Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience: Dynamical Systems in Neuroscience:

ib.cnea.gov.ar
from ib.cnea.gov.ar More from this publisher
12.07.2015 Views

9.4.2 Integrators vs. Resonators . . . . . . . . . . . . . . . . . . . . . 3849.4.3 Bistability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3869.4.4 Bursts as a unit of neuronal information . . . . . . . . . . . . . 3879.4.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 389Summary and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 392Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39510 Synchronization (see www.izhikevich.com) 403Solutions to Exercises 407References 44110 Synchronization (see www.izhikevich.com) 45710.1 Pulsed Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45710.1.1 Phase of oscillation . . . . . . . . . . . . . . . . . . . . . . . . . 45810.1.2 Isochrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45910.1.3 PRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46010.1.4 Type 0 and 1 phase response . . . . . . . . . . . . . . . . . . . . 46310.1.5 Poincare phase map . . . . . . . . . . . . . . . . . . . . . . . . 46610.1.6 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46710.1.7 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 46810.1.8 Phase locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46910.1.9 Arnold tongues . . . . . . . . . . . . . . . . . . . . . . . . . . . 47010.2 Weak Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47110.2.1 Winfree’s approach . . . . . . . . . . . . . . . . . . . . . . . . . 47210.2.2 Kuramoto’s approach . . . . . . . . . . . . . . . . . . . . . . . . 47410.2.3 Malkin’s approach . . . . . . . . . . . . . . . . . . . . . . . . . 47510.2.4 Measuring PRCs experimentally . . . . . . . . . . . . . . . . . . 47610.2.5 Phase model for coupled oscillators . . . . . . . . . . . . . . . . 47910.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48110.3.1 Two oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . 48310.3.2 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48510.3.3 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48710.3.4 Mean-field approximations . . . . . . . . . . . . . . . . . . . . . 48810.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48910.4.1 Phase oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . 48910.4.2 SNIC oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . 49010.4.3 Homoclinic oscillators . . . . . . . . . . . . . . . . . . . . . . . 49610.4.4 Relaxation oscillators and FTM . . . . . . . . . . . . . . . . . . 49810.4.5 Bursting oscillators . . . . . . . . . . . . . . . . . . . . . . . . . 500Summary and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . 501Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

PrefaceHistorically, much of theoretical neuroscience research concerned neuronal circuits andsynaptic organization. The neurons were divided into excitatory and inhibitory types,but their electrophysiological properties were largely neglected or taken to be identicalto those of Hodgkin-Huxley’s squid axon. The present awareness of the importance ofthe electrophysiology of individual neurons is best summarized by David McCormick inthe fifth edition of Gordon Shepherd’s book “The Synaptic Organization of the Brain”:“Information processing depends not only on the anatomical substrates of synapticcircuits but also on the electrophysiological properties of neurons... . Even iftwo neurons in different regions of the nervous system possess identical morphologicalfeatures, they may respond to the same synaptic input in very differentmanners because of each cell’s intrinsic properties.”David A. McCormick (2004)Much of present neuroscience research concerns voltage- and second-messengergatedcurrents in individual cells with the goal to understand the cell’s intrinsic neurocomputationalproperties. It is widely accepted that knowing the currents suffices todetermine what the cell is doing and why. This, however, contradicts a half-century oldobservation that cells having similar currents can still exhibit quite different dynamics.Indeed, studying isolated axons having presumably similar electrophysiology (all arefrom crustacean Carcinus maenas), Hodgkin (1948) injected a dc-current of varyingamplitude, and discovered that some preparations could exhibit repetitive spiking witharbitrarily low frequencies, while the others discharged in a narrow frequency band.This observation was largely ignored by the neuroscience community until the seminalpaper by Rinzel and Ermentrout (1989), who showed that the difference in behavior isdue to different bifurcation mechanisms of excitability.Let us treat the amplitude of the injected current in Hodgkin’s experiments as abifurcation parameter: When the amplitude is small, the cell is quiescent; when theamplitude is large, the cell fires repetitive spikes. When we change the amplitude of theinjected current, the cell undergoes a transition from quiescence to repetitive spiking.From the dynamical systems point of view the transition corresponds to a bifurcationfrom equilibrium to a limit cycle attractor. The type of bifurcation determines the mostfundamental computational properties of neurons, such as the class of excitability, theexistence or non-existence of threshold, all-or-none spikes, subthreshold oscillations,the ability to generate post-inhibitory rebound spikes, bistability of resting and spikingstates, whether the neuron is an integrator or resonator, etc.This book is devoted to a systematic study of the relationship between electrophysiology,bifurcations, and computational properties of neurons. The reader willlearn why cells having nearly identical currents may undergo distinct bifurcations, andhence they will have fundamentally different neuro-computational properties. (Conix

PrefaceHistorically, much of theoretical neuroscience research concerned neuronal circuits andsynaptic organization. The neurons were divided <strong>in</strong>to excitatory and <strong>in</strong>hibitory types,but their electrophysiological properties were largely neglected or taken to be identicalto those of Hodgk<strong>in</strong>-Huxley’s squid axon. The present awareness of the importance ofthe electrophysiology of <strong>in</strong>dividual neurons is best summarized by David McCormick <strong>in</strong>the fifth edition of Gordon Shepherd’s book “The Synaptic Organization of the Bra<strong>in</strong>”:“Information process<strong>in</strong>g depends not only on the anatomical substrates of synapticcircuits but also on the electrophysiological properties of neurons... . Even iftwo neurons <strong>in</strong> different regions of the nervous system possess identical morphologicalfeatures, they may respond to the same synaptic <strong>in</strong>put <strong>in</strong> very differentmanners because of each cell’s <strong>in</strong>tr<strong>in</strong>sic properties.”David A. McCormick (2004)Much of present neuroscience research concerns voltage- and second-messengergatedcurrents <strong>in</strong> <strong>in</strong>dividual cells with the goal to understand the cell’s <strong>in</strong>tr<strong>in</strong>sic neurocomputationalproperties. It is widely accepted that know<strong>in</strong>g the currents suffices todeterm<strong>in</strong>e what the cell is do<strong>in</strong>g and why. This, however, contradicts a half-century oldobservation that cells hav<strong>in</strong>g similar currents can still exhibit quite different dynamics.Indeed, study<strong>in</strong>g isolated axons hav<strong>in</strong>g presumably similar electrophysiology (all arefrom crustacean Carc<strong>in</strong>us maenas), Hodgk<strong>in</strong> (1948) <strong>in</strong>jected a dc-current of vary<strong>in</strong>gamplitude, and discovered that some preparations could exhibit repetitive spik<strong>in</strong>g witharbitrarily low frequencies, while the others discharged <strong>in</strong> a narrow frequency band.This observation was largely ignored by the neuroscience community until the sem<strong>in</strong>alpaper by R<strong>in</strong>zel and Ermentrout (1989), who showed that the difference <strong>in</strong> behavior isdue to different bifurcation mechanisms of excitability.Let us treat the amplitude of the <strong>in</strong>jected current <strong>in</strong> Hodgk<strong>in</strong>’s experiments as abifurcation parameter: When the amplitude is small, the cell is quiescent; when theamplitude is large, the cell fires repetitive spikes. When we change the amplitude of the<strong>in</strong>jected current, the cell undergoes a transition from quiescence to repetitive spik<strong>in</strong>g.From the dynamical systems po<strong>in</strong>t of view the transition corresponds to a bifurcationfrom equilibrium to a limit cycle attractor. The type of bifurcation determ<strong>in</strong>es the mostfundamental computational properties of neurons, such as the class of excitability, theexistence or non-existence of threshold, all-or-none spikes, subthreshold oscillations,the ability to generate post-<strong>in</strong>hibitory rebound spikes, bistability of rest<strong>in</strong>g and spik<strong>in</strong>gstates, whether the neuron is an <strong>in</strong>tegrator or resonator, etc.This book is devoted to a systematic study of the relationship between electrophysiology,bifurcations, and computational properties of neurons. The reader willlearn why cells hav<strong>in</strong>g nearly identical currents may undergo dist<strong>in</strong>ct bifurcations, andhence they will have fundamentally different neuro-computational properties. (Conix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!