12.07.2015 Views

The Laplace transform on time scales revisited - ECS - Baylor ...

The Laplace transform on time scales revisited - ECS - Baylor ...

The Laplace transform on time scales revisited - ECS - Baylor ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1296 J.M. Davis et al. / J. Math. Anal. Appl. 332 (2007) 1291–1307Now z →∞above yieldslim∫ ∞z→∞0f (t)e⊖z σ [ ](t, 0)t = 0 = lim zF (z) − f(0) ,z→∞i.e., f(0) = lim z→∞ zF (z).On the other hand, z → 0 yieldslim∫ ∞z→00∫∞f (t)e⊖z σ (t, 0)t =i.e., lim t→∞ f(t)= lim z→0 zF (z).1.2. Inversi<strong>on</strong> formula0f (t) t = limt→∞✷[ ]f(t)− f(0) = lim zF (z) − f(0) ,z→0Using <str<strong>on</strong>g>The</str<strong>on</strong>g>orem 1.2 we can establish an inversi<strong>on</strong> formula for the <str<strong>on</strong>g>transform</str<strong>on</strong>g>. As is the casewith T = R, these properties are not sufficient to guarantee that F(z) is the <str<strong>on</strong>g>transform</str<strong>on</strong>g> of somec<strong>on</strong>tinuous functi<strong>on</strong> f(t), but they are necessary as we have just seen. For sufficiency, we havethe following:<str<strong>on</strong>g>The</str<strong>on</strong>g>orem 1.4 (Inversi<strong>on</strong> of the <str<strong>on</strong>g>transform</str<strong>on</strong>g>). Suppose that F(z) is analytic in the regi<strong>on</strong> Re μ (z) >Re μ (c) and F(z) → 0 uniformly as |z| →∞in this regi<strong>on</strong>. Suppose F(z) has finitely manyregressive poles of finite order {z 1 ,z 2 ,...,z n } and ˜F R (z) is the <str<strong>on</strong>g>transform</str<strong>on</strong>g> of the functi<strong>on</strong> f(t) ˜<strong>on</strong> R that corresp<strong>on</strong>ds to the <str<strong>on</strong>g>transform</str<strong>on</strong>g> F(z)= F T (z) of f(t)<strong>on</strong> T.Ifthen∫c+i∞c−i∞f(t)=∣ ˜F R (z) ∣ |dz| < ∞,n∑Res z=zi e z (t, 0)F (z),i=1has <str<strong>on</strong>g>transform</str<strong>on</strong>g> F(z)for all z with Re(z) > c.Proof. <str<strong>on</strong>g>The</str<strong>on</strong>g> proof follows from the commutative diagram between the appropriate functi<strong>on</strong>spaces in Fig. 3.Let C be the collecti<strong>on</strong> of <str<strong>on</strong>g>Laplace</str<strong>on</strong>g> <str<strong>on</strong>g>transform</str<strong>on</strong>g>s over R, and D the collecti<strong>on</strong> of <str<strong>on</strong>g>transform</str<strong>on</strong>g>sover T, i.e., C ={˜F R (z)} and D ={F T (z)}, where ˜F R (z) = G(z)e −zτ and F T (z) = G(z)e ⊖z (τ, 0)C p-eo (R, R) θ θ −1C prd-e2 (T, R) L −1TL RL −1RCγL T D= θ ◦ L−1 R ◦ γ −1γ −1Fig. 3. Commutative diagram between the functi<strong>on</strong> spaces.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!