12.07.2015 Views

Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience:

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

348 Burst<strong>in</strong>gslow dynamicsneuronvoltage-gatedactivationof outward<strong>in</strong>activationof <strong>in</strong>wardactivationof outwardCa2+-gated<strong>in</strong>activationof <strong>in</strong>wardreferencesneocortical chatter<strong>in</strong>gneuronsI K(M) I KslowWang (1999)pre-Botz<strong>in</strong>ger complex(respiratory rhythm)I KslowI NaslowButera et al. (1999)thalamic relay neurons I Ca(T) I hHuguenard andMcCormick (1992)thalamic reticularneuronshippocampal CA3neuronsI Ca(T) Destexhe et al. (1994)I AHP Traub et al. (1991)subiculum burst<strong>in</strong>gneuronsI AHP Stanford et al. (1998)midbra<strong>in</strong> dopam<strong>in</strong>ergicneuronsI K(Ca) ICa(L) Am<strong>in</strong>i et al. (1999)anterior burst<strong>in</strong>g (AB)neuron <strong>in</strong> lobsterstomatogastric ganglionIK(Ca)I Ca(L)Harris-Warrick andFlamm (1987)Aplysia abdom<strong>in</strong>alganglion R15 neuronI Ca(L)Canavier et al. (1991)Figure 9.7: Slow dynamics <strong>in</strong> burst<strong>in</strong>g neurons.values of parameters. A burst<strong>in</strong>g model is m<strong>in</strong>imal if removal of any current or gat<strong>in</strong>gvariable elim<strong>in</strong>ates the ability to burst.One way to build a fast-slow m<strong>in</strong>imal model for burst<strong>in</strong>g is to take a m<strong>in</strong>imal modelfor spik<strong>in</strong>g, which consists of an amplify<strong>in</strong>g and a resonant gate, see Fig. 5.17, and addanother slow resonant gate. S<strong>in</strong>ce there are many m<strong>in</strong>imal spik<strong>in</strong>g models <strong>in</strong> Fig. 5.17and four choices of slow resonant gates <strong>in</strong> Fig. 9.6, there are quite a few comb<strong>in</strong>ations,which fill out the squares <strong>in</strong> Fig. 9.8. We present only a few reasonable models <strong>in</strong> thefigure and ask the reader to fill <strong>in</strong> the blanks. Complet<strong>in</strong>g the table is an excellent testof one’s knowledge and understand<strong>in</strong>g of how different currents <strong>in</strong>teract to producenon-trivial fir<strong>in</strong>g patterns.Some of the m<strong>in</strong>imal models for burst<strong>in</strong>g might seem too bizarre at first glance.Yet the table <strong>in</strong> Fig. 9.8, upon completion, might prove to be a valuable tool thatcould allow experimenters to formulate various ionic hypotheses. For example, if oneuses pharmacological agents, e.g., TEA or Ba 2+ , to block Ca 2+ -gated K + channelsand show that burst<strong>in</strong>g persists, then the possible electrophysiological mechanisms of

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!