ,, .,,c,. .,. OAYO1 -. . .. . . .-. .,.. -. .,- .. . . ..- -,, .,_ -. .,,- -, .,,- -, .,,. . . . ~. ..,_ -. --.. , ,.- .,. . ...k :, F$ “ \T $ : -: ; ‘ ‘:: ~b--


TYPHOON LEE (29)On 21 December, as Tropical Depression (WMo 9 413) reported a 5 mb pressure fall28 (Kit) was dissipating in the western ina9 hour period, a Tropical CyclonePhiliDDine Sea, an area of convection beqanFormat, on Alert was issued for the developing .-organ~~ing west of Truk Atoll. Strong -system.northerly winds, previously feeding into Kit,began moving toward the eastern PhilippineSea, thus closing the western end of thenear-equatorial trough southwest of Guam.On 22 December, reconnaissance aircraft dataindicated near-gale force tradewind easterlieshad penetrated to 8N and to the southof the convective center. However, both the220000z 500 mb analysis and a portion of the700 mb aircraft data indicated a mid-tropospherictrough was present southwest of Guamin a virtually convection-free region. Asingular 700 mb height from the reconnaissanceaircraft showed an extrapolated surfacepressure of 1002 mb near 9N 143E.The aircraft reconnaissance mission was notable to thoroughly investigate this trough,thus it was not possible to determine whetheror not a closed circulation had developed.By 221800Z, the convection had moved westwardand was located close to the mid–tropospheric trough. At 2221OOZ, when YapThe first warning was issued for TropicalDepression 29 when reconnaissance aircraftdata at 2205032 located a closed circulation;at 2212002, because of increasedconvective organization and reports ofstronger tradewinds north of the cyclone,TD-29 was upgraded to Tropical Storm Lee.During the first 24 hours in warning status,Lee moved west-northwestward in response toa mid-latitude shortwave trough moving offof Asia. Once this trough moved on, Leeturned toward the west into the Philippines.Lee intensified rapidly, reaching typhoonstrength just 18 hours after initialwarning and, subsequently, attaining a peakintensity of 95 kt (49 m/see) within 48hours . Figure 3-29-1 shows Lee during thisintensification period. However, shortlyafter reaching maximum intensity, Lee begancrossing the Philippines and a rapid weakeningtrend followed. Just 24 hours after..FIGURE 3-29- J. Tgphoon Lee, now at 85 M [44 ml~ec],A &tenAitjyi.ng fuzpidtg whih appaoachLng the cenakztP1l.ilippineA . 12 how htez, ai.n#u@ &Ua had Leewith a 94~ mb buniace pawuze (95 k {49m/bee]),’241,%062 Uecembez. [NOAA 7.in@hed.imagwjl113


eaching 95 kt (49 m/see) , Lee entered theSouth ‘China Sea with an estimated intensityof 40 kt (21 m/see).The JTWC forecast tracks had accuratelypredicted a track between Mindoro and LuzonIslands, then into the South China Sea. Beyondthis point, the track was much moredifficult to forecast. The numerical prognosticfields were forecasting a deepeningof a mid-latitude trough over central Chinaand the subsequent development of a“Shanghai” low in the East China Sea. However,these same forecast fields were notweakening the prevailing northeasterly flowover the South China Sea in the lower-levels..Because the forecast significant pressurechanges over eastern China would certainlyaffect Lee’s westward movement, the optionfor a more northward track in the SouthChina Sea was indicated as early a: thefourth warning (2400002). However, as Leetracked westward, the forecasted deepeningof the mid-latitude trough was delayed oneach 12-hour numerical forecast series. At2620482, when reconnaissance aircraft 10-cated Lee still tracking westward and thedeepening of the trough had still not materialized,the 2618002 warning was amended toshow a more westward track toward centralVietnam and south of a small high overHai-nan Island. Within 12 hours of theamended warning, surface/gradient levelwind reports in the region showed a lesseningof low-level wind speeds as the previouslystrong northeast monsoonal flow offof Asia moved eastward and more directlyaffected the Philippine Sea. Although”notyet forecasted, the effects of the approachingmid-latitude trough were finally changingthe synoptic situation and accordingly,Lee gradually inched toward a more northwestwardtrack.The aircraft data received on 26December indicated a 990 nm minimum sealevelpressure at Lee’s center with a banding-typeeye present. Although the bandingfeature remained for several days, Lee’ssurface pressure steadily climbed and reached998 mb as reported by the 2714062 reconnaissanceaircraft mission. On 27 December,satellite imagery began showing the effectsof increased vertical wind shear on Lee; andby 2800002, all of Lee’s deep-layer convectionand upper-level outflow had been advectedwell east of the low-level center.On the 28th, surface wind reports showed aweakening of Lee’s circulation as surfacepressures throughout the northern portion ofthe South China Sea continued to increase.Despite Lee’s more pronounced northwardmovement, it was not until the 2806002 warningthat the JTWC abandoned the westwardtrack forecast. Lacking throughout thisperiod was an appreciation of how much thelow-level wind regime had changed and thatLee was.moving. .northward in the absence of-Y s19nlflcant low-level steering. Thewestward track was continually supported bythe usually reliable One-way InteractiveTropical Cyclone Model (OTCM/TCMO) whichshowed a slight northward jog before assuminga west-southwestward track. Finally,when fix-to-fix data from visual satelliteimagery showed a northward movement in thesix-hour period up to 2806002, the JTWCforecast swung around to the north. Althoughthe numerically forecast “Shanghai”low did not develop in the East China Sea,the effect of the mid-latitude trough on thelow-level wind flow was a significant factorin Lee’s northward movement, although somewhatdelayed.The final warning was issued at 290000zwhen visual satellite imagery confirmed whatsynoptic data at 281200Z had indicated: Leehad essentially dissipated as a significanttropical cyclone. Figure 3-29-2 shows theremnants of Lee’s circulation center located150 nm (278 km) south of Hong Kong.114


115


2. NORTH INDIAN OCEAN TROPICAL CYCLONES soon transition season as the “NorthernHemisphere storm season headed for its conclusion.One cyclone develped in theArabian Sea and the remaining two cyclonesThe 1981 North Indian Ocean tropical developed in the Bay of Bengal. Tables 3-6cyclone season was near normal. Three and 3-7 provide a summary of North Indiantropical cyclones developed durinq the mon-Ocean tropical cyclones, Tropical CycloneFormation-Alerts-and warning;. “TABLE 3-6NOR’IMINDIAN OCEAN1981 SIGNIFICANT TROPICAL CYCLONESCALENDAR MAx EST NUMBERDAYS OF SFC MIN OF DISTANCECYCLONE PERIOD OF WARNING WARNING WIND(KT) SLP WARNINGS TRAVELLED(NM)TC 27-81 30 OCT-02 NOV 4 60 979 13 993TC 29-81 17 NOV420 NOV 4 75 964 12 595TC 31-81 07 DEC-10 DEC 4 75 964 16 10881981 TOTALS 12 41TABLE 3-71981 SIGNIFICANTTROPICALCYCLONESTATISTICSNORTHINDIANOCEAN JM FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TmMALL CYCLONES o 0 0 0 0 0 0 0 0 1 1 1 3(1971-1980)AVERAGE* 0.1 0 0 0.2 0.6 0.3 0 0 0.5 0.7 1.4 0.3 4.0FOMM’ION ALSRTS3 of the 5 (60%)FormationAlert Eventsdevelopedinto numberedcyclones.WARNINGS Number of warning days: 12Number of warningdays with 2 cyclones: ONumber of warning days with 3 or more cyclones: 2●From 1971 through 1979, only Bay on Bengal cycloneswere considered;the JTWC area of responsibilitywas extendedin 1975 to includeArabianSea cyclones.116


.Oa. 056.s ‘006 & 8 cm &~ a .s9 .09 0ss as .Wi 1 , , I I r I 1 I i I 1 , , 1 I 1 I 1 I. . . .. . . xao[ - J300t :::. .; :::. ‘:::. .: ;:;- -::::. -::;:. -.:::- .: :::-.:::S3N012A2 lV21dOlil. . . . . . .NV330 NVlaNl HlllON ::;. .; ::;- -:;;:. .: :::. .: ::;. .: :::. .:, . ..- . . . . . .+ t ,, , , , 1 t1- -1%’”- ‘“”””- “-””” ‘“””o””- -“””- -“. - -“A- ------ -. @..- ----- -.. --. . . . . ,.. , . . . . -.. . . .-.. . . .. . . . ,. -., . . .. . . . . . . . , .,. . .?. -,,e.- -.,.- .. -,,- -, . . . .-,, ,.. . . . . . .. . . ..- -., . . .. . . . . .. ....-.,. . ....,..- -,. . . ..,. . . . . . . .,, . .> ..- -.. . . .-.. . .- . . . . .- -..5, (1 ,,1 1. . . . . . . . . . .- -.. . .- . . . . ‘.- . . . L-.e --., . .- -. ...)A\‘:-’?ii.....y$-. . . . .- . . . . . .. . . . . - . ..01-@l+ 1%w. r 1‘- - ‘ “ ‘ ‘8-’s -31’””””’””-%’v ““” .“’” -“’ --- . . . . . . . .“ “&f&’ ~ “& “::f#’:~::O~::O: ‘‘!?-+---,’O+’ ‘“’”’I ‘ ‘‘“++’ ‘?=-3,:--,---,-~...~. ..+\ -”. .# -.. . . . . . . . . . . ./-,1 .’~,\j-f-+k,&l ua?. ~,;\.....-“.””- -“””’”‘:=&+4-&4- “”””.””.” .’=-K. ”-:. . . . --..Iiii::: :I:YLXL:::!kJ,--4,, ,,,: ,JB..+. .\/--y+,. . . + . . . . +./’. ..+....+. . ..+#,,,: ,,,, :1.. .-., . . .-., ..- -, . . . .. . . . .WJ 69’” 4“- -.”.’- -“”’ “- -..”- -“”.’


TC-27-81The system’s movenent was slow and erra-tic while it was embedded within the weaksteering currents to the south of the 500 mbbreak; however, by warning number six(3108OOZ Ott 81) TC 27-81 moved into a regionof stronger steering and moved steadilytoward the break. North of the break TC 27-81 encountered strong westerly flow near 20N,recurved northeastward and dissipated overland, south of the Gulf of Kutch, 3 daysafter cyclogenesis.TC 27-81 developed from an area of enhancedconvection thatmonsoon trouqh off theemerged from thesoutheast coast ofIndia. The Fleet Numerical OceanographyCenter 500 mb prognostic series forecasted abreak in the subtropical ridge north of thecyclone. This forecast mid-troposphericpattern formed the basis for the tropicalcyclone forecasts issued by JTWC, which predicteda north-northeast movement with eventualdissipation over land.60° 6!5° 70° 75°I x- l-—r—— I 1 Y, I I I,.“L’ “ - --...”- ‘- .1. - ~ -. .‘h . --. ~ . “; T J .- ~ ..‘-l.- - . , . .{- . . . . . . .-..‘‘ “1’ ~~\,I 1 I 1 ,. . . 45\ . . \A~ .k.ABc000LEGEND06 HOUR BEST TRACK POSITSPEED OFMOVEMENTINTENSITYPOSITION ATXX/OOOOZTROPICAL DISTURBANCE.o-4-+. . .,- . . . . d -. .- --9, 1 ,1 , , 1 I \o.- ‘29. . “1 \t“‘-1A , I t 11‘--,. . ..-. . . . . 4-jcoiotk. . . . .i...?....?..1 I I I u/ “ 6LA+...L/, ,+’-- ...85°-. . .&. . .. . .1 11. . . .- . . . . .- . . . . . . . .BEST TRACK TC-27-8i ~ . . . --. ..,- . . . . . . . .30 OCT-02 NOV 1981MAX SFC WIND 60 KTS : : : --::::- -:::::::, IMINIMUM SLP 979MBS #0°. . . . . . . .-. . . . .1‘:4118


TC 29-81Tropical Cyclone 29-81 developed rapidlyfrom an area of convection that first appearedon satellite data at 1521OOZ November.The disturbance which formed about 50 nm (111km) west of the southern Andaman Islands initiallymoved northwest, but then went througha 24-hour quasi-stationary period between1708002 and 1808002. The first two warningson TC 29-81 forecasted north-northwest movement,however, by the issuance of warningnumber three, mid-tropospheric wind datasuggested movement toward the north-northeastwas more likely. TC 29-01 finally headednorth-northeast once it resumed significantmovement and continued on this track throughlandfall (approximately 2018002) and dissipationover southeastern Bangladesh. All Cyclonepositions and intensity estimates werebased upon satellite data provided by Detachment1, 1st Weather Wing and Air Force GlobalWeather Central. Synoptic data, sufficientto define the circulation of TC 29-81, wasnever available due to the sparcity of landstations and the lack of ships in the areacoupled with the sporadic reporting of availableland stations.80° 85° 90’ 95° 100°r I I [ 1 I ILE:~ND :/xd .. ..l. ..Aq . ..lm”1. .06 HOUR BEST TRACK POSIT;\. \SPEED OFMOVEMENT \“ -‘-Y : yy -~j{:INTENSITY. . . .-< &JT”— ‘“ -POSITION ATXX/OOOOZ::>-fi~; . . . :TROPICAL DISTURBANCE ; - . .TROPICAL DEPRESSIONTROPICAL STORMi ITYPHOON . . . .SUPER TYPHOON STARTSUPER TYPHOONtND - “ “ .EXTRATROPICAL . . . .DISSIPATING STAGEFIRST WARNING ISSUED . . “ .LAST WARNING ISSUED -me,. . . .. . . .,. . . . . .. . . . . . . . . .J. . . . . . . . . . . .0-.”.- ‘. . . .- ‘.’.0BEST TRACK TC-29-8117 NOV-20NOV 1981 “ - -‘. ’..- ‘. ..”-- “.. ”MAX SFC WIND 75 KTS ‘ . --...”- -. .”.- -.. .MINIMUM SLP 964 MBS -‘. .”.- ‘. .-@.- ‘-.. . . . . . . . . . . . . ., 1 1 1 1I 1 , , 1 1Y,II1 .5°119


TC 31-81TC 31-81 was the second tropical cycloneto develop during the transition period ofthe monsoon season in the Bay of Bengal. Asa tropical disturbance it was’first detectedon satellite imagery at 0312002 December asit began moving westward from the MalayPeninsula. On 5 December the disturbancebegan to organize and surface pressures droppedto 1005 mb. A Tropical Cyclone FormationAlert (TCFA) was issued the following day asslow intensification continued. The firstwarning followed the TCFA by 24 hours andwas issued at 0702002.TC 31-81 moved erratically under the influenceof weak low- and mid-level steerinquntil late on 6 December when the systemheaded north in response to an approachingmid-tropospheric trough. TC 31-81 maintainedthis northerly track while reaching it’smaximum intensity of 75 kt (34 m/see) at0914002. Movement remained slow until the500 mb trough had passed far enough eastwardto cause an increase in the gradient at thelow- and mid-tropospheric steering levels.TC 31-81 accelerated in response to the ambientflow and tracked inland making landfall20 nm (27 km) southeast of Calcutta.TC 31-81 inflicted widespread destructionto fishing villages along the Bangladeshcoast and contributed to at least 92 deaths.LEGEND f’I , 106 HOUR BEST TRACK PO!jlTlSPEED OFMOVEMENT ‘=” “INTENSITY j .


CHAPTER ITZ - SUMMARY OF FORECAST VERIFICATION1.ANNUALFORECAST VERIFICATIONa. Western North PacificThe positions given for warningtimes and those at the 24-, 48-, and 72-hourforecast times were verified against thepost-analysis best track positions at thesame valid times. The resultant vector andright angle errors (illustrated in Fig. 4-1)were then calculated for each tropical cycloneand are presented in Table 4-1 Table4-2 provides the frequency distributions ofvector errors for 24-, 48-, and 72-hourforecasts on all 1981 tropical cyclones inthe western North Pacific. A summationof the mean errors, as calculated forall tropical cyclones in each year, isshown in Table 4-3 for comparative purposes.The data in this table is not to be confusedwith that presented in previous years wherethe sample was restricted to cyclones thatreached typhoon intensity and then had theforecast errors calculated only for thatportion of the life-cycle when winds weregreater than 35 kt (last published as Table5-1, 1977 Annual Typhoon Report). A C0371-parison of the results using the truncateddata set and these obtained for all tropicalcyclones can be seen directly in Table 4-4.The annual mean vector errors are graphedin Fiq. 4-2.TAMS 4-1. FORECASTERRORSUMF14RYFOR THE 1981WESTERNNOST31PACIFICSIGNIFICAN TROPICAL.CYCLONES(ERRORSIN NAUTICALYILESIWARNlNG 24 HOUR 48 HOUR 72 HOURPOSIT ST ANGLE # POEIT RT ANGLE * POSIT RT ANGLE 4 pOsIT ST ANGLE 8EsROR ERSOR * ~R ERROR W- = ERROR D B ESROR w-1. FX$DA 24 16 22 106 87 19 222 144 14 369 138 92. GERALD 40 27 18 161 104 15 289 212 11 426 368 73. HOLLY 22 12 30 86 36 29 1??7 38 29 204 46 294. 1s2 31 20 21 177 120 15 276 131 7 520 234 15. JUNE 19 11 22 119 62 18 227 108 13 196 88 56. NELLY 25 18 20 128 110 16 263 242 9 354 347 27. LYNN 26 14 19 104 34 14 102 55 10 138 88 48. MAURY 54 34 9 140 99 5 215 al 19. NINA 11 4 410. OGDSN 23 14 20 91 46 14 208 93 9 670 477 311. TC-3.1 90 50 7 1S8 113 312. FNYI.LIS 51 43 5 174 87 313. ROY 22 16 19 163 125 15 239 140 8 200 85 414. SUSAN 25 17 19 188 147 1’4 303 254 5 131 106 215. TNAD 27 21 29 155 73 26 234 129 22 335 183 1816. VANESS?, 31 20 8 184 143 5 354 49 117. WARSEN 32 20 10 65 40 6 82 64 218. ?.GNSS 20 11 25 104 76 21 167 132 17 244 208 1219. BILL 19 15 17 76 29 13 134 62 8 105 31 320. CLARA 23 13 29 80 55 26 177 134 22 226 174 1821. DOYLE 17 11 14 149 102 10 269 194 6 494 253 222. ELslE 18 9 31 97 69 27 213 135 23 377 234 1923. FAS1A!4 13 11 6 48 43 224. GAY 31 24 35 163 86 32 275 115 27 410 140 2425. HAZEN 23 12 37 130 73 33 263 114 30 361 171 2626. IRMA 18 10 33 76 55 29 118. .66 25 -241 77 2127. JEFF 33 13 14 18B 40 10 429 7’2 6 747 38 228. XIT 17 9 39 134 82 35 291 168 31 603 326 2729. LEE 21 16 22 100 75 18 112 66 14 90 62 10ALL FORECAETS 25 16 584 123 75 473 220 119 350 334 168 248121


LOWERLIMIT 24 HR 480 9 110 15 5720 2230 10 10575640 2650 2360 3070 2590139012100 *;;61101212016130 *;; 14148 16 13150 13 8160 12170 11100 13 *;;19a 97200210 13220 11 *1:230 16655143213B1020020001a000000100e 9733852402502602702B02903003103203303403503603703803904004104204304404504604704s0490500510520530540550Table 4-2. Frequency distribution of 24-,48-, and 72-hour forecast vector errors forall significant tropical cyclones in thewestern North Pacific in 1981. (Given in10 nm increments)72 HR02222463112567264e11715262*;1104462928253223234412B13;10432a40656712211221425583* MEAN VECTOR ERROR (NM)LOWERLIMIT560570580590600610620638640650660670680690700710720730740750760770780790800810820830040850860B7088009098091092093094a9509609709S09901000101010201030104010501060107010801090110024 HR 48 HR 72 HR0 0 10 111 1000000010000000000000000000000000000El14P06 011 3B020101000 12E0102801E000El181311120 00 00 00 00u8000000000a000000080a0BB0 03e0a0B010801108B00e0000a0400B00000000000B0* MEDIAN VECTOR ERROR (NM)122


TABLE 4-3,. I@NLIALMEAN FORECAST ERRORS (NM) FOR THE WESTERN PACIFIC24-HR48-HR72-RRYEAR VECTOR RIGHT ANGLEVECTORRIGHT ANGLEVECTORRIGHT ANGLE1971197219731974197519761977197819791980*19811111171081201381171481271241261236472747884718375777975212245197226288230283271226243220118146134157181132157179151164119317 117381 210253 162348 245450 290338 202407 228410 297316 223389 287334 168*The technique for calculating right angle error was revised in 1981, therefore, noattempt should be made to correlate 1981 data with previous years.TAELE 4-4ANNuAL mm FORECAST ERRORS (NM) FOR WESTERN NORTH PACIFIC24-HR48-HR72-HRYEAR1950-5819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981**ALL*TYPHOON170**117**177136144127133151136125105111104 98111 99117 116108 102120 114138 129117 117148 140127 120124 113126 116123 117ALL —190212245197226288230283271226243220*TYPHOON**267**354274287246284303280276-229237181203245193218279232266241219221215ALL —279317381253348450338407410316389334*TYPHOON476374429418432414272349272308382245351442336390459319362342*FOR TYPHOONS ONLY WHILE WINDS OVER 35 KT**pO~cj+sT poslT1oNs NORTH OF 350N wE~ NOT VER.FIED123


WESTPAC FORECAST ERRORSYEARLYMEANUM500$50$00.350~. +“t30I-* 842,4226b’:, ~202s02003001 P197I’50n7n-liolmMEDIAN IO(3MM MEDIAN 180 NM MEOIAN 260N ASTANDARD — STANDARD — STANIAARDDEVIATION DEVIATION DEVIATION84 NM 143 NM 244NM1972 1973 1974 1975 1976 1977 1978 1979 1980 19M 198200ioD124


. North Indian Ocean Area the error statistics should not be taken asrepresentative of any trend. Table 4-5 isForecast positions at warning, 24-,the forecast error summary for the three48-, and 72-hour valid times were verified cyclones and Table 4-6 contains the annualfor TC 27-81, TC 29-81, and TC 31-81 by the average of forecast errors back through 1971.same methods used for the western North Vector errors are plotted in Figure 4-3.Pacific. It should be noted that due to the Seventy-two-hour forecast errors were evalulownumber of Indian Ocean tropical cyclones, ated far the first time in 1979.TABLE 4-5. FORSCAST ERROR SUNNARY FOR THE 1981 NORTH INDIAN OCEAN SIGNIFICANT TROPICAL CYCLONES.WARNING 24 HOUR 48 HOUR72 HOURPOSIT RT ANGLE $ POSIT RT ANGLE # POSIT RT ANGLE * POSIT RT ANGLE #CYCLONE ERROR ERROR WRNGS ERROR ERROR WRiiGS _ ERROR _ ERROR m ERROR ERROR WRNGSTC 27-81 41 27 13 135 106 9 221 155 5 83 25 1TC 29-81 28 12 12 69 35 8 172 110 4TC 31-81 17 14 16 115 55 12 151 67 8 225 85 4ALL FORECASTS 28 17 41 109 65 29 176 103 17 197 73 5TABLE 4-6. ANNUALMEAN FORECASTERRORSFOR THE NORTH INDIANOCEAN (theArabianSeawas not includedprior to 1975).24-HR 48-HR 72-HRYEAR VEC3!OR RIGHT ANGLE VECTOR RIGHT ANGLE VECTOR RIGHT ANGLE1971 232 4101972 224 101 292 1121973 182 99 299 1601974 137 81 238 1461975 145 99 228 1441976 138 108 204 1591977 122 94 292 2141978 133 86 202 1281979 151 99 270 202 437 3711980 115 73 93 B7 167 126*1981 109 65 176 103 197 73‘Thetechniquefor calculatingright angle error was revisedin 1981, therefore,noattemptshouldbe made to correlate1981 data with previousyears.24-HR 4S-HR 72-HUINDIAN OCEAN FORECAST ERRORSYEARIY MEANNM ME13W4nom mmIANNM176tW ME OIAN 1973’W500500400STANDARD STANDARD STANDARDDEVIATION DEVIATION DEVIATION300 P‘%, 2232001P 8%,137 130w 4008202~9300200100 ‘~~93100ow:2 19J3 W;4 W:5 W;6 F& 19@~ Wm7# 19~0 1981 1982IARABIAN SEA NOT INCLUDEDPRIOR TO 1975FIGURE 4-3. Annualmeanvedoz WLOU [nml{ohd-lCW.LOWAin Zhe nohth Indian Ocean.0125


2. COMPARISON OF OBJECTIVE TECHNIQUESa. GeneralObjective techniques used by JTWCare divided into four main categories:(1) climatological and analogtechniques;(2) extrapolation;(3) steering techniques;(4) dynamic modelsThe analog techniques provide three movementforecasts, i.e. forecasts for straight movingcyclones, recurving cyclones, and acombination forecast based upon the tracksof straight, recurving, and all other cyclonesthat do not meet the specificcriteria of those two categories. Allobjective tehcniques except one of the dynamicmodel modes, were executed usingoperational data available prior to warningtime. The automatically run version of oneof the dynamic models was initialized fromanalysis fields that are not available priorto warning times. These objective aids areusually received within 2 to 5 hours of aspecific warning time.b. Description of Objective Techniques(1) CLIM -- A climatological aidproviding 24-, 48-, and 72-hour tropicalcyclone forecast positions, and intensitychanges, based upon the initial position ofthe system. The output is based upon datarecords from 1945 to 1973.(2) TYAN 78 -- w updated analogprogram which combines the earlier versionsTYF’N75 and INJAH 74. The program scanshistory tapes for cyclones similar (withina specified acceptance envelope) to thecurrent cyclone. For the NV Pacific regionthree types of position and intensity forecastsare provided at 24-, 48-, and 72-hourintervals (e.g. straight, recurve, andcombined) . For all other regions of theJTWC AOR, types of,track are not specified.(3) EXTRAPOLATION -- A trackconnecting the 12-hour old preliminary besttrack position and the current positionwhich is then extrapolated to 24 and 48hours.(4) HPAC -- 24- and 48-hour forecastpositions are derived by merely connectingthe mid-points of straight lineswhich were drawn to connect these positionson the EXTRAPOLATION and CLIM tracks,respectively.(5) BPAC -- A program used with aTexas Instrument’s (TI-59) calculator systemwhich generates 12 to 72 hr forecast positions.These forecasts are based on blendingthe past motion of the tropical cyclonewith the CLIM forecast Fositions. Theblending routine gives less weight topersistence at each succeeding forecastinterval.(6) CYCLOPS -- An updated versionof the HATTRACK/MOHATT steering programwhich can provide steering forecasts at the1000, 850, 700, 500, 400, 300, and 200 mblevels. The program can be run in themodified (includes a 12-hour persister.cebias) or unmodified versions applied toeither analysis or prognostic fields. Theprogram advects a point vortex on a preselectedanalysis and/or smoothed prognosticfield at designated levels in 6-hour timesteps through 72 hours. In the modifiedversion, the program uses the previous 12-hour history position to compute the 12-hour forecast error and applies a biascorrection to the forecast positions. In1981, only the modified version, in theprognostic mode for the 500 mb level wasverified.(7) TCM -- The dynamic TropicalCyclone Model (TCM) is a course mesh (220 km)primitive equation model. The digitizedcyclone warning position is bogused into the850 mb wind and temperature fields of theFLENUMOCEANCEN Global Bands Analysis.Hemisphere forecast data are used on theboundaries. Two versions are currently run:The OTCM runs from forecasts fields and isavailable via AR(2mode; the TCMO version wasmentioned in a. above.(8) NTCM -- A “nested” primitiveequation tropical cyclone model which isinitialized on FLENUV.OCEANCEN12-hour forecastfields. The model covers a limited,but relocatable, tropical domain with threelayers in the vertical. The finer scaleor “nested” grid covers a 1200 x 1200 km2area with a 41 km grid spacing and moves tokeep a 850 mb vortex in its center. Thisgrid is integrated with a coarser channelmodel grid with a grid spacing of 205 kmover a 6400 x 4700 km2 domain. Once initialized,the mogel runs independent of theremaining FLENUMOCEANCEN forecast fields.The NTCM is available by.ARQ for 00002 and1200z forecast fields only.c. Testing and ResultsA comparison of selected techniquesis included i.n Table 4-7 for all westernNorth Pacific cyclones and in Table 4-8 forIndian Ocean Cyclones. In these Tables,“X-AXIS” refers to techniques listed horizontallyacross the top, while “Y-AXIS”refers to techniques listed vertically.The example in Table 4-7 compares CY50 toTCMO, i.e. in the 138 cases available forcomparison, the average vector at 24-hourswas 137 nm for CY50 and 117 nm for TCMO.The difference of -18 nm is shown in thelower right. (Differences are not alwaysexact due to computational round off) .


3T9TIST ICS FOR VEI?R 24 HR FCSTSJTWC RECR ST-RR mn cYsO NTCM Tcno BPFlc CL1il )(TRP HPllCJTIX 473 123123 ~ NUMBER X-AXIs?ECR 4W 124 414 133 OF TECHNIQUE132 a 133 0 CASES ERRORjTR9 369 128 37a 129 375 138139 la 13B 9 139 ETOTL 414 123 414 133 375 138 422 132132 9 131 E 127 -10 132 8CY-5E 410 123 3s4 133 348 140 392 133 42F3 132DIFFERENCE133 9 131 -1 131 -8 131 -1 132 Dt4TCII120 11?. 1E5 141 94 136 187 152 109 136153 45 16F3 19 155 18 163 11 164 2aTC~ 153 12E! 136 133 124 137 13a 144]Zg E 119 -13 116 -20 121BPkC 437 122 396 132 356 137 402 131 397 131 117 163 148 119 44? 124CL HI1?4 , 2 123 -.9 1 Is -18 124 -6 125 -5 121 -41 1::3 4 124 0462 123” 413 133 374 i3a 42I 133 414 132 122 163 153 119 447 124 473 168160 36 15a 25 !51 12 159 27 166 29 155 -i 158 39 159 35 168 ExTRP 44k 123 4B2 133 362 139 409 133 4s9 133 119 163 152 118 457 124 454 161 469 132132 9 132 D 12B -10 132 Q 133 9 131 -51 127 9 132 7 133 -28 132 EIHPAC 443 123 431 133 361 139 4wa 133 483 133 119 163 ! KJj lli 437 124 454 161 454 133 454 124124 I 123 -9 117 -22 124 -8 125 -7 117 -45 121 4 123 E 124 -36 124 -7 124 0STIITISTICSFOR YEOR 4S HR FCSTSJTWC RECR STRfI TIJTL cne NTCM TC~ BPFlc cL1rl XTRP HPI?CJ’ruc 350 220RECR’228 0306 221 329 26 IJTWC- OFFICIALJTWCFORECAST~~~ 34 26I sTru - STRAIGHT (TYAN 7a)STRfI 29! 222 303 2S: 389 2a7RECR - RECURVE (TYAN 78)23S 66 2s8 70 2a7 oCOMB - COMBIN2D (TYAN 78)TOTL 315 221 329 261 389 287 33s 26I CY50 - CYCLOPS 500-MB PR~255 34 :~5a -2 253 -33 261 0TCMO - TROPICAL CYCLONE MOOEL (ONS-WAY)CY50 298 217 296 259 279 2S3 385 258 323 323325 ma 327 6!3 333 50 225 67 323 0 CLIM - CLIMATOLOGYNTCFl 92 208 86 236 81 3!J7 8$ 26EJ a6 3@s! lBEi 275 XTRP- 12-HOUREXTRAPOLATION279 79 26{” 32 262 -44 2s0 xl 273 -2a 275 @ HPAC - MEAN OF XTRP ANO CLIMATOLOGYTCMO 111 2 18C 271 181 291 111 274 186 34U 51 279 123 218234 -B> 205 -65 197 -33 ?15 -57 z~fj-,19 23G -42 zla EBPFIC 325 c 313 25a 293 285 321 258 307 325 98 273 119 21S 355 253246 29 253 -4 251 -.33 255 -2 252 -73 238 -3A 255 37 253CLIM 345 221 :+zS 26] 3@B 2S? 337 261 321 323 188 275 122 21? 355 25: 375 3063E13 S2 305 45 303 16 3R9 46 3E6 -16 295 19 ma E!3 302 49 3~6 EXTRP 331 223 314 262 293 292 32!2 263 387 326 9a 276 118 216 348 255 354 311 356 289235 61 2B7 25 288 -3 289 26 288 -37 286 lE 29% 76 268 33 290 -20 2a9 EHPBC 330 223 313 261 29% 292 321 263 385 326 98 276 117 215 34!3 255 354 311 354 298 354 248244 21 245 -15 242 -49 245 -15 246 -79 239 -36 249 35 245 -9 24B -62 248 -41 248 0STATISTICS FOR YEFIR 72 HR FCSTSJT7X RECR STRfl mn CY3EI NTCM Tcno BPRC CLIllJTLC 248 334334 0RECR 222 340 253 420419 79 42a aSTRt7 2EW 346 232 425 23G 412419 71 415 -9 412TOTL 226 337 253 420 ?36 4t: 26E 421424 87 42B 8 414 421 0CYSB 2@2 332 219 428 2E16 48? 226 418 239 570613 28E S86 15a 598 197 579 161 578 BNTCtl 6SI 383 65 488 62 466 67 439 63 553 76 441TCtKI42a 119 4?4 ]6 419 -66 447 9 451 -IB1 441 aBP”C g~ ~:, ‘:: 222 415 ‘i-% 24S 421 ::-% 227 575 :% 74 441 3:: 76 389 3’: 271 393392 62 395 -24 390 -23 396 -23 395 -179 3S4 -56 397 89 393 aCL [M 245 334 253 42% 236 412 260 421 239 578 76 441 ao 3439 271 393 2a9 4504S7 123 456 36 451 39 457 35 450 -111 416 -23 456 147 447 54 450 @.TAELE 4-7ERROR STATISTICS FOR THE WESTERN NORTHPACIFIC FOR 1981127


STf4TISTICS FOR YERR 24 HR FCSTSJm TOTL NONE NONE CW8CYSB mmBPI?C CLItl XTRP HPRCJilt 29 IE9189 E k NUMBER X-AHSTOTL 2s 112 28 117 OFTECHNIQUE117 5 117 BCASESERRORNONE 8 B 00 0800 00 80NONE E o 8B 00 8800 00 08 00 Y-AXIS EK?oRCY7B 27 114 27 121 00 O@ 27 116 TECRNIQUE DIFFERENCE116 2 116 -3 Bo 00 116 0 ERROR Y-xCY5B 26 117 26 123 88 BE 26 116 26 123123 7 123 I %0 00 123 7 123 8TCRO lE 110 lE 115 0a aO lE 128214 la4 214 99 aa aO 214 86BPRC 27 111 27 12a ao ea 26 117CL1n110 a Ila -9 aa B@ 112 -3 113 -10 114 -99 lla a2B 112 28 117 00 aa 27 116 26 123 18 214 27 1la 2B 117117 5 117 0 Ba an 117 1 121 -2 12B -ES 119 9 117 axTRP 26 111 26 12@ 00 aa 25 117 24 126 18 %14 26 Ill 26 121 26 126126 15 126 6 aa a8136 13 134 B 127 -B6 126 15 126 5 126 aHPIIC 26 111 26 12a aa 00 25 117 24 126 lE 214 26 111 26 121 26 126 26 114114 3 114 -5 0a an 116 8 121 -4 117 -96 114 3 114 -5 114 -11 114 8STRTI!3TICS FOR YEFiR 4B HR FCSTSJTLC TOTL NONE NONE cwa cYmJm 17 176176 BTon 16 167 16 24S246 79 246 ENONE E B 0a 0a0a aa EiaNONE a a aa Oe eBaa aa Oa OaTcMo - TROPICAL CYCLONE MODEL (ONE-WAY)cva 17 176 16 246 a2t 0017 359359 1E12 3s7 111 aa 0a 359 8CY5B 16 176 15 25a ae ao,6367 ,64,4 ‘m ‘tip414 236 417 166 oa aa 414 46 414 8TCPIO 6 166 5 225 08 OB 6 375 5 38? 6 473473 307 447 222 aa aO 473 98 46a 73 473 DBPRC 16 176 15 252 00 an 16 351 15 417 6 473 16 232232 55 228-23 aEa B 232 -118 232 -184 226 -246 232 aCL III 17 176 16 246 ae aO 17 359 16 414 6 473 16 232 17 226226 49 212 -33 aa Oa 226 -132 232 -181 239 -233 22B -2 226 aXTRP 15 173 14 266 eo aa 15 352 14 431 6 473 15 244 15 237 15 293293 12a 296 3a aa Oa 293 -s8 3ELI -]3a 260 -212 293 49 293 56 293 aHP9C 15 173 14 266 oa aa 15 352 14 431 6 473 15 244 15 237 15 293 15 2532S3 Ea 25a -15 aa aO 253 -98 261 -169 233 -239 253 9 253 16 253 -39 253 aSTATISTICS FOR YE9R 72 HR FCSTSJ_LC mm NONE NONE cY70 CY5B l-ml BPRC CLlllJTIX 5 197197 8TOTL 5 197 5 3073a7 ]Ia 3L37 aNONE a a aa aaaa aa aaNONE a a aa aa aaB aa aa aaC’1’m 5 19: 53a7aa aa 5 75a750 553 750 443 Oa Oa 758 BcY5e 4 138 4 354 Ea 80 4 737 4 9a99a9 771 9a9 555 aa aa 9E9 172 9e9 eTCF’D 1 149 1 23S Eia aa 1 876 1 962 1 761761 612 761 526 00 00 761 -115 761 -2Ba 761 BBPflc 5 197 5 3a7 aa aa 5 750 4 9E19 1 761 5 299299 IS13 299-6 @Ba@ 299 -449 3S2 -557 206 -554 299 BCLIM 5 197 5 307 ao Oa 5 750 4 9E9 1 761 5 299 5 346346 151 346 41 aa aa 34s -4EB 395 -513 294 -4S6 348 49 34S 9TAELE 4-8.ERROR STATISTICS FOR THE NORTH INDIAN OCEANFOR 1981128


CHAPTER3Z - APPLIED TROPICAL CYCLONE RESEARCH1. JTWC RESEARCHThe JTWC mission includes the definitionand conduct of applied technique developmentas time and resources permit. Thegoal of JTV?C’Seffort is to improve thetimeliness and accuracy of operational tropicalcyclone warnings. During 1981, JTWCcontinued to pursue projects of operationaland technical merit as summarized in thefollowing abstracts of works in progress:CLIMATOLOGY OF TROPICAL CYCLONES THAT DEVELOPIN THE TRUK A?UIA(Allen, J. W., NAVOCEANCOMCEN/JTWC)A comprehensive review of pertinentparameters conducive to txopical cyclonedevelopment in the Truk area is underway.The subsequent path of movement statisticswill provide invaluable guidance on theforecasting of tropical cyclones that moveout of this region, many of which affectmilitary facilities on Guam.EVALUATION OF THE BLENDED PERSISTENCE ANDCLIMATOLOGY (BPAC) FORECAST AID(Weir, R. C., NAVOCEANCOMCEN/JTWC)From September 1980 to December 1981,JTWC utilized the BPAC forecast as one of themany objective forecast aids used to supportthe warning process. During the 1981 season,BPAC forecasts were verified against theofficial forecast and nine other objectiveaids. Although BPAC forecasts by comparisonshowed good skill in 1981, preliminary resultsfrom a detailed evaluation of theseforecasts indicate that weighting factorsbetween persistence and climatology, if modified,would have produced a better forecastin most of the investigated cases. Each ofthe persistence/climatology-type forecastaids is affected by sudden synoptic changeswhich influence the future cyclone track buthave not occurred (persistence) and are notforecast (averaging of historical movements,climatology) . However, most of these situationsoccur near higher latitudes wherenumerical forecast models can provide theforecaster substantial lead-time to alter theforecast. In the lower latitudes, especiallysouth of 20N, the persistence/climatologytypeforecast aids provide excellent guidancein nearly 75 percent of the forecast situations.It is within this region that BPACoffers the promise of providing the best nonsynopticforecast track. The results of thisevaluation and details of the BPAC programwill be published as a NAVOCEANCOMCEN/JTWCTECH NOTE.GEOMAGNETIC CORRELATIONS WITH TROPICAL CY-CLONE DEVELOPMENT(Morss, D. A., Cianflone, R. E., Det 1,lWW, NAVOCEANCOMCEN/JTWC)A statistical study will be carried outto determine the degree of correlation betweengeomagnetic disturbances of the earth’satmosphere and the development period oftropical cyclones. No attempt will be madeLn this study to investigate a cause-effectrelationship. The results could be applicableto tropical cyclone forecasters on aworldwide basis, provided they had access tothe proper geomagnetic data such as thatavailable through Air Force Global WeatherCenter, Offutt APB, Nebraska.ACCELERATION OF NORTHWARD MOVING TYPHOONSSOUTH OF JAPAN(Weir, R. C., NAVOCEANCOMCEN/JlT7C)A study of typhoons approaching Japanfrom the south has resulted in a new forecastaid for use at JTWC. Of the systemsthat met the initial screening criteria, 90%were seen to have experienced significantaccelerations. There was evidence that mostof the typhoons nearly t;iple in speed gverthe initial 24 hour period. The results arepresented for seasonal, and latitudinal,variations in tabular form.EVALUATION OF THE NAVY NESTED TWO-WAY INTER-ACTIVE TCM (NTCM) AND THE ONE-WAY INTERAC-TIVE TCM (OTCM/TCMO)(Weir, R. C., NAVOCEANCOMCEN/JTWC)A continuing evaluation of both of theseversions of the Navy’s tropical cyclonemodels was conducted during the 1981 season.Initial data have shown the ARQ version ofthe NTCM (initialized on the 12-hour prognosticfields) is not performing up toexpectations. The ARQ and automated versionsof the OTCM have performed very well,especially at the 24 and 48 hour periods.EVALUATION OF THE NAVY GENESIS POTENTIALPROGRAM(Allen, J. W., NAVOCEANCOMCEN/JTWC).The Genesis potential program uses a setof algorithms applied to FNOC analysisfields to predict tropical cyclone formationat the 24, 48 and 72 hr Periods. The productsare output at 12-hour intervals byFNOC, and received in graphics form by JTWC,covering the entire Northern Hemisphere AOR.Based on the day-to-day evaluation of thisproduct during 1981, its information did nothave an impact on the JTWC decision makingprocess for tropical cyclone genesis.2.NEPRFRESEARCHTROPICAL CYCLONE RESEARCH AT OR UNDER CON-TRACT TO THE NAVAL ENVIRONMENTAL PREDICTIONFWSEARCH FACILITY (NEPRF) , MONTEP31Y,CALIFORNIATHE NAVY TWO-WAY INTERACTIVE NESTED TROPICALCYCLONE MODEL (NTCM)(Harrison, E. J., Jr., NEPRF)Testing of the NTCM continued throughout129


the 1981 season. Comparison of results obtainedwhen the model was initialized withprognosis vs. analysis data revealed that anunacceptable amount of skill was lost withthe prognosis initialization. Unless thenew global model prognosis fields are significantlybetter than the global band datacurrently used, the NTCM will necessarily beinitialized with analysis data in the future.A second test of the NTCM compared itsperformance to those of the Movable FineMesh Model (MFM) used by the National Hurrica~Center in Miami. The favorable resultsof this comparison led to the NTCM codebeing requested for further testing and possibleoperations evaluation by.the HurricaneCenter.TROPICAL CYCLONE PREDICTABILITY(Fiorino, M.,NEPRF )Harrison, E. J., Jr.,We have examined the predictability ofthe Nested Tropical Cyclone Model (NTCM) bycomparing two series of 5-day model forecastsin which the initial state has beenslightly modified. This initial differenceled to random errors in the track forecaststhat increase in time. We find that thepredictability limits of the NTCM are approximately105 nm at 24 hours, 152 nm at 48hours and 200 nm at 72 hours.THE ROLE OF THE LARGE-SCALE ENVIRONMENT INDYNANIC TROPICAL CYCLONE MODEL FORECASTS(Fiorino, M., NEPRF)The nested Tropical Cyclone Model (NTCtl)has been tested for over 400 cases in theWestern Pacific. The FNOC operational analysesused to initialize the NTCM have beenarchived and will form the data base forthis study. The large-scale wind fieldswill be decomposed into spatial scales usingthe method of empirical orthogonal functions.The response of NTCM to the scales(principal components) contained in the initialdata will be assessed by comparingtrack forecast “critical” scales of motionas well as model sensitivity to analysiserrors.TROPICAL CYCLONE OBJECTIVE FORECAST CONFI-DENCE AND DISPLAY TECHNIQUE(Tsui, ‘1?.,NEPRF, Nuttall, K., Systemsand Applied Sciences Corp.)A Functional Description (FD) for theCombined Confidence Rating System has beenprepared. Under this system, a scheme hasbeen developed for operational use to evaluateall objective position forecasts of thewestern North Pacific tropical cyclones.Forecasters at JTWC can issue one combinedARQ request to generate all objective fOrecastsand their rated confidences/skills.According to the rated confidence of eachtechnique, a combined forecast is constructed.In addition, a standard displayingformat for all objective forecasts has beencreated; and is now being installed on theFNOC operational libraries.TROPICAL CYCLONE INTENSITY FORECAST(Tsui, T., Brody, L. R., NEPRF)The first stage of the western NorthPacific tropical cyclone intensity forecastprogram (MAKWND) is being implemented on theoperational system at FNOC. This portion ofthe program deals with the intensity changedue to the persistence change (past 12- and24-hours) and the climatological influence(the position of the sun relative to thecenter of the storm) . Intensity changeinformation extracted from the satellite IRdata and large-scale forecast fields, ifwarranted, will be added to the program inthe future. Wind radius forecast algorithmwill also be incorporated in the MAXWND.Along with the intensity forecasts for thewestern North Pacific tropical cyclones, the100-, 50-, and 30-kt wind radius forecastswill also be the product of the MAXWND.SATELLITE BASED TROPICAL CYCLONE INTENSITYFORECASTS(Brody, L. R., Tsui, T., NEPRF, andNicholson, F. H., Systems Control Technology)Currently under development are methodsto improve the MAKWND system by using satelliteIR data. The NEPRF Satellite-dataProcessing and Display System is being usedfor this purpose. TWO types of predictorsto forecast intensity changes are being investigated.The first type are measures ofthe coldest equivalent black body temperaturesof cloud tops for concentric ringscentered on the tropical cyclone. The othertype of predictors are derived from thecharacteristics of the spiral band structureof the tropical cyclone.TROPICAL CYCLONE SPIRAL LINEARIZATION TECH-NIQUE(Lee, D. H., NEPRF)A system for quantifying information inherentin the spiral band structure of tropicalcyclones as depicted in satellite datahas been implemented on the NEPRF SatellitedataProcessing and Display System. TheSpiral Linearization Technique involves thetransformation of a satellite image to aselected spiral coordinate system; cloudstructures which conform to the spiral shapeare portrayed as linear formations afterlinearization. Statistical and quantitativeanalyses of the linearized image yiel~information on a cyclone’s structure whichcan be correlated with the cyclone’s characteristicsand behavior. An investigationof these correlations is in progress todetermine the technique’s potential as anestimator of current and/or future cycloneparameters.TROPICAL CYCLONE STRIKE AND WIND PROBABILI-TIES(Brand, S., NEPRF; Jarrell, J. D.,Science Applications, Inc.; Chin, D.,Systems and Applied Sciences CorP.)Tropical cyclone strike and wind probabilityis a method for determining upthrough 72-hr that a tropical cyclone willcome within or affect geographical points ofinterest to the user. Applications presentlybeing developed, tested and implementedfor the western North Pacific, eastern NorthPacific, North Indian Ocean, western North130


Atlantic and Gulf of Mexico include: strike/wind probabilities and geographical depictions;optimum track ship routing (OTSR)aids; and HP9845/Tactical EnvironmentalSupport System (TESS) software for shipboardenvironmentalists and decision makers.TROPICAL CYCLONE STORM SURGE(Brand, S., NEPF.Y;Jarrell, J. D.,Compton, J., Science Applications Inc.)A tropical cyclone storm surge efforthas been initiated to establish the following:(a) the needs of the Navy in forecastingtropical cyclone storm surge in thewestern Pacific; (b) the state of the artof storm surge forecasting techniques; and(c) the best approach to solving the Navy’sproblems associated with tropical cyclonestorm surge.TROPICAL CYCLONE FORMATION FORECAST(Lowe, P.,NEPRF)The “Genesis” technique is a quasiobjectivetechnique for producing probabilisticforecasts of tropical storm formationin the western North Pacific ocean.“Genesis” performance has been closely monitoredand evaluated. Currently, an effortis being made to modify the “Genesis” technique.The change includes the objectivelyderived fields of unconditional probabilitiesreplacing the subjective values currently inuse. The improved “Genesis” technique isexpected to be available early in CalendarYear 1982.3. PUBLICATIONSHuntley, J. E., and Diercks, J. w., 1981:The Occurrence of Vertical Tilt in TropicalCyclones, Monthly Weather Review, Vol. 109,No. 8, Aug 1981, pp. 1689-1700.Developing tropical cyclone are oftenobserved with significant displacements betweentheir surface and upper-level circulationcenter. The slope is in the directionof the convective cloud mass which also isdisplaced from the surface center during theearly stage of development. As the cycloneintensifies, the surface and upper-levelcenters become vertically aligned. Threerepresentative tropical cyclones in thewestern North Pacific w~th extensive aircraftreconnaissance are discussed to illustratethis phenomenon.Dunnavan, G, M., 1981: Forecasting IntenseTropical Cyclones Using 700 mb EquivalentPotential Temperature and Central Sea-LevelPressure, NAVOCEANCOMCEN/JTWC 81-1, TECHNOTE .Sikora (1976), et al. , suggests that theequivalent potential temperature at 700 mhin a developing tropical cyclone is an excellentparameter to measure the total thermodynamicenergy such that abnormally highvalues of equivalent potential temperature(~ 370K) can herald a period of subsequentexplosive deepening. This note expands onthat idea to propose a technique for forecastingthe development of intense tropicalcyclones (minimum sea–level pressure < 925mb) based on the relationship of the totalthermodynamic field, as measured by thetropical cyclone’s central 700 mb equivalentpotential temperature, and the kinematicfield, as measured by the tropical cyclone’scentral sea-level pressure. One hundreadseven tropical cyclones which occurred inthe north Western Pacific and north CentralPacific Ocean were evaluated using 700 mbtemperature, 500 mb dewpoint and sea-levelpressure data which were available frompast Annual Typhoon Reports (1975-1980).These data were used to develop a forecasttechnique whereby the tropical cycloneforecaster may anticipate significantdevelopment in a tropical cyclone by monitoringthe central sea-level pressure and700 mb equivalent potential temperature providedby aircraft reconnaissance.Huntley, J. E., 1981: A Study of RecurvingTropical Cyclones 234 kt (18 m/see) in theNorthwest Pacific 1970-1979, NAVOCEANCOMCEN/JTWC 81-2, TECH NOTE.Recurving tropical cyclones in theNorthwest Pacific region were studied to observetheir behavior relative to track andintensity. Tropical cyclones occurring from1970 through 1979 were selected for thisstudy and categorized into three groupsbased upon their maximum intensity. Parametersrelating to the point of recurvature,direction and speed of movement, and intensitywere analyzed. The skill of forecastingspeed of movement by a solution to afirst order differential equation was investigated.131


ANNEX A TROPICAL1.WESTERN NORTH PACIFIC CYCLONE DATABS5T TR9CK DQTRPU~IVHRB31112z0311182B312B8ZB312B6Z0312122031218203138EZ0313E6Z031312203131azB314BOZB314E6zB31412ZB3141azB315BstZ03158620315122B3151ez03168820316862BEST TR9CKLRRNItiG24 HOUR FORECfr3TERRORSERRORSPOSIT LJIND POSIT WIND D;l w1”iD POSIT WIHD DST WIND4.7 178.5 25 @.8 E.B E. -S!. 8. 8.Li E1.zl 8. -e. e.5.6 169.3 3E3 6.B E.B 8. -E. B. E.a e.e 8. -’d. a.6.2 16S.2 38 6.2 168.8 3E. 36. B. e.2 166.2 45. 77. 5.6.5 167.5 35 6.6 167.4 3E. 8. -5. 8.6 164.B 45. 53. 6.6.9 166.8 35 7.B 165.8 3S, 68. 0. 6.7 162.3 55. 86. 18.7.4 165.9 40 7.3 164.4 40. 69. 0. 9.7 168.4 65. 127. 10.8.1 164.9 40 8.0 165.3 45. 24. 5. IE. I 161.4 76. lee. 19.9.0 164.8 45 8.3 164.3 45. 45. 0. 18.4 161.0 55. 139. -18.9.9 163.19.6 163.1 5@.5. 12.7 159.5 60. 116. -5.10.7 162.3 2 18.7 162.2 55.e. 15.0 159. s 65. 93. -10.11.7 161.9 60 11.7 161.4 6E,0. 15.8 159.8 68. 121. -25.12.7 161.4 65 12.7 161.7 68.-5. 16.6 161.9 55. 5s. -40.13.7 161.2 65 13.7 161.2 60.-5. 17.6 161.5 55. 14s. -40.14.8 161.4 75 14.s 161.319.3 164.9 55. 11. -45.15.6 161.9 85 15.7 162.057.70.70.16.8 162. S 95.18.1 164.2 105.19.2 165.2 180.19.9 166.8 IBB,21.2 167.1 100.6.e.6.16.13.19:e.-5.-15.B.10.B.B.5.16.9 162.818.3 164.019.3 165.02B.2 165.921.3 167.0E100100950316122 22.4 16e.1 85 22.5 16E.7 95. 34. lB.03161BZ 23.6 169.2 75 24.E 169.6 E5. 32. 10.0317602 24.e 170.3 65 25.8 169. e 75. 3Et. lB.B31766Z 25.7 171.6 6B 25.6 171.8 6B. 12. E.0317122 26.6 173.0 5B 0.8 Ei.B B. -B. B.6S17182 27.4 174.3 45 O.@ O.EI B. -B. 6.19.620.221.222.722.324.2166.7167.9171.0171.417s.4173.270.98.88.75.70.65.e3.176.132.149.125.-30.-s .-5.e.5.5.2~.5@175.E 5B. 164. e.8.8 8. -a. 8.B:E e.a e. -e. e.0.0 6.0 a. -8. 8.e.e 8.E e. -e. e.B.B Ei.0 B. -0. 0.4SHOUR FORECFISTERRORSP051T WIND DST LSIND%.0 E.@ e. -e. e.B.EI e.E e. -8. e.19.5 163.5 65. 118. S.11.3 161. E 65. 87. E.18.3 159.6 7B. 224. 5.12.5 157.9 75. 245. 0.13. B 15S.8 75. 237. -18.13.5 15S!.4 65. 325. -3EI.16.11s.419.426.42B. E22.B22.022.28.00.60.88.B150.6160.9162.8165. B16S.8172.8174.2175.70.00.8a .80.07B .55.50.50.50.45.4s.45.B.0.0.B.335.23B .224.124.197.1s1.271.306.-0.-0.-0.-25.-45.-50.-45.-35.-25.-15.B.B.0.8.8.B B.B B. -B. O.0.8 0.8 B. -B. n.6.8 43.E 9. -B. B.8.8 0.0 B. -8. 0.8.B 8.8 El. -B. e.0.0 0.0 B. -B. B.72 HOUR FORECF7ST.POSIT WIND8.0 0.0 e.8.8 a.e12.7 161. s13.8 16E.512.9 157.71S.5 156.816.2 156.416.7 15EI.S20.3 168.621.3 165.222.7 16B. BB.B B.BE.E 0.8@.B B.BB.0 B.Ee.e e.e0.0 0.BB.8 B.@e..e 0.80.8 0.00.0 B.BE.e B.eE3.e B.EB.e 0.0e.e 0.80.0 EI.BDST WIND-0. 0.0. -0. 0.75. 173. -le.75. 228. -28.E5. 485. -m.B5. 519, -15.Es. 4s6. -15.78. 553. -25.55. 436. -3@.45. 26F3. -3E.40. 17S. -25.E. -e. e.@. -0. 8.B. -0. B.0. -B. 0.B. -0. e.B. -0. 0.e. -a. e.B. -B. B.B. -8. B.B. -0. 0.e. -e. e.6. -B. B.El. -e. 0.B. -El. 0.n. -e. 0.WK FOREIXST POSIT ERRURRVG RIGHT ilNGLE ERRMW/6 INTENSITY M.IGNITUDE ERRORRVG INTENSITY BI(ISNUF8ER OF FORECRSTSRLL FORECIWTSIIRNG 24-HR 4B-HR 72-HR24. le6. 222. 369.16. S7. 144. 138. 15.4. 14. 23. Z@. 4.1. -9. -21. -2e.22 19 14 9 2:.TYPNOONS USILE OkER 35 KTSLRNG 24-NR 46-HR 72-HR23. iffi. 222. 369.87. 144. 13s.14. 23. 2B.-9. -21. -20.19 14 9DISTIINCE TRIWELED SY TROPICRL CYZLONE IS 1912. NtlFMRRGE SPEED OF lROPICltL CWLOHE 1S 13. KNOTSTYQNOONFREDRFIx POSITIOWS FOR Ct12LOHE NO.1SRTELL ITSF IXS3FIx TIE FIXHo. m POSITION tKcRY DVORRK CODE SRTELL ITS comsmTs SITE:34*567*B9* 101112112s47112047120008l~68E12874512esaB1212801216001228241221ss1380s01306004.9N5.2N6.eN6.5N5.9N6.4U6.eN7.5N7.5N7.4N7.6N8.9N169.4S16B.7E167.2E166.6E165.7E166.2E165.8E164.4S165.OE164.4s165.2E164.2EPCN 6PCN 6PCN 5PCN 5FCN 6PCN 5PCNPcNPCNPCNPCNPCNPCNPCNPCNPCN5555T2.BZ?. E /rll. o/-24HRsT1.5/1.5-72.5/2.5 /01.0=4%%NDR46HORR6GmSrsMSP37G166mNORS6Gft3GPSGtSNom16NORR6GtlSGfSIN IT OESULCCPGNKGWPGTIJPGT3AIKGIJ12PGTIJPGTLIPGTWK@&PGTIJPGTLI: 13.5n.5 /D1.sn3NRs PGTIJ13141516130ss313E9E41312EE1316EB8.9N9.4HlB.3N10.3N163.6E163.7E163.3E162.5E6655KGLCPGTLIPGTLIPGN17 1321W 11.lN 162.3E PCN 5 Gt?s PGTw18 148B8B 11.94 161.9E19 1483@@ 12.7N 161 .7ESE 14896B 13.6N 168.8E21 142128 15.3N 161 .9E22 15SS88 15. SN 162. IE23 15B90B 17.6N 163.5E24 1512SB 18.3N K4.IE25 IS16WI 19.2N 164.6E26 152857 19.3N 165,5E27 152186 19.6N 165.5E28 1603SS 20.9N 166.3EPCN 5PZN 5PCN 5PCN 3PCH 1T4. 6/4.T5.Et/5.E /DB .5/18HRSE #1.6/24HRSGI’SGft3GtiSNoRR6GI’cSPGllJPGTiJPGNPGTWPGllJPCN 1 GtS PGTLlPCN 1GMSPGllJPCN 1PGTLIPCN 2 T5. 575 .5-/DB . 5-’24NRS fi%I16KGLCPCN 1PGNPCN 3 T4.5/s.5 AJ1. W27HRS ~~ PGTW132


29 16B9E1022.2N 167.flE PCN 5 c% PGTU36 161224 22.9N 168.3E PCN iGmPGw31 1616ee 23. BN 168.8E PCN 5PGTW32 162B34 23.6N 178. IE PCN 6 73. 8/4. s2-/tt2 . 5/24HRs ~%Q6 KGW33 16218B 24.6N 169.EE PCN 5Gft5PGTIJ34 17mm 25.3N 169.6E PCN 5GffiPGTU35 17B68B 25.6N 171.6E PCN 5 T3. E/4. O All .5/27HRS GttSPGN36 17B732 25. I3N 171. i’E PCN 6Nol?fi6KGW* 37 1712!3B 26.2N 174.9E PCN 5GftEPG~* 3B 1716EE 26.8N 176. lE PCN 5GffiPGlll39 172BII 27.6N 174.2E PCN 6 T1 .5/2.5 AJl .5/7? 4HR!3 NOf21?6 LLCCKGLC---FIIRCRRFT FIXESFIX TIm FIXNO. (z) POSITIONFLT 7SS~ OBS ~X-SFC-LND ~X-FLT-LW_-LtiO RCCRYLw. HGT I’!SLP WL~RG42NG DlRA%L~RG/RNG NRVA’FIEYE EYE ORIEN- EYE TEt’P (C)SHRPE DIRWTflTION OUT/ IN/ DPiSSTf’SNNo.1 122158 7.9N 165.4S 15@BFT 993 40 328 EB 930 45 320 128 5 32 131327 18. IN 163.EE 76Et13 299B068 40 338 9E 5 33 131552 lB.3N 162.7E 78BI’E 2957 9B7 12EI 57 E16B 9t3 8 34 140132 11. BN 161. EE 7@OfE 2929 6B 12E 38 220 S5 12B 25 5 B5 140385 12. IN 161. BE 70E~ 2914 979 20 060 5 17B 51 E168 15 5 56 141317 14. ON 16B.9E 7@Bl@ 286922a B7 Ila 52 15 27 1416E8 14.5N 161.4S 7E01t3 2S23 970i2a 74 efia IB 15 2B 1SE212E 15.6N 162. aE 7aam 273a50 213EI 7a 3 M 77 22a Bla59 ]5a3m 16.3N 162.4S 7F3B~ 2647 947 90 158 2a 23a lea 150 25 m 510 151386 lB.3N 164.6E 7EBtB 2635198 99 aaa 5a 5 311 151687 la. aN 164.6E 7eam 2615 94431a 69 25a 38 5 3+25 +25 26+12 +11 +10+11 +14 +12+16 +14 +12ELL IPTi~L 5B 3B 368C lRCULQR 35 +13 +14 +11C lRCULfiR 2EI +lE +16 +1 -ELLIPTICQL 46 38 e6B +IB +1S +1;233445566SWDPTICFIXESFIXNO.T[PE(Z>FIXPOSITIONINTENS [TV NERRESTEST W87TE D9Tfl (Ntl)COfWSNTS2.5H 173. EiE6.5N 168.5E18203045NOTICE - TNE IISTERISKS (*) INOIC(UE F 1=S UNREPRESENTRTNE 9ND NOT USED FOR BEST TRRCK PURPOSES.133


TRDPICflL STORM GERFILDBEST ‘71WCKDRTFIBEST TRRCKb21RNING48 HOUR FORECFIST72 HOUR FOREC$lST,ERRORSERRORSPD~RA+R POSIT WIND POSIT wIND DST WINDPOSIT WIND DST IJIND POSIT LOND DST WIND@41418z 5.B 155.6 2E a.0 a.0 0. -a. a.a.a 0.8 e. -a. E. B.B B.B B. -8. 8.B4156%2 S.7 !54.7 25 B.B a.e B. -a. 8.0.a 0.B 8. -a. B. 0.0 e.B 8. -B. B.B415t56z 5.6 153.8 25 0.B B.B -a. a.B.0 B.B -B . 0. 0.B 0.0 a. -0. 8.B41512Z 5.7 152.9 3E 5.6 152. E 3:: e. e.e.a lffi.e 5:: lBO. 5. 19.5 142.8 68. 296. 28.84151EIZ 5.9 152.8 35 6.13 152. a 35. 6. E.8.9 !45.3 65. 170. 2B . 11.4 142.1 8E. 297. 40.a416aoz 6.3 151.1 45 6.2 151.49.1 145.1 80. 19a. 35. 11.5 142.2 95. 340. 6E.8416062 7.5 149.5 50 6.I3 15a.112.2 141.s 95. 242. 5B . 15.8 138.1 lEE. 5E1, 7B.a41612Z E1.1147.8 6a 8.5 147.917.2 135!. s 180. 478. 6B 22.5 148.0 95. 532. 65.B4161BZ 8.4 146.4 55 8.S 146.616.3 139.2 lEB. 445. 6B. 28.8 139.7 95. 54B. 78.B417EBZ 9.8 Ids.a 58 8.7 145.3114.8 13EI.2 85. 514. 50. 1S.5 13S.5 95. 4BD. 60.B417862 9.9 145.9 se 9.6 145.8I15.3 142.1 65. 271. 35. 0.0 B.a 0. -a. a.B41712Z 11.0 145.S 58 11.1 145.8 45. 6. -5.19.B 150.4 4B. 344. B.B B.B B. -B . 0.841?18z 11.7 145.8 45 11.9 145.7 5B. 13. S. 117.2 147.7 5B. 1s9. :: a.a B.e ‘d. -B . 8.B418BBZ 12.2 145.1245 12.1 145.8 5B. 6. 5. I17.4 14G. B 50. 162. 25. 0.0 B.ZI 8. -a. B.E418862 12.B 145.9 45 12.8 145.8 5LJ, 6. 5. 1 8.8 a.a a. -0. B. B.B B.B 6. -0.B411312Z13.4 146.1 4B 13.6 145.9 5B. 17. la. 1a.a a.0 0. -B 0. B.B EI. B 0. -a. a.841B18? 13.9 146.5 48 14.3 146.7 5B. 27. IO. 1a.0 a.a a, -a. 0. a.a e.a a. -a. 0.0419BBZ 14.6 147.1 35 14.9 147.3 5a. 21. 15. 1a.a B.B B. -B. a. a.o a.a e. -a. a.B419B6Z 15.3 146.8 3B 15.3 147,3 5B. 29. 28.B.B B.B B. -a. 0. e.a a.a a. -a. B.0419122 15.4 145.7 38 16.2 148.2 45. 151. 15.8.B B.B a. -B . 0. B.a a.B 8. -B . e.8419182 14.7 145.7 25 17.2 149.2 25, 250. 8.B.B B.EI B. -B . 0. B.B a.B E. -a. B.0426B8z 15.3 146.2 25 0.a a.0 E. -e. a. B.B B.B 0. -B. 0. B.B a.B B. -a, a. B.a B.E 8. -8. E.IILL FOREC17STSWEtlG 24-HR 46-HISWVC FORECFIST POSIT ERROR 40. 161. 2B9 .F1’VZRIGHT #lNGLE ERROR 2?. 104. 212.W% INTENSITY mGN lTUDE ERROR 6. 28. 34.13W INTENSITY BIRS 4. 17. 34.NumER OF FORECf+ST5 Ie 15 11D ISTRPICE TRFIVELED BY ‘IROPICRL CYCLONE IS 11B3. NM72-HR426.36S .55.55.77YPHDLMS 14iILE OVSR 35 KTSlJ2NG 2~-HR 4B-HR 72-HR8. a. B.a. a: B. B.a. a. B. B.e. 0. a. B.e B a BIIWERflGE SPEED OF TROPICRL CYCLONE Is 9. KNOTSTROPIC13L STORM GERRLDFIX POSITIONS FOR CYCLM NO. 2SWELL ITSFIXESFIXTIE(z)FIXPOSITION9CCRYDWRRK CODE SWTELLITE mrrENTss l-m1234567891011121314151617lB;:2122232425261212ea122ma13BB8B13a3eB13B98613214614212315E13B015B9zIa151aa2]512ea1516BLi1521aaI 6aaa016030016B9BEi16B939]6]2aa16168B1621BB16221B16221EI17BBBB1783BB17B6BB17B9164.7N 159.5E5.EN 15B. fJE5.BN ISS.8E6. IN 158.6E6.2N !5B.6E6.6N 157.9E6.2N 155.3E6.3N 154.6E6.3N 153.7E6.5N 152. SE6.lN 152.5E6.BN 152. lE6.BN 152. aE6.8N 151.9E6.4N 151.3E6.6N 150.427.8N 149. lE7.8N 14B.7EE.BN 148. lEB.7N 147. aEFJ.9N 145.2EB.9N 145. IE8.EN 146.8E8.7N 145.5E9.6N 146. IE9.9N 146.2E27 lB.7N 146.3E1712001716BB11.7N11.4N146.8E145.7E17216B17215511. BN 145.7E11. EN 145.6E2B293a3132333435363738394s414344454647am12.3N ~45.8E12. BN 145.7E13. BN 146.3E13.2N 146.8E14.4N 147. IE14.5N 147.5E13.9N 146.7E14.7N 147.7E15.4N 147.4s15.9N 147.6E16.8N 147.BE16.4N 14B. IE16.9N 149. IE15.3N 146.5E15.3N 146. lE2aaaBa 15.4N 146.4E28B3a0 15.6N 146.8E2B222B 17.2N 144.9Eii 2122a5 2e.BN 146.EEPCN 5PCN 5PcN 5PCN 5PCN 6PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 5PCN 5PCN 5PCN 6PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 4PCN 3PCN 3PCN 3PCN 3PCN 511.5/1.5TI.5/l.5 fiO.O~lHRST2. B72. B /DB . 5/24HRST3. Ev3.B ~1.a~7HRSGNEGFKGffiGtlSNofw16Gtt5Nom6GffiGttSGtt3Nom6GmGmGffiG7’t3GffiGtlSGffiGtt3GffiGffiNO(IR6NoaR6T3.5~.573.5/3.5 /D8.5/ZM61RS GI?6GmGffiNom6G!T3GffiGfuT3.5/3.5-/-5Bn 4HRsRsNCRW6GmGtf3GMSGHSGtUGt!sGt!S’74. 8/4. B-m .5~4HRs GmGMSGt!SNow16t10RR6Gw5DmP37NORR672. aaa GI?3GmNOR(46NORR6INIT OBSlNIT DESULCC 18.6N 144.6EEXP LLCCPGTWPGTwPGNPGTIJPGTuPGTWPGTwPGTUPGNPGTWPGTIJPGTWPGTWPGT3JPGTwPGTUPGTLIPGTWPGNPGTwPGTWPGTLJRODNPGTLJPGTUPGTwPGII.JPGTLJPGTIJPGTWPGTLJPGTLIPGllJPGTLJPGNPGTWPGTWPGTiJPGTwPGTWPGTWPGTL!PGTwPGTWPGTwPGTWPGTWPGTcJPGNPG’lw134


FIIRCRRFT F lXESFIxHo,TItE(z)FIXPOSITIONFLT 7B@m OBSL/l HGT HELPI’WX-6FC-LND ~X-FLT-LW-UfD RCCRYVELMRGmNG D IRML~RG~NG NRVfiT S~~EEYE ORIEN- EYE TEtP (ClD[RIVTI?TION OUT/ IN/ DP/5STU3NNO.1234567i91011121314151617150!304 5.5N 153.3E152248 6.2N 151.4E152352 6.3N 151.2E160312 6.6N 15E.5E16138S B.ON 147.4S161558 B.lN 146.8E170121 9,2N 146. EE17e4D7 9.6N 146. BE170937 lE.7N 145.9E171250 1 1.4N 145. EIE171512 11.6N 145.6E172282 12. BN 145.7EleB187 12.3N 145.9E1S6387 12.5N 145.8E1E11S3B 14. Bfl 146,6E19B115 14.8N 147. IE198335 15. BN 147. @E1500FT7eEfrB700m7B0M330543054300770etE 296370EIMB3028700rm 3EB8700m 30507BBm7EBK3 30127EBf’E30447BBf’El30547EBm 3B47?emm 30517eBm 30437E0~ 303518089969829899959909909919S23R 2% lE 278 26 19B IE56 336 18 870 49 33B 2S6525+3 19 120 4ae5B le65 333 6 130 51 OIB 12!3B38 75 360 2D318 55 288 2645 e9e 15 me 46 348 2ESE 168 50 26Ei 44 IBO 2631E 4B 238 12B230 57 148 18E188 69 BSB 105B 150 18 268 43 138 2046 228 3B 2BB 41 168 2EI50 240 30 290 26 246 3028e 43 23E 384016068 1S84410S34S35o4B 15 15B 4BE15B m35525221555643;;5523121212455452CIRCULIIRCIRCULfJR+23 +25 +25 26+13 +1115 +15 +18+9+17+9+11 +18 + 715 +11 +16 +16+13 +14 + 9+18 +21 + 6+19 + 7+13 +1s + 8+14 +14 +12+13 +17 + 512223344555777e99RRDRR F 1=SFIx T1tE FIXNO. (z) POSITION RI?DRR RCCRYEYE RRDO13-CODEs:% DIRM 12SLFIR TDDFFCOP2’ENTSRIID!4RPOSITIONSITSIAMI NO.1 171416 11.4N 145. EE L9ND POOR2 171435 11.6N 145.8E LRND POOR3 171635 11.7N 145.7E LRND POOR4 17171B 11.7N 145.5E LllND F@IR5 171835 11.7N 145.5E lJ3ND FI?IR6 171935 12. BN 145.5E LIIND FQIR7 172E35 12.3N 145.3E Lf3ND F91R9 1S1035 13. IN 146.5E L9ND GOOD9 lEI1llB 13.2N 146.5E LRND Fil IR19 18213S 14.@N 146.5E L9ND F!AIR12 LPSti N13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N M4.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E9121S9121S9121B912189121E912US9121S9121e9121B9121SNOTICE - THE 17STERISKS (*) lND ICIY7E F 1%S M4REPRESENT9TIVE FiND NOT USED FOR BEST TIWICK PURPOSES.135


TROPfCFIL STORM HOLLY9EST TRACK DRTFISEST TRRCKLJIRNING24 HOUR FOREC9ST4S HOUR FORECGST72 HOUR FORECFIST,cDDnDc . .....-ERRORSERRORSm~WNR POS1T ltND POS17 wIND D5T WIND POSIT WtND DST WIND POSIT WIND DST WIND POSIT WIND DST WINDLi429!3BZ5.6 162.7L200.0 0, -0. 0. 8.8 0.0 0. -0, B. 0.0 0.0 0. -8. 0. E.a 0.0 B. -0. ‘a.EM2986Z 6.1 162.3 250.0 0. -0. B. B.B 0.0 0. -0, 8. E.@ e.a 0. -E. 0. B.0 0.0 0. -0. B.8429122 6.4 162.8 25 a.a a.e El. -0. 0. a.a 0.8 0. -a, 0. 0.0 0.0 B. -0. 8. B.8 E.B E. -0. e.a429 I EZ 6.7 161,7 3a 6.8 161. s 3a. 13. a. 2!.3 16a. E 4a. 111, 5. 9.9 157.6 50.5. 11.3 154.2 60. 187. 2a.0436802 7.1 161.3 30 7.a 161.8 30. 19. 0. e.e 159,4 4a. 133, 0. la.3 156. E 50. 289. 5. 11.6 153.4 60. 167. 20.S143W36Z 7.8 1621.53a7.5 16a.7 30. 21. 0. 9.8 158.5 40. 131, a. la.2 156.1 50. 207. 5. 11. E 152. B 6a. 125. 25.e43B122 E.S 159.6 35 a.5 159.76. 0. I,0.2 157. a 116. 5. il.2 153,7 60. 136. 15. 11. B 150.2 7a.35.04381ez 9.1 158.3 35 9.2 158,7 35. 24. 0. .1.3 154.3 IEB. 5. 12.2 149.6 65. 165. 25. 12. B 144.7 75. 32:a5alaaz 9.3 157.2 40 ia. o 157.3 40. 42. B. I.!.0152,4 136. la. 12.5 146.8 65. 285. 25, 13.4 141.2 75. 567.85 B1F36Z 9.3 156.3 48 9.5 1s5.9 4a. 26. 0. I.0.2151.191. 10. 11.4 146.3 65.30. 12.3 141.4 75. 526. 48.e5a I 122 9.4 155,2 45 9.s i55. a 45. 13. 0. 1,B.315a.391, 15. 11.5 145.6 70. 3a6. 35. 12.4 140.9 75. 53a. 40.a50 I I 82 9.5 154.1 45 ta. a 153.8 45. 35. 0, 10.s!149.1 6a. 130. 20. 11.8 144.2 78. 3!22. 35. 12.8 139.6 75. 597. 40.a527200z 9.7 153.3 45 9.7 153.26. 0, 1a.z149.6 65. 133. 25. il. a 145.4 7a. 3aa. 35. 11.7 14a. El 75. sla. 40.E5E206Z 9.e 152.6 45 9.s 152.3 45. la. B. 1a.414E.7 45. 124. 10. 11.1 144.6 5a. 322. 15. 11. e 140.2 5s . 527. 20.8582122 9.9 151. B 45 9.9 isl. s 45. ia. 0. I 0.6 147.8 45. 171. 10. 11,2 143.7 50. 363.11.9 139.1 55. 580.a5a2i8z !8.0 151.3 4a la.1 15a. e 40. 30. 0. B.6 147.5 45. IB2. 10. 11.4 143.5 363. z: 12.4 139.3 68. 551. 3B.0583EIOZ 18.1 151.0 48 lB.2 15a.4 40. 36. 0. a.fi ]47. a 5a. 159. 15. 11.3 144.1 %: 316. 2a. 12.1 148.4 65. 4se . 35.a5e366z la.3 15fJ.8 35 la. z 150,6 35. 13. 0. 1a.9149.2 40. 65. 5. 11.4 146.7 45. 146. la. 11.7 143.3 55. 269. 25.8583122 10.4 15a.7 35 ]a.4 149. a 35. 53. 0. 1a.9147.6 45. 137. la. IL.8 144.3 50. 276. 15. 13.2 140.4 60. 417. 30.e5a3 Iaz 18.6 15B.6 35 10.6 15a.4 35. 17. B. 11.814S.8 50. 61. 15. 12.4 145.3 55. 204. 25. 13. E 141.4 60. 323. 35.0584Eaz 10.7 15e.s 35 11. B 158.6 40. 19. 5. 2.0 149.2 5a. 45. 15. 12.6 145.8 55. 161. 25. 12.9 142. a 60. 254. 35.8584062 11.0 159.3 35 11. I 15a.5 40. 13. 5. 1.7 149.9 5a. 45. 15. 12.8 14s,4 55. 34. 25. 12.6 144. a 60. 51. 35.0584122 11.3 149.9 35 11.2 158.4 40. 3a. 5. 1.E 149.2 5B. 21. 12.2 147.8 60. 33. 30. 12.7 143.9 65. 63. 45.B5a41az 11.3 149.7 35 11.4 15E.8 40, 19. 5. 12.114s.4 50. 35. :: 12.5 145.7 6a. 77. 35. 12.8 142. a 65. Ile. 45.e5a5a8z 11.3 149.5 35 11.6 149.7 4a. 21. 5. 12.2147. s 45. 46. 15. 12.7 145,8 5B. se. 25. 12.9 142.4 55. 68. 35.05E5E6Z 11.4 149.2 35 11.3 149.s 4a. 36. 5, 1.8 14s.2 45. 19. 15. 12.3 146,2 58. 5B .- 25, 12.7 144.2 5a. 136. 30.a585i2z 11.5 149.6 35 11.4 149.5 40. 30. 5. 1.9 147, e 45. 24. 15. 12.5 145.9 5S7. 84. 30. 12.8 143.7 50. 171. 30.B5@51eZ 11.6 14S.7 3a 11.6 149.1 40. 23. 10. 2.1 147.1 4s . 25. 20. 12.6 145.8 58. 82. 3a. 13.1 142.2 50. 14a. 39.B586EeZ 1i .7 14s.4 30 11.7 146.6 35. 12. 5. 12.a147.3 35. 65. 10. 12,5 !45.4 35. 13B. 1s . 13. a 142. EI 3s. 206. 15.6586862 11.7 147.9 30 11.7 147,8 30. 6. 0. 12.0145.28. 5. 12.6 142.5 38. 39. 10. 13.3 139. S 3B. e6 , 10.8586122 11.a 147.4 3a 11.9 147.2 3a. 13. B. i2.5 144.2 38. 43. la. 13.1 141.2 35. 4s. 15. 13.7 136.3 45. 66. 2s .eseslez Il. @ 146.8 12.8 147.1 38. 21. 5. 12.6 144.8 373. 72. 10. 13.2 141.7 35. 115. 15. 14.1 136.1 35. e9 . 15.B507eez 11.8 146.2 12.1 146.2 25. IB. 0. B.e 8.8 0. -0. 0. B.e E.B a. -8. El. B.@ 0.0 0. -0. 0.E15B786Z 11.9 145.3e.a B.o e. -8. 0. a.a e.a 8. -8. 0. 0.0 0.0 a. -B. a. a.e a.a 8. -a. 0.Q5a712z 11.9 144.68.6 E1.e e. -e. e. 0.0 0.0 6. -8. e. a.e a.a a. -0. a. a.0 0.0 a. -a. 0.e5B718z 11.9 143. e a.a a.a a. -0. 0. o.aa. -8. B. a.e a.a-8. 0. B.E e.a a. -B. B.esaeeaz lz. a 143.1 2a 0.0 a.a a. -8. 0. a.a ::: 0. -a . %. a.a a.a :: -8. B. a.a FI. B 8. -a. a.a5asB6z 12.3 141.9 20 ‘a. 0 a.o a. -a. 0. e.a 8.0 a. -e . 0. a.e a.a a. -e . 8. a,a 0.0 e. -a. B.a5ea12z 12.4 140.8 2a a.a 0.0 a. -0. 0. a.0 a.a 0. -0. e. a.a a.a a. -0. 8. e.a a.a a. -0. a.asaamz 12.4 139.9 20 a.a a.a a. -a. 0. fs. a a.a a. -a. a. 0.0 a.a 8. -0. 0. a.a B.0 0. -a. B.a589uaz 12.5 139.3 2a 0.0 ma a. -a. e. a.0 a.a 0. -8. 0. a.0 0.0 B. -B . a. B.B a.a a. -a. 0.e5a9a6z 12.6 13S.5 2a e.a a.zi a. -6. B. 0.0 e.e 0. -0. B. B.B a.t3 a. -a. e. 13.o a.o a. -a. El,a5a9i2z 12.7 137.0ma a.a a. -8. 0. ma a.a 0. -8. 0. E.B a.a a. -e . a. a.si ma a. -8. 0.a5a91ez 12.9 137.2ma 0.0 0. -a. 0. a.a a.a 0. -8. a. e.a a.a a. -a. a. a.o a.o-a. 0.e51aaaz 13.2 136.4a.a e.a a. -a. 8. a.o a.a 0. -a. 0. a.a a.e a. -a . a. 8.72 a.a :: -a. 8.F3S1EE6Z 13.4 135.80.0 a.e a. -a. 6. 8.0 8.8 0. -a. 0. a.a a.a 0. -a. a. e.a a.a a. -a. 0.OW FORECAST P06 IT ERRURW6 RIGHT 9NGLE ERROR(A% INTENS lTY mGN ITUDS ERRORIV& INTENSITY’ B1fMNUmER OF FORECI?ST6I?LL FORECRSTSIARNG 24-HR 42-HR22, a6. le7.12. 36. 38.2. 12. 21.21.3;. ~’ 2972-HR2S4.46.31.31.29lWPHOONS LHILE O~R 35 KT5LRHG 2;-HR 4S-HR 72-HRa. a. a.B. a: a. B.0. a. a.:: a. a. 0.a B 8 aDISTI?NCE TRW7SLSD SY TROPIC9L CYCLONE 1S 1711. Nti#AZRfiGE SPEED OF TRUPICtlL CYCLONE IS 6. KNOTSTROPICRL STORM HOLLYFIX POSITIONS FOR CYCLONE HO. 3Sf77ELLITS F 1=SFIX TIt’E FIXNO. (z) POSITION flCCRYDVURRK CODE SIITSLLITE COFT’EHT6SITE234567e9la11121314151617laE212223242s26272a26eaae27a327a27120027212S2aa386ala3aaem9aaa]09e0131lzaeal 16eBa]2m04.5N4.3N4.’5N4.9N4.9N5.4N5.8N5.5N5.6N5.7N5.9N163.6E161.2E162.6E161.9E162.3E161. F2E16a. aE16a.4E162.5E162.3E162.6E6.EN 162.8E6.4H 163. lE7.EIN 161.5E7.7N 161. OE13.BN 160.5EB.5N 159. L7E13.4H 159.4s9.2N 15a.5E9.3N 15S. IE9.5N 157.9E9.3* 157. IE9.3N 156.6E9.5N 155.9E9.5N 155.7Ela. aN 154.9E9.8N 154.3Ele. aN 154. aEPCN 5PCH 5PCN 5PCN 5PCN 5PCN 5PCN 6PCN 5PCN 3PCN 3PCN 3PCN SPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 6PcN 5PCN 5PCN 5Pcu 5PCN 5PCN 5PCN 5PCN 5T1. a/l. a Gt!sT1 .5/1.5 /DO.5/27HRS GP?372.5/2.5 /D1. B/21HRS ~~R6Gft3GmNO(W16T1 .5~.5 /111.B~4NRS 8~R6GHSGNSNoRa6NOR(I6GmDf’!SP37GMEGmIHIT 09sULCC S.BN 161.2EULCC E.2N 16B.9E136PGTUPGNPGTWPGTwPGNPGTLIPGTIJPGTwPGNPGNPGTWPGTLIPGTWPGTWPGTIJPGTWPGTLJPGTWPGTWPGTIJPGTwPGmPGTwPGTIJPGTIJPGTWPGTwPGTw


293031323334353637m394841424344454X474s4950515253545s56575859606162636465012139eztiem020300020900021200E216E0022115030300030900030955031200031600032022E148000040300048900040932041200041600042211B422 I I05000005B9a9052148952149060800060300060900061828061200061600062125070000070300870600lB.EiN153.9E PCN 59.8N9.9N10.4NIB.3NIB.3NlB.2NlB.3NlB.3N18.4NlE.3N153.5E153.2E152. BE153.5E153.5E158.8E15Ei.7E15EI.EE149.5E149.4EPCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PC)+ 3PCN 3PCN 5PCN 5lB. EN 151.8E PCN 511.2NIL3.9N11.2N11. fiti12.3N11.3N11.9N15E. sE15E.13E15E.6E15B.5E15B.5E151. lE151. lEPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 512. BN 151.6E PCN 511.5N11.3N11.6N11.2N11.3N11.7N11.7N11.7ti11.7N12. IN11.7N11.8N12.EiN149. EE149.5E149,7E149.7E149.3E14B.7E148.4E148.3E148. lE147.6E147.5E147.4E147.2EPCN 5PCN 3PCN 5PCN 5PCN 5PCN 3PCN 3PCN 3PCN 3PCN 5PCN 6PCN 5PCN 512. E!N 146.4S PCN 312.EIN12.EN12. lN12.EN146. lE145.9E145.5E144.8EPCN 3PCN 3PCN 3Pcti 3‘72.5 =.8 AJW.SZMHRST3. W3,B ~.!5/21HRST3. a/3. B /sa. B&27HRs66 071005PGTW67 072244 12.8N 143.4S PCN 5 TO. WB.5 AII.SJ24HRSPGTw68697006830809030010038012.4N12.6N13.3N142.6E13EI.9E136.lEPCN 5PCN 3PCN 5GtlSGRSG?6PGTwPGTWPGISdN09R6GffiGmGftiGPKNom16GmGtt3GffiNDRR6GMSGH3DmP37G?lSGmPGTwPGTwPG71JPGNPGWPGTWPGTWPGTIJPGTIJPGTLIPGTIJPG~PGTwPGTldPGTuT2 . 5= .8+&t3. WZ2HRSG%Nom16GmGf45Nolw16PGTWPGTWPGTWPGTWPGTcJT3. B/3. E NORF16 INIT 0SSRODNGtEGP!SNOFF16Nolv16NO$li3SPGTWPGTLJPG7TIPGTWT2. W2.5 AIB.5~4NRsT2. W3.8 /ltl.W24NRS RODNPGT7JPGTUPGTwPGTLIT1 .8/1.5 All .EW24HRSGNSGf?3NOUR6Gtt3NOFN16GmGmGffiPGTLIPGTLIPGTwPGTIJPGTWPGTwAIRcRRFT F 1=SFIXNo.T[f’E(z)FIXPOSITIONFLTLW.?EieteHGTOBSmLPmx-sFc-lANoWMRGr’RtlGmX-FLT-L%t-LND FICCRY EYED lRAEL/8RGiRNG NRV~T SHRPEEYE ORIEN-DIRtV7HTIOllSY2 THP (c)DLIT/ IN/ DPzSST NO.;34567e1:111213141516171819202122290153300101EIEI13781034501180501214702811602834602130502153103012903034483133s031554040116$3404830416040501058503568515550604120700425.8N 162.7E7.2N 16i.3E9.2N 156.9E150EIFT1500FT70Eln37BElrm7B0rm70atm7Ei8m78BI%?Emrm1003IEB3308i9.3N 156.5E3070 le029.4N 154. BE30S29.6N 153.5E305? 9979.SN 153. IE30749.9N 152.9E3055 997lB. BN 151.8E3118lB. EIN 151.4sIB. BN 15B.9E70 F3f’@ 31071500FT10B299910.2N11.2N18.7N11. IN150.9E150.5E151 .EE150.6E15B.5E150. IE149.7E149.9E7Eaf’e?Eefa7eElm?eetm7e0tm7mn’sli58BFT7e0m3073310630973069306630809979971001100118BB12.2N 149.3E11.5N 14SI.lE11.BN 146. @E7BBm7BBm15eBFT30933181313e1004la04100520290 1535 930 284E elsl 45-m 33E 28S5 13B 1555 030 555 650 1815 220 4030 040 3035 34B 155B BIB 3035270 4045 838 6530 360 3015 048 15636 23 2S8 15 2 31404Ci03B4tl 152070 46 810 45 10 52EIE 25 13B SD 7 5B5B 35 330 38 5 2186 45 E98 lB 2 3 CIRCULRR120 54 030 10 4 3B28 27 388 25 8 3 CIRCUL!AR330 25 27B 20 3 325E 23 IIE 45 5 S CIRCULtlR300 25 228 58 2 2270 31 060 7 2 2526 30 B9E 15 15 615E 35 B6E 16 5 5350 20 270 40 6 5B9e 37 B2e 5El 6 10B6B 20 35B 9Li IE 302B 3B 27B 4E 5 7140 27 030 90 5 72BB 31 130 36 10 5270 21 e7E 3B 5 5ii3B 2832835 53121520+25 +26 +25+25 +25 +25 28+11 +13 +9+11 +12 +12+12 +14 + B+11 +15 +7+10 +12 +11+13 +17 + 7+16 +11 +le+11 +13 +8+14 +12 + 8+13 +14 + 6+11 +13 + 9+11 +9 26+26 +27 +24 27123345556677Be991011:;1314NOTICE - THE RSTERISK5 (x)lND ICWE F!= UHREPRESENTIITIVE IWO NOT USED FOR BEST ‘6RRCK PURPOSES.137


TYPHOON IKEBEST TRi2CK Df4T17BEsT TRQCKMVDW’NR POSIT WINDBSS718Z 16.7 11S.7 2@E16@3E@Z 17.4 117.3 28B68EE16Z 17. S 115.8 2S8608122 17.9 114.3 25B69BIEIZ 17.8 112.7 25B6S1988Z 17.6 111.6 388689662 17.6 111.2 3EB6S1912Z 17.4 111.1 3086B91Ez 17.2 111.3 30B61BOOZ 17.3 111.5 35B61BE6Z 17.5 111.6 35a61a122 17.7 111.7 4Bafilamz 17.9 111.8 4al$lRNtNGERRORSPOSIT WIND 0S7 WINDo.a a.a B. -e. E.a.a sf. a B. -B. B.a.a a.o a. -a. a.a.a a.a a. -a. a.e.a a.a 0. -a. a.17.7 111.3 3a. le. a,17.7 lla.217.7 I]a. a17.6 1E19.717.5 111.517.9 111.617.9 111.63a.35.35.3a.4a.4a.18. B 111.6 4a.a61taoz ie.a 112.13 4a 18.1 111.6 40.4a.9611862 lB.2 112.: 45B61112Z 18.4 112.7 588611182 16.7 113.6 55a612Bez 19.1 115. B 55E1612S16Z 19.7 116.4 68Ie.5 111.51S.5 112.5113.6 113.518.9 114, 1a5s.6a.55.55.55.45.45.a61318Z 25. B 122.3 45 26.5 123.38614B8Z 27. EI 122.9 4S 26.9 122.6 4B.4B.57.65.94.24 HOUR FORECRSTERRORSPOSIT WIND DST WIND6.0 0.0 B. -0. 0.e.B a.a a. -a. B.a.a a.a B. -a. a.E.E a.aa.a a.a19.1 la6.70. 19.5 Ia6. 15. IB.8 IE17.B5. 18.6 186.6-5. 21. a 113.55. 19.9 112.6$::13. a. 19.113. B. 19.323. B. 19.749. -5. 19.813. 0. 20.1a. 0. 2a.552. a. 2a.86. a. 22.729. -la. 25a18. -m. a.a22. -5. a.a25. -5. e.e32. a. a.B6E. -5. a.a17. a. a.a111.9112.a112.1111.9114.1116.8117.1121.9122.0a.aa.ea.aa.aa.Ba.a4S HOUR FORECf4STERRORSPOSIT WIND DST WINDE.0 0,0 0. -8. 0.0.0 0.0 0. -0. B.E.e B.a B. -8. a.0.8 0.0 0. -0. 0.B.@ e.si a. -a. 8.B.E ~.a B. -E. E.a.a a.a B. -a. n.B.a 0.a a. -0. 8.B.a a.a a. -a. a.a.a a.B B. -B. a.a.a B.B a. -a. 0.B. -a. a.a. -a. a.a.a B.SI4B. 293. 5.a.a a.a35. 334. a.a.si B.B40. 275. 8.a.a 0.035. 298. -5.a.a a.a25. 19B. -15.B.B B.B3E. 1B3. -15.a.B 0.04D. 62. -18. 21.4 113.1 35. 24?. -30, a.a a.a4B. 97. -15. 22.2 113.7 35. 2a7. -3a. B.B B.84B. 167. -15. 21.4 113.1 35. 3BF!. -25. 23.1 114.34D. 253. -26). 21.7 113.1 35. 453. -15. a.a a.a65. 186. B. 23.1 117.1 55. 27a. la, a.a a.o6E!. 124. -5. 24.3 121.8 25. 114. -28. o.a 0.06a. 177. a. 2~.~ 121.a 25. lB1. -15. B.a a,a5a. 61. a. a.a 8. -a. B. a.a a.025. 32. -2B. B:Si B.B B. -B. B. B.B a.aa. -a. a. a.a a.e a. -B. a. a.B a.B8. -B. B. B.B B.8 B. -B. B. B.B 0.0a. -a. a. B.B a.a a, -a. a. 6.B E.Ba. -a. a. 0.a a,a a. -a. a. B.a a.a-B. a. a.a a.a a. -a. a. a.a a.B~: -a. 0. B.a a.a a. -0. a. a.a 8.072 HOUR FORECRST,DST-0.-0.-8.-0.a. -8.B. -a .B. -a.8. -a.a. -a.IJINO0.B.0.0.0.a.a.a.a.B.a.a.a. a.a. ~;: a.a. -a. B.a. -a. B.‘a. -a. a.a. -0. a.a. -a. a.0. -B. B.B. -a. a.a. -a. o.a. -a. a.a. -a. a.flLL FORECRST5 TTTHOONS LH ILE OVER 35 KTSLRNG 24-SIR4S-HR 72-HR LRNG 24-HR 4S-HR 72-HRWJG FORECRST POSIT ERROR 177.” 276. 52a.25. 177. 276. 52a.WG RIGHT f)NGLE ERROR ::: 120. 131. 234.13. t2a. 131. 234.WG INTENSIW mGNITuDE ERROR 3. 21. 15.3. 13. 21. 15.W’G INTENsITY BH?S -1. -:’: -le. -15.-2. -8. -la, -15.NumER OF FORECfi5TS 21 15 7 1 17 15 7 1DISTRNCE TSNWSLED BY TROPICRL CYCLONE IS 13E7 . NFlFIVER!JGESPEED OF TROPICI?L9. KNOTSTYPHOON IKEF rx pos tTroNs FOR CYCLONE Ho. 4SRTELLITEFIxESFIxNO.TItE(z)FIxPosrTroNilCCRY DVDRFIK CODE SIITELLITECOfTENTSsrm1 a721aa 16.6N 117.5E PCN 5Gf?s2 aeaafia 17.8N 116.3E PCN 5cm3 aeaazz lE.8N 116.7E PCH 5 Tt. az].a NoFlf164 aBa3ae 17.9N 116.5E PCN 5 T1. azl. a Gm5 ae06aa 18.8N 115. BE PCN 5GIIS6 ai3112a 17.9N 114.4E PCN 5NORR67 0812aa lB,lN 114.3E PCN 5GmB a821aa lB. IN 112. BE PCN 5Gm9 a8z359 17.5N 111.4S PCN 5NoFlia6la at32359 17.6N 111. SE PCN 5 T2 . az . a-a 1. CV24HRS Nom611 a9a0aa 17.7N 111.6E PCN 5Gffi12 098300 17.6N 111. lE PCN 5 T2. ZV2. E ml. B-=4!lRS Gb?513 a9a6aa 17.6N 111. lE PCN 5Gm14 a9a9aa 17.7N lM.9E PCN 5Gm15 a912aa 17.4N lla.5E PCN 5Gffi16 a9123B 17.4N lla.2E PCN 5NOW-)617 a916aa 17.4N l}a. aE PCN 5GmIB a921aa 17.5N lla.4s PCN 5Gm19 a92336 17.3N 111.8E PCN 5Noae62a laaaaa 17.5N 111.4S PCN 5Gm21 Iacil r7 17.2N 1S19.5E PCN 5 T2 . a- . a-i3a . W35HRS NDeR622 laa3aa 17.6N 111.5E PCN 3 T1. O/2. ti AJ1. W24tiRS Gm23 laa6Ba 17. SN 111.6E PCN 5Gffi24 10e9aa 17.6N 111.6E PCN 5Gm25 la1215 16.4N 111.8E PCN 6Norm626 1B16B8 17.9N 111.6E PCN 5Gffi27 la21aa lB.8N 111.6E PCN 5Gm20 1laa54 lB.8N 111.9E PCN 5 T2. an. a fia. ae4iRs N09R629 1 iaa54 lB.3N 111.6E PCN 3 m.a=. a Noimfi3B 1la6Ba lB.lN 112.3E PCN 5 T3 .a=. a m2. B27HRs Gm31 I 1a9aa lB.2N 112.5E PCN 5Gm32 11115233 Itlzaa34 ll16aa35 l12n3a36 12aaaa37 lzae313B 12a3aa39 i2a6aa4a41424344454s474a]2a9Ba121129Izlzaa1216aaIzzlaa13Be0ai3aaaei3a39ai3a6aa]a. aN 112.6ElB.3N 112. EE18.4N 113.3E19. IN 114.8E19.5N 114.7E19. IN 115.2E19.3N 115.6E19. BN 116.9E2B.3N 117.lE2a.4N 117.3E28.6N 117.4S21.3N 118.3E21. BN 119.3E22. IN 119.8E22.3N 128.8E22.8N 12a.5E23. BN 121.4SPCN 4Nofm6PCN 5GmPCN 5GmPCN 5GmPCN 5GmPCN 5 T3. oz3. a /111. a724HRs NORR6PCN 3 T3.5/3.5 /110.5 /ZIHRS Gt?3PCN 5GmPCN 5GmPCN 3NoFlR6PCN 5GtlSPCN 3GmPCN 5GmPCN 3GmPCN 3 T4. O/4. B ump37PCN 3 T4. az4. a ma. 5/7MHRs GmPCN 5GmINIT OBSINIT OBSEW LLCCEm LLCCULCC 17.7N llEi. lEINIT 08SINIT OBS138PGTWPGTWRPfUPGTWPGTwRPmPGTWRPFUPGTwRPtUPGTWPGTWPGTWPGTwPGTWRPWPGTWPGTwPGNPGTIJRPPKPGTLJPGTwPGTWRPI’UPGTWPGTIJRPmROONPGNPGTWRODNPGTLIPGTWPGNPGll!RPmPGTWPGTUPGTWRODNPGNPGNPGTWPGTIJRODNPGTWPGllJ


495B5152535413W9E@ 25.2N 121.9E PCM 5 Gm13128E 25.9N 122.6E PcN 5 Gm1316E0 26.6N 121.6E PCN 5 GME132245 26.6N 122.5E PcN 5 NO$V?6140SIO0 27. BN 122.5E PCN 5 T2.5/3.5-AJ1 .5~lHRS Gffi1409EEI 28. IN 124. IE PCN 5 GmPGTIJPGNPGTWPGTWPGTLIPGTWFIIRCRFIFT FIXSSFIXNO.T1= FIX FLT 7EBPS3 08S mX-SFC-LND mX-FLT-LW-k?iD RcCRY EYE(z) POSIT [ON L= HGT M5LP VELAIRGfiNG DlR/VELmRGA?NG tiFIV~T SHRPEEYE ORlEN- EYE TTm (C) t6NDIRIvv)TION OUT/ IN/ DP&ST ND.112144S 2E. EN 117.8E 70LV’8 2E134 967 198 61 lBE 45 3 2 CIRCUL9R20 +14 +17 +15 2RflDFIR FIXESFIxNO,T1m FIX EYE EYS Rf4DoB-cODE(z) PosITION RRDflR flCCRY SNfIPE DZWl RSIAt?RTDDFFCOM15NT5RFIDflR SITEPOSITION lJQ NO.12312B6BE 28. IN 116.4E L9ND138EEE 21 .9N 119.9E LRND13B16E 22.lN 128. lE LIIND65/// ////,’55A32 5E6 lE5S/61 5E161422.3N 114.2E 4ss0522.3N 114.2E 45e0522.6N 12B.3E 46744NOTICE - THE W3TERISKS (*)[ND ICRT6 F IXSS UNREPRESENTQTlb% IIND NOT USED FOR BEST TRRCK FURPOSES.139


TYPHOON JUNEBEST TR9CK D8T0BEST TRRCKmm$14iR POSIT WINDB61612Z 13.2 132.1 2586161S2 13.6 131.5 25R61?S=3Z 14.2 131.1 38a61?a6zE61?12Z8617}82es leeezB61BE16Z061B12ZE161B18ZB619B0ZB61S86ZBS1912ZB6191eZB62B8EIZB62@06Z062B12ZB62B1BZEt621aoz8621E6Z6621122B6211Bze622EiBZ0622@6Z662212214.8 138.715.5 130.216.4 129.317.4 12B.21s.4 127.019.2 126.119.9 125.120.3 124.320.8 123.821.2 123.121. s 122.622.9 122.623.9 122.224.6 121.825.1 121.826.2 122.227.6 122.82EI.7 123.429.8 124.330.s 125.731.s 127.232.6 129.235354s45556570767575LRRNINGERRORSPOS1T WIND DST WINDS..e 0.0 e. -B. a.8.0 0.8 0. -8. 8.0.0 0.0 0. -8. 0.14.8 13e.7 38. e. -5.15.4 13EI.335. a. e.16.2 129.7 48. 26. 8.17.8 129.9 43. 52. 0.lB.Ll127.11S.9 126.120. E 125.82E.2 124.220.8 123.321.2 122.675 21. e 122.6 75. 11. e.75 22.6 122.5 80. 19. 5.75 23.9 122. I70 24.9 121.6 E: 2?: -1::65 25.1 121.7 55. 5. -la.65 26. E 121.960 27.6 123.1se 26.8 123.34D 29.8 124.135 36.2 125.B35 31.6 126.6 35. 24. 0.32.7 129.2 3B. 6. 0.,24 HOUR FORECRSTERRORSPOS1T wIND DST LJIND0.0 0.0 0. -0. e.e.e 8.6 e. -a. E.B. -8. e.1?:: 12::! 5B. 133. -5.lB, l 128.3 55. 141. -18.19.4i 127.9 60. 167. -lE!.20.2 126.7 65. 135. -5.24.6 124.1 65. 226. -16:24.7 123.0 7R. 2E19. -5.23. S 121.3 65. 145. -lB.22.6 12B.5 68. 117. -15.23.2 119.9 50. 133. -25.22. B 128.2 a. 139. -3B.24.2 121.6 !30. 55. -15.26.3 121.9 5Ei. 17. -15.27.8 121.8 58. 54. -18.2S.6 121.S 45. 84. -5.29.2 123.E 48. 76. E.29. S 123.9 4D. 116. 5.33.5 129.2 35. 143. 8.33.1 12e.2 30. 58. e.8.8 0.8 B. -E. E.a.e 0.9 El. -e. e.8.0 e.a e. -e. e.0.0 0.8 0. -8. 0.4S HOUR FORECR6TERRORSPOSIT IJIND DST WINDa.B 0.0 e. -8. e.@.8 E.Ei B. -E. a.a.e B.@ B. -B.19. S 126.1 68. 142. -1::21.1 125.1 65. [12. -16.e.e 13.e e. -B. e.8.0 8.8 B. -B. E.8.9 e.e B. -B. e.0.0 0.8 B. -0. 0.72 HOUR FORECIIST,POSIT WIND DST WINDEl.@ Ei.e e. -e. e.B.E E.fi 8. -a. 6.8.E B.e a. -E. e.22.4 123.4 7@. 111. -S.24. B26.027.68.033.30.0e.e0.08,00.80.08.00.0B.08.00.00.00.80.0n.B0.0123.9125.8125. I0.0128.90.00.0B.00.0B.8e.o0.0si. e0.00.80.06.00.00.08.90.0ru,70,65,e,30,0,0.6.a.0.8.0.@ .0.0.e.e.0.0.El.0.‘La. w.181. 5,182. 0,-B. e.393. -20.-0.-B.-8.-0.-0.-0.-0.-0.-0.-0.-8.-0.-0.-a .-0.-8.a.0.El.e.e.El.e.0.0.B.0.e.e.0.e.e.FILL FORSCffiTSbRNG fi;HR 4S-HR 72-HR(M FORECOST POSIT ERROR 19. 227. 196.Am RIGHT RNGLE ERROR 11. 62: 188. m.RVG 1NT6NS lTY mGNITUDE ERROR 3. le. 15. 6.9VG lHTEHSITY BIRS -3. -9. -1s. -4.NUmER OF FORECRSTS 22 Ie 13 5-3. -10. -17. -4.21 17 12 5D ISTRHCE TRRVELED BY TROPICRL CYCLONl IS 1569. N?lRVER13GESPEED OF TRDP ICRL CYCLONE 1S 11. KNOTS7WHDON JUNSFIX POSITIONS FOR CYCLONE NO. 5SRTSLLIT6F 1X25FIX TItE FIXNO. (2) mSITIONtlCCRY D!JTi?RKcODE S9TELLIT6COfTENTSSITE*5467s91011121314151617181920212223242526272e29303132331423221612001616e@1621001622361706001709001711151712001716001721801723541723’341723541806081809081810521816001s21001823311S233110233119000019B608190ss0191029191200‘~91666192100192308.2008802ee3Be20890034352E114728120036 2B16fM37 202 lee38 2 lEeee3940414343444546474s218R2621830821B9EB2111242112s021160821210822008022S00422SS047.eN12.7H12.7N13.7N13.OH14.8N15.lN15.5N15.5N15.7N16. eN17. BN17.7N17.SNlB.5N19 .ENlS.8N19.4N20. lti2B.5N20.3N20 .3N2a.4N21. ON21. IN21.2N21.3N21.6N22.5N22 .8N23 .ON23.6N24. SH25.4N24.9H25. ON25.5N26.lN26.4N27. 2N28. 2N2B.4N29.7N29. lN29. 7N30.SN31 .m3S.5N131.8E PCN 5131. EE fPCN 513e.9E fPCN 5138.7E Pctl 5130.3E PCN 513B.6E PCN 5130.3E129.6E129.5E129 .7E128.7E12B.4E12s. OE12s.42126.9E126.3E125.9E125.4S124.9E124.2S124.46124.46124.2E123.3E123. lE123.OE123. lE122.9E122. BE122.7E122. EE122.3E122.@E121 .EE121.8E121.7E121. BE122.5E122.6E122.4s122.6E123.9E123.4S123.7E124.7E125. SE12S.6E125.6EPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 3PCH 3PCN 3PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 1PCN 3FCN 4PCN 5PCN 5PCN 5TD.5M.5NolW16GffiGFSSGtT311.8/1.0 Nofm6GPtSGffiNOFM6GmGmGI?Sy4::~4. ym .E725NRS NofM6NoRl16T3.an:eNom36Gt?3GffiNollR6GmGMST5.w5.B /D1.BAMIRS NOR$36T4.5z4. 5 ~ 1. 5-4NRS NORR6T3.5/3.5 /D6.5Z?4HRS NOR(I6Gt?5GtlSNORR6GffiGMSGMST4. 5/4.5 i2B. 0=4NRS NOFtR6GffiGIIEGI?SNORR6Gtt3GmGtSPCN 5PCN 3 T3. W3. E HLStlR6PCN 3 T3.5/4.E 41 .O/28HRS GffiGM6PCN 5PCN 4PCN 5?CN 5PCN 3PCN 5NOIM6GP?EGI?3GtT3n?.w2.5 AAN.5alNRS GMPCN 5 T2.5~.E 01AEs,5~4HRS NIJW6PCN 5 T2. W3.8 NORR6IHIT 0SSINIT OBSINIT OBSINIT 09SINIT 08SINIT OBS140PGTLIPGIUPGNPGTWPGNPGTWPGTWPGTWPGTWPGTJPGTIJPGTWRODNRPtUPGTWPGTWPGTIJPGTUPGTWRODNPGTWRPtUPGTUPGllIIPGTWPGILlPGTUPGNPGTLIPGTWPG?WPGTWPGTLIRK60PGTWPGTWPGTIJPGTWRODNPGTWPGTWRKSOPGTLIPGTWPGTWPGTllRODNRPfU


50* 515253—— ----- ... ---- ---22 B9$3B 32.3N 12S.4E2211E1 31. EIN 132. lE2212SIB 32.6N 13B.FJE2216BB 33.2N 132. IEPCN 5PCN 5PCN 5PCN 5PCN 5GFT3GmNo!af16GI’SGmPGTWRODNPGTLIPGTLIfllRCR9FTF ImSFIxNO.TltE(z]FIXPOSITIONFLT 700tE OBS tSIX-SFC-LND mX-FLT-LkL-LWD RCCRYLVL HGT P?3LP VELaRGmNG D IR/WLmRG/16NG NRW?IETEYESHt)PEE= ORIEN-D1RWTRTIONEYE TEm (C)OUT/ IH/ OP75STM5NNO.123456789101117E619 14. SN 13E.8E1SE047 17.6N 128.lE188243 113.ON 127.7E181318 19.3N 126. IE181663 19.6N 125.2E19EB16 20.5N 124.3E19B252 2a.7N 123.9E19124s 21.2N 123. EE191430 21.5N 122. eE20D152 23.3N 122.5E20834s 23 .5N 122. 4S15a0FT?Eom780m70BtB7EEm37BBr’B7BEIr8700r870Bm7B0m7L4srm302929472B4S28422812208627752702276627B799598497196796396335 12050 14@60 340m 34065 03045 17065 35B30301022023824a13B40se506517sl14s1600707%354532457272e4+26+13+26+17+26+Ie29 1334B9B 70 018 26 84 CIRCUL9R 2%+16 +15 +12420 090 7a 350 25 42525 110 73 820 25 4: CIRCUL9R 30+15 +16 +12534a EB 260 19 55 CIRCULFIR 286llB 70 060 16 75 CIRCULllR 15+14 +]5 +14620 220 59 170 20 3 lB740 210 56 90 4 10+15 +lB +147RROflR F 1=SFIxNO.T1tE FIX EYE EYE R+lDOB-COOE(z) POSITION RRDIIR RCCRY SHIW’E DIRM lMLklR TDDFFR130r3RPOSITIONSITSW NO.;3456?s9181112131415161718i:2122231915801916001917001918001919BB19200019218019228021.7N21 .6N21.7N21.LIN22. lN22. 2N22. 3N22. 5N123. OE123. BE122.9E122.9E122.8E122. EE122.7E122.6ELRNDLFINDLRNDLF3NDLfiNDLI?NDLilNDLIIND288580 23 .SN 122. 3E LRNO2BB515 23 .8N 122. 3E LFIND2EKi60B 24. IN 122. 2E LfiND20B63B 24.2N 122. 2E LI)ND2BB7BB 24. 4N 122. 2E LRNDGOOOIs .-22913 5351424.3N 124.2E5/942 735B624.3N 124.2E2@B14 5320B24.3N 124.2E20724 5358624.3N 124.2E22713 5341624.3N 124.2E10514 534BB24.3N 124.2E11714 536E724. 3N 124.2E21743 5341124. 3H 124.2E229145021424. 3N 124.2E21813219132161473611736117341424.3N24.3N24. 3U124.2E124.2E124.2Ele514 73315 24. 3N 124.2E10614 7331224. 3N 124.2E1E614 733B924.3N 124.2E24. EN 125.3E227147351224.3N 124.2EPOOR1524.8N 12S.3E52614 735I524.3N 124.2E20888!324.6N 122.L!E L$IND52514 7351e24.3N 124.2E26BS3E 24. 5N 121. 9E LRND POORis24. BN 125.3E200980 24. 5N 121 .9E LRND24545 7320924.3N 124.2E2Bl~B 24,7N 121 .5E Lt?ND S///s 73e 1424.3N 124.2E4791 s479184791 El47918479184791s479184791a4791e4791s4791 e479184791847918479184792?479 1a479274791 B479184792747918479 ! eNOTICE - TNE RST6RISKS (*) IHII ICfiTE F 1)03 IR+REPRESENTRTIW RND NOT USED FOR SSS? TRRCX WRPOSES .141


.. -----~Hn71N KFI I vBEST TRf3CK D13TRBEST TR17CKI’KMDFvNR POSIT LUND0628182 13.7 135.8 2$3L1629BBZ 12.9 132.9 2ZIa629a6z 13.1 13a.6 2BEiS2912Z 13.5 129.1 2586291BZ 13.S 127.9 258630002 13.9 126.6 30863EB6Z 13. !3 125.1 358630122 13.7 123.7 35POSITB.B 0.8a.e 9.00.0 8.80.0 0.00.0 8.013. S 126.313.9 125.714.2 123.6863EIBZ 13.5 122.3 30 14.8 122.287816%2 13.2 121.0 3t3 13.6 121.10701062 13.3 119.8 35 13.6 12E.I8781122 13.7 118.6 48 13.s 119.1a781mz 13.9 117.4 45 14.1 117.387820!3214.1 116.5 5E 14.7 115.9a7a2a6z 14.3 115.5 55 14.5 115.3e7a212Z 14.8 114.6 68 14.9 114.28782182 15.7 1!3.8 65 15.7 113. Ba7B3EElZ 16.7 1 [2. S 75 16.9 113.0a7a3a62 17.2 111.5 75 u3. a 112.2~RNING 24 HOUR FORECRST 48 HOUR FOREC96TERRORS ERRORS ERRORSwIND DST WIND POSIT WIND DST WIND POSIT WIND DST WIND0. -0. e. 0.8 0.8 0. -0. e. 0.0 8.0 0. -8. 0,6. -a. e. B.B e.E a. -e. e. e.B 0.E a. -e. 0.a. -e. E. 8.s! 8.B e. -e. e. 8.0 8.8 e. -El. e.a. -6. e. e.a 0.8 a. -e. 8. 6.9 8.8 a. -8. n,a. -6. e. 8.0 e.a 0.a. -a. B,3a.3e.35.35.30,30,38.45.50.60.60.6a.65.6703122 17.6 118.3 7s3 17.8 lIB.4 7E.87 Ei31EZ 18.1 1S!9.3 65 18.2 109.5 65.a7a4aaz 18.6 ma.4 55 19. I laa.3 5a.8784S62 la.9 12!7.6 50 19.6 la7.2 40.0784122 19.2 106.8 45 19.2 187.8 48.07a4mz 19.3 ias. e 35 19.4 106.0 se.a7a5a0z 19.2 IB4.6 25 e.e e.a a.18. 8. 14.2 121.9-5. 14.2B. 1s.35. 16.2a. 15.8-5. 15.8-10. 16. B35.30.30.25,25.3a.13.5a. e.17, 5.24. E.a. -5.17. -10,65. 62.13.13.3a.4a.11.13.-a.-la.a.B.-5.-la.10, s19.016.4lB.219.221.422.72a.721. sa.a0.0-5. a.a15. e.aa. a. B35.121. a 3a.llEI.2 35.117.2 35.116.4 40.115. s 40.115.2 4a.113.6112.1112.2110.?lle.s111.0llO


49 ‘G403ea lE.7N 107.7E5B B4B6eE lE.9ti lt37.5E51 B48625 19. eN 1B7.6E52 04909 19. @N la7.2E53 841208 19.2N 166.9E54 041688 19.3N 186.2E55 84218EI 19.4N 1E5. EE19. IN 1B4.6EPCN 5 T3 . 5/4.@-/w .5/24NRS GltSPCN 1 GffiPCN 5 T3 . 5fl.S &k3 . Ev86HRS N09R7PCN 3GK6PCN 5Gt?3PCN 3GWsPCN 3GffiPCN 5 T1.8/l.5-/lJ2.5 /2lHRS GmPGTIJPGTWRODNPGTWPGTwPGllJPGNPGTWillRCRRFTFI~SFIX T1tE FIxNo. (z) POSITIONFLT 7EEI’E OBS mX-SFC-LtfD mX-FLT-LW--L.ND 9CCRY EYE EYE ORIEN- EY2 TEm (C)LVL NGT MSLP VEL/BRG/RNG D lR/%EL/BRGmNG NFIV/TET SH9PE D IiW’lflIITION OUT/ Itl/ DP/SSTI?SNNO.1 3BE38E2 8113113 8116834 B2E 1435 B2@41a6 0213237 B2 168013.9N 126.3E13. eN 118.6E13.9N 117.7E14.2N 115.9E14.2N 1 15.8E14.9N 114.7E15.4N 114.2E150BFT7aEm 3!3217EEPKI 3E267BBm 29547E8tW 29247E8tS 2B927EEP232B831002 3E 110 55 16E 33 898 100090 59 340 55991 236 36 178 2B65 340 38 1B8 7B L13E ID9s 1 45 270 15 B2E 35 33E 3EI19a eB laE 44975 Is@ E12 217a 3735 +25 +25 284785 +11 +12 +1110 253 CIRCULRR 28 +11 +11 +1]18 IB2 C IRCULRR 17 +13 +14 +13:56677R$)DRR F I)ESFIXND.T1f’E(z)FIXPOiiiION RllDQR slCCRYEYE EYS RflDOB-CODESHOPE DIfItl IWJARRTDDFFCO~NTSRFIOIIRPOSITIONSITEw No.I e 105BB2 B lE!9eo3 81 130B4 a114ElE5 Ell 15806 El 150E7 Olleee14.4N 119.3E LFIND13.7N 119.4S L9ND14. IN lIEI. SE L9ND13.7N 118.2E L9ND14.lN IIS.6E LFIND13.7N 118. lE L9ND13.7N 117.5E LRNDIeew ///// EYE 68 PCT Cl OPEN E16.3N 12B.6E3034/ /////14,6N 129.2E68341 /////14.8N 12E.2E1163/ 4291S EY5 5E PCT EL OPEN NW IS.3N 12E.6E60371 ///// 14.8N 12E.2E1B6W 42710 EYS 50 PCT Cl OPEN W16.3N 128.6ElB91/ 52619 EYE 5E PCT Cl OPEN W 16.3N 12@.6E983219S42698426983219842698321SS321NOTICE - TNE tJSTER[SKS (*) INDICRTE FI)c3 UNREPRESENTIITI%E $lND NOT USED FOR BEST TRRCK PURPOSES.143


—--... ---- .. ..lKUYILl+L > lUKl_l LTNNBEST TRFICK D9T(IBEST TRRCKIJRRNINGERRORS24 HOUR FORECFISTERRORSmmW+lR POSIT WIND POSIT WIND DST WIND POSIT WIND DST WINDE7E 1002 8.6 139.7 15 0.0 0.0 B. -a. 8. B.E E.B B. -e. e.0781062 9.0 138.0 15 B.a E,a 0< -0. 0. 0.$3 0.0 0. -a. a.0701122 9.2 s 136.4 15 0.8 0.0 0. -0. 8. a.o 0.0 0. -a. 0.0701182 9.4 134. E 15 8.0 0.0 0. +3. El. 0.0 0.8 0, -a. 0.87B200Z 9.6 133.2 Za 0.0 0.0 0. -0. 0. 0.8 0.0 0. -0. a.E7B2B62 lF3.@ 131.2 26 E.a Boa E. -E. @. 0.0 0.8 0. -8. E.E7E12122 11.5 129. EI 25 0.0 0,0 B. -0. 0. 0.0 0.8 0. -b. 8.8782182 12.1 128.5 30 13.2 127.9 25. 189. -5. 15.3 122.4 25. 64. -20.13.6 122.8 40. 67. -5.E17E3B6Z15,7 119.9 35. 108. -[0.870312216.5 IIB. EI 35. 144. -5.078318217.8 11s.9 4a. 146. 5.0704a0z17.3 117,2 50. 1E9. 18.0704862a78412zB7e41az07B508ZB7E5E6Z!5.2 121.7 4515.8 121.2 4a16.4 128.1 3517.2 119.1 a18.2 lI?.B 4518.9 117.1 5819.2 116.6 58. 33. a.a7fJ5113Z 19.6 115.8 5a 19.8 115.6 4S. 16. -5.a786aaz za.o 115.1 5a 2a.5 114.8 45. 34. -5.0786a6Z 28.2 114.3 58 28.6 113.9 4a. 33. -la.0706122 28.7 113.8 55 21,a 113.5 45. 25. -la.0786182 21.3 113.B 55 21.3 112.9 45. 6. -IB.a7a7aaZ 21.9 112.4 45 21,9 112.4 35. a. -m.a7a706z 22. E 111.4 3g 22. B 111.6 3a. II. a.a7B712z 23.5 lla.1 20 a.o 8.8 a. -a. a.4B NOUR FOREC6STERRORSPOSIT WIND DST WINDe.a 9.6 a. -a. 0.e.E 9.E E. -E. 0.E.B E.6 E. -a. B.0.0 E.E 0. -0. 0.0.0 0.0 0. -B. 0,0.0 e.E Q. -E. 0.8.0 0.0 E. -E. 0,16.9 llEI.6 321. 91. -5,!5.210.17. s10. 2B.2 112. E19.415. 23. EI 112.220.915. 0.0 a.~20.815. a.~ a.a16.8 117.0 50. 95. 5. 19.715. 0.817.0 11!3.235. 13E.-15,ls.s 117.2 58. 92. 0.20.0 115.8 65. 6. 15.21.6 112.4 66. 135. 18.22.4 111. B 35. 151. -2B.22.623.20.0a.0o.aa.ea.eo.a111.3111.7a.a8.0a.Ba.ea.aa.a25.25.a.0.0.a.a.0.122. -3a.e7. -2a.-a. B.-0. a.-8. 0.-0. 0.-0. a.-0. B.20,221.422.98.00.00.00.00,00.00.00.00.00.014,8 65. 32. 10.12.5 65. 28. 10.lB.2 25. 135. -2E.B.@ B. -8. E.8.0 0. -0. 0.B.0 a. -0. a.0.0 0. -0, 0.0.0 0. -0. 0.0.0 0. -B. 0.0.0 a. -0, 0.a.a a. -a. B.a.a a. -a. 8.a.a a. -a. a.72 NOUR FORECRST.POSIT W!ND DST WINDE.B O.@ a. -a. E.0.0 0.0 0. -0. 0.0.0 0.0 0.0.0.0 0.0 0. :;: 8.8.8 0.0 e. -B. 0.0.0 0.0 0. -0. 0.8.0 0.0 B. -0. 0.18.5 114.8 35. 87. -.15.18.5 112.5 65. 172. 15.E.B8.00.08.0a.08.00.08.0e.a0.0a.oa.oa.a0.00.08.00.00.00.80.00.00.00.00.00.00.0n.%78.30.e.a.‘d.a.e.a.0.E.a.0.a.a.0.e.0.a.129. 20.164. -25.-0. B.-0. 0.-0. 0.-a.-8.-a.-a.-8.-a.-a.-e.-a.-0.-0.-a.-8.a.a.a.a.a,a.0.a.a.a.a.0.a.OLL FORECt!S73mNG 24-HR 4S-HR 72-HRAVG FOREC9ST POSIT ERROR 26. 1a4, 102. 13B.W& R lGHT RNGLE ERROR 14. 34. 55. es.IVJG lNTENS ITY mGN ITUDE ERROR 5. 12. 13. 19.WJ6 INTENSIIW B117S -2. -6. e. -1.NumER OF FORECRSTE 19 14 10 4TYPHOONS WI ILE OWR 35 KTSLRNG 24-HR 4B-HR 72-HR0. 0. a. 0.B. 0. a. 0.0. 0. a. a.a. 0. a. a.a B 0 0DISTIINCE TRQ~LED BY TROP1Cf3L CYCLONE IS 1992. NtliVJERRGE SPEED OF TROPIC9L CYCLONE IS 13. KNOTSTROPICflL STORM LYNNFIX POSITIONS FOR CYCLONE NO. 7SWELL HE F 1=SFIxNO.TItlsFIX(z) PDS1TION IICCRYDVURf3K CODE SATELLITE COI?$5NTS SITS*2134511121314151617E2122232425262728394a41424344454s3ae53 I012336a2e51a02051002B90Ba2m34a212ea02 !600a221aa02231303030003a6aa03090aa312a6031600832]aatuaaooa4aa3 Ia4a3aaa4a6a0048625e4a9aa041129a41 129041600042100a5a8aaesmmaa5e3eeE5a61 705e90aE511a60512000521aa05234506aoa00603000606aE068908061 2a0061224a61 6aa062100a7aaaaa70m3a7ela37. 4N 143. lE9.ON 134.6EIa. aN 131 .3Ela. BN 132.6Ela.3N 130.5E11. BN 129.9E12.2N 129.3E13. BN 127.9E12.4N 127.2E12. aN12.2N13.2N12.9N13.6N14.2N14.5N14.5N126. EE126.2E125.4s124.9E124.3E123.8E122.5E121.9E14.5N 122.2E14.5N 121.7E14. BN 121.7E15. lN 121.eE15.3N 121.6E15.7N 121.2E15.9N 121,2E16. IN 12B. EE16.7N 119.5E16.7N 119.3E17. BN 119.4s17.6N 118. IElS.5N 117. BElS.7N 117.6EIE.9N 117.2E113.9N 117. lE2a.3N 115.4s2a. aN 115.4s19.9N 115.lE2B.2N 113.9E2B.3N 114.3E2a.6N 114.EE2E.6N 113.7E2B. aN 113. BE2B.9N 112.9E21.3N 112,2E22. aN 111.8E21.3N 111.7E21. BN 111.7EPCN 5PCN 6PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 6PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PcN 5PCN 5PCN 4PCN 5PCN 5PCN 5PCN 3PCN 5TE1.5/8.5NOl197Nom6 lti IT OBSNOF197T1. o/l. a NOFW17 INIT 08SGmNoim6Gtt5GffiT2.5zZ.5 02.0 K?4NRS ~~96GmGmGmGflSGffiGKNom16NOR96GmGPG73. W3 . E+ZSE . 8/24HRS GIIST3 .85. a+/SO .O/24HRS N09F16Glt6NOW17GmT3.0/3. a-T3.5~. SGMSGMEN09R7GNEGmNOW16GffiGNSI%NoFv16 INIT 0i3SNoi3R6 INIT OBSPGTWPGTLJPGNRPtxPGNPGTwPGNPGTIJPGNPGTLJPGTwPGTUPGTIJPGNPGTIJPGTLIPGTsJRPF3CPGTWPGTwRODNPGTIJPGTwRPtKPGTwPGTwPGTwRPM(PGTWPGTWPGTWPGTIJPGTWPGTwPGNPGTwPGNPGTWPGNPGTuRPfUPGNPGTLIPGTwRootiRPm144


RIRCRFIFT FIXESFIxNO.T[NE(z)FtXPOSITIONFLT 7EENS CIBS PWX-SFC-LND W?X-FLT-LVL-L,HD QCCRY EYE EYE ORIEN-LVL HGT ffiLP %ELmRGmNG D IR,’VEL,-BRGmNG NIW/tET SNFIPE DIFW’TRTIONEYE 7Et’P (C)OUT/ IN/ DP/SSTtlSNNO.1234830059E3%419050342E5151O12.5N 126.9E13. IN 126. IE17. BN 1113. lE19.4N 115.9E15BEFT7L3SN’B 38337war!a 38127tmm!3 3839999 48 86E 15 238 44 21E 6B 3 5993 6a IIB 3E 12E 57 360 25 s 4999 48 34E 25 248 44 15E 185 9 10Isa 4s EBE 9’a 5 10+25 +24 +24+10 +12 +12+13 +14 +14+10+11+82245RF!DHR FIXESFIxNO.TINE(z)FIxPOSiT ION RFIDflR flCCRYEYESHRPEEYE RRDOB-CODEDI!X’I FISWRRTDDFF COttENT5RFIDfiRPOSITIONSITEW31 NO.123456781:111213141s161718192021232425262726293031323334.35363738394a414243444546474s4950515253545556575859606162636465676S69707172737475767778030908031000031200031300031400031400i33 1580031600E328B13B32 I EBE323BEE4EE!3L3040100E4E12W3E!4E123E30403000404+3004050004053804060064063004073004aeBEE14aa30B4a900041000041200041380E1414aElB41530B416a00417008420000420308421000422000500006350100050130E5E120E0503000503300504a013. SN 125.5E L12ND13. BN 125.8E LaND14.2N 124.6E LI)ND14. IN 124. OE LFINO14.7N 123.5E LAND14.6N14.9N14. SN14.9N15. IN14.8N14. aN14.5N14.9N14.9N14.9N123.4E123.2E123. lE123,5E123. IE122.7E122. aE122. EE122.2E122. ZE122. IELRNDLfiNDLRNDLfiNOL9NDLflNDLflNDLflNDL9NDLflNDLRND22402 424/f28583 529//28663 53E 1928613 530352a643 jll~l///// /////2///3 529271858/ 53a16116// 53als4//// 43B LB4//// 726254//// 43305I 19a3 423a5IE724 43f3a7ia714 4aaa018934 42805I 1844 433E33ia42z 5EmeE1a69/ 436a61842/ 432EB1lB3/ 436041093/ 536E61191/ 432a51078/ 434a51071/ 436allE25/ 534a5la2 I / 433L351B23z 43al 11817/ 4343625/// 43518lB86/ 4336s25/// 53506ia2Ei/ /////1149/ 436 la1141/ 5342818341 42916Em aa PCT EL OPEN NWEYE laE PCT CI14. BN 124.3E14. EIN 124.3E14. BN14. BN14. ON16.3N14. BN16.3N16.3N124.3E124.3E124.3E12a.6E124.3E12a.6E12B.6E16.3N 12E.6E16.3N 12a.6E16.3ti 12a.6E16.3N 120.6E16.3N 128.6E16.3N 120.6E16.3N16.3N16.3N16.3N16.3N16.3N16.3N16.3N16.3N16.3N12a.6E120.6E12a.6E12B.6E12B.6E12B,6E12a.6E12a.6E12E.6E120.6E16.3N 12a.6E12a.6E12a.6E12E.6E12a.6E126.6E16.3N16.3N16.3N16.3N16.3N16.3N16.3N16.3N16.3N16.3N120.6E12E.6E128.6E128.6E12B.6E16.9N 119.9E LflNO17. lN 119.9E L(JND17. IN 119.7E LllND18. EN llB. SE LFINDla. IN 118.4E L8ND Zawz 52B2a 16.3N 12a.6Ela.3ti lIB.2E LF7ND1059/ 5311216.3N 12E.6EU3.3N lla.8E LRND1073/ 4291516.3N 12a.6E18. IN 117,7E LflND1074/ 4261816.3N 12a.6EiE.lN 117.5E LfNID116!3/ 524a916.3N 12a.6E18. lN 117.5E LnND1 179/ 4aacia16.3N 12E.6E18. lN 117.5E L9NDI la8/ 4////16.3N 12E.6E050430 IS. lN 117.5E L(IND]181z 4a8ea E’T?S68 PCT EL OPEN NW16.3N 128.6E05e5aa lE.2N 117.5E L(INOlasl/ 4aaaa EYE 5a pcT ct OPEN sw16.3N 12a.6E05a7t30 lS.4N 117.4E L!-lND4//// /////16,3N 12E.6Eosmae 18.9N 117.3E LIIND4//// 5343016.3N 128.6E05ma8 19,9N 115. BE LRND65/// /////22. 3N 114.2E052000 2a. ON 115.3E LQND55/// 6281522, 3N 114.2Ea52]0a 2E.3N 115.BE LQND55/// 7291622. 3N 114.2E0522ae 28.3N 114.8E LIIND55/// 5281522. 3N 114.2EB6EBaa 20.4N 114.8E LONDG5/// /////22. 3N 114.2E060280 2B. lN 114.8E L9ND2a90 I zzJ/z22, 3N 114.2E060380 20. IN 114.6E LFIND 2a/// /////22. 3N 114.2E0604D0 2a. IN i14.6E LRND 65/// /////22. 3N 14.2E060500 2a. IN 114.3E L9ND65/// /////22. 3N 14.2Ea6B68B 2E. IN 114.3E L13ND65/// /////22. 3N 14.2Ee6E70a 2a.2N 114.2E L9ND65/// /////22. 3N 14.2EE16E18EB 2a.4N 114.2E L9ND65/// /////22.3N 14.2Ea6a9aa 20.3N 114.2E LFIND65/// /////22. 3N 14.2Ea61000 2a.5N 1t4. @E LFIND65/// /////’22.3N 14.2E8611a0 2a.6t4 114. EE L9ND65/// /////22. 3N 14.2Ea61200 20.7N 113.9E LPND65/// /////22. 3N 14.2Ea613a0 2a. SN 113. SE L(IND65/// /////22. 3N 14.2E861480 2a.9N 113.6E LOND65/// ///,’/22. 3N 14.2Ea6]5aa 21. aN 113.4S LRND65/// /////22. 3N 14.2Ea6160E 21.2N 113.2E LfiND65/// /////22. 3N 14.2E061700 21.3N 113.2E LIIND65/// /////22. 3N 14.2E061800 21.4N 113. lE L9ND55//-/ /////22. 3N 14.2E0619aa 21.5N 113. IE L9N055/// /////22. 3N 14.2Ea62Ema 21.6N 113. aE LfiND 55/// /////22.3N 1 14.2Ea6210a 21.7N 112.9E L9ND55/// /////22.3N 1 14.2Ee6220a 21. aN 112. EIE LflND65/// S320722.3N 114.2E0623Ba 21.8N 112. BE LRND55/// 83 la722.3N 114.2E070000 21. aN 112.6E Lf!ND55/// 7298722.3N 114.2Ea7a]0a 22.8N 112.4E L12ND55/// 73 iaa22.3N 114.2Ea7ci2ea22.2N 112. lE LRND55/// 7301522.3N 114.2E870300 22.5N 112. OE LIINO55/// S311222.3N 114.2E9e44?98447984479s447984479S32198447983219a3219e3219E321983219B321963219E13219B3219E3219S32198321983219e3219S321983219832 i983219B321983219832198321983219S321983219832198321983219832198321963219032190321983219832198321983219832198321983214500545005458054s00545a054500545005450a545E0545805450054500545a054500545005450a545aa545805450054500545a0545a054500545005458a545aa545a05458a54500545005NOTICE - THE FWTERISKS (*) lND 1C9TE F I)CES UNREPRESENTRTIVE RND NOT USED FOR BEST TF%CK PURPOSES.145


TRDPIcfiL STORM tfllRYBEST TRfiCK D9TABEST TRtlCKIMRNING 24 HOUR FORECI?ST 42 NOUR FORECf!STERRORS ERRORS ERRORSm09AlR POSIT WIND POSIT LIIND DST WIND POS1T LUND DST wIND P061T WIND DST IJINDe717EE3z 16.9 13e.9 2B 0.0 0.0 B. -E. E. 9.B B.B B. -B . a. e.a 8.8 e. -B, 0.8717062 19.3 129.9 28 Et.F3 6.8 B. -E. B. E.E B.B 8. -0.0.0 0.0 E. -B. a.E7171ZZ 19.4 129.1 25 B.c3 O.@ B, -0. B. B.E 0.8 B. -E.8.6 E.e E. -a. e,B7171EZ 19.7 128.4 3B E1.B 13.B B. -B. 8. B.6 8.8 B. -0.8.9 0.8 a. -B. B.07180BZ 2t3.2 127.7 35 ZB.5 129.5 35, 182. 8. 21.8 126.0 55. 21s.23.7 122.2 7E. 215. 44.B718B6Z 21.3 126.6 45 20.6 126.6 40. 30. -5. 22.8 122.6 6B. 132.8718122 22.S 126.1 50 21.1 125.4 45. 189. -5. 23.2 12B.5 45. 131.67181B2 24.3 125.9 55 21.5 124.2 SE. 192. -5. 23.6 119.6 50. 112.B719Eoz 25.1 124.3 55 25. B 124.3 60. 6. 5. 27.3 119.7 35. 1B5.871906Z 25.8 123.0 55 25.8 123. B 65. B. lB. B.8 B.B 8. -e.8719122 25.2 121.5 40 25.3 121. B 35. 2B. -5. 0.8 8.B B. -0.e7191BZ 25.4 128.2 35 25.6 1213.B 35. 16, B. B.Li B.B B. -B .B72EtiBZ 25.7 lle.9 38 25.6 118.9 30. 6. B. 0.8 k3.13 0. -0.0.0.0,B.5.5.15.5,0.B.0.8.0.0 B.fi 0. -0. B.e.e 8.8 8. -a. B.E.B B.B 8. -E. B.8.8 0.6 B. -B. 8.0.9 e.e El, -0. ‘a.8.6 E.8 e. -8. 0.E.8 B.E B. -8. 0.0.0 0.8 El. -8. 0.72 HOUR FORECf)ST,POSIT WIND DST WINDE.E (3.B e. -e. e.B.B B.9 B. -a . 0.0.B 0.0 0. -a8.0 a.0 0. -0:0.0 F3.B B. -8.0.8 0.8 B. -B .a.B8.00.%B.B0.00,80.0B.8B.0B.@8.B8.68.00.B0.El.B.0.0,aFIxPOSITIONFLTLM.7E~ OBS I’UX-SFC-LND mX-FLT-LW--LND 8CCRY EVE ORIEN-HGT ffiLP $ELfiRGmNG OIRfiLmRG~NG Ni?VfiT S~~E DItlM9T10NEYS TEI’P (C)OUT/ [N/ DPfiSTr6NNO.123180312 28.5N 127.3E1BE14B5 21.2N 127.13E19%543 24.7N 123.2E15E8FT7B0m7BBm995 45 lBB !5SI 24S 46 128 14 5 4301B 45,160 140 330 21 268 30 5 152998 9B5 3EI lBE 17EI ISB 35 E7E llB 4 4+25 +26 +23 27+13 +12+13 +IB + 7112NOTICE - THE W3TERC3KS (*) [ND IC!-Y7E F l~S UNREPRESENTIITWS OND NOT USED FOR SEST TRRCK PURPOSES.146


TRDPlCRL STORM N tNRBEST TRFICK DFITfiBEST TF$ICKWRNINGERRoR5mf19flR POSIT WIND POSIT LUND DST WIND872213ez 25.3 122.9 38 E.e B.0 B. -E.!3722662 26.1 121. B 35 26.B 122.9 ~a. 12, ~:E72212Z 26.7 121. B 35 26.8 128.8 3E. 12. -5.87221S2 27.2 126.4 3E 27.4 ]2@. z ~~. ,G. ~.@7238EZ 27.6 128.0 25 2?.6 119.9 25. S. 6.24 HOUR FORECFISTERRDRSPOSIT ~IND DST klIND6.0 a.e e. -6. e.B.e E.a e. -9. e.B.8 e.e e. -e. e.e.e e.a e. -B. e.6.8 B.a e. -0. a.4S HOUR FORECOSTERRORSPOSIT WIND DST WINDB.E 0.0 s., -8. 0.B.@ 0.0 B. -E. 0.B.8 0.0 8. -0. 8.B.B 0.0 0. -El. 0.0.0 8.B e. -0. a.72 NOUR FORECRST,POSIT wIND DST WINDB.a 0.0 0. -0, 8.0.0 0.0 0. -0. B.8.0 0.B 8. -Et. 0.a.e 6.8 e. -a. e.e.e E.8 E. -8. B.RLL FORECIISTSLRNG 24-NR 4B-NRIWG FORECfiST POS1T ERROR 11. 8. 8.RVG RIGHT FINGLE ERROR 4. 0, 8.IV& INTENS 1TY f’RGNITIJIiE ERR13R 3. 0. e.FJ$& INTSNSI’IY BIRS -3. 0. 0.NUmER OF FORECOSTS 4 0 ED1ST8NCE TRwELED BY TROPICRL CYCLONE IS 2B8 . NM72-NRo.B.e.e.8TYPNOONS L311LE O%ER 35 KTSLRNG 24-NR 4B-NR 72-HRB. a. 0. 0.B. 0. B. 0.0. 0. 0. 0.63. 0. 0. e.e o 0 eRW5RI?GESPEED OF TROPICRL CYCLONE IS 9. KNOTSTROPICRL STORM NINJlFIx POSITIONS FDR CYCLONE NO.9SWELL ITSFIXESFIXNO.TIIE(z)FIXPOSITION IICCRY DVORRK CODE SWELLITSCOtfENTESITE* 1 2121m2 22aBEa* 3 22eE224 2200225 221338B6 22062?7 22139E!Ba 2212889 22168BlB 22191211 22211se12 22235925. BN 123.9E25.6N 123. EE25. IN 121.SE25.lN 123. EE26.8N 122.4226.EN 121.5E26.2N 121. IE26.4N 12E.6E26.9N 128.5E27. BN 119.4s26. BN 128.3E27.6N 128.9EPCN ?PCN 5PCN 5PCN 5PCN 3PCN 3PCN 5PCN 5PCN 5PCN 3PCN 5PCN 5T1. E/l. BT1.8/l.8T1. O/l.ET1.5/l.5T1 .5/1.5-/zIB.5/24NRsGmGMSNoflF16NomsGmNOflR7GmGmGtt3NOOR7lNITlNITINXTINITOBSOBS0SSOBSPGllJPGTWRODNRPf’uPGTIJRODNPGTwPGTuPGTwRPtUPGILlRPtUNOTICE - THE RSTSRISKS (*) IND ICITI’E F [X3 UNREPRESENTRTI~ em NOT USED FOR BEST TRllCK PURPOSES.147


RRD9R F I~SFIXNO.TII’EFIX(z) POSITION RflOllR9CCRYEYESHRPEEYEDlflMRFIDOB-CODEFISLMR TDDFFCOP3’EN75RflDRRPOSITIONSITSLrn No.1234567$391011121314151617lB:2122232425262?2B29303132333435363738394041424344454s474s49se51525354555657%6a616263646566676a697El7172733004003004003Ee5BB3006003006803006083007%03007003007003aEe0E3e8e0e3009003009003rn100a3alaaa3011003011803011603E.9N31. (3N30. 9ti31.6N31.ON31. lN31. IN135.42135.8E135.2E134.7E134.9E134.8E134.4231. aN 134.3E31.2N 134.3E31.2N 134. aE31. IN 134. IE31.2N 133.7E31.4N31.2N31,3N31.2N31.2N31.2N133.5E133.4E133.3E132. aE133. lE133. lELRNDLRNDLRNOLIINOLfiNDLfiNDL9NDLflNDLQNDLRNDLRNDLflNDLONDLFtNDLf4NDLilNDLfiNDPOORPOORPOORPOORPOORPOORPOORPOOR2a354a4a4BLFIND POOR4a31.3N 131.9E301280 31.2N 132.8E LIIND65/41 5261633, 3N3a128a 31.2N 132.7E LOND6/// 1 524BtlPoORaPOOR3Et128e 31.2N 132.8E LRND3a1255 31.3N 132.7E LRND301388 31.2N 132.5E L9ND3D13@8 31.2N 132.6E L12ND3a]3a8 31.2N 132.7E L9ND381355 31.3N 132.3E L8ND!301~e 31.3N 132.2E LFIND3a14+3ti 31.2N 132.2E LFIND381408 31.3N 132.4s LRND3a1455 31.5N 132.aE LRND3E15@B 31.4N 131.9E LQND3E158B 31.4N 131.8E L9ND301560 31.4N 131.9E LRND3e15ea 31.5N 132. IE L9ND3E170E 31.7N 131.5E LRNO3817@B 31.6N 131.3E LIINO3e17@B 31. SN 131.3E LQNO381755 31.8N 131. IE L9N03E1S88 31.7N 131.2E L13N03a19aa 32.lN 131.lE LAND382@B0 31 .9N 13B.5E LIINO3B28B8 32. lN 13B.7E LtlNO3212eBE 32 .2N 13a . EIE LRNO302188 32.3N 13B.2E LONOPoORPOORFfllRFFIIRFIIIRFRIRFR IRFfl IRF9 lRF91RFll IRFRIRFRIRPOORFFIIR404a4a464a4a4a404a24s// ,’////35=/ 5271135/1/ 5301655/ 1/ 5282755/4 1 5271621~1 5383252911 52S166/// 1 5////65/41 5261665/4/ 527166///1 53BB565/& 52B 165/// 1 5272265/4/ 53a2252911 /////5///1 530225///1 53a I I21912 5291121912 536165///1 530195///1 5292221812 5311121712 531116///1 5311965112 528116///1 5271665//2 5291633.3N 134.2EmwtQv63135313533.6N33. 3N31.3N33. 3N33. 6N135.8E134.2E131.9E134.2E135.9E33.3N 134.2E31.3N 131.9EIQVG 2!33533.6N 135.8E31.3N 131,9E33.3N 134.2Efuwttw6wmu31.3N33.3N31.3N33, 3N3a. 6N33. 3N30, 6N31.3N32. IN33. 3N3a. 6N13i.9E134.2E131.9E134.2E131. aE134.2E134.2E131. OE131.9E131.5E134.2E131. BE31.3N 131.9E32. IN 131.5E33.3N 134.2E3a.6N 131.6!E31.3N 131.9E32. IN33. 3N33.4+i38. 6N34.2timm% LNu 32. IN38. 6N33.4N33.4NI’uw IIMwmV6 2838mw LriWmv6 3146mv6mmLWIJ313aI$3V6 363B3021BE 32.2N 1313.4E Lf+NO31352 53213302208 32.4N 13a. lE LllNO3s/11 431193B23BB 32.6N 129.9E LRND FI?lR353023B8 32.6N 129. BE L12NDl@283 S29223m3aa 32. aN 129.5E LtlND F91RMOW NW318BBB 32. EN 129.5E LRNO11563 5312231BIBB 32.8N 129.2E LRNO Ffi IR30316166 32.9N 129. aE LIJND21733 532!2231B2aE 32,9N 129.8E LAND POOR3B31E2BB 33. EN 12B.9E LQND21742 5380531B39B 33. @N 12a.7E LRND FRtR4531a3EE 33.8N 128. EE LnND21S62 527853m4aa 33.2N 12a.2E L9ND F91R55n3v6 mu318408 32.9N 12B.3E L$)NO31B12 5262431e5ae 33.2N 12a.2E LnNO POOR30smRY31B5EB 33.8N 12B.2E LIINO33962 5311131e6aa 33.2N 12a. ]E L9ND POOR22310688 33.2N 128. lE L(JNO33942 53413.32.lN33.4N33.4N38 .6N32. IN33.4N38. 6N131.5E134.2E130.3E131 .EE13B. SE131.5E131. OE13B.3E13B.3E131 .5E13a.3E13B.3E131.8E131 ,5E130.3E131 .EE33.4N32. IN33.4N33.4N30. 6N34. 3N130.3E131.5E13E.3E130.3E131.8E132.6E30. 6N 131.EIE32. 7N 12S.8E34. 3N 132.6E32. 7N 12S. BE33.4N 138.3E33.4N 130.3E32.7N 12B. BE33


TYPHOON OGDENBEST TRFICK Dr3Tllt31/DRfiRe72780Z072706zS172712ZB727113ZB72B8EZB72EE6Z07261220726 lEZB72911EiZB729E6ZB72912z6!7291EIZa73emza73ea6z6738122e73eleza73mze731e6z8731122873 I I az6%211BEIZBEST TR9CKPOSIT wIND22.S 158.0 2523.1 149.8 2523.7 14s.2 3E27.3 141.9 5028.1 140.8 Sa2s.8 139.5 5529.3 138.2 553E.8 136.8 553e. e 135.0 5531.2 132.7 6531. S 131.2 5532.8 129.5 4033.2 127.9 4833.8 126. e 3534.8 126.2 3E36. E 125. e 25FUSIT2::: M&:23.4 148.724.5 147.524.5 146.325.2 146. B25.9 145.326.9 143.427. e 142.22B.2 140.729.1 139.529.4 138.138.1 136.638.7 134. e31.8 132.93t. e 131.132.6 129.633.1 lze.233.733.236,0IM?NINGERRORSWINO DST WIND0. -a. 8.30. 2e. 5.38. 33. 8.30. 25, 0.3B. 17. -5.35. 11. a.35. 32. -18.4B. 19. -10.45. 34. -5.55. e. 5.55. 18. e.24 HOUR FORECQSTERRORSPOSIT WIND DST lJIND2%: 14:: 4:: ;:: 1::25.4 146.8 45. 117. 8.27.4 144.B 45. 93. -5.26.0 142.3 38. al. -2a.48 HOUR FORECRSTERRORSPOSIT LIINO DST WIND8.8 0.!3 a. -E. B.213.B 144.6 5B. 214. 8.29.6 145.1 45. 29E. -lE.31.2 141.7 45, 213. -In.28.3 139.2 25. 161. -3B.27.8 142.9 35. 112. -15. 3B. B 139.2 25. 222. -3B.=.e 141.9 35. 135.-2a. 29.7 137.3 25. 253. -4D.29.6 137.3 50. 55. -5. 31.2 133.B 45. 98. -16.3E.2 137.9 40. 52!.-15.3@.6 135.7 45. 3E. -16.0.0 e.a e. -a. a.-a, 0.-a. B.-0. B.126.a 38. 6. -5. a.a 8.6 0.127.8 321. 124. 8. E.B 8.8 8.i25.e 25. e. a. 61.B E.e e.32.3 133.633.3 131.9a.a a.0e.e o.aa.a a.ao.a a.a0.0 a.eB.B e.e8.8 a.ea.a e.ea.e o.e0.0 e.80.8 0.035. 209.30.a.0.a.a.E.e.0.a.a.0.2E0 .-0.-0.-0.-a.-0.-e .-a.-8.-a.-0.-5.-la.0.e.0.B.0.B.0.8.8.0.B. -e. e.72 HOUR FORECRST,Pos 1? LJtND DST WINDE.e E.e 8. -8. e.32.5 145.8 45. 519. -16).35.4 147.8 40. 793. -25.36.8 144.8 35. 69e. -2e.0.8 0.% 0. -B. a.8.0 0.0 B.E.a B,e B.0.8 B.B 0.8.B B.8 B.B.B 0.0 B.a.B e.B e.8.B 0.8 a.0.0 a.e 0.FJ.E B.e e.-El. a.-0.-0.-B.-0.-0.-El .-a.-e .-8.-a .-8.-8.-0.-e.-8.8.e.E.m.0.8.a.0.e.0.a.::B.B.IW6 FORECRST POSIT ERRORWJG RIGHT RNGLE ERRORW& INTENS [TV mGN ITUDE ERRORFMi [NTENSITY elfKNIN’BER OF FOREMSTSRLL FORECC+STSIJRNG 24-HR 4B-HR 72-HR23. 91. 2e8. 670.14. 4s. 93. 477.5. 11. 16. 16.-4. -9. -16. -16.20 14 s 3TYPHOONS LH ILE OVER 35 K7sLRNG 24-HR 4B-HR 72-HR17. ea. zee. 67B.15. 39.6. 12.-5. -10.15 1353. 477.16. 18.-16. -18.9 3DISTllNCE TRWELED BY TROPICRL CYtLONE IS 1542. NllWERfiGE SPEED OF TROPICRL CYCLONE [S 13. KNOTSTYPHOON OGDENFIX POSITIONS FOR C~LONE NO. 18SFITELL[’7S F I)CSSFIX TItE FIxNO. (z) POSITION flccRYDVOR$4KCODE SWTELLITE CO~NT5SITE* 1 262227 23. 5N 149. 3E2 27B3EB 22. EN 149.2E3 27e9ee 23.eN 149.4E* 4 278925 26.3N 14S.42*5%67e9* 102712002716802722042S03362eB9022ee90224.4N 149.2E25. SIN 14B.7E24.4N 146.BE25. eN 145.9E25. 7N 145.5E27.9N 144.3E24 3Be9BE 31 .4N 133.9E25 30e957 31 .4N 133.4S26 3B12BE 31.5N 132. EE27 3B168E 31.7N 131. BE2B 3021S!8 32.4N 13B.5E2g 302236 32 .6N 129. 9E38 3183Be 32.9N 12e.5E31 3189B8 33.4N 127.6E32 3112@E 33.9N 127. BE33 3116BE 34.6N 126.3E34 3121BE 35.5N 125. BEPCN 5PCN 5PCN 5PCN 6PCN 5PCN 5PCN 3PCN 3PCN 5PCN 4PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 3PCH 3PCN 3PCN 5PCN 3PCN 3PCN 3PCN 3PCN 3PCN 3PCN 3PCN 5PCN 5PCN 3PCN 5PCH 5Pcti 5PCN 5T1.5/l.5T2. en. e /DE .5/21HRSNO13F16GmGmNom6GP?3GmNofll16NOR87NORIJ6No!-m6G!?SGFST3. Et=. B /D1.W25HRS NORQ6GMSGf6NORI16Gm:RGmT2. 5/3. B A@ .5iZ4HRS HO!-M6GmT2. 5~ .5+/S@ .W7MHRS NoiV16mu -..-GmGtlSGtlsGRElNIT OBSEW LLCCPGNPG71JPGTWRODNPGTWPG7LJPGTWPGTIJPGTLJRODNPGTWPGtWPGTWPGTLIPGTIJPGNPGTUPGTWPGTUPm-wPGTWPGTWPGTIJPGTWPGTIJPGIWPGTWPGTIJPGTWPGTLJPGTLIPGTWPGTwPGTIJ(3IRCRFIFT F 1=SFIx TII’E FIXHo. (z) POSITIONFLTLM.7BemHGT09s?lSLPmx-SFC-L26D WIX-FLT-LW-LNO RCCRYWiLmRG~NG D lR_L~RGmNG N9V4’ETEYE ORlEN- EYE TEW (C)S::E D IIWVTI?T ION OUT/ IN/ DP/SSTffiNNO.;34567271326 23.9N2716012BB3B028131328155429032029133229160730080730824530131824.2N24.9N26. 2N26.SN27.8N2E.8N29.2N29.9N30. lN31.2N147.9E147.6E146.4s144.2E143.7E141. ZE138. BE13s.4s136.6E135. BE132.2E7e0ra70em?Berm7Wr’m70am?Bem700ta70Bm7eetm?eetm3e693e1929962974294S29222920297029492SB699B9939979es118 48 ME 6B 2 324B3E14D 952335 17B 15 160 3E 030 28 3 5m 33 eea Is 4 5116 49 350 12B 6 53S 840 15 23B 53 168 68 2 1012B se EMB 60 3 29B 1 070 48 328 28 3 45e 32B 4S E6B 68 320 63 4 S984 664e30 7e 16e 7e e3e 76 4 s976lea 7e 14s 22 2 s+13 +la+12 +15 + e26+14 +13 +13+16 +13 +11+13 +12 +12+13 +14 +12+12 +14 +11+13 +15 +1122345667149


TROPICRL DEPRESSION 11EE5T TIVICK DfllflBEST TRRCK LRRNING 24 HOUR FORECRSTERRORSERRORSt$3~WliR POS1T IJJIND PoSIT WIND DsT WIND POSIT WIND DST IJINDB73112z lE. E 141.5 2B 17. S! 144. e 3B. 18EI. lE. IEI.8 142.2 4D. 69. 20.07311s2 18.2 142.2 2e 17.9 144.2 3E. 115. m. lB.7 141.7 4B. 119. 2E.0S!81882 19.3 142.7 28 17.6 141.1 30. \@@. le. 16.4 137.5 4D. 375. 28.68 BIB6Z 1S.4 143.1 2B lB.3 143.1 3B. 6. lg. B.@ B.8 B, -B. El.8801122 lB.6 143.4 2@ 17.4 144. B 3B. 79. IZI. 0.8 B.8 B. -B. B.EE8118Z 19.8 143. S 2B 17.2 143.9 3B. 96. lB. E4.E S?.8 0. -B. B,13EIE2WYZ 19.B 144.1 2@ 18.5 143.5 38. 45. IB. B.B E.B B. -B. B.4S HOUR FOEECSST 72 HOUR FORECRST,ERRORSPOSIT WIND DST WINDa.e e.a a. -a. a.a.a a.a a. -0. a.a.a a.a a. -6. a.a.a a.B a. -a. a.a.o a.a a. -a. e.a.a a.o 0. -a. a.0.a a.a a. -a. a,POSIT WIND DST WIHDa.a e.B e. -a. a.a.a a.a a. -0. 8.SS.B e.a a. -a. E.a.a a.B a. -a. a.E.B a.a a. -a. a.a.e 9.6 a. -a. e.a.a a.a a. -0. e.17LL FORECRSTS IWHOOHS &lLE O%TiR35 KTSIARNG 24-HR 4S-HR 72-HR LS!NG 24-HR 4B-HR 72-NRWG FOREC$)ST POSIT ERROR 9a. 1S6. a. e< e. a. a. a.FM RIGHT 9NGLE ERROR 5a. 113. a. a. a. a. a. a.WC lNTENSITY FRGHINDE ERROR la. 20. a. a.FM2 INTENSITY aIFIS Ia. 2a. a. B.NUmER OF FOREC$lST5 7 3 e aDISTFINCE TRWllED BY TROPICRL CYCLONE IS 161. NHIWERFIGE SPEED OF TROPICRL CYtLOHE IS 4. KNUT68. 0. B, 0.B. a. a. a.B E B aTRDF ICIJL DEPRESSION TD- 1!FIX POSITIONS FOR CYCLONE HO. 11SflTELLITEFI)4ZSFIxHO.71rEFIx(z) POSITION I?CCRY DWR(iK CODE SWI’ELLITS cOITENTSsnEI234567891811121314153a2236 17.9N 143. lE31@B8B 17.7N 143.3E31a934 17.7N 145.lE3112a@ 17. BN 144.9E31168a 17.5H 144.5E3~21aa 17.3N 141.9Eemafm 16.6N 141.5Ea]a3aa 17. IN MS.5Eela432 17.4N 146.2EElB6aB 17.5N 145.5Eel12aa 17.4N w.aEE!116EIB 17.lN 143.9Ea11718 17.2N 144.eEB1215B 17.3N 143.6Ea212aa 19.6N 139. aEPCH 5 T1. a/i. aNom16 IHIT OEK PGTWPcN 5GMSPGTLJPCN 6 Nom16PGTWPCN 5PCN 5PCN 5GmGtlSGMSPGTWPGTwPGTuPCN 5 T1.5/l.5 ~a.5Z?!5HRS Gt!SPGNPCH 5PCN 5Gt!SNOFN17PGTwPGllJPCN 5Gt!SPCN 5GmPCN 6GtlSPCN 5NOIW17PCN 5 TI .5/1.5 ~.a/22HRS NORf16PCN 5GttSPGNPGNPG7wPGTLJPGTIJPGTLISYNOPTICF IxESFIXNO.TIE(z)FIxPOSITIONlNTENS ITY NERRESTEST Il$lTE DIIT9 (Nil) COfTENTS12eiBaaa lB.2N 142.8Ee2B06B 19. aN 144. aE20 3025 7aNOTICE - THE RSTER ISKS (*) IND ICllTE F MZS UNREFRESENTfiTI%E RND NoT uSED FOR BEST TRIICK PORPOSES.150


TROPICFIL STORM PNM.L ISBEST TRRCK D9TRBEST TF$CKMORNING24 HOUR FORECfJST4S HOUR FORECRST72 HOUR FORECf)STCERRORSERRORSERRDRStUm9AiR POSIT WIND POSIT WIND DST WIND POSIT LIIND DST IJIND POSIT WIND DST WIND FUSIT WIND DST UIHDEIB@3BBZ 25. E 146.5 3B E.B 8.0 0. -0. a. 0.B 8.0 8. -B. 8. 0.0 B.B 9. -e. B. 0.0 0.0 B. -B. B,BSE3B6Z 27.7 14s.7 35 27.7 147.6 35, 46!. E. 29.5 145.2 45. 162. E. 0.0 E.B B. -B.B.B B.B i3. -B. EI.0S03122 2S.9 146.6 a 2i3. B 147.9 4a< 87. E. 36.6 1~.8 S8. 172. 16. E.O 8.B B. -E. :: B.B B.B E. -E. B.eEle31ez 2s.9 14s.2 40 2s,7 14s.7 48. 29. 0, 32.7 142.7 5B. 1SS. 15. B.B 8.B B. -0. 8. 0.0 B.B 0. -8. B.EEB4BBZ 31.0 146.1 45 31.fl 145.5 40. 31. -5. 8.0 B.B B. -8. E. 0.8 E.B B. -B. B. 0.0 E.6 B. -a. 8.B8B4a6z 32.1 146.1 45 32. EI 14S.2 35. 62. -lB. 0.B 0,0 0. -0. a. 0.0 E.B G, -B. E. 0.B B.B 0. -’d. 8.eEB412Z 33.4 146. B 40 B.B 0.0 0. -EI. B. E.B 8.0 B. -E. B. E.E E.B B. -B. B. 8.6 E.0 B. -E. B.eeB41Bz 35. B 145.3 35 B.e 8.B 0. -0. B. 0.B B.0 B. -0. E. B.B B.0 0. -8. 8. 0.0 0.0 0. -0. e.f4LL FORECRST3lRNG 24-HR 4S-NR0W3 FORECFIST PDS IT ERROR 51. 174. 0.FM RIGHT !2NGLE ERROR 43. 87. 0.FIVG INTENS lTY mGHITUDE ERROR 3. 0.WG INTENS1lY BIAS -3. :: 0.NUmER OF FDRECRS15 5 3 eTYPHOONS LMILE OWER 35 KTS72-NR LRNG 2~-NR 4B-HR 72-HRe. e. 0. 0.e. 0. 0: a. 0.0. B. 0. 0. 0.0. El. B. 0. 0.e 0 0 B BDISTI?HCE TRRKLED BY TROPICRL CWLONE tS 568. mF)WSRPGE SPEED OF lTCOPICRL CKLONE IS 13. KNOTSTROPICFIL STORM PHYLLISFIX POSITIONS FOR CYCLONE HO. 12SWELL US F 1=SFIxNO.TIFE(z)FIXPOSITION I?CCRY DVORFiK CODE SflTELL t TS COtfEHTS SITE*I*2*3*e45679101112131415161718e212e0021600e221eBB3BBOB03B3BB038410830600038900E1316B60316550321800322450400000403s004098004094304120004160024. SN 147.7E25.5H 1413.lEZ6.7N 14B.3EZ5.4N 146.2E27. 3N 146.2E27. IN 146.5E27.5N 147.3E27.6H 147.7E29. 6N 146.2E29.3N 146.4s3B.5N 146. IE31. BN 146.6E31.lN 146.7E32. IN 146.SE32.3N 146.9E32. BN 146.8E32.9fl 146. lE33. SN 146.6EPCN 5PCN 5PCN 5PCN 3PCN 5PCH 3PCN 5PCN 5PCN 5PCN 3PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 5PCH 5T1. O/l.ET1 e/l .E /’!3B. W24MRSGffiGtlSGmGffiGmNOFlR7GmGmGmNORI17GmHoFlf46GmGt16GMSNOFM16GM5Gm~HITOBSPGTWPGTuPGTcJPGTLIPGTWPGNPGNPGTLIPGTWPGTLJPGTWPGTUPGTWPGTL!PGNPGTwPGNPGTwI) IRCRIIFT FIXESFIXHO.TII’E(z)FIXPOSITIONFLT 7E8m OBS mX-SFC-L?iD mX-FLT-LkL-lAND FICCRYLkl. NGT ?4SLP VEL/%RGfiNG DIRML/EIRG/S?NG NFIVMTEYESHtlPEEYE ORI EN-DIIW’VTRTIONEYE TE?? (C) I’!SNOUT/ IN/ DP/2.ST NO.*2*3103851004010004030027.6N 146.6E31.9N 14S.3E32.2H 145.3Ei50eFT 9B3 5E E3E BO 07E 52 E3E 8B 3 578Elm 2916 35 270 68 33Ei 2S 24o 7B 5 57EW’EI 29EB 35 28B 129 350 35 27B 9B 5 5+26 +25 26:+15 +15 + 7 2NOTICE - THE 9STERISKS (*) INOICRTE F l~S UNREPRESENTflTIYE flND NOT USED FOR BEST TRRCK PURPOSES.151


TROPICRL STORM ROYBEST TR9CK DRT9fU-’DR/’NR POSIT WIND0S8482 lS. S 115.3 25S18E14E6Z 15.7 1 14. e 3E8884122Bee41ez8ee58BzEIE0586zE18e512ZBEST TRRCKWRNIHG24 NWR FORECFIST 4S HOUR FORECRST 72 HDUR FDREmSTERRORSERRORSERRORSPOSIT WIND DST WIND POSIT WIND DST WIND POSIT wIND DS7 WIND POSIT WIND DST WIND0.0 0.0 ❑ . -B. El. -. 8.B e.e e. -e. 6. B.e B.e 8. -o. e. e.a ‘a, e e. -0. B.0.8 E.e 0: -i : 0. 8.B e.e 8. -8. B.8. B.B EI.B B. -6. e.15.1 115.2 30 15.3 115.2 38.El. 16.5 115.9 45. S9. 6. l;:: la:! 5:: 2;!: E. 19.2 112. EI SE. 2S2. 15.15.3 116.8 35 15.2 115.1 3B. & -5. 16.2 115.8 45. 129. e. 17.4 14.3 5B. 276. 5. 19.3 121.9 56. 243. 2E.15. S 116.8 35 15. s 116.9 35. 6. 0. 18.8 117.2 45. 67. -5. 19.4 1s.6 se.. 135. 10. 2E.3 113.4 58. 128. 20.16.3 117.2 4 16.3 117.1 3s. 6. -6. 1S3.4116.EI 45. 91. -5. 19.9 14.8 58. 145. 15. 28. s 112.6 5E. 154. 28.16.9 117.4 45 16.919.9117.3 35. 94. -15. 23.3 14.7 25. 19S. -10. 8.0 0.0 a. -0. e.M.S 117.2 35. 86. -[E. 23.5 14.3 25. 218. -5. 0.0 0.8 a. -a. 0.?1.6116.2 45. llEI. 5. 8.60. -e. 0. 0.0 0.0 e. -El. 0.?1.4llB.4 50. 82. 15. 24.E 1::: 25. 277. -5. 0.8 B.E 0. -0.i!2.S 119.3 55. 191, 28. 25.2 16.2 3e . 3ee . 5. 0.8 0.0 B. -0.18.7 45. 25, B. :?3.6117.0 35. 198. 5. E.E 0.% El. -0. a. 6.8 B.e e. -B.IB. B 35. 32. -5. ?4.1115.6 38. 251. E. E.E 0,0-8. 8. 0.0 0.0 e. -0.17.1 3e. 3s. -5. ?3.9114.4 25. 27B. -5. E.@ 0!0 :: -8. e. e.E a.zl 6. -e.16.8 30. 36. -5. !3.5114.4 2B. 269. -5. EI.FI 0.8 0. -a. e. e.e e.e B. -0. 0.16.6 38. 37. 0. !3.8113.S 28. 264. -5. 8.8 0.0 0. -0. e. 8.B SOB e. -e.15.4 30. 30. B. !2.6 112.6 25. 251. 5. 0.60. -0. 8. 0.0 0.0 e. -B. ;:15.4 m. 31. a. 0.0 8.8 e. -e. e. B.@ ::: e. -8. e. 9.0 0.0 e. -0. B.14.1 38. 6. 5. B.B 8.0 E. -E. 8. B.@ 0.0 0< -0. a. 0.0 E.B 0. -0. 0.13.2 3B. 19. 5. 6.8 8.6 8. -B. B. B.@ 0.0 B. -0. 0. O.B 0.6 0. -0. 0.EBB51BZ 17.5 117.6 45 17.6LWB68BZ 17.9 117.9 58 18.5aeB6E16z 18.5 118.4 se lB.6BBE612Z 19.2 118.S 50 19.48886182 19.9 118.4 45 2B.2E8E+7EIBZ 20.3 117.8 4B 2EI.B@80706Z 2B.5 117.3 35 21.18BB7122 2B.6 116.8 35 21.2aE13718Z 20.4 116.1 3B 28.8eemoaz 19.9 115.5 38 28.4EBBflB6Z 19.4 114.9 30 19.6EBEIE122 19.8 114.1 25 19.1OBOB18Z 16.6 113.3 25 1S.9EBEi9B02 lB.4 112.5 2B 18.512.5 38. 6. 18. O.B B.B 8. -0. e. B.8 0.0 a. -8, 0. E.B E.a 8. -E. 0.(W FORECQST PD5 I T ERRORflVG RIGHT IIHGLE ERRORfit% lNTSNS IN mGNINDE ERRORWC lNTENSIW BIRSNUmER OF FOREC(JSTSRLL FOREC13STSIJ?NG ;’I;HR 4S-HR22. 239.16. 125: 148.3. 7. 7.-1. 0. 2.19 15 B72-HR200.85.19.!9.4lYPHOON5 WILE 0V5R 35 KTSLRNG 2$HR 4S-HR 72-HRB. 8. 0.8. 0: e. B.6. B. 8. 0.B. e. e. 0.a B B BD ISTRHCE TR9W5LED BY TROPICRL CYCLONS IS 83B . NHFWERRGE SPEED OF TRDP ICllL CYCLONE IS 7. KNOTSTROP1CllL SmRfl ROYFIX POSITIONS FOR CWLDNE NO. 13SIITELLITE F 1=SFIxNO.TltE(z)FIxPOSITIONI12CRY DWRIIK CODE SIITELL ITS cOM’ENTSSITE1 03BB8B 14.4N 114.7E PCN 5Gm2 e3e3BB 14.5N 114.7E PCN 3GtlS3 84B8BB 15.6N 115.4S PCN 5Gm4 8483BB 16.2N 115.3E PCN 5 T1.5/t.5 GK35 841124 15.2N 115.1~ PcN 5Nolx166 E416BB 14.9N 114.9E PCN 5Gt!S7 842 lBB 15. BN 115.BE PCN 5GtK15.6N 117.lE PCN 5 T1.5/I.5 NORR616.4N 117.2E PCN 5GPIS17.lN 117.2E PCN 5 T1.5/l.5 EXI. E=7HRS Gm17.4N 117.2E PCN 5 ,Gm17.4H 117.2E PCN 5Noim617.5N 117.2E PCN 5GMS17.6N 117.5E PCN 5GtSle.m 117.5E PCN 5GmIB, IN 117. BE PCN 5NOR176IB.2N 117.7E PCN 5lB.7N lIB.5E PCN 3 13. Efl .6-ml .5=4HRS ~~lB.9N llB.7E PCN 5Gm19.3N llS.7E PCN 5NDrla6B612E8 19.4N IIB.6E PCH 3GttSB616BB 19.7N 118.2E PCN 3Gm061945 20.2N llB.5E PCN 3NO17R7061945 21.4N 118.7E PCN 6NOB(J7062100 20.3N 117. BE PCN 3GM5B62317 20.4N 117. BE PCN T2. ea.e 41 .e/17HRs NoRa6062317 28.4N lIB.BE PCN T2.5e.5NoflR6B7Be5e 2B.4N 117.9E PCNNom6a7B3B0 20.4N 117.2E PCNGm87B64S 2B.4N 117.7E PCN T1.5/l.5NOfli17B7B9BB 20.6N 117.2E PCN 5GmB71156 21.6N 115.5E PCN 5Nol?R6071600 20.2N 116.6E PCN 5Gm6721BB 20.2N 115.BE PCN 5Gffi6BB0BB 19.9H 115.BE PCN 3 T1.e/1.5 Adl . B=4NRS GI?GeBBB35 2B. lN 115.BE PCN 3 T1.5/l.5 AsB. B/17HRs Nolm637 0BB3BB 19. 7N 115.5E PCN 3Gm38 @BEi6EEi 19i 5N 114.9E PcN 3Gm39 8BB636 19. 3N 114.8E PCN T1.8~. B /111 .5/31HRs HOI?27~ 8S0980 19. 3N 114.7E PCN :Gm41 EB1133 19.6N 114.4s PCN 6Nom1614151617le192B212223m 2425262728293031* 323334353642 OB1280 19. ON 114.2E PCM 5Gffi43 eB 16B0 lB.6H 113.7E PCN 5Gm44 BB21BB lB.5N 112.9E PCN 5Gm45 B9BBBB 18.8N 112. IE PCN 5 T1 .9/1 .B EiB. B~4HRS Gffi46 e9ee 12 18.5N 112.4S PCN 5 T1 .8/1 .B fi6. BzIBHRS NOIW?647 B9B3BB IB.4H 112.BE PCN 5Gt?5* 4S 690625 19.5N 111.9E PCN 5 NORR7INITINITINITINTTIIBSOBS0SS08SPGNPGTLIPGT!JPGTWPGTwPGTwPGTwRODNPGTWPGTWPGTWPGTWPGTIJPGTWPGTwPGllJPGluPGmPGTWPGTdPGTWPGTLIRPmRODNPGTWPGTwRPtURPt’KPGNRODNPGTwRPFKPGTWPG’7dPGTWRODNPGTLIPGTLIRPM(PGTLIRODNPGTWPGNPGTWPGNRPPUPGTLIRODN152


RIRCRRFT FIxESFIXND.TItE(z)FIxPOSITIONFLT 7sem 0s6 mx-sFc-ImD ISV+FLT-LW-IJiD RCCWLVL HGT I’?5LP VELmRGmNG DIR~~GmNG NRV/?ETEY5 EYE ORlEN- EYE TEFP (C)SHIIPE D 1RWT9T1 ON CNJT/ IN/ DP/SSTmtsNO.12345Ei513El 17.8N 117.4SQ51514 17.3N 117.5EB6B395 lB. IN 11!3. lEZ161238 19.5N 118.5EE161523 19.13N 118. BE7aem 3EE57EBm 3ea87EBm 29847EBI’B 3B7e78BtEl 3BE61.%23SB4D4S1E396s 2ss 47 me 115 5 35BlE103E12W~IlB6E5 52383314S 3855SSB 128 27 ffiB 96 7 10+12 +15 +16+1s +19 + 7+14 +17 +1822455R9D12RF 1=FIXNO.(z)– PosiTIoN RflDFIR RCCRYEYE E= R8~DESNRFE DIRM RskWR TDDFF COH’ENTSRROflR s ITSPOS1TION m No.434B514$fZi 17. L3N 117.5E LFINDB519E@ 17.3N 117.2E LFIND052098 17.4N 117.2E LI)NDB6E2E8 18. BN 117. lE LRND4//// 505231SS1/ 5293S EYE !3B PCT Cl OPEN NIssf/ S34SS EYE 50 PCT C 1 OPEH N5//// 53512 18 DEG SP IRflL OVERLRY16.3N 12E.6E 9S32 I16.3N 12B.6E 9S32116.3H 120.6E 9S32116.3N 128.6E 9S321NOTICE - THE IISTER ISKS (*) lND IC9T2 F 1X55 UNREPRESENTATIVE RND NOT USED FOR BEST TRllCK PURPOSES.153


TRDPlCilL SmRli 5USFWBEST TRRCK DRTI?SEST TRACKm~IVNR POSIT WIND POS1T8806182 2B.3 166.5 20EE87EWJZ 2B.4 166.8 25138B7B6Z 20.6 165.7 258607122 21.0 165,9 3B6887182 21.6 165.8 30-0.EBBS21BZ 22.5 165.5 35EBESW6Z 23.5 165.3 35 e.e e.B 0. -e.e6B812Z 24.9 165. e 4S 24.4 164.8 45.i3B881eZ 26.4 164.9 40 25.2 164.8 45.BeB9Z@Z 27.9 164.7 45 2S. e 164.5 45.e8B9e6Z 29.2 164.4 45 29.4 164.2 Se.eee912Z 38.2 163.8 Se 3E. E 164.2 50.E18091EIZ3@.B 162.EI 55 31.6 163.6 55.eBleBeZ 31.2 161.7 SO 31.6 161.8 6e.BeleB6Z 31.8 161.3 6e 31.9 161.2 6e.2iBle12Z 32.3 161.2 55 32.3 161.5 6e.BBlelEZ 32. S 160. S 55 33a 161.2 55.sielleez 33. e 16e.1 50 33. I3 t6e,5 5e.0Elle6Z 33.3 159.7 58 33.2 159.6 5e.BB1112z 33.9 ls9. a 45 33. e 159. a 45.eEll18Z 34.5 158.2 CM 34.5 158.4 40.eEI12Ei3Z 34. !3 157.1 4E 35.2 157.2 40.Be12e6Z 35.1 156.0 35 35.3 156.0 35;0812122 35.6 155.2 35 35.6 155.3 35.aS121ElZ 36.2 154.7 3e 36.9 154.3 3e.ea13aaZ 36.9 154.2 3e 36.9 154.2 3e.6k?RNING 24 HOUR FORECRST 46 HOUR FORECFIST72 HOUR FORECIIST,ERR~sERRLIRSERRORSWIND DST WIND POSIT WIND DST wIND POSIT WIND DST WIND pas IT WIND DSTe.e 8.B 0. -e. E. Ei.e a.B e. -E. B. @,e B.E 0. -e. !3, 8.0 e.e 0. -8.0. 0.0 8.0 e. -a. B. D.o B.e e. -e. B. O.B 0.0 8. -0.x: 0. 6.B e.e e. -o, B. 8.8 e.a e. -E. E!. 8.0 8.8 a. %.,- 8. B. B.0 0.0 B. -0. El. e.a B.e o. -El. !3. 8.0 e.a 0. -e .8. 0.0 e.e 8. -0. 0. 0.0 8.0 B. -0. B. 0.0 0.0 0. -0.-e. 0. 8.0 6.0 8. -B. e. B.e 0.9 B. -8. B. E.a B.E 0. -0.e. -6. a. 8.8 8.8 0. -a. a. 0.0 0.0-0.68. 197. la. 29. Ei 168,1 55. 265. 0. 31.2 157.6 4:: [76.55. 16S. B. 3B.4 168.8 5E. 143. -S. 33.1 158.6 40. e6.32.72.12.16.41.63.24.5.E:52.e.6.le.24.12.2:e.0.5.5.e.5.e.o e.027.8 162.928.13 163.833.8 162.835.2 162.4e. 36.20. 36.7e. 35.5a. 36.936.35.e.e.e.a,0.163.4!63. 1158.715S.6159.437.8 159.238.3 15s.335.1 157.837a 157.43e.4 157.9a. a.a e.ae. e.e e.ea.a.ee. ::: e.ee. a.a a.a55. 165. -5. 36.4 163.4 4D. 36E. -18. 0.0 8.855. 210. -5. 39.5 164.4 48. 434. -la. e.Bn.e6.0e.Eie.e5e. 257. -5. a.a 0.0 e. -B.45. 2S9. -le. ti.a a.a a. -e.521. 165. e. 41. e 157.7 40. 371.se. 222. e. e.si e.e e. -e.50. 145. 5. e,e e.e e. -B.45. 2e3. 5. a.a a.a e. -ad40. 217. e. e.e 6.0 a. -a.40. ea. 5. e,e e.e e. -a.35. 135. e. e.o e.e 8. -a.3e. 2e]. e. e.0 e.e 0. -e.a.B.a.B.e.-0. 8. a.a e.a e. -e.-e. e. 0.a e.e a. -e.-a. a. 0.a a.a a. -e.-0. e. e.e a.e e. -e.-e. e. e.e e.e a. -e.0.a.e.El.e.e.0.e.0.e.B.e.::e.e.ea.ae.ee.Ba.ae.eB.ae.ea.aa.ae.ee.ae.e8.0e.a8.0e.e8.0e.ea.ee.ae.e0.0a.aa.ae.ee.e8.e.e.e.e.8


RIRCRRFT FIMSSFIX TItE FIX FLT 7EtL3m OBS mX-SFC-LNO mX-FLT-L%L-LND 9CCRY EYE EYE OR1Etl- EYE TSFP (C) ltSNND. (z) POSITIONLVL HGT ?SLP $%L/BRG4?NG D IR7WEL/SRG/RNG NRV/T’ET SHRPE DIIwV’IWT ION OUT/ IN/ DPAST NO.1 EEW315 22.6N 165.42 15RBFT 992 20 256 lE 298 24 258 18 3 32 118628 33. IN 159.7E 768PM 2BE15 97e 3B 23’0 3E E38 30 29B 6E 5 3 +12 +14 + 9 4NOTICE - THE OSTERISKS (*) I NOICIJTE FIXES UNREPRESENTFITIVE IIND NOT USED FOR BEST TRRCK PURPOSES.155


TWHOOH TWDBEST TRRCK DRTRBEST TRRCK LtlRNING 24 HOUR FOREC13ST4B HOUR FORECFIST72 HOUR FORECRST,tU~RmR POSIT WIND Poslr LUNDERRORSERRORSERRORSDST WIND PDSIT WIHD DST WIND POSIT IJIND DST WIND Pos]r WIND DST LNND0s16122 19.6 131.8 35 19.8 131.8 30. 5s. -5. 19. B 12B.2 48. 277. -18. 2B.3 125,2 45. 458. -3B. 2E.9 122.8 50. 690. -35.8816182 20.6 131.9 40 19.2 130.4 30. 97. -la. 19. S 127.8 40. 389. -15. 2B.4 124.9 45. 533. -35. 21.8 122.2 50. 743.Bel?eez 2E.3 132.2 40 19.2 13e.8 35. 14s. -5. 19.9 127.S 4S. 316. -26. 2B.9 124. S 5B. 547. -3EI. 21.5 121.9 55. 771. -25.ee1786z 2E.2 132.6 45 2E4.6 132.7 45. 2s. 0. 21.4 132.5 S5. 74. -15. 23.F2131.2 65. 197.-2B. 24.2 127.1 78. ‘lea. -10.0e1712z 2E.4 133.1 58 2e.1 133.7 50. 3a. E. 2E.E 134.2 60. 137.-15. 22,8 133.7 65. 144.-20. 24.6 131.9 70. 24s. -18.oe171ez 28.9 133.2 55 21.1 133.6 55. 25. e. 23.E 135.4 45. lEE.-35. 25.1 136.4 40, 91. -45. 27.5 136.2 4s. 19. -4a.BelBmz 21.5 133.2 65 21. e 133.0 60. 21. -5. 24.2 134.8 70. e. -10. 26.2 135.9 78. 45. -18. 27.4 138.5 65. 93. -15.881 ea6z 22.4 133.3 ?@ 22.2 133.4 70. 13. 0. 25.1 133.7 75. 40. -10. 27.5 135.B 79. B6. -la. 29.2 137,5 65. 39. -15.aele12z 23.8 133.5 75 23,1 133,5 70. 6. -5. 26.2 133.9 68. 73. -25. 29.1 135. I 50. 162. -30. 31.6 137.6 4s. lse. -35.eem]ez 23.S 133.8 BB 23.6 133.e 7s. 12. -5. 26.5 134.2 65. 63. -20. 29. e 134. B 55. 174. -25, 32.1 la7.0 45. 152. -38.BB19eEz 24.2 134.8 S8 24.6 134.0 75. 24. -5. 27.9 135.2 65. 125. -15. 3e. e 137.2 6e. MB, -28. 32.7 14B.B 55, 225. -20.eel!mi6z 24.7 134.3 e5 24. e 134.3 BO. -5. 26.9 135.2 7E. 58. -10. ZL7.S 136.7 68. 76. -20. 32.1 l.1a.153. 138. -22.0619122 25.1 134.5 ES 25.5 134.6 eO. 2:: -5. 2E.E 135.2 ES. 99. 5. 3e.4 135.3 65. 134. -10. 34.4 136.0 55. 166. -15.ee191ez 25.6 134.s es 25.e 134.e B5. 12. B. 2e.4 135.4 ea. E6. 8. 31.2 135.2 65. 152. -10. 35.3 136.7 50. 14s. -2e.e62eoez 25.0 135.2 80 26.0 135.2 85. 12. 5. 2e.7 135.5 ea. e7. 31.5 135.4 65. 133. -10. 35.7 137.0 543.1s5. -16?.@e2aB6z 26.2 135.7 EB 26.2 135.6 ea. s. B. ze. e 136.7 70. 29. -1:: 31.7 137.2 60. 55. -15. 34.9 140.7 55. 41e. 5.8e28]2z 26.5 136.0 26.7 136.0 eO. 12. e. 29.0 137.3 65. e. -10. 32.5 13e.6 55. 16. -15. 36.4 142.9 45. 624. e.oe28 lez 27.2 136.3 em 27.1 136.3 75. 6. -5. 29.7 137.5 65. 6. -10. 33.3 139.4 55. e4. -15. 37.0 144.2 45. 75E. 5.oe2mz 27.e 136.e ee 27.5 136.8 75. le. -5. 30.0 138.2 65. 3e. -10. 33.e 139.4 55. 231. -5< 0.8 0.0 0. -0. 0.8821062 2E.6 137.2 eo 2E.6 137.3 75. 5. -5. 33.0 139.0 65. 132. -le. 36.4 w.e 55. 341. 5. e.e e.E E< -B. e.eezI122 29.1 13?.4 75 29.2 137.7 75. 17. 0. 33.2 139.6 65. al. -5. 37.3 144.2 5E. see. 5. B.e e.E e. -e. 0.ee21Iez 29.6 137.5 75 30.0 137.s 70. 29. -s. 34.4 14S.1 68. 3B. -16. 3e.3 146,2 45. 69e. 5. B.a e.a 0. -0. 0.ee228az 30.2 137.5 75 3e.3 137.4 70. e. 33.6 139.E 66. 247. e.~ 8.8 e. -a. e. B.@ e.B 0. -8. B.0e22a6z 31. B 137.9 75 31.e 137,6 70. 15. 2: 34.5 140.1 6E. 443. l:: 0.0 0.0 0. -e. 8. e.e e.e 0. -El. 0.8822122 32.4 13E.3 78 32.2 13e. 1 70. 16. E. 35.E 141.136B. 657. 15. B.e B.e 8. -0. e. 0.0 0.0 8. -e. 0.flE2218Z34.7 139.6 70 34.e 139. e 55. 11. -15. 41.3 146.8 %. 527. B. 8.8 8,0 B. -B. B. B.B e.e 6. -e. 0.8E238EZ 37.6 140.3 6e 3B.B 140.4 60. 24. 0. 0.0 0.0 0. -e. 8. 0.0 0.0 Et. -0, e. 8.0 0.% -8. e.sie23e6z41.9 140.e 58 42.3 141.2 60. 3B. 10. e.e e.e e. -e. e. a.a e,e e. -e. e. 8.0 0.8 :: -e. 8.082312245.4 142.0 50. 86. 5. e.e B.E e. -e. e. e.e 0.0 e. -B. e. 0.0 0.0 a. -o. e.ee231ez 4s. e 141.549.3 14a.7 454s 0.0 0.0 e. -0. B. 0.0 0.0 B. -0. E. 0.0 B.0 0. -B. E. 8.0 8.e e. -8. @.IIVG FOREC$IST POSIT ERRORSWG RIGHT RHGLE ERRORRVG lNTEHS lTY mGNITUDE ERRORWC INTENsITY BIRSNUmER OF FOREC/)S15RLL FORECFIS’13L66HG 24-HR 4S-HR 72-HR27. 155. 234. 335.21. 73. 12s. le3.II. le. 19.-:: -le.29 ;:” ‘~” lETWHOONS lJiILE OkER 35 KTSLRNG 24-HR 2$4-HR 72-HR27. 155. , 335.21. 73. 129. le3.4. 11. le. 19.-3. -9. -16. -le.29 26 22 IeD ISTFINCE TRRVELED EY TROPICRL CYCLONE IS 1s2s. tillTYPNODN TXRDFIx POSITIONS FOR CYCLONE NO. 15St3TELLITSF IXCSFIx TIP3Z FIxNO. (z) POSITION RCCRY DVDRRK CODE SI?TELLITE Comwr’eSITE12345615231216030016e90016120016160B1621ea7 162249e I 784539 1709e810 17094711 171Z8B12 17168013 1721@B14 17213B15 17222616 17222617 leeazm100000le0300le0300le06Em23242526272e29303132lE.8N 130.2E19. IN 13e.eE17.7N 130.5E19. IN 131.9E19. lN 131.5E19.2H 131.2E19.2N 131.5EPCN 5PCN 5PCH 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 519.eN 132.EE2B.2N 133.4E2E.3N 133.lE Pcti 52B.5N 133.2E PCN 521. IN 132.7E22.4N 133.4s22. IN 133.6E21.6N 132. EE21.5N 132.9E21.4N21.6tl22. BN22. ON22. 7Nle1360B22. 6Nle090e 23. ON]elms 23. IN1B16B8le2m823. 5N24.3Nle21e7I e234419000819a3Be19890019120024.2N24.3N24.4N24. EN25. 3N25.6N133. IE133. IE133.6E133.3E133.6E133.4s133.5E133.5E133.7E133.9E133. EE134.3E134.46134.3E134.4s134.5E33 19166M 25.4N 134.6E34 192188 25. EN 135.2E35 192321 25.6N 135.4E36 192321 25.6N 135.4E37 2EE3E8 26. @N 135.7E3e 2ee4L9 25. eN 135. eE39 2ES19EB 26.4H 136. lE40 281819 26.5N 136.3E41 2E128B 26. EH 136.4S42 2821ED 27.2N 137. EE42 2i3225E 27.5N 137. IE44 21BBBB 27.8N 137.2EPCN 5PCN 5PCN 6PCN 5PCN 3PCN 5PCN 4PCN 5PCN 4PCH 3PCN 3PCN 5PCN 5PCN 5PCN 5PCN 6PCN 5PCN 3PCN 5PCN 5PCN 3PCN 3PCN 5PCN 3PCN 3PCH 3PCN 3PCN 3PCN 3PCN 5PCN 3PCN 3PCN 3PCN 3TD.5/El.5NOI?R6GmGP?3Gf?5Gt!SGR5T2. BL? . B /D]. 5/24HRS NoilR6NOIW7GtlSNoRa6GtSGt?3GtlSDttSP37‘73.5/ 3.5 /D1.5/24HRs Nolm6T3.en. e NORR6GmGt!5GmGtSGmGmGmHORR6GmGffiDKSP37T4. 5/4.5 m 1.B/25HRS NOFV16GmGmGmG%ii%G~T4. 5/4.5 /SE .8 X24HRS NOI%46T4.0/4.0NORR6GmNORR7GmNORI?6GKINITULCCULCClNITINITOESOES0sSPGTIJPGTLIPGNPGTwPGTwPGTUPGTIJPGTwPGTWPGTLJPGIUPGTWPGTWPGTWPGNRODNPGTWRODNPGllIRODNPGTwRODNPGTwPGTLIPGmPGNPGTLIPGTWPGTLIPGTwPGTwPGTLIPGTLIPGTwPGTIJRPmPGTLJPGNPGTUPGTwPGTIJPGTWPGTIJPGTIJT4.8/4. 5 /lAEI. 5=4HRs ~~R6Gffi45 217J30B 2E.2N 137.2E Gt!5PGTIJ156


-------- --....———-* .ZIUYUU ZU.8N 137.5E47 211268 29.2N 137. BE4S 2116W3 29.3N 138. E!E49 212188 38. IN 137. BE5B 212235 3B.3N 137.7E51 22Em3E 38.4N 138. RE52 22B3wJ 3E.6N 137.9E53 220900 31.4N 13E.2E54 220933 31.7N 138.2E55 2212!30 32.2N 13B.4E56 22210B 36.5N 140.2E57 222212 37.lN 14D.3E58 23B8@B59 23838!360 23B9E837.6N 14B.7E4D.2N 141.7E45.9N 143.9EPCN 3GffiPCN 3GffiPCN 5GmPCN 5GmPCN 5 T3. 5/4. E /lJo. 5n4NRs NOFIR6PCN 3cmPCN 3GmPCN 3GtuPCN 5NOFX16PCN 3GmPCN 5GmPCN 5 13 .0/3. S-m .5zMNRS NOW16PCN 5GMSPCN sGt15PCN 5GtlSPGTLIPGTwPGTwPGNPGTIJPGTIJPGTwPGNPGTwPGTWPGTwPGTwPGTIJPGmPGTEJllIRCR$lFTFI=SFIX TIME FIXNO. (z) POSITIONFLT 7BBT’E OBSL~ HGT ffiLPmX-SFC-LtiD%ELMRG/lENGmX-FLT-L~-lJiDDIR-LMRG4SNGFICCRYNilV/3’ETEYE6NRFEEYE ORlEN-D1IW’VTIITIONEYS TEf’F (C)OUT/ IN/ DP/SSTfSNNO.1234567e9101112131415161718E2122232425261604151701051783091714131717061800001S821518151219003019023519138519154s2@efe22803552a 1245IE.9N 131. BE28.3N 132.5E2Ei.2N 132. BE2B.6N 132.9E20.9N 133.6E21.6N 133.2E21.8N 133.3E23.2N 133.8E24.4N 134. lE24.2N 134. IE24.9N 134,6E25.4N 134.7E25. BN 135.4S26. lN 135.6E15BEFT70arB7Eam700m7Emls7Bm’137BElrm780m7eem7Eerm7eem700m7mtEl7eBm29722956294729232053285928142766271427162741274126.8N 136. IE 7mrB 2756281425 26. Btl 136.2E 70Bt9 2756210017 27.6N 136.7E 7ear31 2000210382 28.2N 137. EE 7E10m 27B7211307 29.2N 137.45 7B0n3 2eeB212158 36.lN 137.4s 70 Bra 282122m4D 3E1.2N 137.3E 7ElFnm 2831220243 38.5N 137.4S 7BBm 2830228723 31.lN 13E.2E 7B0m 282022 IeBe 32.@N 13S.46 7aem 2822221224 32.SN 13E.6E2823221526 33.2H 138.3E 7e0tm 28269929859s097296596B95695996196496896996797046 130 45 288 39 13a 45 5 1025 2B0 158 03EI 34 298 2BB 5 105E 150 BB 24D 52 168 1B8 5 10288 65 13EI 146 5 B70 13B 9E35 84 7850 21B 756@ 310 128132E 5a 2s8 lIE 5 523B 75 130 95 4 1515B 63 05B 75 4 10@4B 61 318 85 5 5C lRCULfiRC IRCULRR 6645 250 1255L3E2a 12e 128 6B 826 95 4 15 ELL IPTICRL BE 6fl 858B2E 61 290 125 5 736E 66 276 150 5 5330 B4 268 70 10 18EEI B6E lEEi 14BB9B697F3 75 C [RCULW34B 266 IEO58 2!18 6065 24E BS32FI 44 250 65 5 10220 71 120 9B 18 Ie110 35 B-w 76 5 259B+24 +24 +23 32+13 +13+13 +15 +15+14 +14+15 +18 +14+16 +19 +13+13 +17 +11+15 +16 +13+13 +14 +14+14 +15 +15+15 +16 +1S+15 +15 +15+14 +13+14 +13+14 +13 +13;244556B099101011:;121314141415151616FIX TIPENO. (2)FIX EvE EVE RllDOB-CODEPOSITION RRD+IR RCCRY SHQPE DlfW’1 f?SWIR TDDFF COTTENTSRflDfiR SITEPOSITION Ull NO.1 22B I SIB2 22e2eB3 2204004 22B5B05 2285806 22E6B87 22B6883B.8N 13B. EE LRND31 .ON 13B. EE LRND3E.7N 138.4S LRND31. EN 13B. IE LRND31.3N 138.6E LflND31.2N 13B. lE L9ND31. SN 13B.4E LQNO31.4N 13S.2E L6ND32. EN 13S..4S L12NDPOORPOORPOOR539B3 ///// 35.3N 13E.7E 4763955/4/ S36//35.3N 13B.7E 4763963913 /////35.3N 138.7E 47639539745342435.3N 13B.7E 47639mw B22B33.6N 135. BE53913 5361135.3N 13B.7E 4763933.6N 135. BE53913 7351635.3N 138.7E 4763933.6N 135. SENOTICE - THE RSTER ISKS (*) INDICIW’E F 1X3 UNREPRESENTllTI%E FIND tiOT USED FOR BEST TR$lCK PURPOSES.157


TROPICRL STORti V9HESSRBEST TR61CKD13TI?BEST TRllCKlQ/DAz14R POSIT LUND8S16862 23.8 154.6 25S?816122 25.2 155.4 39ee16leze8]7eezes17e6zea]7i2zea171ezea meezee Iee6zeem12zmlemzee19eez26.527.428.329.33e.231.131.932.033.734.615s.715s.2159.5168.3161.3162.2163.6165.e166. e166.4‘WIse55se454s454s4545POSITe.ee.ee.ee.e26.729.7e.ee.e0.ee.e159.216e. 13e.9 161.232.2 163.232.2 163.532.e 164.933.e 166.035.e 167.0L$lRNINGERRORSWIND DST WINDe.e.El.e.4D.se.se.45.45.4e.4e.35.-e. e. e.e e.e2:e. e.e e.ee. e.e e.e-e. e. e.e e.a29. -15. 32. S 159.726. E. 34.6 159.542. 5. 36.0 !65.2e3. e. 36.S 16B.B19. e. 35.8 169.E5. -5. e.e e.e6. -5. e.e B,e38. -M. e.e e.e0019062 35.6 166.9 48 tie e.e e. -e. 0. o.e e.e24 HOUR FOREC31STERRORSPOSIT WIND D6T LIINDe. -e. e.e. -e. 8.B. -e. 8.B. -e. 8.55. 2e4. m.4S HOUR FORECfiSTERRORSPOSIT WIND DST LUNDe.e e.e e. -e. e.e.0 B.e e. -e. e.e.e e.e e. -e. e.e.e e.e e. -e.36.8 159.7 45. 354.50. 294. 5. e.e e.e e. -e.4e. 143. -5. e.e e.e e. -e.3s. 176. -le. e.e e.e e. -e.3e. 1e3. -le. e.e a.e e. -e.e. -e. e. a.e e.e e. -e.El.e.e.-E. E. e.e e.e e. -e.-e. e. e.e e.e e. -e.-zI. e. e.e e.e e. -e.e.5.e.0.e.e.e.e.e.e.72 NOUR FORECRST,POSIT WIND 05T hlINDe.e e.B e. -e. e.e.e a.e E. -s. e.e.8 e.e e. -e. e.I3.e e.eI3.0 0.e13.e0.ei3.0e.e63.ee.ek3.a0.0~.e e.e0.0e.ee.ee.e,e.e.B.e.e.0.e.e.-e.-0.+.-e.-0.-e.-e.-6.-e.-e.e.e.0.e.e.L3.e.e,WC FORECQST POSIT ERRORtlVG RIGHT RtiGLE ERRORS’76 INTSNS ITV mGfi lTUDE ERRORFl~ INTENSITY BIRSNIMER OF FORECW7SRLL FORECFISTSmm 24-NR 4s-N$! 72-NR31. 1e44 354. e.2e. 143. 34s. e.5. 5. e.-4. -:: 5. e.TYPHOONS LHILE OVER 35 KTSIARNG 24-HR 4B-HR 72-HRe. e. e. e.e. e. e. e.E. e. e.e. e. :: e.e eD ISTRNCE TRf4WLED BY lROPICRL CYCLONE IS 971,. NM~Rfi6E SPEED OF TROPICI?L CYCLONE IS 13. KNOTSTROF ICtlL STORM VRNESSRFIX P051TION5 FOR CYCLOtiE HO. 16FIXNO.T1f’E(z)FIxPOSIT10t4 SCCRY DWR9K COOS SfWELLIIE coPrtmTsSIIE*1*623457e9le1112::15161718::2116e3ee16e3eei6ee201612ee161608i621eeI 7e3ee17e31117e9ee17i2ee1716ee1721eemesieelee3eeI 8e6eemassexwmeIB16ee182 lee[9eesemesee24. 3N24.3X25.3N26. IN26. SN27.4H27 .ONIS4.7EIS4.7E154.8E155.EE15S.2E156. OE159. eE20. IN 159. lE29. lN 159. GE29.7N 160.3E3e.4N 161.1E31 .2N 163.5E31 .2N 162.2E31.5N 163. lE31.EN 163.7E32.4N 1S4.5E32 .EN ls!ies33 .5N 165.6E34. 2N lSS.2E34. 5N 166. lE35. EN 166.6EPCH 3PCN 3PCN 5PCN 5PCN SPCN 5PCN 5PCH SPCN 5PcN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 5PCN 3PCN 3PCH 5PCN 3PCN 5T1.e/l. B Gt6 INIT OBS E* LLCCGt6NOR5)SGtSGttSn.se.s nl.5A?4ms :%NORR7GmGt6GmGmr3. eae-ne.5alnss GmGmGm SW LLCCGmGm m LLccGmGmT2.en.e AJI .en.ws cm E* LLCCGmPGTWRPIKPGTIJPGNPGTLIPGTi.1PGTWPGTwPGllJPGTWPGllIIPGTblPGTLIPGTWPG1-@PGNPGTL!PGTIJIFGTwPGTLIPGTLIR IRCRAFT F 13CESFIXNo.Tl~(z)FIXPOEITIOHFLTL%l.7mm 0ss mX-SFC-LND mx-FLT-Lw-mn IICCSYffiT mLP WSLMRGmH6 D IR-LMRG~H6 NW-TEYESNRPEEYE ORIEN-DIRt’V7RTIlBlSYE TErP CC)OUT/ IN/ DP/SSTtSNlm.;16E1736]7ewt24.2N 154. EE27.6N lSE.7E7eem15eePT3e31 992 2513ese24s2513e6e 529e3 55 24e 5e ele 61 24e 5e m 5+It +IS +9 ze+27 +22 2934NoTICE - THE ASTERISKS (*)IHDICWE F t- UNREPRESEHTRTNE RND NOT USED FOR SSST TRRCK PURPOSES.158


TROPICRL SmRfl k$lRRENBEST TRQCK DFITflBEST TRRCK kwRttlNG 24 HOUR FORECRST 4S HOUR FORECRSTERRORSERRORSERRORSPOSIT W1~ DST LIIND POSIT UIND DST LIIND POSIT WIHD DST WINDa.o B.e . -B. E. 0.0 9.8 B. -8. e. a.o 8.8 e. -e. 6.0.0 0.0 a. -e. B. B.@ 9.E B. -E. E. 0.0 0.0 a. -E. a.0.0 i3. @ B. -8. B. 0.0 E.E a. -0. a. a.e a.B 0. -B. e.e.a 0.0 a. -a. 6. a.a a.a a. -a. 0. e.a a.0 E. ‘B. 0.a.a 0.0 8. -B. a. B.0 ma a. -B. 0. 0.0 a.a B. -B. 0.17.9 l@9.6 3S. 72. -5. 17.9 10S.8 45. 142. 5. 19.5 184.3 25. 123. -5.18.6 le9. B 35. 36. 72. 19.2 1B7.9 35. 33. -5. 21. e 1B5.6 25. 41. 5.0.72 HOUR FDRECRST,POSIT WIND DST WIND0.8 a. -a. a.0.0 0. -a. a.0.0 a. -a. a.0.0 a. -a. a.0.0 8. -0. a.0.0 a. -E. a.0.0 0. -0. e.18.6 ta9. e 35. 23. a. 19.5 1!37.9 35. 29. -10. 0.0 0.0 B. -B. 8.0 0.0 a. -a. a.0.0.0.0.a.s..8.L7.E0.0B.e0.00.00.80.80,0B.08.00.B0.00.00.0a.e.0.a.a.a.0.-a.-B.-a.-a.-a.-a.-0.a.a.e.a.a.e.a.18.6 tm. B 3a. 46. -5. 2a.4 la7.2 35. 21. -la. 0.0 a.a a. -a.ea1986z ]9.2 laa.9 -w la.9 iaa. s 3e. 29. -m. 20.4 1e6.6 3a. 41. a. a.a a.a a. -e.EIB1912Z 19.6 lae.3 4a 19.7 ]a8.2 4s. B. a. 2i3. e la7.2 4a. 124. 28. 0.0 e.a 0. -a.8a19v3z 19.9 ta7.6 45 2a. B 107.7 4s. a. a. ma a.e 0. -a. a. 0.0 a.a a. -e.aB2ae8z 2e.2 la6.9 45 19.7 la7.2 a. 34. -5. a.a e.a 8. -B. B. 0.0 0.0 B. -E.a82aa6z za. e Ias.a 3a 2e.2 IE16.e 35. 36. 5. e.a e.a a. -a. a. e.e e.B a. -G.ee2a12z 21.5 tas.1 2e 21.1 Ias.a 25. 25. s. a.a a.e a. -a. o. a.a a.a a. -2..0.08.08.08.08.00.08.0IILL mRECRST5 TYPHDOHS WI ILE OVSR 35 KTsIJ?NG 24-HR 4B-NR 72+7.! LRHG 24-HR 4B-HR 72-HRW% FORECOST POSIT ERROR 32. 65. E2. a. 0. a. a. 8.I?& RIGHT 17NGLEERROR 28. 40. 64. a. a. 0. a. B.BVG INTENS llY mGtl lTUDE ERROR 4. 8. 5. 0. a. B. a. a.RYG IHTENSITY BIflS -2. 0. 0. a. a. B.NUmER OF FORECI?STS ia 6 2 0 a 0DlSmNCE TIWW!SLED BY TROPICRL CYCLONE IS 4s4. NnRVERRGE SPEED OF’ TROPICRL CYCLONE IS 6. KNOTSTROPICRL STORM IAWRENFIX POSlTIONS FOR CYCLONE NO. 170. a.E aSRTELLITEF1)cZSFIXNO.TltEFIX(Z) POSITION mcRY DWRRK CODE .SRTELLITE Cotsmrrs SITE*4*s*6*7*e1231:1112131:1617leE212223241712fia171saatemma1Ema7ieassmu3a9aale12m0le 16eala21BB 111.6N19aaaa la.7N190125 la.6Ni9a3aa 1a:7N1ss60a lS.9N19a9aa 19.aH17.8N 111.2sla.aN lla.9E17,9N n@. iE17. BN17.6H17.5N17.3N1S. IN112.2E1E!9.6E16S.5E109.OE1LS9.OEI@9. lEl@B.9ElEtB.6E109. aEl@B.6ElEtB.3E19i2ea 19.IN las.eE191223 19.2N lW3.@E]916aa 19.2N la7.eE1921aa 19.IN la7.3E2saaaa 19.7Hm6.7E2aa]a2 2a.3N la6. IE2aa3aa 2a. aN 106. IE2aa9aa 21.lN 105.6E2a12ae 21.6N ]a5. aE2a12EB 22.6N 105.6EPctiPCNPCNPCHPCNPCNPCNPCNPCNPCNPCHPCHFtNPCNPCNPCNPCNPCNPCNPCNPCNPCNPCNPCN555s55z5565555655Ta.5m.5T2.aa.am.=.a 4B.54MNRST2.5=.5-~a.5anss6??3GtSGt?3Noms%Sf?sGMSGtSNORRSGmGtSGft3Gf?SNO*6GmGHSGttSHORt?6GI?6Gt15~ffiW6lNIT[NITINIT08SOBSOESPGlwPGTLIPGTWRODHPGTIJPGILJPGTIJPGThlPGTwPGTLIRPmPGTWPGTWP.mJPGTLIRDDNPGTLIPGTLIRPmPGTwPGIWPGNRODNNOTICE - THE RSTSR ISKS c*) IHDICIWE F 1)4S3 ONREPRESENTRT1%E RHO NOT USED FDS SEST mRCK PLRPOSES,159


lYPHOON llGNESBEST TRllCK DFITRBEST TRflCKm/DWliR POSIT WIND9S25122 15.2 145. S! 2aE82518Z 15.6 145. B Z21Fia26B0Z 16.2 144. I 25EfB26E6Z 16.6 143.1 386vS2612Z 16.9 142.0 38afS2618Z 17.2 14B.13 3aee27a8z 17.3 139.7 35EIB27E16Z 17.5 138.4 35aB2712Z 17.9 137.2 4aB82718Z IB.6 136.2 4B082i3aEZ 19.2 135.1 45m26a6z 19.8 134. a 5Dm2e 122 2E.5 133. EI0a2emz 21.1 132.8a82900z 21.B 131.1S@29e6Z 22.4 13a.1a82912z 23.1 129. a08291EZ 23.7 128.00830002 24.3 127.2a83E06z 24.9 126.4a83a12z 25.7 125.9aB3alez 26.5 125.355556a65ltRRN[tiGERRORSPOSIT WIND DST WINDE.B B.L3 B. -0. 8.0.0 B.0 B. -0. 0.0.0 0.0 0. -0. a,0.8 0.0 0. -0, 0.0.0 0.0 0. -0. e.16.9 141.2 25. 29. -5.16.B 139.7 3e. 3E. -5.17.2 13S.7 40. 25. 5,18.8 137.5 45. 18. 5.18.6 135.8 45. 23. 5.18.8 135.2 58. 25. 5.20a 134.02a.9 132.721.2 131.722. E 130. s22.5 13E.923.2 129.27a75 23.7 12E. O8a 24.4 127.385 25.2 126,49B 25.8 125. a9a 26.7 125.150.55,6a.65.65.70.7a.aa.90.98.90.083 10BZ 27.3 124.8 95 27.4 124.6 9B .aa3 la6z 28.2 124.4 95 28.1 124.2 90.0s31 122 29a 123.9 95 29.3 124. B 9a.es31 1ez 29.7 123.4 9a 3a.4 123.2 90.0901802 3a.3 123.2 85 3B.7 122.9 B5 .12.29.la.2a.B.13.B.1::B,16.12.12.B.a.5.5.8.0.-5.a.5.a.0.-5.-5.-5.0.B.24 HOUR FORECfKiTERRORSPOSIT UINO DsT WIND8.0 0.a a. -e. a.a.a a.0 0. -a. 0.a.8 e.E a. -a. 9.a.e 0,0 0. -a. e.4B HOUR FORECIIST 72 NOUR FORECRST,ERRORSPOSIT LUND DST WIND POS [T WINO DST wINOa.a a.a e. -0. a. a.0 a.o B. -a. 0.6.6 a.B e. -0. a. 0.0 e.a a. -8, a.a.a 8.8 a. -a. E. 8.0 0.0 a. -a. B.sr. a e.a 8. -a. a.EI.a a.a B. -a. a. a.a a.a 8. -B. a.lB. E 137.6 35, 87. -5. 19. a 133.7 4B. 15B. -15.17.8 135.6 45, se. a. 18.5 131.4 55. 198. -5.16.3 134.7 SE, 9e. a. 19.3 13a.6 55. 187. -la.19.6 133.9 60, ?4. 5.2a.7 131.6 6a, 26. 5.20. B22. B24. B24.225.225.926.226.520.229.43a.4131.1138.4129.512S.6127.9127.6126.5124.4124.7124.3124.16B ,6B .65.75.sa.60. B.29. -5.60. -5.44. B.66. B.22.623.423.826.026.62?.1m.e75. 88. -10. 29.844. -5. 3B.3-5. 31.6-2a. 33.585.85.75.85.85,31.4 123.2 8B.32.4 123.1 78.34.4 124.6 65.35.9 125.9 6B.37.4 12B. a 45.B.E B.o 0.::28.a9CIla62 3E, B 123.a SB 31.2 123. a 88. 24. B, 0.8 O,a a.L190112z 31.4 123. a 7B 31.8 122.7 aE. 28. la, B.O B.a a.B9B118Z 31. S 123.2 60 32.2 123.5 7a. 28. lB. E1.a a.B e.42.54.72.84.-0.-a.-B .-0.-la.-la.-le.-15.-15.-la.-15.34. B35. B38. BB.B0.aa.a13B.8 65.12B.2 65.128.3 65.12B.3 65.12B. a 78.127. EI EIa.126.5126.2124. B123.8125.2126.512s. a129.00.0a.e0.07a.70.75.7a.65.60.50.46.0.a.a.a.0.B,0.a.e.a8.B0.0a.aa.ea.aa.ae.aa.aE.@0.8.0,a.63.21.6?.122.125.97.127.!34.91.115.216.362.467.-a.-a.-0.-8.-a.-a.-a.-a.-5.-10.-15.-20.-2a.-la.-25.-25.-2a .-20.-2a.-20,-2a.a.a.a.o8.020.219.32a.627.826.026.929.230.33a.832. B34.436.8a.aa.oE.B0.0a.a0.8a.a0. a.aa. a.a0. a.aa. B.ea. 0.8a. a.ea.0a.0129.9127.5126.6 68.128.0 65.12s.2 65.12?. 1 70.127.5 7a.127.5 65.126.1127.013a. a131.5a.aa. -a. 0.a. -a. a.45. 234. -3a.6a. 299. -20.70.60.50.45.a.257. -25.137. -25.1SS. -25.125. -25.173. -25.2a2.154.244.413.529.-3a.-2a.-25.-3a.-25.0.a.a a. -a. e.a.0 a. -B. a.a.a a. -0. B.E.E a. -a. a.a.e E. -e. EI.a.a e. -a. B.a.a a. -a. e..e.a 0. -a. e.e.a B. +3. e.e.a B. -a. a.a.a B. -a. a.e.a B. -a. e.RLL FORECRSTS!&NG 24-HR 48-HR 72-NRRVG FORECrlST POSlT ERROR 20. la4. 167. 244.W.% RIGHT IINGLE ERROR 11. 76. 132. 208.f)~ INTENSITY mGN ITUDS ERROR 3. 16. 25.FIVG INTENSITY BIRS 1. -! : -16. -25.NU~ER OF FORECASTS 25 21 17 121. -6.24 2116.-16.1725.-25.12DlSTf!NCE TR9W5LED SY TROPICRL CWLONE IS 1717. NflIw2ReGE SPEED oF moprcaL CYCLONE rs IB. KNOTSTYPHOON RGNESFIX POSITIONS FOR CYCLONE NO. IBF 1XNO.T1tE(z)FIxPOSITION IICCRY DVORllK CODE SFWELLITE COITENTSs rfs*213d5’67e910111213141617lB* 192a2122232425262728293B313233342512002716aa272ma2721a927233927233928a3002e09aa2a1a372sr12aa2816302e21aa28231629e0a029e3aB29a9aa15.5N 145.5E17.2N 142.7E16.(3N 142.5E16.4N 141.6E16.3N 141.4S16.4N 14D. EIE16.5N 1~.2E16.3N 14B. OE16.9N 139.7E16. SN 139. lE17.7N 13B.2E17. EN 13S.2E17.5N 137.6E17.6N 137.5ElB. aN 136.7EIB.6N 136. IElB.7N 136. IE19.lN 135. IE19.5N 133.9E28. BN 134.2E2B.6N 133. IE2B.7N 132.9E2F7.BN 132. BE21. EIN 132. lE21.6N 131.5E22.2N 131.BE22. BN 131.3E22.3N 13a.7E22. BN 129.7E22. BN 129.5E23.2N 128.9E23.7N 12B.3E24.3N 127.7E24.7N 127. lE25. IN 126.7E36 3aB54B 25. IN 126.4S37 3BB9BB 25. 5N 126. 2E3B 301132 25.7N 126. IE39 3812aB ‘25.9N 125.9E46 3821aa 27. BN 124.9E41 31aaa8 27.4+i 124.7E42 31BB11 27.2N 124.9E43 31a3aEi 27. BN 124.5E44 31B6BB 28.3N 124.4S45 31a9EiB 2EI.SN 124.2EPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 6PCN 5PCN 5PCN 5PCN 6PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3T1.5/I.5G!?3GmGmGP?3:EGPSGtKGtKNolm6Gf73GNSGI?SDti6P37T3.5a.5 al .5n5HRs NoriR6m.a~.aNOfiF16GttEGtiSNOIW6GMSGI15GtlS14. 0/4. a /DB . 5a4HRS NORblGGffiGHSGmPCN 3NOW46PCN 3GtlSPCN 3GffiPCN 5GffiPCN 1 TS. Bfi. @ /D1. a/Z5HRS GHEPCN 1GffiPCN 1PCN 1PCN 3PCN 1PCN 1GffiPCN 1PCN 3PCN 3PCN 3PCN 3T6 . a~fi . a-/D 1. SV24HRS GI’C5T5.Ev3. BNOR96GmGtlSGEINITULCCOBSPGTwPGNPGNPGNPGTWPGNPGTWPGTIJPGTwPGTIJPGTWPGTwPGNPGNPGTWPGTIJPGTLJPGTWlNIT OBS RODNPGNPGTWPGTwPGTLIPGTIJPGTIJPGTWPGTIJPGTWPGTIJPGTWPGTLIPGTJPGTLIPGTLIPGTcJPGTwPGTuRKSOPGTWPGTwPGTLIINIT OBSRKSOPGllJPGTwPGTW160


46 3111E9 29. lti 123.9E PCN 347 311288 29.3N 123.7E PCN 34S 311688 29.7N 123.4E Pcti 149 312168 3@.lN 123. EE PCN 3PCN 3PCN 3PCN 3PCN 5S4 f3112@B 3B. BN 123.7E PCN 5565758S960616263646566011600811s1001210802080831. BN 124. Oi PCN 532. 2N 123 .5E PCN 532.9N 123.6E PCN S32.2N 123.4S PCN 532.5N 123.5E124. lE PCN 5620300E42E9E!B 32.7NE212B0 32.9N 124.2s821759 32.6N 125. EE821941 34.8N 124.5E02219803000003a30033.2N 125.2E33.5N 125.8E33.7N 126.2ET5.Bfi.e-AJl.an7HRsGmG?%SfsNoFm6GmNo$lf47GmGtSGmNDFA7G!’!SPCN 3 T3.5/5. B /IAll.5/ZMNT?S ggGt75PCN 5PCN 5PCN 5PCN 5PCN 3PCN 5GmNOI%47NOR97GmGt13GmEm LLCCE* LLCCEw LLCC mccRKSOPGTWPGTWPGTUPGIWPGTwPGTLJPGTLIPGTWPGTL!PGTwPGTWPGTcJPGTwPGTwPGTwPGTIJRKSOPGTIJEm LLCC mCC PGTwPGNRIRCRRFTF MESFIX T[ME FIXNo. (2) POSITIONFLT 7eBm OHSLV1. HGT Pt3LPt83X-SFC-LtiD mX-FLT-LW-Lt6D IICCRYVEL=RG4?NG D lR/kfL/8RG/l?NG N9VfiTEYESH9PEEYE ORIEN-DIRMRTIONEYE TE~ (C)OUT/ rN/ DP/3STIISNno.1 26B8E7 16.7N 142.8E 15E0FT1006 3B 140 30 238 30 140 3B 3 1%+24 +24 +24 202 27B225 17.5N 139. lE 15BBFT994 6B IIe 168 170 46 lIE 97 4 28*3 271624 IS.8N 136. EE 7mrB 3001 990268 35 14D 6B 7 18+ 9 +12 +lE4 280040 19.3N 135. E!E 7WJ73 297B 985 58 E13E 86! la 47 03B 68 5 la+15 +14 +115 2130251 19.8N 134.6E 7BOm 2974 985 35 23EI 6B 868 38 31@ 98 10 4+13 +15 + 96 261325 2Ei.4N 132. EE 7B8m 293914@ 63 B~ 102 557 2B1547 2a.8N 132.8E 7BEm 2923 97733CI 65 258 IB3 5s CIRCUL!-lR 25 +12 +14 + 98 29E248 21.9N 13i3. BE 7BEm 2888 976 45 14D 98 330 50 25E 75 7 10+13 +14 +149 291301 23.lN 128.8E 7EIEm 2842138 68 B4E 13’a a 1418 291602 23.3N 128.2E 7BEm 2819 978 25EI 61 158 IB8 53 CIRCULI?R 50+14 +14 +1411 292222 24.EN 127.6E 78Em 2778 962 65 B6B 12B 15B 77 838 35 55 CIRCULRR 60+15 +18 +1112 300141 24.5N 127. lE 7@Om 2764~ 31B 158 83B S2 318 40 5 10+IE +14131430024630131824.6N25.8N127. EE125.9E7EIBf?37FIEm27552699958 5B 250 12@ elal’la6591386!B5B38le55535C IRCULRR 48+14 +18 +]315 301530 26.2N 125.5E 7E8m 2689 952866 68 33B 68CIRCULeR 50+16 +16 +1516 31a024 27.2N 124.8E 78Em 26714E 110 lE 1E8 82 8SB 85 ::17 310285 27.5N 124.6E 788m 2665 949 65 35B 3f3 @BE 64 35B 38 68 ELLIPTICAL 4B 3e 150 +15 +16 +161234455677;891:10RSDQR F 1x3FIxNo.T1tE(z)FIXPOiilIONRRD17R RCCRYEYESHWEEYEDmnR9DOB-CODEtlS~R TODFFCOf’S’ENT5RI?D9RPOSITIONSITEw ND,56781811121314151617:!2021222324252627282930313233343536373s39%424344454647484950515253545529124S291600291700291710291B1029190029198029208029200029200029218029210029218B29220029220829220B2923002923002923E829230fl3EleBee380080300080300000308s71030003530018030018030018038010023.7N 129.2E23.5N 1=.5E23.7N 128.3E24.3N 127.9E23.9N 12E.2E23. EN 127.9E23. BN 128.2E24. ON 128. OE24. ON 12E.EE23.9N 127.9E24. lN 127.8E24. IN 127.8E24. lN 127.6E24.3N 127.5E24.3N 127.6E24.3N 127.7E24.4N 127.4624.4N 127.5E24.3N 1Z7.5E24.3N 127.5E24.4N 127.2E24.5N 127.3E24.5N 127.3E24.5N 127.2E24.4N 127.2E24.7N 127.3E24.6N 1Z7. IE24.6N 127. IE24.7N 127.8E24.6N 127.2E38B135 24. BN 127. IE3@B2@0 24. 6N 126. 9E3EB2EE! 24. 7N 126 .9E3e@28e 24. 7N 126 .9E300200300235300300300308300324300380308318300488300480308406308488380410360435380S0036B!NB38B58038051030053530060030s60036060824.6N 126. SE24.9N 126.9E24.8N 126.8E24.8N 126.8E24.7N 126. EE24.6N 126.7E24.7N 126. BE24.8N 126.7E24.8N 126.7E24.7N 126.7E24.8N 126.7E24.BN 126.6E24. BN 126.4s24.8N 126.6E24.7N 126.5E24.8N 126.5E24.9N 126.4S24.9N 126.4s24.SH 126.5E24.9N 126.5E24.9N 126.5ELflNDLRNOLRNDLRNDLFINDL13NDL9NDLRNDLRNDLRNDLRNDL12NDL12NDLITNDLllNOLFINDLRNDL$)NDLRNDLONDLRNDLf4N0LflNDLRNrLfINDLRNDLRNDLflNDLFINDLRNDLFINDLIINDLI?NDLRNDL13NDLRNDLRNDL17NDLRNDLFINDLGt4DLflNDLRNDLIINDL13NDL9NDLRNDLIINDLRNDLRNDLIINDLI?NDL9NDLRNDPOORPOORPOORFIIIRPoORPOORPOORPOORPOORPOORGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODGOODM3kTi 323826. IN 127.7Sm= 323826. lN 127.76mW2 322526. IN 127.7ECIRCULRRCIRCULf)R15162S.4N26.4N127.8E127.8E65//3 5278526. 2N 127.8EKIVT3 322EI26. IN 127.7Enovo 342026. lN 127.7E65//4 5////24. BN 125.3E55912 5351126.2N 127.8EIQVG 342El26. IN 127.7E55912 5341426. 2N 127.8E6///4 5292224.8N 125.3EI’UVG 342B26. IN 127.7E229945361124.8N 125.3E22972 5331226.2N 127.8E219445291624. EN 125.3E20912 5381626.2N 127.8EmV73 322826.3N 126.8E5B914 5331124. 3N 124.2E5B914 5281624.3N 124.2E75m~ 322826.IN 127.7E1E1912 5310826.2N 127.8E11914 53e1424.8N 12S.3ECIRCUL9RC1RCULf3R252s26.4N 127. BE26.4N127.8E51914 7311224. 3N 124.2E22944 5311124.8N 125.3E11962 5312226. 2N 127.8E75m= 322E26. IN 127.7ECIRCULRR 3526.4N 127. BE18982 5271626.2N 127.8E28924 5301124.BN 125.3E75mVG 3B2E26.IN 127.7641915 7291224.3N 124.2ECIRCULf+R 5026.4N 127.8E12914 53BBB80mVG 3826!CIRCULRRCIRCULRRCIRCULfiRCIRCULRRCIRCULRR50m454E7548467021933 533@611975 72989119145298811975 427e521913 5328821913 5298555/43 5271141973 5341421913 53207mvc 3815mw,mVG33I53B2LI24. EN26. lN26. 2N24. 3N26.4N26. IN24.8N24. 3N26. 2N26.4N26.4N26.2N24.3N26. 3N26. 4N26.4N26.*24.3N26.2N125.3E127.7E127.8E124.2E127.8E127.7E125.3E124.2E127.86127.8E127.8E127.8E124.2E126. BE127.BE127.8E126.8E124.2E127.8E47937479374793147931479374793747937479274793747937479374792747937479274793747927479374792947910479I84793747937479274793 I479314791 B479274793747s374793 I4793747927479374791 e4793147927479374793747918479314793747927479184793747931479314793747918479294793 I4?93 I479294791847937161


TYPHOON 8 NJ_BEST TRQCK DRT17BEST TRQCK L6)RNING 24 HOUR FORECRST4S HOUR FOREC8STERRORSERRORSERRORSI’iVDWHR POS1T WIND POSIT WINO DsT IJIND PoS 1T WIND OST WIND POSIT WIND DST WIND8903862 22.4 1S3.4 4S 22.6 153.2 45. 16. B. 24.2 15E. e 55. 42. -5. 26.4 146.4 6B. S2. -25.E9B312Z 22.6 152.4 58 Z2. B 152.3 5a. 13. 0. 25.2 14S.2 68. X@. -5. 28.5 145.8 65. 34. -28.a9031 8Z 22. s 151.5 5B 23.5 151.2 50. 45. 0. 26.6 146.7 5B. 86. -25. 31.9 145.4 45. 149. -4E.E904E10Z 23.2 150.4 55 23.7 158.3 5B. 30. -5. 26.9 146.3 56. S2. -35. 32.3 14s.2 45. 87. -2S.0904B6Z 23.9 149.3 6B 24. B 149.3 55. 6. -5. 2B.1 145.6 5E. 56. -35. 33.9 14S.5 45. 67. -30.@9E412Z 24.7 148.3 65 24.8 14s.2 65. 0. 29.5 145.2 60. 75. -25. 35.2 147.8 45. 36. -25.B90418Z 25.3 147.4 75 2S.7 147.2 65. 2:: -lB.09L45BEIZ 26.1 146.7 65 26.2 146.4 7a, 17. -15.0955862a9a512z0905182B906EIaZa906E6Zt39L3612Za9061 82a907aoza9a7a6z27.2 146. B B5 27a 145. B 75, 16. -10.28.3 145.6 85 28a 145.8 85. 21. a,29.4 145.4 8S 29.4 145.5 80. 5. -5.30.9 145.7 8L3 3a,9 145.7 95. a. 5.32.8 14S.2 75 32.6 !46,1 Ea. 13. 5.34.7 147.4 70 34. B 147.236.6 149.5 60 37. B 149.5 6E. 24. 0.3S.6 152.9 5a 38.4 1S3.7 SEI. 39. a.40.5 157.6 40 4D. a 157.5 4E. 3E. a,31.1 145.2 5a. 182. -35. 37.5 1S8.3 35. 66. -25.31.8 144. e 58. 71. -3a. 37.8 14a.5 35. 5E4. -Is.33.9 145.2 5a. E12. -25. B.B a.g 0. -a. E.33.1 146.6 68. 103. -10, a.e a.f3 0. -a. a.3S.5 149.2 55. 67. -5. B.E a.@ a. -8. a.37.2 151.5 se. la7. a. a.a 6.0 0. -a. 0.72 HOUR FOREC$2ST,POSIT WIND DST WIND3B.2 144.8 65, 171. -lB.33.2 145.8 65. 128. -5.36.7 150.0 35. 25. -25.0.0 0.’G a. -0. 0.E.B 8.0 E. -0. B.0.00.08.B0.00.08.0a.a39.3 155.8 4a. 1t39. a. 0.a fs. a a. -0. 0. 0.0a.a 0.0 a. -a. 8. 0.0 8.0 a. -B. 0, a.aa.o a.a a. -a. a. a.a 0.0 a. -a. 0. a.ae.a 24.8 8. -a. 0. a.a 9.6 0. -a. a. a.aa.a e.a B. -a. B. a.a a.e a. -8. 0. o.a8.B0.00.00.00.B8.0B.B8.08.0B.0u.%8.00. -B .8. -0.B. -8.B, -B0. -0.0. -0.e. -0,8. -B.0. -0.a. -0.a. -0.a. -a.e.0.0.B.0.0.0,0.0.0.0.0.RLL FORECfIS13LRNG 24-HR 4B-HR 72-P.RRVG FORECrlST POSIT ERROR 19. 134. las.9% R lGHT RNGLE ERROR 15. ~: 62. 31.W@ INTENS lTY mGN ITUDE ERROR 27. 13.W/G INTENSITY S19S -;: -;:: -27. -13.NU1’lBEROF FORECW76 17 13 8 3TYPHOONS WI lLE OVER 35 KT3162NG 24-HR 46-HR 72-HR19. 76. 134. la5.15. 29. 62. 31.4, la. 27. 13.-2. -18. -27, -13.17 13 B 3DISTQNCE TRLMLEO BY TROPICFIL CYCLONE IS 1S93. NMW6R17GE SPEED OF TROPICFIL CYCLONE [S 16. KNOTSTYPHOON B ILLFIX POSITIONS FOR CYCLONE NO. 19S#TELL 176 F 1=SF]%NO.T[=(z)FIXPOSITIONRCCRYDWRRK CODE sW’ELLITE COf’SENTE SITE123*4s6789101112131415161716:* 21222324252627282930313233343sa3aa0aa3a9aaa312aaa316as0321a0a4arnaaa4a3aaa4a45 Ia4a6aaa4a9aaa412eaa416a0a41736a41e0Ba421a8asaaaaa503aaa5a439a5a6aaa5 I 2aaaslfiaaa5172406BaaBa6a3aaa6a42aa6i2aaa616aaa6i713a621aa07aaaaa7a416a7a416a7a9aaa7]2ae22.4N 154. aE22.7N 152. BE22.SN 152.3623.9N 151.4E23. 5N23. 5N23. EN23.9N24. IN15a.9E15a.4s149.eE149.46149.3E24. ?N 14B.8E25.2N 14s.2E25.6N 147.7E25 .SN 147.6E25. 5N 147.6E26. fSN26. IN26.6N27. aN27. 3H147. zE146.6E146.3E146. IE146.aE28.6N 145.6E29.8N 145.6E29.4N 145.4631.ON 145.4s31.7N 145.6E32.IN 14S. lE32.6N 146,4S34.SN 147.7E36.4N 14s.7E36.3N 14a.9E37.2N 151. lE3B.5N 152. aE39.7N 156. EE39. BN 1s5. IE42.4N 16E.lE43.4H 162.9EPCN SPCN 5PCN 3PCN 5PCN 5PCN 3PCN 1PCN 3PCN 3PCN 5PCN 5PCN 5PCH 5PCN SPCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 3PCN 1PCN 3PCN 3PCN 5PCN 5PCN SPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5T1.a/l.a GMG I161T OBSGmGmNo(VI7Gm73.S=.5 02.5/24NRS GffiGffiNOI?R7Gtt3GMSENSGffiHORI17GP?SGtiSGf?sT4. S/4. S /D 1.W27HRS Gf!sNORR7GIISGmGmNow17GfU73. s/4. a ~1.aaniw GmNOIW17GmGHSGft5NORi37GtlSGM5NOR$1773. aa.8- NOll127 INIT OBSG74EGtiSPGTUPGTIJPGNPGTWPGTWPGNPGTWPGTWPGTwPGTWPGTcJPGTWPGNPGTwPGllJPGTWPGTLJPGTIJPGTwPGTwPGTwPGTWPGTWPGT’IJPGTWPGTLJPGTWPGTWPGNPGNPGNPGTLIRODNPGTWPGTw9 IRCR9FT FI)US3FIXNO.T1f’E(z)FIXPOSITIOHFLTLVL7eara OBS mX-SFC-LHDHGT mLP VSL~RGmNGmX-FLT-LW-lJ4D fiCCRY EYE EYE ORlEN-DXRfiL_GmNG NRVMT sHAPE D IflWTFIT IONEYE TEm (C)OUT/ IN/ DP/SSTmnNO.1234s6789la1112a3a6a7a32232a4aa20a4aB4sa42a52a42352a5a7a3a5as59a5m01as2042a6a619a6a63a22.6N 152. EE23. lN 15E.6E23.2N 15B.2E24.4N 14G.8E25.6N 147. IE26. BH 146.7E27.4N 145.9E27.6N 145. BE29.4N 145. sE38. lN 145 .5E32.9N 146.2E33.4N 146.5E7aam7aam7aam27aam7eans7aams7aam7aam7aam7aa797aam7aam3a3 I 7a e5a 322978 4a 3aa 252976 9B6 35 32a 6a2917 978 75 a2a m2793 965 9a 36a 3a2729 sa ma 4a2749 ea a7a 6a2752 961 la~ aza 3a13a BE asa 32 5 Slla 6535a 39 s 5a3a 56 3aa 4a s 3i2a 77 ala 1s .4 s C IRCULRR 4Slea 91 343 3a 7 s ELLfpTIC9L 2a 16 a2029a 82 ma 15 5 5 ELLIPTIC(IL 28 IB %1%lfia e4 e6a 15 5 312a 91 a26 2a 3 5 C lRCULllR 2%f6a 7a asa 6a 2 2 CIRCULAR27442741 959 7a 34a ia 3sa 65 298 3a s s C 1RCULf4R 1428aa75 Isa la 27a BI 17a 27 s 52Baa 55 12E 15 25a 76 I’w 3a 5 5 C IRCUL9R 46+11 +9+ El +12+la +15 + 8+10 +16 +l@+ 9 +15 +12+15 +16+13 +16 +14+13 +23 +184A556677NOTICE - nis 9STER ISKS (*) IND Icr17s F IxEs UNREpRESENT9TIW IIND NOT USED FOR aEsT TIMCK PURPOSES.163


TWHDON CLRRIIBEST TR9CK ZxlTfIBEST TRIICK !,S)RNING 4S HOOR FORECRSTmwm -...-,.-ERRORS72 HOUR FORECRSTm~flAR POSIT LUND ?0S IT wIND DST WINDPOSIT LUND DST WIND POSIT WIND DST IAIIND0913182 9.9 144.9 15 o.a a.a a. -a. a.8.8 B.e 0. -E. B. 8.8 e.a 0. -a. a.09I4aaz 9.9 144.2 15 0.0 e.a a. -a. 0.0.0 0.0 B. -a. 0. 0.8 0.8 0. -a. a.a914a6z m.a 143.4 15 a.a B.a a. -a. e.8.8 e.e a. -El. B. 0.8 8.8 8. -a, a.B914122 Ia.1 142.5 2B o.a i.i i. -0. a.e.e 0.0 8. -a. a. 8.0 0.0 a, -a. a.a914u3z le.3 141.5 2a a.a e.e a. -a . 0.0.0 a.e B. -0. B. a.a a.a a. -a. a.a915EBZ ta.s 140.5 2B e.e o.e B. -a. 0.0. -0.6915862 11.1 139.5 25 12!.2140,2 25. 68. a.12::: 55. 180. -1::a91512z 11.8 138.7 25 11.a 138.5 30. 49. 5.126. a 65. 130. -la.a9151ez 12.3 137.3 25 11.6 136.9 35. 3s . La.124.2 7e. 182. -5.e916aaz 12.4 135.s 3E 12.6 135.2 35. 37. 5.123.3 6a. 173. -3a.a916a6z 12.5 134.7 38 12.B 133.6 35. 55. 5.121.3 6a. 208. -35,8916122 12.5 133.7 38 12.7 133.6 35. 13. 5.122.6 6a. 64. -55.a9161az 12.7 132.7 35 12.6 132.e 46. 8. 5


~1 213B3E83 IE.8N 121.7E PCN 1ii 28E6B0 li7. Ehi 121. IE PCN 343 20090B 19. IN 12E.9E PCN 34 201280 19.6N 120.4s PCN 3’4520.4N 119. i’E PCM 34620.5N 119.4E PCN 34720. lN 119.2E PCN 34620. 2N 118.7E PCN 358515253545528168020180020193720210021 SIEIEB21083221030821B60B2109082B.6N 118. BE PCN 3Z8.6N 119. fJE PCN 32E.9N 118. IE PCN 321. lN 117.7E21.5N 117.3E21.8N 116.8E22.7N 116.4E23.ON 116. EE22.BN i16.7E23.lN 115,6EPCN 1PCN 1PCN 1PCN 5PCN 5PCN 3PCN 5Gt6NOW17GnsT4.5/5.5 /W] .W24HRS GNST5. BY5,8 Nolm6GffiGI’6GmGMEGNSGKSNORR721120021160021 18E!3%5859211926212106220308 24.3N 114.5E PCN 3 T3. e/3.5 -/t!l .5n7HRs :E60 22B6@E 25,8N 114. lE PCN 5GmINIT08SPGTIJPGWPGTWPGTIJPGTwPGTWRPtXPG~PGWRODNPGTwPG~PGTWPGTUPG~PGTldPGNPGNRG~I?IRcR12FT FI%SFIxNO.T[mFIXFLT 708m OBS mX-SFC-LNO M?X-FLT-L%L-LND RCCRY(z) POSITION LVL HGT M6LP VELAIRG~NG DIR/V2L/33RGfiNG NRV/TET S~;EEYE ORI EN-D lfWt’T9T IONE= T5m (C)OUT/ lNz DP/2.STI?SNNo.;34567e1:111213141516171819152336 11 .9N 134.3E 15@BFT 1005 28 880 138 2BEi 38 24B 42160681 12.4N 134.5E 1588FT 18!31 36 368 62 lBB 37 36B 6216B981 12.4N 134.3E 15BElFT 1081 25 3ZG 1lB 868 45 320 1I@162129 12.5N 132. @E 1568FT 10BO 48 288 68 178 32 lBB 13217B859 13.2N 131.2E 7B8m 3EB9 992 45 llE 98 168 57 18B 135172142 13.EIN129.2E188737 14.7N1z7.9ElBIBM 15.BN 127.6E182BB2 16.2N 126.OE182211 16.3N 125.7E19@941 17.6N 124.BE191217 17.9N 123.6E191913 18.6N 122.21E192214 18.5N 122.3E2BB736 19 .3N 120. 8E281808 19.4N 12B.8E2B1631 2B.8N 119.7E281857 28. lN 119. OE2B2B51 2B.2N 118.8E78EIm 2939708Rt728527aEns 264s78W’2327487E8m 27B67B8m 24477W3m 24267E0m 24687BBm 256578EM3 26867BBm Z7337EOM3 27477BBm 27187Ezim 2722979 178 55 B9R 15865 85B 5B969 80 148 45 19B 79 IEB228 81 14B956 78 E2B 32 13B 95 B28924 75 12B 18 188 117 118B38 189 290931 B5B 124 338115 270 IB 148 73 E3B55 e I@ 98 ma 79 83B957 45 258 60 318 69 278128 76 030956 19B 65 13ESE 33E 31 248 68 13E3535322520159B352B38901518 10555614 533554 104 1555615531: :10 106 1043533364cIRCULF!RCIRCIJL9RC [RCULRRCIRCULfiR3538ClRCULRR 28ELL IPT IC9L 15 12 369ELLIPTICIIL 2B 15 818ELLIPTICf4L 2B 15 BIB+24 +25 27+26 +26 +26 20+24 +23 27+11 +12 +lB+13 +15 +11+14 +17 +Ia+14 +]7+12 +17+13 +2i + 748 +15 +21 +13+16 +16 +16+14 +15 +15+14 +17 +16+16 +17 +165?7a91011111212131314141515161616R$IDRR F IMSSFIXNO.TIFE FIX EYE EYE RRDoB-cODE(z) POSITION RRDI?R QCCRY SH9PE Dmn 175kt3R TDDFFCOf’3’ENTSR13DI?RPOSITIoNs [T’sW No.:34567891811121314151617181928212223242526198EBLi 17 .9N 124.OE LIIND1910EB 18. BN 123.9E LFIND191260 18. IN 123.6E LRND19148B 18.3N 123.3E LRND1915m lE!.4N 123.2E LllND191680 18.4N 123. OE LRND191780 18.Sti 122.9E LI)ND1918BB IEI.5N 122.7E LIIND192BOE 18.4N 122.5E LRND19218B IE.5N 122.4E L9N0192288 lE.6N 122.3E L(+NO1923EC3 lB.6N 122.2E L8ND2E18W3 18. 7N 122 .8E LRND2BBl@0 IE!.7N 121.9E LRND2B13aa2a I 38a28ma2a148820143a2a I sas27 2B153828 2a16a029 28178B3a 202aaa31 2B22aa32 2a23BB33343536373948414243444519.4N19.6N19.5N19. BN19.9N28. IN20. EN28. ONza. IN28. 2U2B . 2N2a.4N126). 3E LIIND12a. 2E LRNO120. 2E LflNO119.9E L8ND119.8E LFIND119.aE119.7E119.7E119.42llB.9E118.8Eila. aELRNDLRNDLRNDLRNDL17NDLRNDL13ND2115ao 21.9N 116.6E LRND211aaa 22.4N 116.2E L8ND2121Ba 23.8N 115.7E LPNO1B8z/ 4////5///1 /999/21831 5291B1899 I 532B81099153209119915291511991529891191113588EYS 50 PCT Cl OPEN N 16,3N 12B.6E16.3N 12B.6E16.3N 12B.6E16,3N16.3N16.3N16.3N16.3N11911526B5 16.3NIB931109111B9115321B6538095298716.3N16.3N16.3N1S!911 5291816.3N189111182111811188 I I5////45///529895290753a1253a65535164/{//16.3N16.3N16.3N16.3N16.3N22. 6N45/z2 529a645/43 53007ia5// 5////45/43 53084la5Z/ 433861e5// 433a515513 52614lB5// 43825165// 43125la5// 528 la45573 52aa745/43 5200445/13 53516187// 531 lala374 513164/S/3 5291165/// ,’////4//6 52aa755/// /////4//// 53369s5/// ///,’/11412 731184//// 5320911412 7311a31412 73111la442 7331312B.6E128.6E12B.6E12B.6E128.6E12B.6E128.6E120.6E128.6E12@.6E12a.6E12B.6E12a.6E128.6E12B.6E12B.3E12a.3E22.6N22,6N 12B.3E16.3N 12a.6E22.6N 128.3E16.3N 128.6E16.3N 12a.6E22. 6N16.3N16.3N16.3N22. 6N22. 6N22. 6N128.3E120.6E120.6E12a.6E128.3E128.3E12a.3E16.3N 12B.6E22.6N 12B.3E22.6N 12B.3E22.3N L14.2E22.6N 12a.3E22.3N 114.2E22.6N 128.3E22,3N 114.2E22,3N 114.2E22,6N 12a.3E22.3N 1 14.2E22.3N 114.2E22,3N 114.2E9832198321983219S321983219S3219E3219e321%32 19S3219832198321983219S3219S3219S321983219s32146744467444s7449S3214s?44963219B3214s7449832198321983214s744467444s744983214s7444s744450054674445BB54s74445BB5450854674445BE5458B545805NOTICE - TXE $W.TERISKS (*I lND IC9TE F 1)0SS UNREPRESENT9T lVE RND NOT USED FOR BEST TRSCK PURPOSES.165


nvmm ....--.,.-nnw---F9EST TIMCK DfT7RBEST TRIICKm~RAiR PDS IT WIND@919B8Z 24.9 16S.2 25E919B6Z 25.4 167.5 3El8919122 25. E! 166.9 30POS1Te.e E.sl a.8.0 0.8 e.a.n 0.0 0.E19191SZ 26.2 166.2 35 0.0 E.8 B.B92DEEIZ 26.5 165.2 40 e.B 8.9 E.B92BE6Z 26.6 164.2 45 26.8 164.2 35.B92B12z 26.9 163.2 58 26.9 163.4 35.0920182 27.1 162.3E1921882 27.4 161.58921862 27.9 161.20921122 28.5 161.309211eZ 29.e 161. S556e6S707527.227.627.928.229.2162.2161.3160. S169.8161.948.5e.65.7B ,75.8922082 29.5 162.5 80 2S.7 162.7 75.8922862 29.8 163.4 SE 29.8 163.8 75.8922122 3E.8 164.6 75 38,4 164.5 SO.89221EIZ 32.2 165.9 65 32.5 166.2 75.8923802 33.8 167.5 55 33.S 167.5 65.8923062 36.B 169.5 56 35.8 169.2 55.0923122 3S.9 172.5 45 3S.7 172.2 45.B9231BZ 41.4 176.2 4S EI.G B.E 0.MIRN 1NGERRORSWIND DsT WIND-e. B.-e. e.-e. B.-8. 0.-B .12. -1::11. -15.e. -1s.16. -le.21. e.32. 0.PO:E.Be.e0.6e.e6.62s.02S.63S .630.631.9m.s24 HDLIR FDREc06Tmoss;IT WIND DST LNNDe.e e. -e. e.0.0 a. -0. e.0.0 0. -e. e.e.e e. -8. 0.e.e 0. -e. R.161.8 45. 12. -2e.t6B.2 45. 58. -2s.ISe. a 45. 1s3. -30.t5B. El 6Ef. 282. -28.158. e 70. 2s7. -le.160.2 75. 226. 8.12. e.-5.33.4 166.2 6B.33.6 16E1. e 55.73.2s.-5.e.-5.5.32.6 167.8 50. 220.35-3 t71.7 58. 21e.8.5.10.le.e.e e.e e. -e. e.16.21.24.23.0.19.ts .-e.5.e.e.e.e e.e 0. -E. e.e.e e.e e. -e. e.0.0 e.e e. -e. e.e.e e.e e. -e. e.4S NOUR FORECIIST 72 HOUR FDRECFISTERRORSPOSIT WIND DST WIND POSIT WIND DST WINDe.e e.e B. -8.0.0 0.8 0. -0.e+E e.e 8. -a.e.e e.e B. -e.0.e B.EI B. -e.3B.2 15B. e 55. 239.32.0 158.9 45. 299.35.2 163.0 40. 23B.35.2 162,9 40. 241.36,2 165.6 40. tS9.35.4 165.8 45. 414.B.B e.e0.0 0.00.0 B.B0.0 B.e6.0 0.0e.e 0.0B.e B.Bo.e 8.0B.e e.oB. e.e e.e e. -B. e.0. e.o e.e 0. -0. 0.8, e.o e.e a. -e. 0.e. e.e 8.0 e. -E+. 0.e. e.e E.E E. Le. e.-25. 33.2 1.57.8 65. 599. 15.-3e. 36.2 165.8 35. 390. -18.-25. e.e G.e e. -a. e.-15. B.e 8.9 e. -0. e.-le. 0.8 O


SUPER TYPHOON ELSIEBEST lRi?CK Df+T9BEST TRRCK IWRNING 24 HOUR FOREC9ST 72 HOUR FORECRSTERRORSERRORSWIND DST WIND POS1T LIIND DsT LUNDPOSIT WIND DST LJIND20 0.0 B.13 ‘G. -B. 0. B.@ E.e 8. -a. 8.8.0 e.e e. -8. 8.25 e.a 8.0 0. -0. 8. 0,0 0.0 0. -a. 0.8.8 43.8 8. -a. 8.30 0.0 8.0 0. -Bd 0. 0.0 0.0 0. -E. B. 0,0 B.0 B. -8.a.e E.e e. -0. e.35 11.1 145.8 30. 21, -5. 12.8 141.2 40. 24. -28. 14.2 137.4 5EI. 51. -5:: 15.5 133.5 60. 144. -85.4a 11.6 144. B 30. s. -m. 13.E 141.2 45, 67. -38. 14.2 137. E 6B. 13. -5E. 15. E 131.9 EM. 223,, -7E.11.8 143.3 4a. 8. -5. 12.E 140.4 6EI. 64, -3E. 13.7 136.7 75. 55. -55. 14.2 131.4 90. 270. -55.12.3 142.7 58. 30. a. 13.7 139.5 7B. 65. -38. 14.6 135. EI SE. IB2. -55. 16.9 129.8 96, 278. -58.12.7 141.7 50. 34. -10. 13.8 13B.8 7a. 38. -35. 14.9 133.6 etl. 153. -65. Ie.a 12e. e 9B. 3m. -45.12.6 148.6 70. 3e. -5. 13.2 136.5 95. 59. -15. 15.4 131.9llB.213. -’ID.12.8 139.7 75. 24. -15. 13. s 135.3 IEL+, 1E4, -30. 16.0 130. S 115. 249. -30.100 13.4 13B.1 85. 26. -15. 15,7 132.6 185. 225. -38. 17. B 127.2 120. 421. -20.105 13.8 137.1 105. 42. 0. 16, E 131.7 13L3. 241. -15. 18.2 126.3 12B. 44S. -15.110 13.8 136. S 115. 21. 5. 16. EI 134.2 135. 7e. -15. 17. B 131.8 128. 1s7. -15.I’U/DR/HR POSIT WIND POSIT0924B@z lB.2 146.60924! 362 10.7 146. El892412Z 11.1 145.409241EZ 11.3 144,70925002 11.5 144.1E!925B6Z09251228925 18ZB926ExizE1926E16Z0926122R926 182E19270BZB927B6Z0927122B92906ZB92912Z0929 1s2Z193EWJZB93BE16ZB93e 12Z093BlazlaalaazlEE 1862lml 1221881 lezlaa2aezIaa2a6z11.9 143.2 4S12.2 142.2 5812.4 141.2 6B12.7 148.1 7512.9 139.3 9813.2 138.513.4 137.714. EI 137.114.6 136.915.5 136.516.2 135.916.6 135.417.1 135.017.7 134.618.6 134.219.6 133.7130I 35145150I 4514013513s14.5 136.6 125. 18. -s. 16. S 134.2 135. 49. -18. 18.5 130.5 115. 193. -15. 21.3 12B. E4 IBE. 275. -2E.15.2 136.7 135. 21.21.7 129.9 lBB. 244. -15.16.2 136.2 14a. 17. -::23.7 138.4 98. 2E7. -2E.16.8 135.2 145. 17. -5.25.5 129.8 95. 276. -18.17.2 134.8 150. 13. 5.25.4 129.8 9B. 3a7. -5.17.8 134.5 143. a. a.26.5 136.5 BE. 434. -5.1S.5 134.2 135. 6. B.27. B 131. s19.2 134.1 135. 33. B.25. B 132.1 99. 175. -15. 28.6 132.620.521.422.3133.2132.7132.213E13012528.421.522.2133.1132.7132.213d.130.125.s.6.6.0.0.B.28.+329.73E.813B.9131.7133.285.9(3.85.231.307.368.-18.5.10.31.30.0e.a134.48.00.023.2 131.9 12E 23.2 131,8 120. 5. 0.32. B 135.0 75. 464. lZI. 0.8 a.024.4 131.7 12E 24.2 131.5 115. 16. -5.34.4 139.9 6E. 43EI. 5. 0.0 8.025.4 131. S 115 25.3 131.6 110. 12. --5. 13.B E.B @. -B. B. 8.B 0.026.6 132.5 118 26.3 132.2 185. 24. ‘-5. 30.9 136.2 75. 227. 0. e.o e.e e. -E. 0. 8.0 B.@27.6 133.6 1B5 27. B 133.5 9!3. 13. -15. 33.3 141.5 68. 138, -5. E.8 8.8 e. -e. B. 0.0 e.a28. B 135.2 95 29.1 135.8 9B. 36. -5. 34.2 149.9 SE. 127. -5. B.B 0.0 e. -0. 0. 0.0 a.a38.2 137.6 85 36.1 137.5 ea. 8. -5. 0.0 0.0 8. -B. 0. Ei.e E.E E. -a. a. a.a 0.031.4 148.6 75 3}.5 14a.4 7B. 12. -5. B.EI 8.0a.a a.a a. -a. a. a.a33.3 144.136a 14s.5655533.3 144.236.2 14S.765.55.5. B.15. a.B.zl a.BE.e 8.6a. -8. a.B. -0. B.8. -B. B.E.a E.E B. -E. 8.a.a a.a a. -a. a.a.aa.aa.ea.aa.a75. 505.S6. 652. I::65. 754. 10.E. -0. 0.E. -0. e.a. -B. B.0. -e. B.a. -E. E.0. -0. a.0. -8. e.e. -8. B.a. -0. 0.e. -8. 0.0. -0. 0,e. -e. e.RLL FOREC8ST6LRNG 2;;HR 4S-HR 72-HRFiVG FORECRST POSIT ERROR 18. 213. 377.W/G RIGHT (INGLE ERROR 9. 69: 135. 234.8W lNTENS 1TY IWGNITUDE ERROR 4. 15. 24. 25.9VG INTENSITY 819S -4. -13. -21. -23.NLlmER OF FORECllSTE 31 27 23 19D lSTQNCE TF3WELED BY TROPlCRL CYCLONE 1S 2447. NMFW?SRRGESPEED OF TROPICAL CYCLONE 1S 12. KNOTS9.4.-4.31-13. -21. -23.27 23 19SUPER TYPHOONFIX POSITIONS FORELSIECYCLONE NO. 22SRTELLITEFI=SFIXNO.TIME(z)FIXPOSITION flCCRY DWJRRK COOE SIYITLL 17S CO-NT’S SITEI 23a4352 2317213 2404244 2412E@5 2416aa6 2417a97 242 l@B8 25aaaa9 25E1412la 25a6aa11 25e9aB12 2512aa13 2516aa14 25165EI15 26aaaa16 26B3EB17 26E543IB 26a9aa19 2612aa28 26164621 26180B22 27aaaa23 27030024 27B53125 27zbsaa26 27B9EB27 2712BB28 2716aa29 27 IM7E3EI 27181631 27212132 27233133 2aaw334 26a3ao35 2ea52a36 2s 12aa37 2816Ea3E 2sma539 2821a84a 29aaaa41 29a3aaB.8N9.aNla. ~la.9N10.9N11.2N11. sti11. aN12. IN12.3N12.7N12.4N12.6N12.7N12.6N12.9N149.6E147.9E146. BE145.9E145.3E145. lE144.7E143.7E143.3E143.5E143. OE142.5E141.6E141.5E14D.6E14a. aE13.2N 139.3E13.7N 13EI.9E13.4N 13a.3E13.5N 137. EE13. EIN 137.7E14. aN14.4N14.5N14.9N15.lN15.416.2N16.4N16.2N16. EIN16.eN16.6N16.8N17. aN17.7NlE.3Nle.6N19. aN19.5N2a. aNPCN 5 T1. a/l. a NOIX17 INIT OBSPCN 6NoFlfi6PCN 5 T1. B/l .B /50. IJ/24HRS NO(IA7PCN 5GIUPCN 5GtCSPCN 5NOIW7Pm 5GM6PCN 5GFf3PCN 5 T2 . 5~ .5 ml .5Z4NRS N09R7PCN 5GMSPCN 5PCN 5PCN 5PCN 3PCN 3PCN 5PCN 1PCN 5PCN 5PCN 3PCN 5PCN 1GMSGtiSGP73NO$W7GmGM6T4. az4. a ml. Sn5HRS NOR97GUS137.3E137. aE PCN 1 Gm137. aE PCN 1 T6. B/6. B /D2 . B=4HRS NO(l137136.9E PCN 1 Gm136. EIE PCN 1 GNE136.5E PCN 1 GFt5136. lE135. BE PCN 1135. BE PCN 1135.4E PCN 2135.6E PCN 1135.2E135. EIE134.9E134.6E134.3E134.3E134. aE133.7E133.4sPCN 1 GFT3GM5PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1N06R7omp37T6.5fi.5 NORR6 lNIT OBSGtlSGF!ST7 . 5fl .5 ~ 1. 5~4HRS NOIX?7GF?5NOFM7GmGtUmt3PGTUPGTWPGTIJPGTWPGTWPGTwPGNPGTWPGTUPGTwPGNPGTUPGTWPGTWPGTUPGNPGTWPGTWPGNPGTLIPGTIJPGTIJPGNPGNPGTWPGTIIIPGTIJPGTdPGTLJPGllJPGTIJRODNPGTIJPGTWPGTLJPGTwPGllJPGTWPGTWPGTIJPGTu167


42 29058S 2EI.5N133.lELPGTIJ43 2912@B 21.4N 132.6E ~; 1PGTIJ44 291600 21. BN 132,3E PCN 1PGN22. EIN 132.2E PCH 122. 7N 132. OE PCN 14546474s49565152535455S657se596061626364656667682917532921003ea00E3803003BB45730090038 168E3817423B21EEB 19099010390a 19445810600oilzaa%116900117300121a092009002043302069002120002160092199003000023.2N 131. BE23.9N 131.7E24.3N 131.6E24.9N 131.7E26. ON 132.3E26.3N 132.5E27.9N 133. OEPCN 1PCN 1PCN 1PCN 1PCN 1PCN 1Gt!SGM3Gffi16. 9/6. B /S9 . 9/24HRS NOFIF17Gl?iGt?ENOW17PCN 1Gf’t527.4N 133. EIE PCN 1 Gm213.2N 134.2E PCN 1 Gffi2E.6N 135. IE PCN 3 T4. 56 .8-~1 . 5/24HRS NOW172B.9N 135.3E PCN 3 GW339.3N 13E. aE PCN 5G17631. ON 139.5E PCN 5MS31.2N 140.3E PCN 5NOR9732.5N 142.4E PCN 5GM533. IN 144. lE PCN 3GM635. 6N 147.4E PCN 5 72 .W3. 5 All. 5K?4HRS NOIW736. IN 14B.3E PCN 5Gt1539. IN 153. OE PCN 5Gt642. BN 155.lE PCN 5Gm43. IN 155.7E PCN 5GMS46.5N 156.9E PCN 5GMSPGNPGNPGTIJPGTIJPGNPGTWPGTwPGTWPGTWPGNPGTWPGTLIPGTLIPGTWPGTLJPGTLJPGTWPGTWPGTwPGNPGTWPGTIJPGTWPGTU9 IRCRRFT F 1)455FIxNO.T1tE(z)FIxPOSITIONFLT 7BBM3 OES ttlX-SFC-LND mX-FLT-LVL-MiD 9CCRYLW. HGT M5LP VEL~RGA?NG DIRAELmRG~NG NFIVfil S:;EEYE ORlEN-DIRIVT9TIONEYE TEtF (ClOUT/ Itl/ DP/SSTI16NNo.;3:6:9I@111213::161?ISE212223242526272829249139242208250256251143251S22252103269644269855261S572621252706152709042721202S0616280S4728291428231529065729090229181129294730e60730090930190530213501010saje25701961801091710.3N 146.4s11.5N 144.3E11.6N 143.8E12.2N 142.2E12.3N 141 .2E12.3N 141,0E13. lN 139.2E13.2N 13B. BE13.4N 137.6E13.7N 137.2E14.7N 136.9E15.8N 136. SE16.5N 135.5E17. lN17.4N18.9N19.5N20. 7N20.9N22. 3N22. 6N24.4N24.9N26. 9N27. SIN27. EN2S . 2N28 .8N135. eE134.8E134.2E133.8E133.IE132.FIE132. lE132. IE131 .EIE131,7E132.8E133.2E134. EE134.6E135.3E15eBFT150BFT1500FT7ean3?Eem7aam70ara7B0rm7ei3rm78arm7aar3278am700ra7aatm7aiim70atm7eem700m70erm700m7mtE70etm780mlaa6 28 24a aB 2s9 21 24a 4a997 35 83E 7B B90 49 E5B 55994 5B 138 25 198 49 138 259s986B 50 306 68139 67 @58 30149 E2 058 253003289B2806 973 68 B90 2B2?7B27632546249422612251213921B222052161219122372258231223112392243429. 3N 136.5E 7EBI’B 2595 942ma 9s9 15961 58 16EI 49929 7E 288 10128 24a 30982 u3a 159 2a693 110 OIB 2560 139 9aB9S 88 850 75B95 68 350 118180 25E 2512a 330 28e.sa 99 319 3a239 67 149 15699 112 368 15170 103 em 2B899 lEIB 369 15899 ia5 34a 15IIB 120 am 2E21a le5 M9 mIle 128 949 1521e 1B5 118 8228 le4 118 4a3Ela lE13 220 2812E 278 26 36E 114 25EI 20190 104 130 25911 88 2ae 3e 810 97 27B 35188 238 35 318 112 22B 2592489E 77 EIIB 6878EIm 2512 lBB 97 Beo 967@Bf?3 252I2 937 se 220 se 3eo 79 19B 367EEIPE 2579 70 250 98 34S 98 25L? 78790m 2596 942 65 299 68 358 75 27B 697E6M3 2565 249 97 170 65328 m 27a 5a4 2052723545551: :5555325353656S15 215 2335533451: 1:10 5565525::CIRCIJLI?RCIRCUL9RC1RCUL13RCIRCULIIRCIRCULIIR182a!515C IRCULfiR 15CONCENTRIC 15 50CIRCULRR 15C IRCULIIR 28ClRCULflR 28CIRCULIJR 40ELL IPTICRL 39 25 E2B+25 +24 +24 27+27 +2B +25 32+2S :;: :: 32+13 +19 +18+12 +16 + E+11 +19 +8+12 +3B +14+14 +23 +14+15 +18 +1s+17 +21 +16+13 +28 +19+12 +17 +17+14 +17 +17+14 +15 +10.+16 +17 +17+17 +18 +15233455667i99161811%1121213131414151516161717RRD13RFIXNO.TIf75(z)FIXEYE EYE RODOB-CODERRDfIRPOiiiION RRDRR RCCRY SHf4PE DIFN’1 $lSWR TDDFFIPOSITIONSITEw No.123456789301300 25.4N 131.6E LRND6///2 5331121B.4N129.5E 479B9391499 25. 6N 131.6E LRND6///2 536122 LS.4N 129.5E 47909391599 25.8N301690 25. 9N301700 26. IN301899 26.4N3E19eB 26. 6N131.7E131.9E132.8E132. IE132.3ELQNDL@NDLRNDL17NDLRND6//~6///26///26///26///2502115061250313502195e31621B.4N21B.4N21B.4N21B.4N21B.4N129.5E129.5E129.5E129.5E129.5E4790947909479894790947909302000 26. SN 132.6E LRND6//,72 5051321B.4N129.5E 47909392199 27.IN 132.7E LFIND6///2 5031821B.4N129.5E 47909NOTICE - THE FISTERISKS (*) IND ICW7E F 1%S UNREPRESENTIIT P/S C4NDNOT USED FOR BEST TRRCK PURPOSES.168


TROPlCfiL SmRtl FRE IIItiBEST TR9CK D9TQtUOW+lRlEleE18z1B18B6Z1018122lE!le1821011002181186218111221BI118Z10120021B12B6z1B1212zle12iezle13eazie I 3e6z181312216131ezle14eezle14e6zle1412zPos 1T7.38.08.69.29.sID.310.710.9lB. S10.6IB. EI11. e11.311.611.7BEST TRFICK132.4131.7130.6129.9129.1126.0126.6125,1123.6wIIND151515151520202020122.1 2012B.6 25119.0 25117.4 30115. s 3E114.1 3511.6 112.3 4S11.5 lie.9 4511.6 le9.7 3511.9 lee.4 25IJMRNINGERRORSPOSIT MIND DST WIND8.0 e.B B. -a.0.0 0.00.0 6+.00.0 0.00.0 0.08.0 0.00.0 0.00.0 EI. EB.B 0.80.0 0.00.0 0.00.0 0.B0.011.6 11:::11.8 114.E12.0 112.811.4 110.911.5 109. s11.6 106.4B. -B .8. -e.0. -0.0. -6.8. -B.-8.:: -a.E. -8.0. -0.e. -E.0, -B.-B .3:: e.35, e.40, 3B.40. 6.4s. B.35. lB.B.0,B.B.0.8.0.0.0.0.e.B.0.0.8.0.-5.10.10.24 HOUR FORECRSTPOSIT WINDERRORSDST IJIND0.0 B.0 B. -B. B. 0.00.0 0.!3 L!. -B. B. 0.80.8 %.0 0. -B. B. 0.0B.B 0.0 B. -B. B. 0.BB.B 13.O -B. B. 0.00,0 0.0 :: -0. a. 0.00.0 B.B B. -0. 0. 0.00.0o.eB.B0.0B.B0.e11.912.60.8e.eB.Be.e0.00.00.0e.aie9.4le7.40.0e.ee.0.B.B.8.e.35.2e.e.0.0.e.e 21.a0.e e.e-B. e.-B. B.-8. B.-0. 0.-B. B.-a. B.25. 0.?2. -5.-8. 8.-B. B.-a. e.-0. B.4S HOUR FORECRSTERRORSPOSIT WIND DST LIINDB.B0.00.00.00.00.0e.ee.eB.B8.00.00. e.e0.00.00.00.0B.00.0B. -B.B. -B.B. -B.a. -B.B. -0.B. -0,0. -0.0. -0.0. -0.B, -E.B. -B.0. -B.0. -0.El. -e.0. -B.-0.:: -B.0. -B.B. -0.B.8.e.B.0.0.0.B.0


BEST TR8CK DFITFIBEST TR9CKIA?RNINGERROh%mOWliR POSIT WIND POSlT WIND DST WINDIB14B8Z lE. B 14G. I 25 E.e 8.B E. -B. 0.1814862 11.6 146.1 25 0.0 0.0 0. -0. 0.1814122 12.6 14s.2 38 12.8 146.0 25< 3e. -5.1614192 13.6 147.8 35 13.8 147.8 2s. 4s. -10.181S082 14.7 147. I 35 14.7 147.2 25. -18.1015E6Z 15.4 146.3 4a 16.9 147.4 38. 11:: -10.1015122 16.2 145.3 45 18.7 147.4 40. 191. -5.1B151EIZ 16.8 144.2 45 1s.3 146.0 46. 136. -s.1E 16002 17.2 142. e 45 17.3 142.4 45, 24. 0.10 I666Z 17.3 141.3 sO 17.4 141.1 45. 13. -5.1016122 17.3 140.7 55 17.5 148.4 55. 21. 8.IB1618Z 17.3 140.0 55 17.s 139. s 5s . 17. e.l1317aEz 17.2 139.2 6B 17.3 139.2 60. 6. 0.lE 17862 16.6 138.6 60 17.3 130.5 60. 34. El.1817122 17.6 139.0 65 17.8 139.3 65, 4B. 0.1817182 18.2 137.9 70 Is .3 137.6 65. iB. -5.1E 1S002 10.2136.7 75. 17.1B1B662 18.4 135.9 ml IB.6 13s.3 75, 36. -5.lt71B12z i9. a 135.0 65 19.a 135a 85. a. e.IEIBIBZ 19.4 133.9 6s 19.9 133.6 85. 34. a.lB19t38z 19.5 132.7 9a 19.9 132.S 9a. 25. a.1Z119E6Z 19.9 131.7 9a 19.9 131.6 9a. 6. a.IE1912Z 20.3 13a.4 9Ll 28.3 13a.6 90, 11. a.10191S2 20.9 129.6 90 2a.8 129.S 9a. 8. 8.IB2BOC3Z 21.4 128.9 95 21.5 129. a 9a, 8. -5.1920062 21.9 12s.7 95 22,2 128.3 95. 2B . a.lB2e12z 22. e 12B.6 95 22.8 120.4 95. Il. 0.10201S2 23.7 lza.e 23.6 12S.6 9a. 12. a.lB21i3Ez 24.6 129.a 9a 24.6 129.1 B5 . 5. -5.1021062 25.6 129.5 B5 25.7 129.2 ES. 17. 6.le21 122 26.4 13a.z BS 26.S 130.1 85. 24. a.1021182 27. B 131.6 Ba 27.5 131.1 ea. 32. a.1B22EIEZ 29.2 133.4 75 2a.5 133.3 7s. 42. 0.1822862 31.1 13s. s 78 3a.9 136.1 75, 33. 5.}822122 33.5 13a.2 7a 32.9 137. e 70, 41.le221ez 36.5 141.9 65 36.6 142. a 6S. B.1823EEIZ 4a. a 146.8 S5 4a. a 146. B 55. 0.1823062 43.2 151.8 55 a.a e.a a. -a.24 NOUR FORECFiST 46 HOUR FOREC9ST72 HOUR FORECRST,ERRORSERRORSPOSIT LUND DST WIND POSIT WIND DST WIND POSIT WIND DST WINDE1.e B.@ a. -B. a. e.B E.a E. -B. a. B.a B.a B. -8. a.0.0 0.0 B. -a. a. 0.0 8.0 a. -0, e. 0.8 B.@ 8. -a. e.15.0 145.7 48. 75. -5. 16.8 141.1 65. 36. lE. 28.8 13?.5 7S. 167, lE.15.5 144,5 50. 88. 5. i7.2 14E. EI 78. .6. IS. ZI. Ei 137.2 BB. 172. 18.16.8 143.4 40. 42. -5. 1S.7 139.3 7R. 98, lE. 22.4 136.7 EB. 251. 5.20.5 145.2 45. 292. -5. 22.1 141.2 6E. 344. B. 24.9 130.8 78. as. -la.22. EI 143.9 50. 374. -5. 26.2 141.7 6R. S3S. -S. 31.2 14s.7 55. 929. -3E .22.8 143. E 5S. 32B. 8. 25.3 14B. B 68. 4S4. -IE. 30.4 143.9 55. E51. -3e.18.8 135.6 68. 226. 8. 22a 131.8 78. 370. -5. 2S.8 131,2 7B. 444. -28.lB. B 135.7 6B. 213. 8. 21.9 131.8 7B. 311. -18. 26.4 131.1 7E. 39B. -28.18.6 135. B 65. 195. B, 21. B 132.8 78. 2BB. -1S. 2S. S 132.0 78. 323. -20.IB.6 136.3 6S. 94. -S. 2i. a 133.4 7a. Isa. -15. 24.6 13Z.a 7E. 2SB. -28.17.6 136.2 76. 5B. -S. 19.5 132.9 75. 11. -15. 23.2 131.2 ?a. 166. -2S.17.6 13S.7 7E. 49. -18. 19.6 132.6 70. 54. -20, 23.6 138.7 65. 158. -30.18.4 136. B BB. 10e. -5. 2E.6 133.5 75. 174. -15. 25.0 131.6 65. 210. -3EI.21.5 132.7 BE. 142. -5. 26.2 131.5 75. 333. -15. 38.2 13S.8 6S. S313, -25.i37. a 75 a. 2B.2 133.5 8S. 61. -5. 24. S 131.6 ES. 23?. -10. 29.1 133.6 75. 364. -15.❑ ✎ 26.722a 132.2 9a. 126.22.5 132. a 95. 159.24.1 131.6 9S. 221.23.2 136. B 95. L5a.22.9 12S.2 laa. 66.23.9 127.8 laa. 79.24. B 126. B laE. 127.24.3 127.2 9a. 99.2S.2 127.1 B5. 132.26.2 127.6 Ea. 148.27.2 129.S E8. 117.28.4 131.8 75. 96.3a.2 133.2 75. 13a.31.2 134.9 75. 216.31.6 136.1 7a. 41a.34.4 144.4 55. 353.39.6 146.B 55. 2S4.5.5.a.5.5.18.a.0.-s. a.a.26a29.627.227.12E.328.92B.229.5o.a31.232.5132.2131.8132.413a.4127.5127.7127.7lZB.3129.5a.o134. a137.785.S5 .85.95.95.9a.90.aa.75.a.70.6a.55.a,a.a.a.s. 34.2 140.85< e.e a.as. a.e a.aa. a.a a.aa. a.a a.a a. -a.a.a.0.0a.aB,ea.a a.B. a.a a.a a.a. a.a B.a a.a. a.a 0.0 0.8. 8.8 e.a a. -e.a. a.a a.a a. -a.a. a.o 0.0 0. -e.344.295,3s1.173.14a.175.21s.274.324.-a.503.626.742.-0.-a.-a.-B .-a.-a.-0.-8.-10.-la.-5.5.10,5.la.5.5.a.5.s.31.3 136.531.2 13s.732.2 137.731.8 132.531.7 129.232.S 13a.475. 501. -18.7S. 486. -10.75. 411< -5.85. 162. IB.a5. 323. 15.7S. 392. 5.33a 13a.7 75. 5s8. IO.33.3 136.1 55. 658. B.34.2 139.s sa. 7s4. -5.a.a a.a a. -a. e.a.e a.a a. -a. 8.a.a a.a a. -a. 0.e. e.a E.Ea. a.a a.aa. a.a 0.80. 0.8 0.8a. a.a B.ea. a.n B,ae. a.ea. a.ea. a.aa.aa.aa.a0. -a. a.a. -0. B.e. -a. e.a. -a. e.a. -a. e.e. -a. e.e. -8. e.0. -a. 0.a. -F3. o.IILL FORECOSTST1’PxOONS IAi ILE OkER 35 KT6LRNG 24-HR 46-HR 72-HRLRNG 24-HR 46-HR 72-NR11~ FORECRST POSIT ERROR31. 163. 275. 41a.31. 163. 27s. 41a.FM RIGHT 9NGLE ERROR 24. S6. 11s. i4a.24. B6. 115. 14a.9$/6 INTENS IIY WIGHlNDE ERROR 2. 3. 9. 15. 2. 3. 9. 15.RVO INTENSITY BIF)S-2. -2. -ad -3. -la.NUmER OF FORECRST535 ;:. i;. -;4.34 32 27 24DIST9NCE TRWELED BY TROPICRL CWLONE IS3233.NtlfIVSRCIGE SPEED OF TROP1C9L CYCLONE IS15. KNOTSTYPHOON GI)YFIX POSITIONS FOR CXLONE NO. 24SiYPZLLITSFIXESFIXNO.T1llE(z)FIXPOSITIONfiCCRY DWROK CODE SW7ELLITSCOfiNT5SITEI 13eaae2 13a4aa3 13a9m4 14a3565 14a60a6 14a9ai37 141641B 14maa9 1421eB* la t5a345* I I 15a6ea* 12 1509aa* 13 r516aa* 14 t5maa* 15 t52ma16 1S213717 16aaaa18 166S1519 16a5152a i609aa21 1612aa22 1616aB23 1618aB24 1621aa25 17aaaB26 17B3EB27 1705939.7N9.6N9.9N11. aN11.4NlZ. BN12. BN13.4N14. IN16.4N16.9N17.7N17.7N17.3N17.4N17.5N17.5N17.5N17.7N17.4N17.7N17.-IN17.2N17. ZN17.3N17.3N17.3N17a9aa 16.6N2s29 1712afI 17. aN* 36 t7i6aa 17.9N31 171749 lB.4N32 i721aa lB.2N33 lBBEaa34 iB63aa35 lea45236 lBB9aa37 1B1Z8B3B IB173739 cs21aeIB. lNlB.4N18.7N18.4N19.4N2a. BN2a. 2N15E. ZE PCN 5GMS149. aE PCN 5 T1.0/1.0 NOFlR7146.9E PCN 5Gffi147.9E PCN 5 T2 .8A?. a m 1. aZ?4HRS NOFIa7147.9E PCN 5GH5147.9E PCN 5Gm14S.3E PCN 5NOtlF1714S. lE PCN 5Gm146.2E PCN SGm147.7E PCN 5 T3. a=.a ml .Ea41iRs NOW17147.7E PCN SGtLS147.42 PCN 5Gt16146.4E PCN 5GN5145. BE PCN Gm145.4!7 PEN 5GtK144. lE PCN 5NOIW16142.7E PCN SGm14Z. ZE PCN 5 73. B~ .8 =a .E=6HRS NOI?97141. BE PCN 5 T2.5z?.5 NOI%46141. lE PCN 5Gtt514B. BE PCN 5Gm140.8E PCN 5GM5139.5E PCN 5NORR7139. IE PCN 5GM5139. lE PCN 3 GM5138. BE PCN 5 Gm138.5E PCN 5 T3. 5~ .5 /Da. 5zz4NRS NOW-17139. IE PCN 5 Gm!39. lE139.4s}3B. IE137. IE136.9E136.2E135.6E135.3E134.6E133.9E133. lEPCN 5Gt15PCN 5GMSPCN 5NOIJR7PCN 5GmPCN 5GmPCN 5GmPCN S T4. 5/4.5 ml. E/24-lRS N0997PCN SGmPCN 5Gf?2PCN 5NOFIF17PCN SGM3INITOBSSECNDRY LLCC 12. 2N 139. 6EINIT OBSBREflKS CONTINU Ill’170PGTWPGNPGTWPGTWPGTWPGTWPGTWPGTLJPGT14PGNPGTWmmPGNPGNPGNPGTl,lPGTWPGT14RPPKPG_P,lPGmPGTUPGIWPGTblPGmPGTWPGTIJPGmPGTUPGNPGTWPGTWPGTWPGT3,1PGIWPGTWPGTWPGTWPGN


40 19B080 19.7N 132.7E PCN 5 Gm4! 198440 20. ON 131. lE PCN 5 T5. W5, EI /DB.5/24HRS NO(19742 198440 28. IN 131.2E PCN 5 T5. Ev5,21 NOf4i1743 19B6B8 2B. EN 131.5E Pcti 5Gffi44 1912138 20.3N 138.4E PCN 3GtK45 19160E 28.7N 129.7E PCN 3GP646 191725 2E.9N 129.5E PCN 3io;R747 192327 21.2N 129.2E PCN 3 T5.5fi.5Nom648 192327 21.4N 12S.9E PCN 1 T6. B/6, E-/D I .L3z1BHRS t10FI!3649 192327 21.4N 12B.9E PCN 3 T6.8/6. a /01 .2v19HR5 Nolan650 20a610 22. EN 12S.7E PCN 3NOFIR751 2EE6U3 22. BN 128.8E2EE61EI 22. BN 128.6E280908 22. 4N 128. 6EItllTINIT06SDESPGTwPGTwRODNPGTWPGNPGTIJPGTIJRPmPGTWRODNPGTWRPM(RODNPGTWPGTLIPGNPGTWPGTwPGTWPG73JPCN 3N09R752PCN 3NO!411753PCN 3GP?354 201268 22.7N 128.6E PCN 3Gm55 2E116EJ2 23.3N 12S.6E PCN 156 201888 23.5N 128.7E PCN 1 Gm5? 2EI21OEI 24. ON 129. t3E PCN I Gf7E5B 21 B8EE3 24.3N 129. IE PCN I Gm59 21 E13EB 25. IN 129.6E PCN iGt?E* 60 21!3559 25. BN 13E. lE PCN 1 T4.5/5. B /Ml .5/3EHRS NORR7PGTw2112EB 26.2N 130.5E PCN 3GmPGTLI62 2116W3 27.2N 131,7E PCN 3GMSPGTw63 211844 27.7N 132.5E PCN 3NOR97PGTW* 64 212180 2EI.3N 133. SE PCN 3Gt!5PGTW65 22B8BB 29.4N 133.9E PCN 5GmPGTcJ* 66 22B4B5 38.3N 136.3E PcN 5 T3 . 5/4. B ~ 1.W22HRS NOl)F17PGTw* 67 221680 34.3N 142. EE PCN 5GNSPGTwRIRCRRFTFIXESFIXNO.TIE(z)FIXPOSITIONFLT 7aEra 09sLW. HGT ffiLPmX-SFC-LND mX-FLT-LVL-LB6D FICCRYVEL%RG/RNG D lRMLmRGmNG NRVfiTEYESHQPEEYE ORIEN-D[IWWVITIONHE T5m (c)OUT/ IN/ DP~STmNNO,1 141420 13.2N 148.5E 7EBrB2 16B135 17.3N 142.8E 1500FT3 16ECM3 17.2N 141. lE 7SNJM34 1618@4 17.5N 140. lE 70Bm5 1622!49 17.3N 139.13E6 179830 16.6N 139.2E 700m7 171921 18.2N 137.4E 70m131722B4 16!. IN 137.8E 700mIBB811 113.3N 135.7E 70Bm1B1918 19.3N 133. BE 7B0m11 1622}8 19.4N 133.2E 700m15 192156 21.2N 129.2E 70Em12 19B645 19.8N 131.4E 7B0m13 19L3a51 2E. lN 131.2E 15B13FT14 191908 21.2N 129.4E 7BBrB20 EE156 21.4N 12S. SE1617lB1920212223242526272829302E9315 21. BN 128.7E2E86EB 22. BN 12S . 6E280831 22. 2N 128. SE20224S 24.4N 129. IE21B122 24. BN 129.2E218247 25.2N 129.EE210950 26. IN 138.EE211257 26. BN 130.8E21!523 27. lN 131. IE21222B 2S.2N 132.7E22B845 29. 6N 133. SE220314 30.2N 134.4S220641 31 .2N 135.7E22BB84 31. 5N 136, 6E3063 99B9909BB292629092902283127BB27E13266B27342771274126452659700r’B26497a8rm 264B700f’lS26217BBm 263B700m 26B77BBn9 26967Eans 269S700n3 272878am 2741276370Bm3080FT780m7EElrm70Bm700m97796B96294796195794794s94795395395935 01025 12050 32065 10050 23065 13090 120BE EB82090209060S0257023B 26 15B 30130 37 819 2EB3E 35 31B 3E146 41 E461 6g360 3B 24D 3E1% BlB 8335555190 60 100 90 3 3IBB S3 128 120 15 217E 61 860 90 5 22BB 65 lE!E125 3 516B 59 108 9E la 10240 72 190 45143 181 EBB 78la 105 103353CIRCULf)RCIRCUL9RCIRCUL9R1574+18 +11 +11+25 +24 +24 28+16 +13+12 +14 +14+17 +19 +13+13 +17 + 9+17 +19+13 +i7 +14+23 +25 +22 30B5B 87 31B 6BELL IPTICRL 9E 7E 33875 BIE 110 118 8B OIE IIB 53 C IRCUL(iR 8E+13 +1760 3BB IEO 170 86 098 IEEI 5 555 240 12B llE al SIZE 12B 5 5+14 +17 +13B5 IBE 110 200 97 laB lIB 5 5 CIRCULFIR 75E!6E 99 32E 18B 10 5 CIRCULQR 8B+15 +18 +1265 260 12BBEE19035834B21e5612466699433E128268270138609E6B6BMB6545555918 817EI 106 140 120 la 3+14 +14+15 +14+14 +14+14 +14+15 +153Ei E3a 6B15 15+13 +212775 964 3E 27@ 85 93E 56 29B 12E 55+13 +142748 961 60 23e 120 150 B5 B3E 128 10 e+18 +17 +1327719E 360 90 220 m 138 13B 15 8 222780 965 9E 330 6B 33B 42 31B ‘- ,- = +15 +2@ +IB22367:91010111212i313151516161717191919202828212122RRDFIR FIXESFIxNO.TIPE FIX EYE EYE(2) POS1TION RilOfIR $CCRY SH9PE Dlf?l’1RIIDOB-CODERSIWR TDDFFCOt7’ENTSRflDI?RPOSITIONSri-sLM3 NO.1 28B8EB 22.7N 12B.3E LRNO65//5 ////,’2 2BB9EB 22. SN 128.2E Lf?NO55//5 53B 183 2E1BE0 22.9N 12B.2E LAND65/fi 536B84 281308 23. IN 128.4E L(+NO65//5 7E 1B35 22J148B 23. lN 12B.3E LRND65//5 732B36 201508 23.lN 12B.3E LfiNO65//3 73B837 281688 23.lN 128.3E L9ND65//?5 73203e 201789 23.2N 128.5E L12ND65//3 7a5149 2E1BE8 23.6N 12EI.5E LflNO65//5 7@z11lB 2819EEi 23.6N 12B.5E LOND65/6 7SJ5lE11 2E19E@ 23.7N 123.7E L9N0 GOOO18012 2E2BE8 23. FIN 128. 8E LRNO65//5 7821213 2E2BB0 23. BN 128. 8E LfIND11014 20218B 24. ON 12B.9E LflND65/Z5 7041115 2E21EB 23.9N !2EI. BE LRND GOOOllB16 2Et2288 24. IN 128. 9E LRNO65//4 7a31317 2E22+3B 24. 2N 129 .eE LflND GOOD120IB 21OEOB 24.5N 129.BE L9ND13519 21 E11EB 24.6N 129.3E L9N065//4 7B31228 210106 24.7N 129. EE LRNO GOOO14521 212128B 24.4N 129.42 L9ND65//4 7B6EB22 21E2BB 24.8N 129. IE L9ND POOR23 21B3EB 25. IN 129.2E LRNO FQIR1424 21B4BB 25. t3N 129.5E LfitiD65//4 7B21125 218400 24.9N 129.2E LRND6///2 5////26 21B40B 25.3N 129.3E LI?NO FfllR13027 217J5EFI 25. 2N 129 .6E LRND6///2 5062765//4 73514POOR6///2 58116POOR34 21BB88 26. EN 129. BE LtINO35 2109EIE 26.3N 129. BE L(IND6///2 5022765//4 7351565//4 703156///2 5////171mw 3415t13VG 0420n3v6 B33Bmv6 3618mVG362EItWT 8225Ft3V6 E225mvcE122@mVG 032526. 2N 127. BE 4793726. 2N 127.SE 4793726. 2N 127. BE 4793726.2N 127.8E26.2N 127.8E26.2N 127. EIE26.2N 127. BE26.2N 127.SE26.2N 127,8E26.2N 127. EE26. IN 127.7E26.2N 127.SE26. IN 127.7E4793747937479374793747937479374793747937479374793726.2N 127. SE 4793726. IN 127.7E 4793726.2N 127.8E 4793726. lN t27.7E 4793726. IN 127.7E26. 2N 127. BE26. lN 127.7E26. 2N 127. EIE26. IN 127.7E26. IN 127.7E26. 2N 127.8E2a.4N 129.5E26. IN 127.7E2EI.4N 129.5E26.2N 127. BE26. lN 127.7E2E.4H 129.5E26. IN 127.7E2B.4N 129.5E26, 2N26. 2N28.4N127.8E127. BE129.5E4793747937479374793747937479374793747989479374798947937479374790947937479094793747937479B9


36 21e9BB 26.lN 129.9E LfNiD.37 218908 26.2N 13EI. BE LRND3S 211 BEIEI 26.2N 13E. BE L9ND39 211880 26.5N 130.4S L8ND4 211188 26.4N 13E.2E LRND41 2111@B 26.4N 13EI.lE L9ND42 211280 26.5N 130.2E LRND43 21 12E13 26.6N 130.2E LQNII44 211390 26.8N 13B.3E LQND45 2114!30 27.2N 13B.3E LRND46 211500 27.3N 138.4S LIIND47 21 16t?B 27.6N 13E!.6E LF7ND46 21178B 27.9N 131.EE LRND49 211S88 28. lN 131.2E LRtiD65/= 7B41zPOOR H-w6 842665/= 7B4166///3 5B63565/= 7041 I6///2 5////65/~ 784116///3 5E2166,’//3 501166//,’3 581 ]96//~ 502116///3 5B4196//fl 5643E6//73 5851626.2N 127.8E 4793727.4N 12S.7E 4794226.2N 127. EE 4793728.4N 129.5E 4790926.2N 127. BE 479372EI.4N 129.5E 4798926.2N 127. EE 479372E.4N 129.5E 479092S.4N 129. SE 479092E.4N 129.5E 479092G.4N 129. SE 4?9092E!.4N 129.5E 479092B.4N 129.5E 479892B.4N 129.5E 47909NOTICE - TNE RSTSRISKS (*) lNDICFITE F VCZS UNREPRESENTf4T1VE RND NOT USED FOR BEST TRFICK PURPOSES.172


TYPHOON HFIZENBEST TR8CK DQT17f’i3/DWHR POSIT WIND1112122 13.8 153.3 1511121BZ 14.2 152.7 15lllmez 14.4 151.9 151(13862 14.7 151.2 201113122 14.9 150.6 2511131BZ 15.2 149.S 391114002 15.4 149.0 3E1114062 15.6 148.4 3Q11141221114162I 115EEIZ1115862111s122111516211 16EBZ 13.4 141.8 mBEST TRllCK MING 24 HOUR FORECRST 4S NOUR FORECIISTERRORSERRORSERRORSmslT WIND DST WIND POSIT WIND DST WIND POSIT WIND DST WIND0.0 8.0 B. -6. 0. B.B B.9 B. -E. 8. 8.8 E.8 O. -8. E.B.o 2!.0 0. -B. B. B.@ 0.8 e. -8. a. e.a E.e e. -a. E.0.0 8.0E,o E.o0.0 0.00.0 0.015.7 14S.615.9 147. B0.8.9.a.30.16.E 147.6 3B.15.7 147.2 35.15.6 146.6 45.15.2 145.6 55.14,B 143.9 65.-0.-B .-e .-El.29.37.39.6.26.17.38.0.0.0.73.0.0.-5.0.B.0.5.B.72 HOUR FORECRST,POSIT WIND DST WIND0.0 0.0 0. -0. 0.E.B 8.0 e. -e. e.0.0 0.0 0. -0. B. 8.0 0.0 0. -0. 0. 13.EI E.e 8. -6. e.B.@ 0.8 B. -B. E. 0.0 8.6 a. -B. E. B.B t3. B B. -E. B.0.8 B.B 0. -B. B. B.0 !3.8 a. -0. El. 0.0 0.0 n. -B. B.B.8 B.8 E. -El. 0. e.e 8.Q a. -27. 8. e.fi 8.B e. -8.17.9 145.4 45. 156. a. 28.6 144.2 55. 467. -25. 24.5 145.4 45. 852. -~:1116B6Z111612211161BZ1117BBZ111786213.413.413. S14.314.5139.3137.6136.2134.8133.4951809590R513.613.513.213.313.514.414.5142.3 65.140.9 80.138.8 90.136.9 95.136.0 180.134.7 90.133.2 90.8.31.41.21.8.12.B.-5.-5.5.e.5.14.4 IIE.6 75. 84. 2a.111712Z11171BZ11 Iwifiz1118E6Z1118122lIISIBZ 13.9 126.7 551119BEZ 13.7 125.9 65I119B6Z 13.5 124.9 7B1119122 13.5 123.7 681119162 13.4 122.7 55I 12ee0z112EiE6Z112612211261621121BB2l12i@6Z11211.2211211821122SIBZ1122862112212211221s21123BEIZ112306214.6 131.9 85.15.2 130.8 75..15.1 129.3 65,15.1 128.2 55.14.8 127.6 55.14.0 126.613.8 126.113.5 125.213.5 124.113.4 123.255.65.70.65.6B .6.27.31.37.36.e.13.17.23.29.41.41.El.la,47.5.B.B.0.0.B.0.8.5.5.13.6 126. S 7B. 59. 15. 13.5 121.6 6E. 122. 0. 15.3 117.0 45. lea. -5.15.2 125.4 60. 166. 5. 15.7 121.2 45. 162. -18. 1S.2 117.2 48, 234. -5.15.5 124.5 50. 135. -15. 16.2 12B. I 46. 181. -15. 19. E 116.5 45. 259. B.15. B 123.4 45. 125. -25. 16.8 119.4 3B. 193. -25. 19.8 115. EI 45. 271. e.14.6 123.4 5B. EB. -12!. 15.9 12B.2 3EI. 158. -ZB. 1S.2 i17.2 4B. 291. B.13.7 122. B 4B. 19. -15. 14.61 . 119.3 . . . . 30. . . ]4D.-15. . . .17.1 116.8 40. 32@. 5.12.6 123.4 55. 127. B. 13.1 128.1 40. 291.13.5 115.7 58, 4B5. 2a.13.8 122.2 55. 144. B. 13.2 11S.8 45. 312.13.8 114.2 50. 397. 25.13. EI 128.7 45. 140. -5, 14.2 117.5 5B. 314.14.2 113.5 55. 42e. 38.13.6 119.8 46. 173. -5. 14.2 116.2 55. 33E.16. S 112. S 55. 325. 25.13.4 121.3 55 13.3 122.9 55.B. 13.5 118.8 58. 169. 5. 13.6 113.2 55. 29S.15. B 109. E 40. 48E. 15,13.6 119. EI 55 13.7 12E.5 55,0. 13.4 116.2 65. 12!3.20. 14.8 111.2 65. 29E.16.1 1B7.3 25. 413. 5.14.6 IIB.3 50 13.9 IIE.4 50.8. 14.B 113.8 6B. 156. 221. 14.7 169.3 55. 294.0.0 B.EI 0. -0. 0.14.3 116.9 45 14.2 117.2 45.0. 14.1 112.6 6E. 1B6. 25. Is. @ 16s.2 4. 342.Et.B B.@ B. -B. 8.14.6! 115.4 45 14,4 t16,1 SE,5. 14.S 111.8 6E. 194. 38. 16.8 le7.9 48. 346,0.0 0.0 0. -0. e.15.6 114.212. 0. 1S.4 IE8.6 35. 40. 10.8. B.EI 6.0 B. -B. t).16.5 112.1 46. 26. 0. 19.s 106.6 35. 124. 18.e. 6.0 8.8 B. -B. 8.16.9 111.2 35. 0. 0. 19.2 l@6.2 35. 171. 5,0. B.B 8.B 8. -B. 0.17.5 IE9.6 38. 29. B. 21.8 105.6 28. 1B9. -5.0. 6.0 B.B B. -0. 8.le.2 lee.7 25. 3e. 8. 0.0 0.0 8. -8. 8.8. O,B B.B e. -B. 0.19.6 10B. B 25 19.5 lee.9 25. B. 0. 8.B B.B B. -B. B. E.e e.a B. -e. 0. E.O 8,0 6. -B. e.2B.7 lBE. E 36 2@.5 18S.7 3B . 13. e. 0.0 0.0 e. -B. B. B.0 8,B 8. -0. 0. B.B E.B 6. -0. 0.21.7 1B9. O 25 21.6 la9.1 25. e. 0. E.B 8.B 8. -6. B. 0.8 0.8 D. -0. 0. B.B O.B 0. -B. 0.22.6 lB9. e 2!3 e.e 8.!3 0. -0. 0. e.e E.e e. -e. a. E.e e.e 6. -e. 8. 8.0 B.B 0. -0. 0.-5.8.18.28.25.40.30.le.15.FILL FORECRST5lYPNOONS LMlLE OwR 35 KT5LRNG 24-HR 4S-HR 72-HRLRNG 24-HR 4S-HR 72-HRFI%GFOREC9ST POStT’ ERROR 23. 130. 263. 361.23. 12E. 251. 351.FIVG RIGHT 9NGLE ERROR 12. 73. 114. 171.11. 65. 99. 192.IIW INTENSITY mGN XIUDE ERROR I. 17. 24. 23.2. 1S. 25. 24.BW INTENSITY BIRS 1. 3. 3. e.1. 2. -1. 5.NUmER OF FORECRSTS 37 33 30 26 30 2B 24 2BDI STaNCE TRRkELED BY T7+OPICfiL CYCLONE IS 2968. NMfO/ER9GE SPEED OF TROPICRL C~LONE 1S 12. KNOTSTWHOON HFIZENFIX POSITIONS FOR CYCLONE HO. 25SWELL 17S F IX6SFIXNO.TIE(z)FIXPOSITIONRCCRYDVORIIK CODE SRTELLITE COP3’ENTSSITE;345678910* 1112131415161718192B2122232425262728293s3132121689130000130464130980131557148300148680ML19EB1412801416BB14172BMZIBO1500001503EB15043115860015B9EEI15160815171615210015210016000016041916041916660016090016120016160B16178516224217060017030814.2N 153.6E15. BN 151.7E14.4H 151.2E14. EN 15E.7E15. EIN lSE.3E15.6N 14S. lE15.6N 14S. EE15.7N 147.8E15.7N 147.6S15.8N 146.SE16.3N 14S.7E15.9N 147.BE15.4N 14S.7E15.2N 145.8E15. IN 145,2E15. ON 145.2E14.7N 144.5E14.8N 142. SE13.9N 142.3E14.2N M3.8E13.8N 141.3E13.7N 14B.7E13.4N 139. EE13.2N 139. lE13.3N 13B.5E13.5N 13B.2E13.6N 137.7E13.6N 136.6E13.7N 136.2E14.6N 135. EIE14.5N 134.6E14.5N 134.8EPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 3PCN 3PCN 3PCN 1PCN 1Pctl 1PCN 1PCN 1PCN 1PCN 1PCN 3PCN 3PCN 1PCN 3PCN 3PCN 3PCN 5PCN 5NO$lfi7Gffi11.5/1.5 NOQ97GffiNOW17T2.5/z.5-~1 .B=2HRS Gt!SGmGtt3Gt’t5GttSNOR97GttSGMSm.5/3.5 /D1. EizMHRS GffiNORR7GffiGffiGfUNOf4R7GffiGt?SG??iT5. W5.O ml.54?5HRS NOI%27T3.5a.5NOFIR7GmGmGt!3GF!3NOFN17T5. B6. B NoRri6GI’t3GmULIIC 16. EN 152. EIElNIT OBSINIT[NITOBSOBSPGTLIPG_WPGTWPGTUPGTWPGTIJPGTIJPGTLIPGTLIPGTWPGTIJPGTwPGTWPGTLIPGTWPGTUPGTWPGllJPGTIJPGTWPGTIJPGTbJPG711PGTIJPGllJPGTWPGNPGTIJRPI’KPGT3JPGTW173


33 170550 14.5N 133.2E PCN 5 T4.5/5 . B+/l& .5/Z6HRSPGTLI34 171208 15. ON 132. OE PCN 5PGTW35 171600 15.5N 130.9E Pcti 5PGN36 171B34 15.9N 131J.3E PCN 5PGTLI37 180000 15. BN 129.9E PCN SGffiPGTw3B 180380 15. BN 12E.7E PCN 5 T4, B/4.5 A,13.5a INRs GfuPGTIJ39 180900 15. BN 127.4s PCN 5PGnJ40 101200 14.2N 127.3E PCN 5:EPGTIJ41 181S23 14.2N 126.6E PCN 5NolaR7PGTIJ42 192337 14.eti126.8EPCN 3 T4. B/4. ENOFIR6 INIT OBSRPt4(43 190000 14.%N 125.9E PCN 5GmPGN44 190300 13.SN 125.3E PCN 1 T5. B/5, E ~1.B~4NRS GPSPGTw45 190600 13.7N 124.9E PCN 5GNSPGTw4s 19Ei90B 13.9N 124.3E PCN 5GtlsPGTW47 191208 14.2N 123.7E PCN 5GmPGTLJ4s 1916B8 13.4N 123. lE PCN 5GHSPGTw49 191s11 13.5N 122.6E PCN 5N09R7PGN50 192108 13.-IN 121.6E PCN 5GmPGTIJ51 200000 13.6N 121. lE PCN 5GmPGTLJ52 208308 13.7N 120.4E PCN 5GN3PGN53 2B86E8 13. EIN 119.7E Pcti 5 73.5/4.0 al.5/27NRs GmPGTW545556572B89EB28128B2@16EB20210013.9N13.9N~ 14.2N14.6N119.8E118.4s117.7E116. SEPCN 5PCN 5PCN 5PCN 5GMSGI?3Gf’t5Gt!SPGTwPGTwPGTLIPGTLI58 210000 15.2N 115.6E PCN 5GffiPGTC4*:5921003[ 14.8N 116.8E PCN 5 T4. @/4.8NOFV16 INIT OBSRPfu60 210600 16. IN 113.3E PCN 5 T2.5/3.5 /lJJ1.E/24HRS GtLSPGTw61 210644 15.9N 113.2E PCN 5No$M7RPM62 210900 16.2N 112. SE PCN 5GmPGTLI63 211208 16.2N 112.5E PCN 5Gt?3PGTw64 211600 16.9N 111.7E PCN 5Gt16PGTIJ65 212100 17.lN 110.2E PCN 5GffiPGTw6G6722030022090017.9NIS.9Nle9.3E109. OEPCN 5PCN 5T1.5z?.5 ml. E~lNRS GffiGmPGTWPGTw6EI 2216BB 19.9N 109.3E PCN 5PGTw6S 221898 2e.5N 109.4s PCN 5RPGTw70 222 lee 21.2N IIB.2E PCN 5PGTWFIx TIt’ENO. (2)FIXPOSITIONFLTLVL7eBmHGTOBSmLPmX-SFC-lJ6DVEL%RG~NGmX-FLT-L%L-LND llCCRY EYE ORIEN-D lR/%SLmRG/RNG NilV/l’El Si~E D19VTFITIONEYE TEt’F [C)DUT/ IN/ DPiSSTf6NNO.1 1323452 1415443 1421354 15e71a5 15898s6 1521177 16LiB39B 16193815.6N 14S.6E15.7N 147.SE15.4N M6. BE14.7N 145. EE14.4N 144.5E13.SN 141.3E13.3N 13S.3E14.2N 135. eE15aBFT?@Bm70Bm7eaml70er87BBm7B0m78arm7aam7eLT317aatm7aem7aam9 16215B 14.3N 135. aE18 17B631 14.6N 133. lEI1 17Ba45 14.7N 132.5E12 1719e4 15.2N 13a.2E13 172201 15. oN 13a. aE14 1BB925 14.6N 12e.8E 70am15 lB12a6 14.6N 127.5E 7Emrm16 lat4ai 14.3N 127.5E 7a0m17 182158 [3.aN 126.4s 7aemm 19ae3e 13.6N 124.7E 7a0m* 19 21E249 15.3N 114. aE 7aam3029388229272916273B27302B3B2937295229B2296a296729a629B9298229142aB6313610B69929799579569799a69869859B49a69a7976974101235 elo 38 llB 36 BIB 3E 5 30+23 +23 +23 32868 39 B2B 30 lB 5 ELLIPTICAL 25 15 E9E +Ie +15 + 950 e96 la 14a 36 em 78 10 2 C IRCULIIR 30+9+16+945 31a 20 178 67 EBB 10 5 3 CIRCUL9R 25+le +17 + e34G 74238 25 5 3 C IRCUL8R 26+12 +15 +11Iae lza 121 036 97 290 28 5 3 C lRCULRR 28+12 +21 + 96a esa 2a+13 +21 + ema 13a 155B 36E 73a 22a 30EIEa 92 350 38 16 3 C IRCULRR 2aa3a 141 3aa la 5 2 CIRCULFIR Z@bts 87 13a 15 5 3 ELLIPTICIJL 38 15 a9a13B 79 E2E 27 3 3 C IRCULFIR 3a2B8 52 13a 15 18 6 ELL IPTICRL 48 30 a5aa6a ss 318 m IE 23a 83a 60 15a 56 Bla 6a 5 2126 56 B3a 35 6 3 ELLIPTICAL 3B 15 BIEaaa 57 B+3 3a la 4 ELL IPTICRL 4a 2e e9a7a em 1575 elB 153a 33a 2alee 52 13E 45 17 5 ELLIPTICRL 48 2B Iaaiak3 a2 ma 15 5 2 C [RCULtlR 20a66 7B 33a 2a 2 3 C IRCULllR 2a15a 27 a9a 60 5 3+6+23+4+IB +17 + 6+11 +17 + 7+14 +IB +18+15 + 9+13 +15 +Ie+ 9 +14 +!6+13 +lB +lB+15 +lE+12 +12 +1]233445677se9910lB10111214FIXNO.Ttm(z)FIX EYS EYEPDSiTION mDbR RCCRY SH13PE DII.WIR9DOa-CODE9SLQR TDDFFCOI?ENTSR13D12RPOSITIONs l-r’sW NO.1234567a14;:17la192021222315013515a21av3a23515a31a15a335i5041a15043515051015053515a6ja15063515a735lswla150835lsa9fa150935151010151035]51]la151135islzla15123515131a24 15133525 15141a26 15143527 i5151a2a 15153529 ls161a30 15163531 1517ia32 15173533 15]a3534 15193535 19036015. IN 145.aE15.8N 145. EE15. BN 144.aE15. BN 144.aE14.9N 144.7E14.9N 14S.5E14.8N 145.3E14.8N 145.2E14. aN 145.2E14.7N 145.aE14.6N 144.9E14.5N 144. aE14.4N 144.SE14.3N 144.6E14.2N 144.5E14.2N 144.4S14.2N 144.2E14, IN 144.2E14.lN 144.2E14. IN 144. aE14.aN 143.9E14. IN 144. EIE14.lN 143. BE15.ON 143.6E14. aN 143.4s14.6N 143.2E14. aN 143. IE14. ON 143. aE13.9N 142. BE13.9N 142.7E13. aN 142.5E13. aN 142.2E13. aN 142. aE13. aN 141.6E13.7N 125.3ELRNDLRNDGOODGOODC IRCULftRELLIPTICALLFIND GOOD ELLIPTICALLFIND GOOD ELLIPTICFiLLFIND GOOD CIRCULRRLRND GOOD C lRCULSRLRND GOOD ELLIPT[C9LLRND GOOD CIRCULIIRLRND GOOD ELLIPTICFILLRND GOOD ELLIPTICALLRND GOOD CIRCULfiRLRND GOOD ELLIPTICf+LLRND GOOD ELLIPTICIILLFINO GOOD ELLIPTICtlLLRND GOOD CIRCULfiRLRiiD GOOD ELLIPTICflLL9ND GOOD ELLIPT1C9LLIIND GOOD ELLIPTICOLLRND GOOD ELLIPTICIILLRND GOOD ELLIPTICRLLflND GOOO CIRCIJMRL$IND GOOD ELLIPTICFILLIIND GOOD CIRCUL9RLflND GOOD C IRCULFIRLflND GOOD C IRCULFIRLfiND GoOD CIRCUMRLOND GOOD C IRCUL9RL$lND GOOD ELLIPTICFILLRND GOOD CIRCUL9RLF)ND GOOD CIRCULRRLFINO GOOD CIRCUL!JRLIIND GOOD ELL IPT IC17LLRND ~ ELLIPTICI?LLRNDLQND35 OPEN N 13.6N 144.9EOPEN IJ 13.6N 144.9EOPEN S 13.6N 144.9EOPEN S 13.6N 144.9EOPEN SE 13. SN 144.9EOPEN ENE 13.6N 144.9E32323a303a2B2a2a2a222018la19191717171617151215161615141622192@621 52414174OPEN NOPEN WOPEN SOPEN E RND NOPEN NLLIRPRNT C I EYE13.6N13.6N13.6N13.6N13.6N13.6N13.6N!3.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N13.6N14. ON144.9E144.9E144.9E,~.~~144.9E144.9E144.9E144.9E144.9E144. SE144.9E144.9E144.9E144.9EM4.9E144.9E144.9E144.9E144. SE144.9E144.9E144.9E144.9E144.9E144.9E144.9E144.9E144.9E124.3E9121B9121S9121B9121a912189121a9121891Z1B912189121a91zla9121a9121B912189121B9121B912189121B9121B9121B912189121B91212!9121B912ia9121B91zla9121B91218912199121a9[2ia91zla9121a9s447


363738394142434445464748i9B430 13.6N 125. lE LAND19E580 13.6N 125. EE L9ND190600 13.6N 124. EIE LfiND19063E 13.6N 124.7E LRND19870019873819888019083019100013.6N13.6N13.7N13. ?tl13.7N124,7E124.6E124.6E124.5E124.4ELFINDLRNDLRNDL9NDLfiND191136 13.7N 124. BE LeND191288 13.6N 123.9E L12ND19140E 13,4N 123.5E LRtlD2E87EEi 13. EIN 126. EE LllND2E14BEI 14. IN 1113.lE LQND2E15EE 14.lN 118.aE LRND2E620 426071E52B 426B611630 426111163E 426181 [636 4278211638 427026a63E 42se610640 427B618536 4270820221 4272026221 4271535/6E 42=855/ 1/ /////1825/ 5271!3lE127/ 52706EYE ELEYE SEH[ CtEYE Cl OPEN NEEYE C1 OPEN NEEYE Cl OPEN WEYE SEMI CI OPEN N14. EN 124.3E14. @N 124.3E14. ON 124.3E14. ON 124.3E14. ON 124.3E14. EN 124.3E14. EN 124,3E14. BN 124.3E14.8N 124.3E14.8N 124.3E14, EN 124.3E14. EN 124.3E14, EN 12R.2E16.3N 12E.6E16.3N 12EI.6E984479s4479844798447984479s4479EM4798447984479e4479044798447984269832198321NOTICE - THE W5TERISKS (*) !ND ICWE F!= UNREPRS5ENTRT1VE MD NOT USED FOR BEST TRACK PURPOSES.175


SUPER lWHBON IRmBEST TRfiCK DRTFIBEST TRWKLWRN1H6ERRORSmflRflR POSIT LUND POSIT LUND DST WIND1117182 11.1 154. B 25 0.8 0.0 E. -B. e.1119002 11.2 153.4 25 8.0 a.0 8. -o, e.1118B6Z 11.3 152.2 25 0.0 e.e e. -0. 0.llle12Z 11.6 151.3 25 0.8 E.e e. -8. B.lllelsrz 12.2 15E.4 30 0.8 8.8 e. -0. B,1119882 12.9 149.2 30 13.1 149.3 3E. 13. B.1119062 13.4 147. E 35 13.2 14s.1 35. 21. B.1119122 13.7 14S. B 35 13.7 14S.9 45. 6, liJ.1119182 13. B 145.6 4S 13.9 145.7 5E. 8. lB.l12@e8z 13.9 144.7 4s 13.9 144.7 45. e. 5.112EB6Z 13.9 143.9 se 13.8 144.0 se. 8. a,1120122 13.9 142.6 55 13.9 142.B 55. 12. B,l12Ei18Z 13. e 141.5 65 13.9 141. B 6fi. la. -5,1121032 13. e 140.3 78 13.8 140.5 65. 124 -5.1121862 13. B 139.2 Be 13.8 139.2 75. 8. -5.1121122 13.7 138.2 95 13.8 !3S.6 S5. 13. -10.I1211BZ 13. B 137. I 118 13.8 137.8 IEE. 6. -18.1122(IBZ 13.5 135. e 125 13.5 135. s 115. 0. -10.1122862 13.2 134.3 13E 13.4 134.4 125. 13. -5.1122122 12. B 132.8 135 12.8 132.8 130. a. -5.11221s2 12.7 131.2 130 12.6 131.2 135. 6. 5.1123B8z 12.7 129.5 128 12.6 129.8 135. 10. 15.1123E6Z 12. B 127.6 115 12.8 lZB. B 125. 12. 10.1123122 13.2 126.1 lle 13.E 126.3 125. 17, 15.11231EZ 14. EI 124.6 IB5 13.9 124.6 115. 6. 10.1124sez 14.6 123.4 95 14.8 122.91e5. 31. 10.I i24S6Z 15.3 122.e es 1s.3 122.0 95. B. 10.1124122 16.1 126.5 65 16.0 120.7 75. 13. 10.11241S2 16.9 119.7 55 17.0 119.5 65. 13. 10.1125EEZ 17.8 119.2 58 17.9 118.B 55. 24. 5.1125E6Z 18.5 119.3 45 19.5 llB.7 5E. 69. 5.1125122 19.4 119.9 45 19.7 119.9 45. 16. 0.112515Z 28.2 128.S 40 20.2 120.4 45. 6. 5.1126ESIZ21.0 121.2 40 21.2 121.5 45. 21, 5.!126e6Z 21.B 122.1 4E 22.7 123.1 4S. 77. B.1126122 22.7 123.1 35 23.2 123. B 35. 49. 0.11261Bz 23.2 124.2 35 23.7 124. S 38. 44. -5.li27@BZ 23.9 125.5 35 24. B 126.2 30. 39, -5.24 HDOR FOREC9STERRORSPOSIT WIND DST WIND0.0 B.EI B. -B. B.E,e B.e 8. -e. 8.E.e B.@ e. -e. 8.0.0 0,0 0. -E. a.0.8 0.0 0. -0. 0.14.0 145. s 55. 53. 15.13.9 143. B 68. B. 18.14,2 142.5 65.14.2 141.3 78.13.3 140.3 7B.13.3 14B. B 75.13,6 137.4 BE.13.5 137.2 BO.13.5 136.0 SE.13. B 134. s 85.13. B 133.2 1B5.13.2 132.3 125.13.2 136.8 135.13.3 129.4 la.19. le.27. 5.30. e.55. -5.47. -15.19. -3ZI.12. -6.31. -45.26. -3B.71. -5.El. 15.98. 25.4S HOUR FORECR5TERRORSPOSIT WIND DST WINDB.B @.0 0. -0. B.B.e a.e a. -e. 8.0.0 8.% 8. -El. 8,%.0 0.0 B. -0. 0.8.E R.B B. -e. 6.14.2 141.9 70. 96. ET.12.2 139.3 75. 96. -5.13.4 137. B 75. 29. -20.14.2 136.4 BE, 47. -30.12.9 134.4 BS. 89. -4B.13.8 134.8 es. 21. -4s.13.1 131.3 ES. 89. -5e.13.0 126.4 138. 21. 28. 14.4 122.2 100. 141.13.1 125.E 125. 59. 20. 15.2 121.1 E5. 129.13.4 123.B 12e. 75. 25. 16.6 128.1 SE. BE.14.6 122.3 BO. 45. -5. IB.E 119.2 65. 38.15.0 121.6 45. 91. -28. 18.4 119.1 65. ?5.16.7 119.B 70. 13. 15. 2Ei.71u3.B 6a. lBE.17.7 116.8 70. 24. 28.17.7 llB.4 65. 7EI. 28.2a.2 117.B 55. 127. 18.21.3 117.B 55. 164. 15.22.2 118.1 5B. 1B6. 18.24.9 12B. I 40. 215. E.23.4 124.2 35. 74. 0.24.8 126.5 35. 15EI. 8.26. B 13!3.3 30. 312. -5.0.0 0.0 0. -B. 0.E1.e B.B e. -B. E.0.EI 0.0 B. -E. B.e.E B.8 0. -o. e.72 HOUR FORECt3ST,POSIT WIND DST WIND0.6 B.@ B. -e. e.B.E B.E E. -El. e.8.0 0.0 B. -0. 0.0.$3 0.0 B. -B. 0.0.8 0.0 B. -B. B.13.4 136.2 80. 24. -45.11.2 133.9 ES. r22. -45.12,7 131.714,2 13B.613.8 126.312.9 12B. B13.0 125.385. 64, -SE.es, 96. -45.95. 72. -25.95. 13. -2B.50. 4s. -6B.13.0 131.1 75. 19. -55. 13.E 124.9 55. 62. -50.12.9 129.6 7B. 21. -56. 12.9 !23.8 55. IB4.-40.11.E 129.6 75. 121.-48. 12.1 123.7 55. 215. -3Ei,12.I 12s.1 1B5. 134. -5. 12.1 122.9 75. 276. 12!.12.8 127.2 115. 167. lB. 13.2 122.0 85. 25S. 30.14.B 126.0128. 155. 25. 1S.6 128.8 9E. 168. 40.14.4 124.8 125. 170. 4@. 16.1 12E.B 75. 167. 38.21.5 117.821.4 116.925.1 1213.326.2 122.827.5 124.8B.E 0.8E.@ B.8O.e O.@B.E e.a0,8 0.8E.8 B.EE1.e e.e0.8 B.E6E. 192.55. 29E.45. 21B.35. 215.38. 238.B. -S.0. -0.0. -0.e. -8.e. -a.e. -a.El. -a.e. -e.35.30.30.20.28.20.20.15.18.-::El.B.0.B.0.El.B.0.17.5 119.319.8 119.62E.8 119. B22.2 IIB. B22.7 1$9. E24.8 128.878. IIB.65. 6s.65. 79.65. 184.45. 226.40. 24s.25.E 119.6 40. 327.0.8 B.E 8. -E .0.0 0.0 8. -0.0.0 0.0 B. -0.0.0 0.0 B. -0.0.8 0.0 B. -0.0.0 0.0 B. -e.O.e 8.0 B. -0.0.0 B.B e. -e.0.0 0.0 B. -0.B.B e.e 6. -B.0.0 a.o B. -0.0.0 8.0 B. -B.25.25.25.25.10.5.5.0.B.0.0.B.0.0.El.0.0.8.0.$3LL FOREC9ST5 TYPNDONS WI ILE OVER 35 KTSkRNG 24-HR 4S-HR 72-HR liRNG 24-HR 4S-HR 72-HR(IVG FORECf+ST Pm IT ERROR 1S. 76. 11s. 141. lB. 76. 118. 141.W% RIGHT RHGLE ERROR le. 55. 66. 77. 9. 55. 66. 77.FM INTENS Ill’ IWIGNINDE ERROR 6. 15. 25. 30. 6. 15. 25. 38.RV6 INTENStlY BIt)S 2. 1. -3. -9. 2. 1. -3. -9.NIJmER OF FORECRSTS 33 29 25 21 32 29 25 21D ISTRNCE TRRVELED SY TROP[C(N. CYCLONE IS 2732. NMFlVER13GESPEED OF TROPlCRLCYCLONS 1s 12. KNOTSSUPER TYPHOON IRMRFIX POSITIONS FOR CYCLONE NO. 26SRTELL ITSF lXESFIxNO.TIIE(Z)FIXPOSITIONFICCRYDVDR8K CODE S61ELLITE col?mrr5srr*1**23171s34 11.GNlBB6eB 14. IN1EIB9BB14.2N 153.9E151 .7E151 .6EPCN 5PCN 5PCN 5T1.5/l.5NOflR7GI?3GItE[NIT 0B5**45ie12BE18164113.7N13.7N150.lE149.9EPCN 5PCN 5GffiNOfWi7x 6 le2156 13. @N 149.lE PCN 5Nom6789mII1219eees713. EIN 14S.4S19B3ee19860019e9eo19i2e8191688PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5173.B=. E /D1.5/IBHRS GI’?EGRSGmGffiGf?S13141519162919210019213213.7N13.7N13.7N145.5E144.9E144.9EPCN 5PCN 5PCN 5NOfIR7NofM616 2BBEOB 14. BN 144.4S PCN 5Gtt317 28B3Ew 13.9N 144.lE PCN 5 13.5/3.5 ~B.5/27HRS Gtt31s 2oB9m 14. BN 143.2E FtN 5Gffi13. BN 142.6E PCN 5GffiE14.BN 142.lE PCN 5Gffi2114. BN 141.4S PCN 3NOfW-172223242526272B2105022112002116002117472121002280B022k13BE14.2N13.7N13. SN13.7N13.SN13.8N13.5N13.5N13.4N140. BE14D.2E139.3E13e.2E137.4s137.2E136.6E135.9E135. EEPCN 5PCN 5PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1PCN 1T4.5/4, 5 /D 1. W26HRSGmGmNOI?R7GffiGli3N0997GmGmGffi22045022890822120813.3N13. lN12.BN134.3E133,6E132. BEPCN 1PCN 1PCN 1T6.5K.5 /D2. Bfi4HRS NOW17GmGffi343536221600221EIEW22218612.7N12.7N12.SN131.7E131.3E13B.5EPCN 1PCN 1PCN 1GffiGf!6GNSPGNPGTWPGTWPGTWPGTWPGTWPGTwPGNPGTWPGIuPGTIJPGTWPGTWPGTLJPGTLIPGTJPGTLIPGTIJPGTWPGTLIPGlllPGTWPGlllPGllJPGTLIPGTLIPGTwPGTLIPGTWPGTWPGTIJPGTLIPGTLJPGTIJPGTWPGTW176


------37 7?n~~n 12. EIN 129.5E PCN 1;d392303E023E62112;9N12.9N128.6E127.7EPCN 1PCN 140 2309Ea 13. IN 127. BE Pcti 141 2312EB 13.3N 126. lE PCN 142 23168B 13.9N 125. FJE PCN 143 2318EB 14. ON 124.5E PCN 144 2321EE 14.3N 123.7E PCN 14546474s4923232I24000024030824368924090014.4H 123.4E14.5N 123.2E14.7N 122.6E15.2N 121.9E15.7N 121.3[PCN 1PCN 1PCN 1PCN 3PCN 550 241280 16.2N 120.13E PCN 551525354555624168024180824185424210025000025030016.9N 120.OE17.IN 119.6E17.4N 119.2E17.6N 119.2ElEI.4N119. lE19. E!N 119.4SPCN 3PCN 3PCN 3PCN 5PCN 5PCN 5*57585925055725113725120819.3N19.8N2B.8N119.6E119. eE12E.6EPCN 5PCN 4PCN 560 251B42 2B.8N 12B.9E Pctl 5*616263646566676B697a25218026008026001626030026054526160026183126210026235227080021.3N21.6N22.lN22.lN22.4NZ3.2N23.3N23.6N23.7N121S.BE121.7E121. SS122.3E122.7E124.3E124.8E125.7E126.3EPCN 5PCN 5PCN 5PCN 5PCN 5PCN SPCN 5PCN 5PcN 5PCN 5GffiG&T6 . 5/6 .5-/S2. B/26HRS N09f)76nsGt5Gft3G!?SGI?5NoRf16GmT5. Ev5.5 AJ1.5/24HRs j~I17Gf4sGIISGf6GtlSNOf107Gffi~.5/4. B 41.5L24HRS j~Fj7Nol%a6GP?3NORR7Gt?iGM6T2.5f7.5NOIW3673 .8x3.5 /w.5/24NRS i~w7GMSNoi397GHS72a/2.5-Asl.5/24HRsNow1623.9N 125.F GttSPGTWPGTWPGNPGTLIPGTWPGTwPGTWPGTuRPMPGTWPGNPGTIJPGNPGTWPGTLJPGTLIPGTIJPGTLIPGTIJPGNPGNRPtUPGTwPGNPGTWPGTWINIT OBS RPt’KPGTWPGTWPGTLIPGTwPGTLIRPMCPGTblI?IRCR9FTF IXSSFIXNo.TlliE(z)FLTLVL72iEtE 08S mX-SFC-LND I%IX-FLT-LW-LMD tlCCRYHGT ffiLP %H-/BRG/T?NG OIR-LMR6ASNG NRV/?lETEt%SHRPEEVS ORIEN- EYE TEm (ClDIBWTIITION OUT/ IN/ OP/SSTf’!mNO.*41235619101112* 13141s1617la19005719B3B3198656198s5519121219190619212920225421090821224222084222212623065524211225091525131925213026891813.EN13.6N149. lE142.7E13.5N 147.7E13.5N 147.6E13.9N 14. BE13.8N 145.6E13.8N 14S.2E13. SN 140.6E13. SN 13S.8E13.4N 136.2E12.9N 133.7E12.6N 130.5E12.7N 128.3E17.5NIS.9N19.8N28 .8N22 .4N11s.4s119. SE120.6E121. lE122.5Ei5eeFT7e0m7eBm?Eimm?Oem70Enm70ans308730473062386030083e187EIEm 26317BOm 26707e0tm?aerm 22427@Em 233S7eata 24087Eam 29717L121m 29987@EIm 308278BtE7EBrEl3B123Ba9laa31803100%4% 220152203501004s19017040 13819 16840 2s040 32%45 la44 0906030609013s!30585525365 1852993 35 34% 20 42 270 20968 65 260 7 170 84 090 IS 1: 12951170 lee 15 5213% 040 10 17B lE %4% 10 52905 lee 6s0 25 04% 112 290 30 10 3lee 350 20 120 111 350 4s 52922 lE@ elB 15 67B 122 OSB 15 10 39s8909 35 27B 4E8BB119314334%BIB6E1404555198 4S e6B 26 55992 40 1B8 35 21E 43 %s0 943 3 10995 15E 44 e7e 60 47CIRCULBRCIRCIJLRRCIRCULf)RCIRCULIIRCIRCULFJRC [RCUL9RC[RCULRRCIRCULtlR25204%20202B2020+25 +25 2S+11 +9●1B +Ie+11 +12 +12+11 +13 +9+11 +17 +11+t6 +15 +13+14 +2B + 9+12 +1s +14+13 +2B +16+14 +16 +15+12 +Ie+13 +15 +IE+12 +13 +11+12 +12+11 +1]1;;33561:11lZ1415151617RRDRR FIXESFIXNO.Tlm(z)FIx EYE EYE RODOB-CODEms ITIDN RRD!-IR 9CCRY SHFIPE DIRtl RSIARR TDDFF COPSZNTERflDRRPOSITIONSrrs&m No.*1*S23467a910;;1314{:1718192B21222324252627se2930313233343519101019103519111019113519121019143519151e191535191610191635191735191ele19103519193519201019203519211019213519221019223519233528001028003520011020013520021020023520033520051020053520061828L17182089352010352elile36 20113537 2317e83e 23173e39 231eee4s 23 le3e14. tlN14. ON14.E!N14.6N!4.2N14.21N14.ON14.9N146.9E14S.9E146.9E14S.9E14s.eEMS.2E146.RE145.eE14.eN 145. eE13.9N 145.7E13.9N 145.7E13.9N 145.5E13.9N 145.5E13.9N 145.4s13.9N 145.4s14.eN 145.4213. EN 145.lE13. EN 145.2E13.9N 145. lE13.9N14. EN13.9N13.9N13. eN13. eN13.7N13. eN13.7N13.SN145. lE144. eE144.6E144.5E144.3E144.3E144.3E144.2E144.2E144. lEL12NDLRNDLFINDLRNDLRNDLI%IDLRNDLilNDLllNDLRNDLllNDLilNDLIINDLRNDLeNDLRNOL9NDLRNDLflNDLIINDLRNOLRNOLRNDL(WDLRtlDLRNDLeNDLI?NDLRND13.EN 144.lE LRND13.9N 143.9E LRND14. IN 143.6E LRND14.EN 143.2E L$IND13.9N 143. %E LRNO13.9N 142. BE13.9N 142.7E13.7N 125.2E13.EN 124.9E14.%N 1Z4.7E14.eN 1Z4.4EL17NDL8NDLfiNOL9N0L$lNDLfINOFRIRFRIRFAIRPOORPOORFfllRFIIIRFf31RF91RFRIRFRIRFRIRFfi lRFIIIRGOODFR IRGoODGOODGoODGOODGOODGOODGOODGOODGOODFll IRPOORGOOOGOOOF91RPOORFfIIRPOORPOORPOORCIRCULRRCIRCULf)RCIRCULM/CIRCUL13RCIRCIR.RRELLIPTICRLELLIPTICALCIRCULRRCIRCULRRCIRCULaRC IRCULRRC IRCULRRCIRCULRRC IRCULRRELLIPTICALCIRCULRRCIRCULRRCIRCULRRCIRCULRRCIRCULmC CRCULRR2524242222383e2e2224Ie2222;:71210171613OPEN N RND SiEOPEN S-SW RND NIJ-NOPENINGS RLODS13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144. SE13.6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144. SE13,6N 144.9E13.6N 144.9E13.6N 144.9E13.6N 144.9E13,6N 144


41 24000042 24E103a43 242! 10044 24D13B45 24020046 24823047 2404004s 24060049 24073050 24880851 24EB3052 24108053 24 12E05424133055 24133!3 16.3N56 241438 16.7N57 241E30 17. EN5E 242BEa 17.3N59 242108 17.5N14.5N 123.5E14.6N 123.5E14.6N 123,4E14.7ti123.3E14.8N 123.2E14.!3N123. lE15.IN 122.7E15.2N 122.3E15.5N 121.BE15.6N15. ?N15.9N16.2N16.4N121.7E121.6E121.lE120.42?0 . 2E19.9E20. BE19.3ELFINDLRNDLRNDL12NDLAWDLIINDLflNDL9NDL9NDLFINDLiiNDLRNDLRNDLflNDLIINDLRNDLQND6B 242130 17.6N61 2422EB 17.6N 19.2E L9ND* 62 24223B 17.6N 19.2E LFIND63 24230B 17. 7N64 2SBBE0 17. EN 119 .2E LIIND65 250E3Ei 18. BN 119 .2E L9ND66 25 F22!3E IS.4N 119.2E L9ND67 2521OB 28.7N 121. IE LOND4//// 3////line/ 4////leel/ 4////tB7e/ 43eaBlB71/ 438051078/ 436EB1B7137 438E616S1/ 429E141862/ 432111862/ 432111861/ 429E!91861/ 5312B2E211 42818lE8B/429a62E211 428184//// 5////4////4362519.4E L8ND 4//// 4om@19.4S L13ND 4//// 5361419.3E L(JND 4//// 43104108// 43284108// 4////19. 3E LRND 118// 436941 18// 433E171 18// 436E181lEJ// 436Ei136//// 5////6EI 252208 2E . EN 121 .!3E LRND 6//// 5////69 262108 23.5N 125.EIE Li?ND 55//2 /////7+3 2622@EI 23. 5N 125.42 LRND 55/12 59927EYE 50 PCT Cl OPEN SEEYE 90 PCT Cl OPEN SEEYE lBB PCT ClEYE 108 PCT C1EYE lEE PCT CIEYE 10E PCT CtEYE CI OPEN N EYEIJJ?LL 16Nt’iEYE 1%0 PCT ElEYE C[EYE ClEYE CI OPEN E Dlfl 9NMEY2 EL MIJ 8X15 NE/SWEYE EL I’WJ 12XIS NE/EW16.3N 12C3.6E 9932116.3ti 12B.6E 9S32116.3N 12B.6E 9832116,3N 12EI,6E 9S32116.3N 120.6E 9032116.3N 128.6E 9E132116.3N 1213.6E 9B32116,3N 12E.6E 9B32116.3N 12E.6E 9832116.3N 12Ei.6E 9832116.3N 12E.6E16.3N 128.6E14. BN 12E4.2E16.3N 120.6E14.8N 12B.2E16.3N 12B.6E9S321983219S426983219E14269832116.3N 120.6E 9E32116.3N 12L!.6E 9832116.3N 12E.6E 9832116.3N 12E.6E 9S32116.3N 12E.6E16.3N 128.6E16.3N 12SI.6E16.3N 12E.6c16.3N 128.6E16.3N 12L3.6E22.6N 12E. 3E22.6N 12!3.3E24.3N 124.2E24.3N 124.2E9S32 I9S32 I9B3219532 I9832 I993214G7444G7444791047918NOTICE - THE WTER ISKS (*) lND lCIWE F IYJES UNREPRESENTfiTIVE 9N0 NOT USED FOR BEST TRRCK PURPOSES.178


TROPICllL STORM JEFFBEST TRRCK DIITFIBEST TRIICKl,tlRN lt6GFOVI-IRC . .....-MWDWHR POSIT WIND POSIT WIND DST WIND1121002 18.7 1S2.9 25 0,0 8


FIXNO.TIllE(z)FIxPOSITIONFLTLVL70atmHGTOBStt3LPttW-SFC-LNDVELmRG/RNGmX-FLT-Lkl-lAWDDIRA’EL~G/l?NGIICCRYNRVfiTEVE EYE ORIEN- EYE TSt+’ (C)SHRPE DIQWTRTION OUTZ tN/ DP/SSTffiNNO.21084s2123052222424 23B0215 2306516 230S117 232133B 2323S3912.BN13.3N13.9N152.EE158.2E14S.3E7e0r34lSiW3FT3109311313. LIN 148. OE13. i3tl 146.8ElSOOFT1500FT13.2N13 .6N13.2N14s.4s142.9E141. BE7E01’B7e0m780rE15.IN 134.7E 70L3m 3119999 25 14B 6E#lE82 15 e.9B 51000 35 250 26999 40 328 20999 3e lla 151E84 28 e3e -la3B B36 6B25 09Li 1035 34D 35lze 33 13B 38 lB 10228 28 E9B 15 5 2328 33 256 28 4 5E4E4532E 18 532BB 27 lle 15 3 215D 23 e38 48 lE 38128 36 878 6B 18 IEB5E 39 34E 68 18 lama se 34s 35 5 15+9+9+9+11+9+26 +25 2S+26 +25 2S+13 +12 + 8+la +12123344557RfiD9R FIXESFIx TIPE FIX EYE EYE mDOB-CDDENO. (z) POSITION RROAR f)CCRY SH6PE D lFIII IISLQR TDDFF COITENTSRQD17R s ITSPOSITION LffJ NO.1 231635 13.7N M3.7E LIIND FFIIR13.6N 144. SE 91218NOTICE - TNE fisTER ISKS (*) IND 1CRT6 F 1%SS UNREPRESENT(ITIVE FINO NOT USEO FOR BEST TR17cK PURPUSES.180


TYPHOON KITBEST TFMCK DRTIlBEST TR9CK LSRNING 24 NOUR FORECRSTERRORS46 NOUR FORECRSTERROJ3SPOSIT IJIND DST WIND POSIT LUND DST LUNDe.e 8.8 a. -B. e. B.B e.B B. -8. E.e.e e.e e. -e. e. B.@ 6.8 6. -a. B.B.B B.B e. -B. e. E.8 B.B 8. *. B.EI.B 8.0 B. -8. 0.ERRORSMJmrlflR POSIT IAIIND POSIT IAIIND DST WIND12E9Baz 5.2 15B.4 15 8.0 6.0 e. -a. 8.1269862 5.6 149.1 28 e.e 6.8 e. -8. B.12R9122 6.0 147. B 20 8.0 B.0 E. -B. 0.1289 lBZ 6.6 M6. e 2e o.e B.a e. -B. e.czlemz 7.9 146.7 2F2 e.e e.e e. -e. e.121ee6z 8.5 t47. e 25 e.e e.B e. -e. 0.1210122 8.9 147.3 25 e.e e.e B. -e. e.121E1BZ 9.3 147.7 25 e.e e.e B. -e. e.i211eez121 le6z121112212111ez1212Eez121ze6z9.Ble. zte.4ie.711.e11.21212122 11.512121S2 11. Bt213eez 12.21213962 12.41213122 12.51213113Zi214eez1214E6Z121412212141EZ12.612. e13.113.514.11215eez 14.6121se6z 14.91215122 15.312151EIZ15.51216BEZ 15.41216e6Z1216122lz161ez1217eez1217862121712212171S2121BeBZ121ee6z121B12Z121Blez15.315.215.215.315.615.916.116.216.216.116. e147.8147.s147.7147.5147.314?.1146.8146.4143.B144.9143.8143.e142.2141.8141 .s141.5141.51219eez 15.9 i31. e1219e6z 16.1 131.2121912212191ez122eeez122ee6z16.416.515.914.913e.913e.313e.213e.3122e12z 13. B 13e.2122emz 13. e 129.43030354B45455ese5e55556e0.0IB.2 14?::11.e 147.611.2 147.311.2 147.211.6 147. B11.5 146. B11.B 14S.612.2 146.212.2 145.312.5 144.212.6 143.265 12. e 142.27e 12.6 i4e.9SB 13.5 141.485 14.2 141,59e 14.9 141.53::45.5B .50.5B .50.50.5e.5B.55.55.-0.12.36.32.13.25.e.12.23.26.23.12.e.7B. 55.7B. 6.BE. 6.B@. lB.95. 12.lee. wles. 12.tee. 17.Im. 12.141.4 95141.3 lee14B.9 1B5140.3 10015.115.215.315.4141.4141.2140.9140.6139.B 95 15.3 14e. e139.e 95 15.2 139.113e.2 lee 15.2 138.7137.5les 15.1 137.3136.8115 15.2 136.7136.2 lle 15.7 136.5135.7 le5 16.1 135.6 12e.135. e lee 16.2 135.1 115.134.2 95 16.3 134.5 100.133.4 9e 16.3 133.6 9B .132.6 B5 16.3 132.e e5.ee75:5s40353e15.9 131.815.9 131.216.2 13e.416.6 129.816.3 i3e.214.9 13e.213.e i3e.213.2 129.EI95.9e.6.29.IBB. 17.115. 25.115. 21.ml.75.65.65.50.40.35.3e.6.6.Ie.E:e.12.31.29.24.6.e.26.0.1%le.5.5.e.e.0.-5.B.-5.e.e.-10.-5.-le.B.e.e.B.5.e.-[e.-5.e.5.15.15.5.e.e.e.e.5.8.e.e.e.72 NOUR FORECflST. ,.Posm IJIND DST WINDo.e e.e 0. -“.“.e.e e.e B. -e. e.e.e B.B B. -e. e.e.e e.e e. -0. e.e.e e.B B.e.e.e e.B e.a.e 0.e B.e.e B.0-e.-e. e.-B . e.-e. 8.-0. e.I1::: 13::! 333. -le.I!3.2 I!3.1 144.8144.855.65.155.121.5.15.I13.2 148.4 7e. 156. lB.14.5 134.314.41134.5422.406.-15.-le.I!3.1 144.3 7e. le3. 20. 13.4 139.9 BO. 139. 15. 13.5 133.0 B5. 451. -5.13.2 143.8 60. 89. 5. 13.5 13B.9 75. 178. 5. 13.5 132.9 eB. 499. -15.I!3. e 144. B 6e. 65. 5. 13.3 MB.6 7e. 54. -le. 13. e 134.9 eB. 395. -2e.1,3.2 144.3 6E. S4. B. 13.3 l~. B 65. 99. ’26. 13. e 134.3 78. 4te. -35.I13.2 143. B 6e. 96. -5. 13.2 139.8 65. 129. -25. 13. e 134.1 7e. 387. -3e.12.7 142.5 6e. 47. -le.12.5 133.4 7B. 407. -25.I12.4 148.2 65. lee. -15.12.2 129.2 7B. 596. -25.I[2.3 13EI.S 65. 190. ‘2E.12.5 127.7 65. 63e. -35.I12.6 137. e 75. 246. -15.12.2 126.5 7B. 664. -3s.12.5 136.2 Se. 334. -15.12.7 125.4 65. 682. -se.14.2 137.8 Be. 213. -26. 13.6 133.a 75. 36e. -2e. 13.1 127. B 7B. 55S.I17. B 142.1 75. 154. ’30. 22.3 146.5 6e. 632. -40. 24.1 156.1 48.123B. -65.18.3 142.5 78. 214. -33, 22.5 147.6 55. 714. ‘Se. 24.2 157.1 35.1326. -65.I18.2 143.2 9e. 22I. -5. 22.4 147.2 6e. 714. -55. 24.2 156.6 35.1341. -6e.17.1 141.5 95. 1B3. e. 2e.e 144.2 75. 516. -35. 22.7 153. B 40.1214. -se.15.1 141.2 ile. 173. le. 17.3 142.2 95. 379. -le. 2e.5 147. e 6e . B59 . -25.I16. e 139.e 9e. 13s. -15. 11.9 139.9 8B. 3B3. ‘2e. 2e.1 142.2 65. 642.I17.1139.1 90. 159. -25. 19.8 14s.7 ee. 427. -15. 21.6 144.1 65. 799. -le.13.9 136.4 eB. 12e. -3s . 12.3 132.8 75. 230. -15. 12.1 126.e 75. 35e. 5.13.9 135.5 75. 132. -3s . 13. e 131.4 7e. 192. -15. 13.e 125.4 65. 325. 5.14.4 134.5 e5. 111. -15. 14.11131.5 m. te9.-le. 14.3 125. B 65. 271. 15.I14.9133.7 le5. 53. le. 14.6 129.7 e5. 124. le. i5.e 124.8 75. 317. 35.16.316.316.216.716.716.715. B17.517.9133.2132.6131.9132.213e.9129.712e.612B.512a.2he.Ile.90.!35.75.7e.6e.17.le.19.6e .le.36.92.60. 1B6.55. 271.2B. 16.2 129.4 e5. B7. 15. 16.625. 16.2 129. e e5. 77. 25. 17 .ele. 16.1 128.2 ee. 115. 3e. e.ele.5.le.le.2e.Se.16.8 129.2 75. 13e. 35. @.E17.7 127.9 65. 26B , 3e. e.ele.7 127.2 6e . 3s3. 3e. e.ea.B e.e e. -e. 0, e.ee.e e.e e. -e. e. e.ee.e e.a e. -e. e. e.Be.e e.a e. -e. e. e.ee.e e.e e. -e. e. e.ee.e e.e 0. -e. e. e.ee.e e.e e. -e. e. e.ee.e e. e e. -e. e. a.e124.6124.2e.ee.ee .ee .ee.ee.ee .ee.ee .ee.ee.ee.e75. 3s3.75. 3e3.e. -8.e. -e.e. -8.e. -e.e. -B.e. -e.e. -B.B. -0.B. -e.e. -e.e. -e.e. -e.40.45.e.e.e.e.e.e.e.e.e,e.e.e.RLL FORECRE13~G 24-NR 4S-NRIWG FORECtlST POSIT ERRUR 17. 134. 291.WJ6 RIGHT I?NGLE ERROR 9. e2. 168.Rm INTENS tll’ mGN ITUDE ERROR 3. 22.FM INTENSIV elffi ::: -9.NUmER OF FORECASTS 3;. 35 31TYFWONS LMILE OWR 35 KTS72-HR 24-HR 4B-NR 72-NR6e3. !7 . i2e. 2e9. 611.326. 9. 7e. 167. 325.29. 4. 14. 2B .-le. -E: -21.27 3;. ;$. 3e 26D15TRNCE TRWELED BY lROPICRL CWLONE IS 19ei . Ntl12VSR9GE SPEED OF’ TROFICRL CYCLONE 1S 7. KNOTSTWNODNKITFIX POSITIONS FOR CYCLONE x0. zeSflTELLITEFIMZSFIXNO.mm[2)FIXPOSITIONRCCRYDVDR6K CODS SMELL HE COHEHTSSITE;3456:9* le1112131415;?[e192B21222324252609B454e912ee89 ieee1ee443lei2ee1B21B9lle431I le6ee1le9eell12ee1116e@12eeeei2e3ee12e41912e6ee12 iee31216ee1217e4i221ee12224212224212224213eeee13e3ee13e4e713e94e5.5N 149.5E5.9N 147.7E6.eN 146,eEe.a 146.7Ee.m M6.7E11.1)4 146.8Ele.2N 147.45le.5N 147.5E11. eN M6.9E11.2N 14S.6E11.2N 147.2E11.lN 147.6E11.3N 147.4s11.5N 147.3E11.6N 14S.9E11.3N11.4N11.5N11.7N12.eN146.9E146.6E146.4s146. lEM6, eEPCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PcN 5Te.5/e.5NORR7GffiGffiTD .5/0.5 /s0. eawm NORR7GmGffiT2 .efi. e. n I. sams Nom7Gtt5GmGI?3Gt13Gtt3GMST2 e=. B n 1. en4NRs NOIW7GffiNofll16GmHOR@7Gf’t3NoaR612.eN 145.9Em.ea. eNoRfi611.7N.12.lN12.2N145.2E145.7E145.5ET3.ea.eNow16GmGtt312.4H 145.4s73ea. e 6e. eaws NORR712.eN 144.6E NORR6INIT 0SSULCC e.eN M3.eEULccLLcclNIT OeSINIT OBSSECNDRY CNTR 12 .eN143. 5EPGTWPGTWPGTwPGTIJPGTLIPGNPGNPGIUPGTwPGNPGTLIPGTwPGTLIPGTWPGTIJPGTUPGTuPGTUPGTWPGTWRODNRPFUPGTWPGTWPGTLIRODN181


%293031323334353637383940414243444546474s4950515253%5657se596E6162?46566676E69m 7071727313160813221s13221914a3B81’3s!357141200141600141641142155142156150300158526150526150900151200151600151811152100168000160308160514161200161600161?S91621001622501705021716001717471721BBlBeOOBlBB30a1804581612001B16EIE1821001980881903801906201912~1916001921802s830020068928160021055712.6N 143.6E12.5N 142. IE12.5N 142.2E13.8N 141.6E12.6N 141.3E13.6N 141.6E13.7N14.8t414.5N14.7N15.4N14.9N15. EIN15.5N15.3N15.4N15.5N15.6N15.5N15.4N15.3N141.2EW3.9E141.5E141,5E141.3E141.4s141.3E141.3E141.lE141.6E141.8E140.EE14D.5E14B.3E148.EE139.3EPCN 6PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 2PCN 1PCN 1PCN 1PCN 1PCN IPCN 1PCN 1PCN 1PCN 1PCN 115.2NPCN 115.4N 13FI.6E PCN 115.3N15.3N15.2N13E.2E137.SE137.6EPCN 1PCN 1PCN 1T4. @/4. E /01 .E/24HRST4. B/4.6 -ml. e/24NRsT4.5/4,5T5.e/3. B ml. wwmsT4.8/4. o /6E. O~lHRST4.5fi.8/l,E.5n4HRsNom6GI?5NoWa6NOOF16Gtt6N0997cmGtlSNOI%17NOM6GttSNom6NO13137GffiG16GtKNLIW7GmGI?SGtt3HOI%+7Gt6GN5NORi17GffiNom615.6N 136.7E PCN 1 75.5/s.5/D1.en4HRs16.8N16.2N16. IN16. IN16.3N135.SE135.7E135.4s135.3E134.9EPCN 1 GHE16.2N 134.4S16.2N 133.6E16. IN 132. EE16.3N 132. EE16. IN 131.6E16. IN 131.4s16.2N 131 .8E17.61N 13e.8E17.EN 130. BE16.4N 129.6E15.5N 138.5Ei4. eN 130.3E13.6N 13B.eE10.8N 12E. SEPCN 1PCN 1PCN 1PCN 1PCN 2PCN 1PCN 5PCN 5PCN 3PCN 3PCN 4PCN 5PCN 5PCN 5PCN 3PCN 3PcN 5PCN 3T4.5/?5.s411 .W24HRS13.5/4.5 ml .Ba2HRs‘73.W3.ST1.5/2.5ALS).5KMHRS/bll.8/7?7NRSNO!W?7GmGt?SGmGM3N09F17GmGmGmGmNOFiR7Gt15NOM7INIT OESExp LLCCEXP LLCCPG~PGTWRPmPGTWPGTWPGTWPGTWPG711PGIWPGTwRODNPGTWPGIURPtKPGNPGwPGTCJRGmPGTWPGNPGTWPGTWPGTWPGTldPGTWPGTWPGmPG~PGmPGTWPGNPGIWPGmPGIWPGTWPGWPGlllffiNPGTWPGT3JPGmPGTUPGTIJPGT3JPGIMPGILlPGTLJR IRCR6FT F 1)0?3FIxNO.T1t’E(z]FIxPOSITIONFLT 788m 09s mx-SFC-W6D ttlx-FLT-LW-LND 1WCR%LVL HGT ffiLP ~L/BRG/3?NG D IR-LfiRG~NG NFIV~EYE TEt’F (c)OUT/ IN/ DP/SSTmNNO.;3:67891011121314151617lB;:21222324252627282930:;3311034s11072311200511215712060912084913094213212514s80314200514221215055415Lle35151200151516151B4B15220}160382160530160B3e1622BB170015170253170830171921172211180031le221e1900371919201922EIB20B7432021579.9N 147.7ElB#2N 147. BE10.8N 147.5E11. BN 147.4s11.3N 147. IE11.3N 147.lE12.2N 144.BE12.7N 142.6E13.3N 141 .9E14.4N 141 .5E14.5N14.9N15. IN15.2N15.2N141 .5E141 .4s141 .3E141.2E141. OE15.4N 14B. eE15.4N 148.7E15.3N 14D.2E15.2N 14B, BE15,2N 139.6E15.2N 137. BE15.2N 137.4s15.4N 137. lE15.6N 136.5E16. eN 135.5E16. lN 135.6E150BFT15BBFT7mm70Bm700rm7aeta7mrm?Eelm7ElEnm70em7m3m700m7B0m7BBm78em7m3m7BElm700m7eem7e8m70Bm7B0ra70BrB7e0m7mm7BBm7B8m708rm70em7rnem7mera7e8m300530203014302 I29962934205427632743262025972574255825SB2629ZG2B263526452574253224S32433253416.2N 134. IE2586271315. SN 132. IE267216.lN16.2Ni6.3N14.7N131. BE13E. BE13B.3E138.4S290730163057310712.7N 128.8E 7eBm 313299699499199899235 lBE 2545 158 5535 130 6040 290 3058 14 se030 33 358 65230 50 150 55@BB ~ 336 9B55552s35Ii ;4 1080 36SI 20BE 330 15 1: : ELL IPTICRL 4s 38 0506590lee68050890em2707E15251533423252CIRCULRRCIRCULORELLIPTICFIL25353a 2B 13B12B22e9910063013B17195251ELLIPTICALCIRCULtlR252520 B3B140 S0 B4B 26 4294s80se6504SEs@31028254804012e638S1937531B05031027254S4510 1010 10CIRCULf4RC lRCULhRCIRCULRR252’01500 110 27 170 104 110 27 10 3 CIRCULRR943 118 366 15 210 113 llEI 28 52 CIRCULRR E130 108 15 17E ml e9B 20 52 CIRCULIIR92494075laBlBE13026B34812302011016910S 359122 6J70151432255353CIRCULRRCIRCULARCIRCUL13RCIRCULRR25201515lBB 27B 1053 10 C IRCULflR 1516B 09053 CIRCULflR 1597s EB 090 301: 1:50 36% -la10 31000 4G 320 100 33 33B 13E 55SIZE 2B 2B6 lee 10 10+24 +24 +24 28+25 +24 +24 2$+16 +8+15 + E●1B + 9+17 +11 +11+12 +17 + 9+11 +17 +12+11 +17 +12+15 +21 +]8+12 +20 +1 1+1 1 +2B +1 1+11 +19 +12+lEi +16 +11+te +15 +14+13 +14 +14+ 9 +16 +13+11 +17 +12+9+22+9+14 +25+25 +18+13 +24 +11+17 +16 +13+10 +16 +12+12 +22 + s+17 +18 + 4+12 +15 + 6+16 +17 +13+9+12+93344557es1010111111111313141414151516161717lBE21212223RIIDSR FIXESFIXNO.i-ltE(2)FIx EYE EYE RROOB-CODEPOSITION RllOllR 9CCRY snaps omn RSLRR TDDFFCO~NTSR12D9RPOSITiONSITEw NO.1213153513163512.5N 143.4S LI)ND 600012.5N 143.2E L9ND GOOO3.6N 144.9E3.6N 144.9E9121891218NOTICE - THE RSTERISKS (*) lND ICW7E F 1=S UNREPRESENTRT[K flNO NOT USED FOR BEST TRIICK PURPOSES,182


7Y=HODH LEEBEST TRRCK D9T17BEST TIUICK L21RNIffi 24 NOUR FORECIIST 4S HOUR FORECASTERROR5ERRORS?3VDFVHR POSIT WINDPOSIT UMSD DST LHNO POSlT LIIND DST LUNDIzzzlez 8.E 139.38.0 S.? 0. -s. 0. e.e 0.0 8. -B. 0.1223602 9.3 137.4 308.6 6.6 B. -8. B.1223E6Z 16.8 136.9 35t::: 12::6 5:: 1;:: -2:: 11.2 124.8 55. 117. -40.1223122 18.6 134.7 4511.4 12s.1 60. 121. -!5. 12,.? 123.2 55. 96. -30,12231BZ 11.4 133.3 55 12.6 129.@ 65. 12. -26. 13,2 123.3 5B. 24. -20.1224062 11.S 132.6 65 11.8 132.1 55. 6. -16. 12.9 126.5 7B. 65. -28. 13..6 121. B 5B. 3B. -16.122406270 12.2 13B. E 65. B. -5. 13.8 125.3 Ee. 89. -15. 13. B 12E. B 60. 13. 16.122412275 12.5 129.7 78. 13. -5. 13.2 12’5.7 R8. 63. -5. 13.8 12E.7 69. 81. 2R.122418285 12.5 12S. EI 75. 6. -le. 13.3 124. E 75. 92, 5, 13. S 119.9 68. IIE. 15.1225BBZ90 lZ. E 127. !5 65. 13. -6. 13.6 123. B15. 14.012258621225122122518212266621226E6Z122612212261ez12276021227E6Z1227122122716212.1 138.912.4 129.912.6 128.812.7 127.612.6 126.2 95 12. B 126.5 S5. 21. -16. 13.612.6 124. S es 12.7 124.8 96. 6. 5. 13. B12. B 123.3 70 12.8 123.2 SE. 6. I@. 14.213.1 121.9 60 13.1 121.8 7E. 6. 18. 14. s13.6 126).7 50 13.6 128.3 55. 23. 5. 16.313. a ]]9.3 4s 15.5.13.9 118.014.2 116.914.7 116.015.1 115.215.7 114.31228662 16.4 113.7122 SZ16Z 17.3 113.21228122 IB.1 113.272 HOUR FDRECR2T,POSIT WINDS.6 21.B 0.6.8 @.@ B.12.1 120.s 45.13.2 119.2 45.14.6 118.715.9 117.316.2 116.915.2 116.%15.4 115.2122.6119.275.75.66.114.110.6.25.26.14.116.1119.011s.7115.166.66.50.122.160.60.16.5.B.15.715.52@.8114. s114.9114.756.50.30.lls. !3 55. 18. 10. 17.4 ! 14.5 4a. 102. -5, 6.0 0.0 B.455955-z:17.214.814.714.6117.5115.9114.9112.9111.8110.75a.*.40.4s.4a.4a.56.96.127.97.149.216.El,-5.-10.-5.5.la.le. s2a.221.8a.aa.ea.a115.3115.0115.50.66.0a.e45.4a.30.B.8.B.170.227.256.-a .-0.-B .10.10.5.e.0.8.6.60,00.09.BB.B0.6B.B0.60.6e.aO.B0.BB.0.0.8.0.6.50 0. 14.8 110.2 35. 261. le. 0.0 8.6 B. -0. a. B.B 0.6 a.45 15.5 113.9 45. 26. a. B.B 0.0 B. -B. 0. 6.6 B.B B. -0. B. e.a 61.e e.35 16.8 112. S 45. 57. 16. B.Sl 6.63 E!. -0. B. 9.6 B.G a. -B . 0. a.a 0.8 B.30 17.2 113.3 40. E. la. a.e 0.0 0. -0. 0. a.a a.a 8. -a. 0. a.e e.a 0.25 18.4 113.1 36. 19. 5. 6.0 0,0 B. -B. e. 0.0 0.6 B. -B . B. 6.8 0.8 B.55.55.76.58.5E .DST-B.-s.96.36.WIND0.e.-5.5.1%: 5.[63. 15.52. 0.55. 5.76.145.1s2 .-0.-a.-B .-e .-B .-El.-0.-B.-0.-8.-0.-e .%:5.e.8.e.m.B.8.B.0.B.0.$.(iLL FORECOSTS TWHOONS lAiILE OM?R 35 KT6I.RHG 24-NR 4S-HR 72-HR LRNG 24-NR 4s-HR 72-HRFWG FORECFIST POSIT ERROR 21. ma. 112. 98. 22. 83. 91. 72.FM R ISHT aNGLE ERROR 16. 75. 66. 62. 17. SE. 39. 54.FIV6 INTENSITY mGN lTuDE ERROR 7. 12. 14. 9. 7. 12, 15. e.RW INTENSITY BII)S 0. -1. -1. -1. -2. -3. 6.NUmER OF FORECIJS7S 22 le 14 1:. 28 16 12 EDISTFINCE TRFWELED BY TROPlCfl. CYCLONE IS 171e. NHIWERRGE SPEED OF lROPICRL CYCLONE 1S i2 . KNUTSTWWDON LEEFIX POSITIONS FOR CYCLONE NO. 29SW7ELLITSF M2SF]%NO.TItE(z)FIXPOSITIONRCCRYDVDR9K CODE SWIELLITE COtSTSNTS SITE1::$9.6N9.4NIB. BN10.7NlB.6N11.61N11.3N11.6NlZ.2N12.6N12.4N12.4N12.4N12.4N14s.7E146.2E139.9E13B.9E137.5E67B910112309062312ae23160623181823210024SBBB135,3E134.7E134.2E133.6E133. BE131.9E12 240300131.4s13 248900130,6E14 241200129.8E15 24160a129.2E16 241aa612a. aE17 25B3BB 12.5N 126.9Em 25B6E3G 12.6N 126.2E19 25E9E@ 12.7N 125,4S20 2512&i 12.6N 124. SE21 25160E 12.7N 123.7E22 251755 12.7N 122.9E23 252108 12. BN 122.3E24 266666 13.6N 121. EIE25 2693@8 13.5N lZ1, BE26 26B68E 13.7N 12B.5E32 27D3@B33 27662634 2712@B35 2716B036 2718BB37 2721 W3S 27233639 28EWB4E 2BB38B41 z8e61642 2S86!643 2aa9ea13.8N 119.9E14.4N llS. BE14. SN 118.7E14. BN IIB.5E14.8N 117.7E14.7N14.6N14. BN15.2N15.5N15.9N116,4S116,1EI14,7E114.2E113.7E113,2E16.4N 113,7E16.4N 113.4617.EN 113. BE17.2N 113.4s17.3N $13.4s17.9N 113.lE44 28 lzaa lB.6N 113.3E45 Z816@@ lS.9N 113.6E4S 2821OU 19.4H 113.6E47 29a3m 19.3N 113. BE4s 29a6a4 I19.6N 114.4649 290684 19.6N 114.4SPCN 5PCN 5PCN 5PCN SPCN 5PCN 5PCN 5PCN 5PCN 5Pctl 5PCN 5PCH 5PCN 3PCN 2PCN 1PCN 1PCN tPCN 1PCN 1PCN 1PCN 3PCN 3PCN 3PCN 3PCN 5PCN 5PCN 1PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 5Pctl 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 5PCN 3PCN 5PCN 5PCN 5PCN 5PCN 3PCN 3PCN 3T2.5e.5-73.5 =.5 Al 1.8/24+ssGtt3G~Gt6GtuGmGEGmGW3N09R7Gt16GM5GtSGmGIISGffiT4.5/4. 5 m 1. B/27HRS GM3GmGmGmGmNOIII?7Gt?3Gi’t5=.5Z4.5 4S1. BZMNRS 6PSGmT4. 5/4. !5 NOiV17GM6Gt7sGM6NORR7~.5fl.5 .-?5D.W24NRS GmNOFW17GtiSGP?3GHEGm-13.EK3.8Nom6Gmn.ea.a all.5aMHRs GttE‘NOIIR7NOR*7Gt?5GmGt?3T1. B/2.B /IJ1.9/24HRS ~~N09117T2.W3 .S+SJ1 .EW3BHRS NORI17ULccULccULCCULccINIT OHSULCCPG-n4PGllIPGTIJPGTwPGTLIPGTUPGNRPPKPGNPGTWPGTIJPGTIJPGTIJPGTwPGTUPGTuPGTWPGTLIPGTWPGT64PGTwPGTWPGT14PGTIJPGTWPGTIJlNIT OES RODNPGTLIPGmPGILlRODHPGTLIEW LLCCULCC 15. @N 117. SE E% LLCCE* LLCClNIT OBSPGT14PGNPGTWPGTwPGTWRPtUPGT14PGTWPGTIJPGTWPGTWPGTWPGllJPGNPGTU183


91 RCRRFT FIWSFM TIPE FIX FLT 7W’E OBS tt?X-SFC-WiD t#)X-FLT-LW.-LND RcCRYHO. (z) POSITION LW HGT ffiLP WL/ERG~NG DIR#/ELMRG/RNG NRV/?lIlEYESHRPEEYE ORIEN-DIRWTRTIOtiEYE TEIF (c)OUT/ INz 0PA3STmNO.12345672385B4 le .ON 136. 2E2322B7 11 .7N 132.5E240611 12.8ti 13B.EE241M54 12.2N 13B.2E2421 B3 12.8N 12B.2E15%0FT?Zn3m700m7Emm?am’m7B0t33700FSS7eEr87BerB7BBFB2955285B284599799297295635 328aB 040eB I BE25 20055 04003a 31 320lEE 6B WE878 73 330139 75 048431055 55287528752705038 91 32% 38250626 12.6N 126. IE2640100 050 15 130 113 050 15250905 12.5N 125.5E2629 94s 30 100 70 I BE 111 32B 1226204S 14.2N 117.3E2996050 54 350 24!10262319270B5014.2N14.9N117. lE115. BE29972996990990455002015045151502205166E2B150451511 2712Bi 15.4N 115.2E 7BBI’9 3043200 60 e60 2012 2714B6 15,8N 114. BE 7BBPE 3066 99e130 62 830 7!318 28553555512 1010 1010 10ELL I PTICRL 40 38 120ELLIPTICfiL 25 ISELLIPT’ICRL 2S 18C lRCULFIR 25ELLIPTICAL 24 16ELL [FT[CSL 35 2SClRCULtlR 4Bt5BBle270%20+23 +23+7+15+11+15 +13+lEi +15 +13+12 +lB +12+10 +]6 +11+ 9 +1s +12+12 +16 + 9+11 +15 +10+E +14+9+S +16+7234456:s999WID(IR FIXESFIX TIM5 FIXNO. (21 POSITION RIIDr?R RCCRYEYE EYE RRDOE-CODESHf4PE D1wi RSWRR TDDFFCOM’ENT6RRD8RPOSITIONSITEW12 NO.1 26S!936 13. SN 119.8E LRND2 2616W 13.6N 119.5E LRND3 261160 13.6N 119.4S Lf7ND4 26128B 13.6N 119.2E LRND5 26123B 13.6N 119.lE L9ND6 26133EI 13.6N 118.9E LIIND7 2614S8 13.6N lIEI.7E LRNDB 26158E 13.6N lIS.5E L9ND9 26i68@ 13.7N lIE.3E LFIND10 261BE8 13. eN 118. EE LFIND11 27E2EE 14.2N 116.4S L9NDlmsw 4////18B1/ 42915lBB1/ 42915lBelz 52715lE81/ 42715IEE117 5273B1EB17 5271518817 4271518E17 42815168 1/ 629//10B 1/ 62855EYE 69 PCT ClEYE 68 PCT C I OPEN SEEYE 7E PcT C 1 OPEN SEEYE 18B PCT CIEY6 Be PCT C 1 OPEN SEEYE B8 PCT C I OPEN W16.3N 12B.6E 9S32 !16.3N 12B.6E 91332116.3N 12B.6E 9S32111 6.3N 12B.6E 9U32111 6.3N 12B.6E 9S32116.3N 12B.6E 98321I 6.3N 12B.6E 98321I 6.3N 12B.6E 98321I 6.3N 12B.6E 983211 6.3N 12EI.6E SS3211’ 6.3N 120.6E 98321NOTICE - TIE fY2TEP.ISKS (8) lND ICWE F 1=S UNREPRESENTf)TI%E RND NOT USEO FOR BEST TRIICK PURPOSES.184


2. NORTH INDIAN OCEAN TROPICAL CYCLONESTROPIC(IL CYCLONE 27-81BEST TRFICK DAT9BEST TFJ7CK MRNING 24 HOUR FORECRSTERRORSPOSIT WIND DST WIND1028E2Z 12.2 72.8 29 E.O 0.8 E. -a. 13.g 0.8 B. -8, 8.1E213E8Z12.4 72.F3 25 8.0 0.0 8. -8.0.0 0.0 0, -0. 8.lt72814Z12.5 71.2 25 0.0 0.0 0. -0. 0.0 0.0 0. -0. Q.la282i3z12.7 78.7 25 @.@ 0.0 0. -0.8.0 a.si 8. -0. 0.1029622 12.8 69.9 25 !3.8 0.% 0. -0. 8.0 0.0 0. -B. 0.1E2988Z 12.9 69.2 25 a.a 0.0 0. -e.‘ERRORSI’SWDW’HR POSIT WIND POSIT LJIND DST WIND1E2914Z 13.E3 68.5 30 0.81029202 12.9 67.9 38 0.0la3EE2Z 13.F3 66.9 35 13.2lE3W3Z 13.@ 66.5 4E 13.6183@14Z 14.4 66.9 45 13.60.00.067,165.866.%le382Eizis.a 67.4 5a 13.s 65.70331E12Z15.8 67.4 55 i5.21031@8Z 16.7 67.3 6@ 16.81E13114Z17.6 67.2 fia 16.2la31202 18.6 67.4 60 18.S1181022 19.4 67.9 6EI 19,2I181W3Z20.3 68.4 55 20.4ll13114Z21.4 6S.0 50 2E.6I1OI2EZ21.7 69.2 45 21.711%202222.6 7@.1 35 22.30.B.38.35.45.-0.-0.17.42.71.8.0.0.0.a.8.0.0.-5.-5.8.0.0.0.0.0.0.0.0.0.0.0 0.0 e. -0. 0.0.0 e.e e. -0. 0.a.e a.o 8. -e, B.15.5 65.3 4B. 122. -15.16.4 64.4 55. 167. -5.POSIT0.0 0.0@.0 0.0E.B S.EI8.0 8.EE.B ‘a. e0.0 0.00.8 0.80.0 8.018.9 65.82@.1 65. B46 HOUR FORECQST 72 HOUR FDRECRSTe. -e. e.B. -E. 8.0. -0. 8.e. -6. a.e. -0. e,0. -e. a.5s. 122. -s:65. 146. 18.65. 229. 15.65. 2%5. 28.15.8 64.3 68. 198. B. 19.3 65.2sO . 122. 15.8 64.4 68. 239. B. 19.8 65.867.8 55. 43. 16.6 78.FJ 65. 2S4S. 5. 17.9 72.9 60. 322. 25.6B.I 6a. 46. 2a.2 70.9 s5. 14a. a. e.a a.e 0. -8. El.67.8 6a. 49. 22.2 69.4 S0. 74. a. e.0 0.a e. -e. a.67.4 12. 22.5 69.S S5. 51. la. o.e a.8 e. -8. a.-e.67.4 ‘% 31. 22.8 69.9 45. 16. lE. e.e 0.0 a. -0. 0.-B .68.3 55. 8. a.8 0.a 0. -8. 0. B.E 6.8 e. -e. 0.-8.69.6 5@. 54. a.a 0.8 a, -8. a. 0.0 0.0 e. -e. e.-e.69.5 45. 17. 8.8 e,o 0. -a. e. a.a e.o e. -8. 0.70.2 35. 19. 0. o.a e.a 0. -0. a. a.a 0.0 e. -0. e.-B.DST WIND-e. 0.-e. e.-e. e.-e. s!.-s. 6.El.::: a.-a.E3. 2:-e.-e. e.-B . e.-0. e.-e. e.-e. e.e.e.0.e.-0. 0.0.FM FORECFIST POSIT ERRORW/G RIGHT I?NGLE ERRORW@ INTENSITY I’$3GNITUDE ERRORFWZ INTENSITY 819SNUi%ER OF FORECRSTSaLL FORECFIST6 TYPHOONS M-lILE OkER 35 KT6LRNG 24-HR 4B-HR 72-HRLRNG 24-HR 4B-HR 72-HR41. 135. 221. 63.0. 8. 0. e.27. 106. 155. 25.e. 0. 0. e.1. S. 15. 25.e. 0. e. e.-1. 1. 13. 25.0. e. 0. e.13 9 s 1e 0 0 0D IS T13NCETRWELED BY TROPICRL CYCLONE IS 993. NtlFMSR9GE SPEED OF TROPICFIL C’TtLONE IS B. KNOTSn-z.7-n.--., .-.tFIX POSITIONS FOR CYCLONE NO. 27SIY7ELL17S F 1=SFIXNO.TltizFIX(2) POSITION r?cCRY DVOR9K CODE SIWELLITE Corrlxrss ITS*1*2*3*4*56789la* 1112131415* 161718192a212223242526272sa23425133226e21026144927095426a3a52BB9432814032B222B2902422989312915212922163e04e038mie3e22e531045s31090e6.6N B3 . 3E PCN 5 T1. ezl. eNow166.7Na.9N82. 9E79.6EPCN 6PCN 6 T1 .ezl .e X6 B. B24HRSNolm6Noaci610.3N12. IN12.3N12.3N12.3N7B.eE79.9E71.7E71.427a.7EPCN 6PCN 6PcN 5PCN 5PCN 6T1.5/l.5Nolm6NORR7NoRla6NOR137NOFK?612.7N13.4N13.5N13. lN13. lN13.2N13.3N13.3N14.9N16.3N17.2N311434 17.9N312153 IB,4N010313 19.4NEllBa56 20. lNe]]411 21.3Ne1214182025092BB447B. EE6S.5E6@.3E613.7E67. 6E66.4s66.6E66.3E67. 7E67. 7E67. lE67. 2E67. 3E68. 3E69. lE68. IE22. BN 69. BE21.9N 69.6E23.4N 71. eEPCN 6PCN 6PCN 5PCN 6PCN 6PCN 5PCN 5PCN 6PCN 6PCN 1PCN 6PCN 6PCN 6PCN 5?CN 5PCN 6PCN 6PCN 3PCN 5T2.5Q.5 /D1. azMHRsUORR7Noi7f16NOR97NOM6NOFlR7T3. S/3.5 /D I.&t?5HRS Nom6NOFX+7HOM16NOFW7T4. 5-’4. S /D1 .6/25NRs Now16NOFM7Nolw6NOIW7T3. ez4. e-m .5 XMHRS NOM6NORe7Nolw16NOM7T2.5=. E AJG.%21HRS NofM6NOM7lNIT08SULF7C 15.2N 79. BEINIT 08SUL9C 13.6N 67.9EULQC 13.3N 67.4SPSBL DIML LLCCKGIACKGIACKGIACKGIXKGLCKGIACKGLCKGW2KGIACKGLCKGUKGIACK6LCKGIACKGLCKGMKGIIEKGIJCKGLCKGLCKGEKGLCKGLCKGLKKGWCKGIACKGKNOTICE - THE ASTER ISKS (*) INDICF!TE F I)ES UHREPRESENTPTIVE RND NOT USED FOR BEST TRRCK PIRPOSES.185


T730PIC12L CYCLONE 29-E 1BEST TRRCK O(ITR~~FMIR1117E12Z11 l?aezllt714z11172EZ111BB2Z1119082111B14Zt 11E12EZ11 !902ZIl19eBz111914211192021120022112B’aBz1120142BEST TIVICKPOSIT WIND12.5 91. s 2812. B 90.7 2513.2 90.4 3513.5 9B.2 4513.8 96.1 se14.3 9E.a 5514.9 90.1 5515.6 9@.2 60bsIRNINGERRORSPOS1T WIND DST LUND14.0 9B.2 45. 21. ‘lB.14.6 90.3 55. 21. 0.15.2 90.2 6B. 24. B.16.5 9B.5 65. 19. B.17.4 9a. e 76. 45. 0.lB.8 91.0 75. 16. 8.IB.7 91.6 75. 34. E.19.6 91.2 70. e. 5.20.2 91.8 6B. 6. 5.20. S 92.1 4f3. 26. ’18.Pose.e0.00.017.117.914.916.917.819.821.024 HOUR FORECflSTERRORSIT WIND DST LUNDE1.zl 9. -0. a.0.0 0. -0. 0.0.0 0. -8. a.B8.13 40. 12E. -20.89.2 50. 122. -15.9B. E 6EI. 111. ‘IE.9B. a 7EI. 54. -5.90.5 BE.91.2 7B.91.5 6@.21.5 92.0 50.0.0 @.9 E.6.6 0.0 0.8.8 8.8 e.B.8 e.e B.PM0.86.88.019.921.817.12B. B4S HOUR FORECflSTERRORSIT wIND DST wINDE.e E. -8. e.8.8 e. -0. 6’.8.0 0. -B. 8.S7.2 55. 226. -2E.BB.5 60. 181. ‘5.98. B 70. 289. 15.91.6 55. 74. 5.61. 5. 0.0 0.0 B. ‘E. 0.19. 5. 0.8 8.0 8. -B. B.49. 5. B.E 9.0 B. -@. 8.19. B. B.E B.E B. -a. B.-B. B. B.e B.B B. -B. 8.-8. B. 0.8 0.8 B. ‘8. 0.-e. B. 0.8 B.E B. -B. B.-8. B. 0.0 0.0 B. -8. 0.72 HOUR FORECftSTPOSIT WIND DST IJIND0.0 8.0 B. -B. 8,e.e 8.0 B. ‘B. 0.0.08.0B.@0.00.0B.E0.08.00.0B.@0.80.80.08.8 0. -e. 8.B.e 0. -B . e.0.8 a. -B . 8.0.0 B. -8. e.0.0-0. e.O.e :: -B . e.0.0 e! -8. a.0.0 a. -0. B.0.0 0. -0. 0.0.0 B. -8. 8.0.8 0. -s. B.0.8 0. %. e.E .0 0. -a. e.QLL FORECl!SIS ‘IwHOONS LWILE OWR 35 KT6LRNG 24-HR 4B-HR 72-HRLRNG 24-HR 4s-HR 72-HRRVG FDRECRST POSIT ERROR28. 69. 172. 0.0. a. 0. 0.(JVG RIGHT FINGLE ERROR 12. 35. 110. B.B. 0. B. B.fIVG INTENS IIY I’WGNITUDE ERROR B. 11. 0.0. El. B. 0.IIVG INTENSITY BII?S -:: -4. -1. 0.a. 0. B.NLN’EER OF FORECI?STS 12 e 4 eU El & ElDIST$INCE TRWJZLED BY TROPIC9L CYCLONE IS 595. NMWERfiGESPEED OF TROPICfiLcYcLONE IS 7. KNOTSTc2s-s 1+1X POSlTIONS FOR CYELONE NO. 29SfWELL 1’7S F 1=SFIXtlo .T1rEFIX(z) POSITION RCCRY DWR9K CODE SWELL ITS COft’ENT6 SITE;34567B910111213141516171sti21222324252627* 2e2930313233343518E6EB 14. EN 98. BE18S19B1 13.9N 98.3E1812@8 14.5N 9f3.3E1S1239 14.6N 9E. EE1S2084 15.6N 90.4619E9EE 17.3N 98. BE1912EB 17. EN 91. IE191356 17. EN 91.2E191680 lB.3N 91.2E191BBE lB.6N 9B.9E192134 lB.5N 91.5E2B6BEE 19 .5N 9B. 9E200235 20 .7N 92. 4S208668 2 1.EIN 92. BE2B8B37 20 .2N 91. 7E2E11333 2B.2N 91.6E2B1666 21.4N 91.7E216212 2B.lN 92.lEPCN 6PCti 6PCN 6PCN 5PCN 5PCN 6PCN 6PCN 5PCN 5PCN 6PCN 5PCN 5PEN 5PCN 5PCN 5PCN 2PCN 2PCN 5PCN 1PCN 1PCN 3PCN 1PCN 5PCN 5PCN 5PCN 5PCN 5PCti 6PCN 5PCN 6PCN 5PCN 3PCN 3PCN 5PCN 5T1.B/l.ENom6NORR6ltiIT OBSNOIM7T2.5/2.5 iD1.5Z?4NRS Nom16 ULRC 11.9N 91.lEGPSNOIM7NofwfiG!iSGM6NOFIR7GM6T3.5/3.5 /D1.w24HRS Nofla6T3.54.5 GPS IHIT OBSNO(197GttSNom6NOIM7GtlsT4. 5/4.S 01 #V24HRST4. O/4.E ~ .5=4HRsT4. 5/4. 5-AE .8=4HRST2. B=. B AL?.0~4HRSGtlSGPSNOW17GMsGPSNORR6G=Gf’SHORR7GI’SNo+mfiGt76N0997NomlfimsNOF16ULRC 22. IN 94.76EW LLCCEmLLCCKGLCKGIJ)2KGIXKGLKPGTWKGIACKGI+CPGTWPGTUKGkCPGTWKGLCPGTWKGWPGTIJKGkKKGl&PGTIJKGWPGTIJPGTIJKGIACPGTIJPGTWKGUPGTUPGTWKGIACPGTUKGLCPGTWKGLCKGLCPGTLIKGUNOTICE - THE RSTERISKS (*) INDICRTE F I*S UNREPRE6ENT8TIW flND NOT USEO FOR BEST TRRCK PURPOSES.186


TROP[CRL CYCLONE 31-B IBEST TRRCK DfITf2BEST TRflCk LflRNING 24 HOUR FORECPIST4S HOUR FORECRST72 HOUR FORECI?STERRORSERRORSERRORSm-’DWNR POSIT WIND POSIT WIND DST WIND Pos;lT WIND DST WIND Pos IT LIIND DsT WIND POSIT LJIND DST LIIND1285822 10.6 E8. E 2E 0.0 a.a a. -B . e. 0.0 B.o 8. -a. 8. e.a 0.0 0. -B, a. B,O a.e a.. -B, b.128s882 10.8 87.8 2e 8.0 0.0 e. -e. 8. e.e B.B e. +. a. 0.0 e.e e. -a. e. 0.0 0.0 8. -0, B.1205142 lB. E 86.3 25 e.o E.B e. -B . a. e.e 6.6 8. -e, e. 8.0 e.e e. 43. 0. 8.0 0.0 0. -0. B,12e520z 10.2 86.3 25 0.0 B.B 0. -B . B. 0.0 E.B 8. -e. e. Et.B e.e 8. -e. e. E.B E.E 8. -8. B.12E6E2Z 10.2 E17.2 25 0.0 8.B 8. -0. e. me e.. a e. -e. e. e.ii e.e e. -a. a. e.e e.e 0. -e. 0.12B6e8Z 11’,1 B7.3 25 8.0 0.B 0. -a. 0. 0.0 e.e e. -s. a. a.e e.e B. -0. B. E.B E.e B. -B.1206142 11.6 B7.1 30 e.E a.o e. -0. B. e.a O.B R. -B. B. e.a e.fi e. -a. a. a.a e.B a. -a. ::1286282 12.2 07.0 30 @.B 0.0 a. -B . 8. E.B si. e B. -e. e. B.e E.e e. -e. 8. a.B 8.0 -e. 0.1213702z 12.? 07.0 35 12.7 86.8 38. 12. -5. 16.6 87.6 45. 162. 28.5 89.5 50. 305. -2B. 24.5 92.3 2:: 431. -35.12B78SZ 13.1 E6.9 35 13.1 86.6 35. 17. 0. 16. e 86.3 40. S0. -1:: 19.4 B7.6 45. 175. -25. 22. I3 B9.6 35. 179. -25.i2a7]42 13.7 66.7 40 13.5 B7. B 40. 21. B. 16. t3 E7.6 45. 97. -15. 18.8 89.2 35. 171. -4B. 21.3 9B.8 2s , 149. -25.12B720Z 14. B 86.5 4a 13.9 86.3 45. 13. 5. 16.6 84.9 58. lea, -15. 19.2 85.s 38. 74. -40. 21.2 EB.3 20. 142. -15.]2aae2z 14.2 S6.3 45 14.5 85,8 50. 34. 5. 17.3 B4.9 45. 117. -25. 2a.e 86.4 38. 42. -3B. B.0 0.B e.. -0. e.I 2.3aeez 14,5 E6.3 58 14.9 S5.6 5s. 47. 5. 17.8 84.9 45. 125. -25. 20.3 86.8 3B. 38. -3B. B.B e.B B. -e. e.12B814Z 15.1 S6.2 60 15.1 B6, e 65. 12. 5. 17.1 e5.13 ?5. 52. 0. 19.4 87.2 55. 159. 5. e.0 B.0 0. -8. 0.12ee2ez 15.6 B6.3 65 15.5 e6.4 7B. e. 5. 17.5 S7. Z. 70. 56. a. 19.2 W.9 5s. 243. 15. 0.0 e.o e. -e. 8.12E9B2Z 16.2 86.6 76 15.9 86.6 70. le. 0. 17.6 87.1 6B. Ie9. B. 0.8 8.8 0. -B . a. e.B 8.0 B. -0. 0.12e9eaz 16.6 86.7 7e 16.4 a6.6 75. 13. 5. lS. B 87.2 65. 156. 5. e.e a.a El. -B . 0. B.0 e


APPENDIX ICONTRACTIONSACCRYAccuracyLLCCLow-Level CirculationCenterACFTAircraftLVLLevelADPAutomatic Data ProcessingMMeter(s)APGWCAir Force Global Weather CentralM/SECMeters per SecondAIREPANTAPTARwoATTAVGAWNBPACBRGCDOCICLDCLSDCNTRCPADEGDIAMDIRDMSPELEVFLTFNOCGOESHGTHPACHRHVYICAOIRKMKM/HRAircraft Weather Report(s)(Commercial and Military)AntennaAutomatic Picture TransmissionAerial Reconnaissance WeatherOfficerAttenuationAverageAutomated Weather NetworkBlended Persistence and ClimatologyBearingCentralDense OvercastCurrent IntensityCloudClosedCenterClosest Point of ApproachDegree(s)DiameterDirectionDefense MeteorologicalProgramElevationFlightSatelliteFleet Numerical Oceanography CenterGeostationary OperationalEnvironmental SatelliteHeightMean of XTRP and ClimatologyHour (s)HeavyInternational Civil AviationOrganizationInfraredKilometer(s)Kilometer(s)per hourMAxmMETMINMSNNAVMaximumMillibar(s)MeteorologicalMinimumMissionNavigationalNAVPGSCOL Naval Postgraduate SchoolNEDNNEDSNEPFCFNESSNETNMN/ONOAANRLNTCCNTCMOBSOTCMPCNPSBLPTLYQUADWDOBRECONRNGSATSFCNaval Environmental Data NetworkNaval Environmental Display StationNaval Environmental PredictionResearch FacilityNational Environmental SatelliteServiceNear Equatorial TroughNautical Mile(s)Not ObservedNational Oceanic and AtmosphericAdministrationNaval Research LaboratoryNaval Telecommunications CenterNested Tropical Cyclone ModelObservation (s)One-Way Interactive TropicalCyclone ModelPosition Code NumberPossiblePartlyQuadrantRadar ObservationReconnaissanceRangeSatelliteSurfaceSLP(MSLP) Sea-Level PressureLevel Pressure)SPOLSpiral Overlay(Minimum Sea-188


SRPSTNRYSSTSTTCSelective ReconnaissanceStationarySea Surface TemperatureSuper TyphoonTropical CycloneProgramTCARCTCFATCMTDTOOTropical Cyclone Aircraft ReconnaissanceCoordinatorTropical Cyclone Formation AlertTropical Cyclone ModelTropical DepressionTyphoon Duty OfficerTIROSTelevisionSatelliteInfrared ObservationTSTropical StormTYTUTTULACVELVI SVSBLWESTPACWMoWNDWRsXTRPTropical Upper Tropospheric Trough(Sadler, 1976)Upper-Level AnticycloneVelocityVisualVisibleWestern PacificWorld Meteorological OrganizationWindWeather Reconnaissance SquadronExtrapolationzZulu Time(Greenwich mean time)


APPENDIXIDEFINITIONSBEST TRACK - A subjectively smoothedpath, versus a precise and very erratic fixto-fixpath, used to represent tropical cyclonemovement.CENTER - The vertical axis or core of atrop~yclone. Usually determined bywind, temperature, and/or pressure distribution.CYCLONE - A closed atmospheric circulationrotating about an area of low pressure(counterclockwise in the northern hemisphere).EPHEMERIS - Position of a body (satellite)on space as a function of time; usedwhen no geographic reference is availablefor gridding satellite imagery. Sinceephemeris gridding is based soley on thetheoretical position of the satellite, it issusceptible to errors from vehicle pitch,orbital eccentricity, and the oblateness ofthe earth.EXPLOSIVE DEEPENING - A decrease in theminimum sea-level pressure of a tropicalcyclone of 2.5 rob/firfor 12 hrs or ~.O mb/hrfor 6 hrs (ATR 1971).EXTRATROPICAL - A term used in warningsand tropical summaries to indicate that acyclone-has lost its “tropical” characteristics.The term implies both poleward displacementfrom the tropics and the conversionof the cyclone’s primary energy sourcesfrom release of latent heat of condensation,to baroclinic processes. The term carriesno implications as to strength or size.EYE - “EYE” is used to describe thecent= area of a tropical cyclone when itis more than half surrounded by wall cloud.FUJIWHARJ+EFFECT - An interaction inwhich tropical cvclones within about 700 nm(1296 km)”of eacfiother begin to rotatecyclonically about one another. When intensetropical cyclones are within about 400nm (741 km) of each other, they may alsobegin to move closer to each other.MAXIMUM SUSTAINED WIND - Maximum surfacewind speed averaged over a l-minute periodof time. Peak gusts over water average 20to 25 percent higher than sustained wind.RAPID DEEPENING - A decrease in theminimum sea-level pressure of a tropicalcYclone of 1.25 mb/hr for 24 hrs (ATR 1971).RECURVATURE - The turning of a tropicalcyclone from an initial path toward the westor northwest to the north then northeast.RIGHT ANGLE ERROR - The distance describedby a perpendicular line from the besttrack to a forecast position.SIGNIFICANT TROPICAL CYCLONE - A tropicalcyclone becomes ‘Fslqnlflcant”with theissuance of the first n&nbered warning bythe responsible warning agency.SUPER TYPHOON/HURRICANE - A typhoon/hurricane in which the maximum sustainedsurface wind (l-minute mean) is 130 kt (67m/see) or greater.TROPICAL CYCLONE - A non-frontal lowpressure system of synoptic scale developingover tropical or subtropical waters andhaving a definite organized circulation.TROPICAL CYCLONE AIRCRAFT RECONNAISSANCECOORDINATOR - A CINCPACAF representativedesignated to levy tropical cyclone aircraftweather reconnaissance requirements onreconnaissance units within a designatedarea of the PACON and to function as coordinatorbetween CINCPACAF, aircraft weatherreconnaissance units, and the appropriatetyphoon/hurricane warning center.TROPICAL DEPRESSION - A tropical cyclonein which the maximum sustained surface wind(l-minute mean) is 33 kt (17 m/see) or less.TROPICAL DISTURBANCE - A discrete systemof apparently organized convection--generally100 to 300 nm (185-556 km) in diameter--originating in the tropics or subtropics,having a non-frontal migratory character,and having maintained its identity for 24hours or more. It may or may not be associatedwith a detectable perturbation of thewind field. As such, it is the basic genericdesignation which, in successive stagesor intensification, may be classified as atropical depression, tropical storm ortyphoon (hurricane).TROPICAL STORM - A tropical cyclone withmaximum sustained surface winds (l-minutemean) in the range of 34 to 63 kt (17-32m/see) inclusive.TROPICAL UPPER TROPOSPHERIC TROUGH(TUTT) - “A dominant climatological system,and a daily synoptic feature, of the summerseason over the tropical North Atlantic,North Pacific and South Pacific Oceans,”from Sadler, James C., Feb. 1976: TropicalCyclone Initiation by the Tropical UpperTropospheric Trough (NAVENVp~DRSCHFACTechnical Paper No. 2-76).TYPHOON/HURRICANE - A tropical cyclonein which the maximum sustained surface wind(l-minute mean) is 64 kt (33 m/see) orgreater. West of 180 degrees longitudethey are called typhoons and east of 180degrees they are called hurricanes. Foreigngovernments use these or other terms fortropical cyclones and may apply differentintensity criteria.190


VECTOR ERROR - The vector drawn betweenWALL CLOUD - An organized band of cumuaforecast position and the location of theliform clouds immediately surrounding thestorm at the verifying time of the forecast. central area of a tropical cyclone. Thewall cloud may entirely enclose the eye oronly partially surround the center.191


APPENDIXIIIREFERENCESArnold, C. P., 1974: Tropical Cyclone Positionand Intensity Analysis usinu SatelliteData. First Weat


APPENDIXEPAST ANNUAL NPHOON REPORTCopies of the past Annual Typhoon Reportscan be obtained through:National Technical Information Service5285 Port Royal RoadSpringfield, Virginia 22161Refer to the following acquisition numberswhen ordering:YEAR1959196019611962196319641965196619671968196919701971197219731974197519761977197819791980ACQUISITION NUMBERAD 786147AD 786148AD 786149AD 786128AD 786208AD 786209AD 786210AD 785891AD 785344AD 785251AD 785178AD 785252AD 768333AD 786334AD 777093AD 010271AD A023601AD A038484AD A055512AD A070904AD A082071AD A094668193


DISTRIBUTIONAFGWC (2)AFGL/LYU (1)AF WOACEN TAIWAN (3)AMERICAN INST OF TAIWAN (1)ARRS/CC (2)AWS/DNT (4)AWS/DOR (5)BUR OF MET, BRISBANE (2)BUR OF MET, MELBOURNE (4)BUR OF MET, PERTH (i)BUR OF PLANNING (1)CATHOLIC UNIVERSITY OF AMERICA (3)CENWEABUR TAIWAN (3)CINCPAC (1)CINCPACAF/DOS (1)CINCPACFLT (3)CIUDAD UNIV, MEXICO (1)CIVIL DEFENSE, GUAM (5)CIVIL DEFENSE, SAIPAN (6)CNO WASHINGTON CC (1)CNOC (2)COLOWUIO STATE UNIV (3)COLORADO STATE UNIV (LIBR) (1)COMFAIRECONRON ONE (VQ-1) (2)COMNAVAIRSYSCOM (1)COMNAVFACENGCOMPACDIV (1)COMNAVMARIANAS (2)COMNAVSURFGRU (1)COMNAVSURJ’PAC (3)COMPATRECONFORSEVENTHFLT (1)COMPHIBGRU ONE (1)COMSC (1)COMSEVRNTHFLT (1)COMSUBGRU SEVEN (1)COMTHIRDFLT (1)COMUSNAVPHIL (1)CONGRESSIONAL INFORMATION SERVICE (~)COORDINATED SCIENCE LABORATORY (1)DEFENSE TECHNICAL INFORMATION CENTER (2)DEPT OF AIR FORCE (1)DET 2, lWW (2)DET 4, lWW (1)DET 4, HQ AWS (2)DET 5, lWW (2)DET 8, 30w5 (2)DET 10, 30WS (1)DE’F 15, 30WS (1)DET 17, 30WS (1)DET 18, 30WS (1)FAA, GUAM (5)FLENUMOCEANCEN MONTEREY (2)FLORIDA STATE UNIV TALLAHASSEE (2)GEOLOGICAL SURVEY, GUAM [2)GOVENOR OF GUAN (4)GUAM PUBLIC LIBRARY (5)INDIA MET DEPT (3)INST OF PHYSICS, TAIWAN (2)INSTITUO DE GEOFISICA (1)JAPAN MET AGENCY (3)JASDF, TOKYO (2)LOS ANGELES PUBLIC LIBR (2)MAC/HO, IL (2)MARINERS WEATHER LOG (2)MASS INSTI OF TECH (1)MCAS FUTENMA (1)MCAS IWAKUNI (2)MCAS KANEOHE BAY (1)MET DEPT BANGKOK (1)MET RESEARCH INST LIBR, TOKYO (2)MET SOC OF NSW, AUST (2)MICRONESIA AREA RESEARCH CENTER (2)NASA GREENBELT, MD (4)NAT CLIM CNTR, NC (1)NAT WEA ASSOCIATION (4)NATIONAL WEATHER SERVICE FORECAST OFFICE (2)NATIONAL WEATHER SERVICE, PACIFIC REGION (2)NAVAL ACADENY !1)NAVEASTOCEANCEN, NORFOLK (1)NAVHISTCEN (1)NAVOCEANCOMCEN, ROTA (1)NAVOCEANCOMFAC, JACKSONVILLE (1)NAVOCEANCOMFAC, YOKOSUKA (2)NAVPOLAROCEANCEN, SUITLAND (1)NAVWESTOCEANCEN, PEARL HARBOR (6)NCBC (1)NEPRF (10)NESS/SFSS (1)NHC, NOAA (3)NOAA/EDS CORAL GABLES, FL (4)NOAA/ERL, MIAMI FL- (2)NOAA/’HYDROLOGY BR SILVER SPRINGS, MD (1)NOAA/LIBRARY ROCKVILLE, MD (1)NOAAINESS WASHINGTON DC (2)NOAA/PMEL SEATTLE, WA(2)NOCD, AGANA (3)NOCD, ASHEVILLE (3)NOCD, ATSUGI (1)NOCD, BARBERS POINT (1)NOCD, CUBI POINT (1)NOCD, KADENA (2)NOCD, MISAWA (2)NPGS DEPT OF MET (3)NPGS LIBR (1)OCEAN ROUTES INC, CA (2)OCEANO SERVICES INC, CA (1)OKINAWA MET OBS (1)OLG/HQ AWS (1)PACAF/DOS (1)PAGASA RP (3)PENNSYLVANIA STATE UNIVERSITY (1)ROYAL OBSERVATORY HONG KONG (5)SCALLOP CORP (1)STARS AND STRIPES (1)TAIWAN UNIV (3)TEXAS A&M UNIV (1)TTPI , SAIPAN (8)TYPHOON COM SECR, MANILA (2)UNESCAP (4)UNIV OF CHICAGO (2)UNIV OF GUAM (2)UNIV OF HAWAII DEPT OF MET (3)UNIV OF HAWAII LIBR (1)UNIV OF ILLINOIS AT URBANA-CHAMPAIGN (1)UNIV OF RF (2)Usc (1)UNIV OF WASHINGTON (1)UNSECDEF, PENTAGON (1)USS BELLEAUWOOD (LHA-3) (1)USS BLUE RIDGE (1)USS CONSTELLATION (2)uss CORAL SEA (1)USS ENTERPRISE (1)USS KITTY HAWK (1)USS LONG BEACH (2)USS NEW ORLEANS (2)USS OKINAWA (1)USS RANGER (2)USS TARAWA (1)uss TRIPOLI (2)WEA SERV MET OBS, AGANA (2)WEATHER MODIFICATION PROGFUiM OFFICE (1)WORLD WEATHER BLDG LIBR (1)lWW/DON (4)3AD/Dox (1)3ww/DNc (1)5ww/DNc (1)17 ws/DoN (1)30WSQ (1)34 AWF, 920 WRG (1)41 RWRW (2)43 sw/oI (1)54WRS” (1)3350 TCHTG (3)194


[INWIFIFDECU RITY CLASSIFICATION OF THIS PAGE (N’hen Data Enfered)REPORT DOCUMENTATION PAGE‘EpORTN”M’ER Annual TropicalREAD INSTRUCTIONSBEFORE COMPLETING FORM2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBERCvclone Report 1981TITLE (and Subtitle) 5. TYPE OF REPORT & PERIo DCOVEREIII1981 ANNUAL TROPICAL CYCLONE REPORT Annual (JAN-DEC 1981)6. PERFoRMINGORG. REPORT NUMBERAUTHOR(8) 6. CONTRACT OR GRANT NUMBER(S)PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT,PROJECT, TASKAREA& WORK UNIT NUMBERSU. S. Naval Oceanography Command Center/JointTyphoon Warning Center (NAVOCEANCOMCEN/JTWC)FPO San Francisco 96630f.CONTROLLING OFFJCE NAME AND ADC!RESS 12. i3EP0RT OATEU. S. Naval Oceanography Command Center/Joint 1981Typhoon Warning Center (NAvocEANcOMCEN/JTWC) 13. NIJMBEROF PAGESFPO San Francisco 96630196 plus i thru v4. MONITORING AGENCY NAME & AODRESS(if different from ControUfng Of/ice) 15. SECURITY CLASS. (of thlu report)f5a.UNCLASSIFIEDC3ECLASSlFlCATION/DOWNGRADINGSCHEDULE6. DISTRIBUTION STATEMENT (offhl.RepottJApproved for public release; distribution unlimited.1. DISTRIBUTION STATEMENT (of the abstract cmteredtn Block 20, {[different from Report)3. SUPPLEMENTARY NOTES). KEY WORDS (Continue on reverse side ffneceemsry tmdfdentlfy by block number)Tropical cyclonesTropical cyclone forecastingTropical cyclone researchTropical cyclone steering modelTropical cyclone fix data),ABSTRACT (C.mtf”ue onreverae etde ifnoceaeary andtdentffyby block number)Tropical stormsTropical depressionsTyphoonsMeteorological satelliteAircraft reconnaissanceAnnual publication summarizing the tropical cyclone season in the westernNorth Pacific, Bay of Benual and Arabian Sea. A brief.narrative is given oneach significant ~ropical-cyclone including the best track. All reconnaissancedata used to construct the best tracks are provided. Forecast verification data and statistics for the JTWC are summarized. Research efforts atthe JTWC and NEPRF are brieflydiscussed.DD I!j~[~~ 1473 EC’ITION OF 1NOV651SOBSOLETEUNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE (lhmData3?nter.d)195


ECU RITY CLASSIFICATION OF THIS PAGE(lVhen DateEntered)SECURITY CLASSIFICATION OF THIS PAGE(lVhen Data Entered)196

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!