12.07.2015 Views

Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience:

Dynamical Systems in Neuroscience:

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Burst<strong>in</strong>g 345<strong>in</strong>terburst periodquiescentperiodactivephase<strong>in</strong>terspike(<strong>in</strong>traburst)periodduty cycle =active phase<strong>in</strong>terburst periodV(t)Figure 9.5: Basic characteristics of burst<strong>in</strong>g dynamics.jected. From a mathematical po<strong>in</strong>t of view, every burster is conditional, s<strong>in</strong>ce it existsfor some values of the parameters but not others.9.1.2 Fast-Slow DynamicsIn general, every burst<strong>in</strong>g pattern consists of oscillations with two time scales: fastspik<strong>in</strong>g oscillation with<strong>in</strong> a s<strong>in</strong>gle burst (<strong>in</strong>traburst oscillation, or spik<strong>in</strong>g), modulatedby a slow oscillation between the bursts (<strong>in</strong>terburst oscillation); see Fig. 9.5. Typically,though not necessarily (see exercises at the end of this chapter), two time scales resultfrom two <strong>in</strong>teract<strong>in</strong>g processes <strong>in</strong>volv<strong>in</strong>g fast and slow currents. For example, thespik<strong>in</strong>g <strong>in</strong> Fig. 9.4 is generated by the fast I Na,p +I K -subsystem and modulated by theslow I K(M) -subsystem.There are two questions associated with each burst<strong>in</strong>g pattern:• What <strong>in</strong>itiates susta<strong>in</strong>ed spik<strong>in</strong>g dur<strong>in</strong>g the burst?• What term<strong>in</strong>ates susta<strong>in</strong>ed spik<strong>in</strong>g temporarily and ends the burst?The answer to the first question is relatively simple: Repetitive spik<strong>in</strong>g is <strong>in</strong>itiated andsusta<strong>in</strong>ed by the positive <strong>in</strong>jected current I, or some other source of persistent <strong>in</strong>wardcurrent that causes the neuron to fire (most biologists are <strong>in</strong>terested <strong>in</strong> identify<strong>in</strong>gthis source). Surpris<strong>in</strong>gly, the second question is the most important for build<strong>in</strong>g amodel of burst<strong>in</strong>g. While the neuron fires, relatively slow processes somehow make itnon-excitable and eventually term<strong>in</strong>ate the fir<strong>in</strong>g. Such slow processes result <strong>in</strong> a slowbuildup of an outward current or <strong>in</strong> a slow decrease of an <strong>in</strong>ward current needed tosusta<strong>in</strong> the spik<strong>in</strong>g. Dur<strong>in</strong>g the quiescent phase, the neuron slowly recovers and rega<strong>in</strong>sthe ability to generate action potentials aga<strong>in</strong>.Let us discuss possible ionic mechanisms responsible for the term<strong>in</strong>ation of spik<strong>in</strong>gwith<strong>in</strong> a burst. Suppose we are given a neuronal model that is capable of susta<strong>in</strong>edspik<strong>in</strong>g activity, at least when a positive I is <strong>in</strong>jected. To transform an <strong>in</strong>f<strong>in</strong>ite spiketra<strong>in</strong> <strong>in</strong>to a f<strong>in</strong>ite burst of spikes, it suffices to add a slow resonant current or gat<strong>in</strong>g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!