12.07.2015 Views

The Laplace transform on time scales revisited - ECS - Baylor ...

The Laplace transform on time scales revisited - ECS - Baylor ...

The Laplace transform on time scales revisited - ECS - Baylor ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1304 J.M. Davis et al. / J. Math. Anal. Appl. 332 (2007) 1291–13073. <str<strong>on</strong>g>The</str<strong>on</strong>g> Dirac delta functi<strong>on</strong>alLet f,g : T → R be given functi<strong>on</strong>s with f(x)having unit area. To define the delta functi<strong>on</strong>al,we c<strong>on</strong>struct the following functi<strong>on</strong>al. Let Cc ∞(T) denote the C∞ (T) functi<strong>on</strong>s with compactsupport. For g σ ∈ Cc ∞(T) and for all ɛ>0, define the functi<strong>on</strong>al F : C∞ c (T, R) × T → R byF ( g σ ,a ) { ∫ ∞0δa H =(x)gρ (σ (x)) x, if a is right scattered,∫ ∞ 1lim ɛ→0 0 ɛf ( )xɛg(σ(x))x, if a is right dense.<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>time</strong> scale Dirac delta functi<strong>on</strong>al is then given by〈δa (x), g σ 〉 = F ( g σ ,a ) .We need to see how the delta functi<strong>on</strong>al acts <strong>on</strong> functi<strong>on</strong>s from Cc ∞ (T). For this purpose, letg : T → R be given such that g σ ∈ Cc ∞ (T). Ifa is right dense, c<strong>on</strong>sider{ 1ɛ, if a x a + ɛ,f(x)=0, else,with the understanding that any sequence of ɛ’s we choose will be under the restricti<strong>on</strong> thata + ɛ ∈ T for each ɛ in the sequence. <str<strong>on</strong>g>The</str<strong>on</strong>g>n for h(x) = g σ (x), we have (for any antiderivativeH(x) of h(x)),F ( g σ ,a ) ∫= lim f(x)h(x)xɛ→0∞If a is right scattered, thenF ( g σ ,a ) =0∫ a+ɛah(x) x= limɛ→0 ɛH(a+ ɛ) − H(a)= limɛ→0 ɛ= H (a) = h(a) = g ( σ(a) ) = g(a).∫ ∞0δ H a (x)gρ( σ(x) ) x = g ρ( σ(a) ) = g(a).Thus, in functi<strong>on</strong>al terms, the Dirac delta functi<strong>on</strong>al acts as〈g σ ,δ a〉= g(a),independently of the <strong>time</strong> scale involved. Also, if g(t) = e ⊖z (t, 0), then 〈δ a ,g σ 〉=e ⊖z (a, 0), sothat for a = 0, the Dirac delta functi<strong>on</strong>al δ 0 (t) has <str<strong>on</strong>g>Laplace</str<strong>on</strong>g> <str<strong>on</strong>g>transform</str<strong>on</strong>g> of 1, thereby producingan identity element for the c<strong>on</strong>voluti<strong>on</strong>. However, the present definiti<strong>on</strong> of the delay operator<strong>on</strong>ly holds for functi<strong>on</strong>s. It is necessary to extend this definiti<strong>on</strong> for the Dirac delta functi<strong>on</strong>al.To maintain c<strong>on</strong>sistency with the delta functi<strong>on</strong>’s acti<strong>on</strong> <strong>on</strong> g(t) = e⊖z σ (t, 0), it follows that forany t ∈ T, theshift of δ a (τ) is given by δ a (t, σ (τ)) := δ t (σ (τ)). With this definiti<strong>on</strong>, our claimholds:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!