12.07.2015 Views

Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience:

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

346 Burst<strong>in</strong>gvoltage-gatedCa2+-gated<strong>in</strong>activation of<strong>in</strong>ward currentrest<strong>in</strong>gde<strong>in</strong>activationof <strong>in</strong>wardcurrentrepolarizationdepolarization<strong>in</strong>activationof <strong>in</strong>wardcurrentspik<strong>in</strong>grest<strong>in</strong>gCa 2+buffer<strong>in</strong>gde<strong>in</strong>activationof <strong>in</strong>wardcurrentrepolarizationdepolarization<strong>in</strong>activationof <strong>in</strong>wardcurrentCa 2+ <strong>in</strong>fluxand buildupspik<strong>in</strong>gactivation ofoutward currentrest<strong>in</strong>gdeactivationof outwardcurrentrepolarizationdepolarizationactivationof outwardcurrentspik<strong>in</strong>grest<strong>in</strong>gCa 2+buffer<strong>in</strong>gdeactivationof outwardcurrentrepolarizationdepolarizationactivationof outwardcurrentCa 2+ <strong>in</strong>fluxand buildupspik<strong>in</strong>gspik<strong>in</strong>grest<strong>in</strong>gbuildup of resonant gate or [Ca2+]<strong>in</strong>(activation of outward current)(<strong>in</strong>activation of <strong>in</strong>ward current)recovery of resonant gate or [Ca2+]<strong>in</strong>(deactivation of outward current)(de<strong>in</strong>activation of <strong>in</strong>ward current)Figure 9.6: Four major classes of burst<strong>in</strong>g models are def<strong>in</strong>ed by the slow resonantgat<strong>in</strong>g variable that modulates spik<strong>in</strong>g activity.variable (see Sect. 5.1.1) that modulates the spik<strong>in</strong>g via a slow negative feedback. Theresonant gat<strong>in</strong>g variable can describe <strong>in</strong>activation of an <strong>in</strong>ward current or activation ofan outward current, both voltage- or Ca 2+ -dependent (see Fig. 5.17). Hence, there arefour major classes of burst<strong>in</strong>g models, summarized <strong>in</strong> Fig. 9.6:• Voltage-gated <strong>in</strong>activation of an <strong>in</strong>ward current, e.g., slow <strong>in</strong>activation of persistentNa + current or <strong>in</strong>activation of Ca 2+ transient T-current, or <strong>in</strong>activation ofthe h-current (most biologists refer to this as activation of the h-current by hyperpolarization).Repetitive spik<strong>in</strong>g slowly <strong>in</strong>activates (turns off) the <strong>in</strong>ward currentand makes the neuron less excitable and unable to susta<strong>in</strong> spik<strong>in</strong>g activity. Aftera while, the spik<strong>in</strong>g stops and the membrane potential repolarizes. The <strong>in</strong>wardcurrent slowly de-<strong>in</strong>activates (turns on) and depolarizes the membrane potential,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!