12.07.2015 Views

interannual variations in zooplankton biomass in the gulf of alaska ...

interannual variations in zooplankton biomass in the gulf of alaska ...

interannual variations in zooplankton biomass in the gulf of alaska ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 199670N60504030WINTER 197265N605550454035201 40E 160 180 160 140 120WWINTER 1977N iio ria 150 iio iio iio3025I65N60msn COLUMBIA55504540201140E 160 180 160 140 120W w ti0 Ih 150 li0 ,io 120Figure 2. W<strong>in</strong>ter mean sea-level pressure from Emery and Hamilton (1985) for two contrast<strong>in</strong>g years, and <strong>the</strong> alternate states <strong>of</strong> atmospheric and oceanic circulationpatterns <strong>in</strong> <strong>the</strong> eastern North Pacific Ocean proposed by Hollowed and Wooster (1992).353025I<strong>in</strong>flux <strong>of</strong> water from <strong>the</strong> same source-<strong>the</strong> SubarcticCurrent. We exam<strong>in</strong>e physical data relevant to regimeshiftchanges <strong>in</strong> flow between <strong>the</strong> Alaska Current andCalifornia Current. F<strong>in</strong>ally, we discuss implications <strong>of</strong>regime shifts to higher trophic levels and suggest newhypo<strong>the</strong>ses and fur<strong>the</strong>r studies that could be undertakento address <strong>the</strong>se hypo<strong>the</strong>ses.DATA SOURCES AND METHODSZooplankton Data SetsZooplankton <strong>biomass</strong> data from 24 years (1 956-80)<strong>of</strong> vertical net sampl<strong>in</strong>g at Station P were used <strong>in</strong> ouranalyses (figure 1). Before 1969, sampl<strong>in</strong>g was conductedover alternate 6-week periods, but after this time, sampl<strong>in</strong>gwas cont<strong>in</strong>uous (Fulton 1983). Sampl<strong>in</strong>g frequencyvaried from 1 to 29 samples per month over 8 to 12months <strong>of</strong> <strong>the</strong> year (Frost 1983). Hauls were ma<strong>in</strong>ly donedur<strong>in</strong>g daytime, and all were from 150 m to <strong>the</strong> surface.Sampl<strong>in</strong>g gear was changed from a 0.42-m-diameterNORPAC net to a 0.57-m SCOR net <strong>in</strong> August 1966,although <strong>the</strong> mesh size rema<strong>in</strong>ed <strong>the</strong> same (0.351 mm).Fulton (1983) estimated that <strong>the</strong> catch<strong>in</strong>g efficiency <strong>of</strong><strong>the</strong> SCOR net was 1.5 times greater than <strong>the</strong> NOR-PAC net, based on a series <strong>of</strong> <strong>in</strong>tercalibration tows. Buta new estimation based on <strong>the</strong> orig<strong>in</strong>al data presentedby Fulton (1983) suggests that <strong>the</strong> correction factor shouldbe higher, somewhere <strong>in</strong> <strong>the</strong> range <strong>of</strong> 1.6-2.1~, with1.77~ be<strong>in</strong>g <strong>the</strong> most likely value (Waddell and McKmnel1995; Frost, Ware, and Brodeur, unpubl. data), whichis what we used <strong>in</strong> this analysis.Zooplankton displacement volumes from <strong>the</strong> centralpart <strong>of</strong> <strong>the</strong> CalCOFI grid (l<strong>in</strong>es 77-93) over a longertime frame (1951-94) were provided by Paul Smith(NMFS, SWFC, La Jolla). The gear and maximum hauldepths changed dur<strong>in</strong>g this period from a bridled l-mdiameterr<strong>in</strong>g net fished obliquely to 140 m (1951-68)or to 212 m (1969-78) to an unbridled bongo net fished82


BRODEUR ET At.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996down to 212 m (1978-94). An analysis by Ohnian andSmith (1995) has determ<strong>in</strong>ed that <strong>the</strong> deeper tows with<strong>the</strong> 1-ni net are low by a factor <strong>of</strong> 1.366 compared with<strong>the</strong> shallower 3-m nets and <strong>the</strong> deep bongo tows withoutbridles, and we adjusted <strong>the</strong> data accord<strong>in</strong>gly.S<strong>in</strong>ce we were <strong>in</strong>terested <strong>in</strong> advective ra<strong>the</strong>r than localproduction processes (Chelton et al. 1982), we trimmed<strong>the</strong> data set to <strong>in</strong>clude only those stations far<strong>the</strong>r than60 km <strong>of</strong>fshore. We <strong>in</strong>itially aggregated <strong>the</strong> data <strong>in</strong> severalways, such as by <strong>the</strong> nor<strong>the</strong>rn (north <strong>of</strong> CalCOFIl<strong>in</strong>e SO), middle (l<strong>in</strong>e 80 to l<strong>in</strong>e 90), and sou<strong>the</strong>rn (south<strong>of</strong> l<strong>in</strong>e 90) parts <strong>of</strong> <strong>the</strong> region, as well as by work<strong>in</strong>g withonly <strong>the</strong> most frequently sampled transects (l<strong>in</strong>es 80 and90). We found, however, that <strong>the</strong> time series utiliz<strong>in</strong>gall <strong>the</strong> data was highly correlated with alniost all o<strong>the</strong>rcomb<strong>in</strong>ations <strong>of</strong> data. Therefore, <strong>the</strong> CalCOFI data fora given year were comb<strong>in</strong>ed spatially for all analyses. Inadhtion, <strong>the</strong> number <strong>of</strong> miss<strong>in</strong>g data po<strong>in</strong>ts was reduced,though large gaps still existed.Additional <strong>zooplankton</strong> <strong>biomass</strong> data from oceanicareas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean besides Station Pexist for two time periods (1956-62 and 1980-89, exceptfor 1986), and are more fully described <strong>in</strong> Brodeurand Ware (1992). In this analysis, we extended <strong>the</strong> geographicrange <strong>of</strong> values to 40"N to <strong>in</strong>clude <strong>the</strong> transitionregion south <strong>of</strong> <strong>the</strong> subarctic boundary (Pearcy 1991)for both time periods (see figure 3 for sampl<strong>in</strong>g locations).Contour maps <strong>of</strong> zooplankon <strong>biomass</strong> (g/l,OOOm3) were generated for both time periods with a rasterbasedGIS program (Compugrid, Geo-spatid Ltd.). Yearly<strong>in</strong>terpolated means were computed for each year. S<strong>in</strong>ce<strong>the</strong> earlier analysis, an additional 5 years (up to 1994)<strong>of</strong> data collected by Hokkaido University have becomeavailable. Although <strong>the</strong>re is not enough coverage for thislater period to map <strong>the</strong> overall distribution <strong>of</strong> <strong>biomass</strong>,many <strong>of</strong> <strong>the</strong> same transects were sampled each year sothat <strong>the</strong> <strong><strong>in</strong>terannual</strong> variability can be exam<strong>in</strong>ed. Asbefore, only <strong>biomass</strong> data collected from 15 June to <strong>the</strong>end <strong>of</strong> July and <strong>in</strong> <strong>the</strong> same geographic area describedby Brodeur and Ware (1992) were <strong>in</strong>cluded.Time Series AnalysesWe exam<strong>in</strong>ed <strong>the</strong> temporal relationship between <strong>the</strong>Station P <strong>zooplankton</strong> data and <strong>the</strong> <strong>of</strong>fshore CalCOFIdata us<strong>in</strong>g t<strong>in</strong>ie series cross-correlation analyses (Box andJenk<strong>in</strong>s 3 976). We <strong>in</strong>vestigated monthly, seasonal, andannual lagged relationships. The time series <strong>of</strong> availabledata for each region shows <strong>in</strong>complete temporal overlap,especially for <strong>the</strong> CalCOFI region, which was <strong>in</strong>termittentlysampled dur<strong>in</strong>g <strong>the</strong> 1970s and 1980s (figure4). The dstribution <strong>of</strong>both <strong>the</strong> Station P and <strong>of</strong>fshoreCalCOFI <strong>zooplankton</strong> data was highly skewed, and alog-transformation <strong>of</strong> <strong>the</strong> data was performed before <strong>the</strong>time-series analysis. In addition, a pronounced seasonal'IOcean Station P111951 ' 1957 1963 ' 1969 ' 1975 ' 1981 ' 1987 ' 19931954 1960 1966 1972 1978 1984 1990CalCOFl <strong>of</strong>fshore831 , , , , , , , , , , , , , , I1951 1957 1963 1969 1975 1981 1987 19931954 1960 1966 1972 1978 1984 1990Figure 4. Log-transformed <strong>zooplankton</strong> <strong>biomass</strong> time series for OceanStation P and <strong>of</strong>fshore CalCOFl sampl<strong>in</strong>g areas.signal is evident <strong>in</strong> each region (figure 4). This signalwas removed by calculat<strong>in</strong>g a yearly average <strong>biomass</strong>for each month and season (spr<strong>in</strong>g = March-May; sumnier= June-August; fall = September-November; w<strong>in</strong>ter= December-February). Both monthly time seriesexhibited substantial lag-1 autocorrelation, which canresult <strong>in</strong> spurious cross-correlations (Box and Jenk<strong>in</strong>s1976; Myers et al. 1995). Therefore it was necessary t<strong>of</strong>ilter both series by a process known as prewhiten<strong>in</strong>g(sensu Box and Jenluns 1976) before comput<strong>in</strong>g <strong>the</strong> crosscorrelationfunction (CCF) at lagged period$.Ocean Surface Current SimulationsDue to a lack <strong>of</strong> t<strong>in</strong>ie series <strong>of</strong> open-ocean currentdata, we used a model developed for <strong>the</strong> North PacificOcean which provided a cont<strong>in</strong>uity <strong>of</strong> surface mixedlayercurrents through space and time. The OSCURS(Ocean Surface CURrent Simulations) model uses griddeddaily sea-level pressure fields to conipute daily w<strong>in</strong>ds,and from <strong>the</strong>m to conipute daily ocean surface currents(Ingraham and Miyahara 1988). The long-termmean geostrophic current vectors computed from exist<strong>in</strong>gtemperature and sal<strong>in</strong>ity versus depth data are added84


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996Figure 10. Large-scale distribution <strong>of</strong> <strong>zooplankton</strong> <strong>biomass</strong> from sampl<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> 6-week period beg<strong>in</strong>n<strong>in</strong>g June 1for 1956-62 and 1980-89. See figure 1 for locations <strong>of</strong> sampl<strong>in</strong>g stations for each period. The <strong>in</strong>sets show <strong>the</strong> <strong>zooplankton</strong><strong>biomass</strong> pixel distributions as a percentage <strong>of</strong> <strong>the</strong> total number <strong>of</strong> pixels for each time period. The overall meanand standard deviation <strong>of</strong> <strong>biomass</strong> for <strong>the</strong> time period are given.87


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996ANALYSIS OF COVARIATION INSTATION P AND CALCOFI DATA SETSThe magnitude <strong>of</strong> anonialous values was similar <strong>in</strong>both regions, but <strong>the</strong> CalCOFI data showed an apparentlong-term decl<strong>in</strong>e <strong>in</strong> <strong>zooplankton</strong> <strong>biomass</strong> over <strong>the</strong>last two decades (figure 4). Autocorrelation plots wereexam<strong>in</strong>ed to determ<strong>in</strong>e whe<strong>the</strong>r serial autocorrelationexists with<strong>in</strong> each region (figure 11). Both monthly timeseries show significant autocorrelation. The CalCOFIdata are significantly autocorrelated up to 12 months, andall correlations up to 24 nionths are positive. Conversely,<strong>the</strong> Station P data show that anomaly events are muchmore short-lived (last<strong>in</strong>g 2-3 months), and little teniporalpattern is evident after this time.The cross-correlation between <strong>the</strong> autocorrelated datasets shows highly significant lagged correlations <strong>in</strong> bothdirections (figure 12). The presence <strong>of</strong> autocorrelationwith<strong>in</strong> both time series, however, renders this relationshiphighly suspect (Katz 1988; Newton 1988). To ascerta<strong>in</strong>whe<strong>the</strong>r <strong>the</strong>re is a real relationship, it is necessaryto prewhiten both series-that is, remove <strong>the</strong>autocorrelation structure-and <strong>the</strong>n plot <strong>the</strong> CCF <strong>of</strong> <strong>the</strong>residual series. Both series were adequately described bya lag-1 autoregressive (AR1) model. Separate filters wereused for <strong>the</strong> two series (“double prewhiten<strong>in</strong>g”), and <strong>the</strong>coefficients were approximately equal to <strong>the</strong> lag-1 autocorrelationvalues-0.412 for CalCOFI and 0.524 forStation P. After filter<strong>in</strong>g, alniost all <strong>the</strong> significant lagcorrelations disappeared (figure 12). The only one thatrema<strong>in</strong>ed (CalCOFI lead<strong>in</strong>g Station P by 2 months) wasquite small (-0.203) and possibly spurious.The effect <strong>of</strong> prewhiten<strong>in</strong>g, while statistically justified,may also have <strong>the</strong> side effect <strong>of</strong> overcompensat<strong>in</strong>gfor autocorrelation and remov<strong>in</strong>g evidence <strong>of</strong> an actualsignal. As an alternative to prewhiten<strong>in</strong>g, an “effectivedegrees <strong>of</strong> freedom” is sometimes employed when calculat<strong>in</strong>g<strong>the</strong> confidence <strong>in</strong>tervals around <strong>the</strong> crowcorrelationest<strong>in</strong>iates (Trenberth 1984). In <strong>the</strong> case <strong>of</strong> twoAR1 time series, <strong>the</strong> true standard deviation at lag 0 is<strong>in</strong>flated over <strong>the</strong> no autocorrelation case by.f= [(I + +x*+y)/(1 - +‘y*+y)1°.59where +x and +y are <strong>the</strong> lag-1 autocorrelation coefficients(Katz 1988). Thus at lag 0, <strong>the</strong> standard deviationis approximately 1.25 times greater than that cornputedon an assumption <strong>of</strong> <strong>in</strong>dependent data po<strong>in</strong>ts.i nOcean Station P8 .” , I._95% c. I.c- m ........................................................................??‘0 0.0..............................................................................0-Before prewhiten<strong>in</strong>g1 P leads CalCOFl CalCOFl leads P‘J”c 0 ,251._ ............................................................................m-1 .o I2 4 6 8 10 12 14 16 18 20 22 24Lag (months)-.SO] , , p p1 2 1 0 8 6 4 2 0 2 4 6 8 1 0 1 2Lag (months)CalCOFl <strong>of</strong>fshoreAfter prewhiten<strong>in</strong>g-c .5-._ 095% c. I.- m................................................m5 0.0-Illillllmrlm I -G .................................................................................0-. O - 1-.5-c .25* s.25..................................................................................-1.01 , , , , , , , , , , , , I2 4 6 8 10 12 14 16 18 20 22 24Lag (months)Figure 11. Serial autocorrelation <strong>of</strong> Station P and <strong>of</strong>fshore CalCOFl <strong>zooplankton</strong><strong>biomass</strong> at various time lags. Upper and lower 95% confidence<strong>in</strong>tervals are <strong>in</strong>dicated as dashed l<strong>in</strong>es.-.soJ , , , , , , , . , , , , , I12 10 8 6 4 i 0 2 4 6 8 10 i2Lag (months)Figure 12. Cross-correlation between Station P and <strong>of</strong>fshore CalCOFl <strong>zooplankton</strong><strong>biomass</strong> at various time lags before and after prewhiten<strong>in</strong>g. Theupper and lower 95% confidence <strong>in</strong>tervals are <strong>in</strong>dicated as dashed l<strong>in</strong>es.88


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996for all years from 1946 to 1994. A substantial divergence<strong>of</strong> <strong>the</strong> tracks occurred <strong>in</strong> <strong>the</strong> eastern part <strong>of</strong> <strong>the</strong> <strong>gulf</strong>,with some tracks go<strong>in</strong>g north <strong>in</strong>to <strong>the</strong> Alaska Currentand o<strong>the</strong>rs head<strong>in</strong>g <strong>in</strong>to shore or turn<strong>in</strong>g south. When<strong>the</strong> tracks are partitioned <strong>in</strong>to pre-1975 and 1975 andlater, some decadal changes become evident (figure 14).In <strong>the</strong> earlier period, flow <strong>in</strong>to <strong>the</strong> Alaska Current wasmore relaxed, and a substantial number <strong>of</strong> <strong>the</strong> trajectoriesveered southward. The later period appeared to showstronger flow <strong>in</strong>to <strong>the</strong> Gulf <strong>of</strong> Alaska, and relatively fewtrajectories went south. The occurrence <strong>of</strong> ei<strong>the</strong>r northwardor southward flow tends to run <strong>in</strong> series <strong>of</strong> variouslengths (table 3). Simulations started 5" south <strong>of</strong>Station P (45"N, 345"W) showed more directed eastwardand southward flow but aga<strong>in</strong> showed some differencesbetween <strong>the</strong> two time periods (figure 15).The model was <strong>the</strong>n used to simulate <strong>the</strong> north-southdivergence <strong>of</strong> <strong>the</strong> Subarctic Current along its easternboundary for equivalent 5-year time periods before andafter <strong>the</strong> regime shift (1971-75 vs. 1976-80) <strong>in</strong> order toassess changes <strong>in</strong> circulation between <strong>the</strong> two regimes.Long-term mean flow tracks begun <strong>in</strong> January along145"W showed a more sou<strong>the</strong>rn diversion before <strong>the</strong>regime shift than after, with <strong>the</strong> primary differences <strong>in</strong><strong>the</strong> trajectories start<strong>in</strong>g at or north <strong>of</strong> 4S"N (track 5 <strong>in</strong>figure 16).DISCUSSIONFor oceanic waters <strong>of</strong> <strong>the</strong> eastern subarctic PacificOcean, direct evidence for <strong><strong>in</strong>terannual</strong> and decadal <strong>variations</strong><strong>in</strong> biological production-that is, phytoplanktonproduction-is weak. However, <strong>zooplankton</strong> stand<strong>in</strong>gstock, when viewed on a bas<strong>in</strong>wide scale, has varied andseems to be higher s<strong>in</strong>ce <strong>the</strong> 1976-77 regime shift.Recogniz<strong>in</strong>g that primary production might not havechanged between <strong>the</strong> regimes, Brodeur and Ware (1992)hypo<strong>the</strong>sized a causal l<strong>in</strong>k between <strong>in</strong>creased w<strong>in</strong>d stressand <strong>in</strong>creased <strong>zooplankton</strong> stock and production, <strong>in</strong> that<strong>in</strong>tensified w<strong>in</strong>d mix<strong>in</strong>g would result <strong>in</strong> deeper mixedlayerdepths (MLD) <strong>in</strong> w<strong>in</strong>ter. This would slow <strong>the</strong>growth rate <strong>of</strong> <strong>the</strong> phytoplankton, retard <strong>the</strong> spr<strong>in</strong>g <strong>in</strong>crease<strong>in</strong> primary production, and allow grazers to makemore efficient use <strong>of</strong> phytoplankton production. Experimentswith an ecosystem niodel (Frost 1993) do notprovide support for such a mechanism. Indeed, just <strong>the</strong>opposite effect should occur. A deeper mixed layer <strong>in</strong>w<strong>in</strong>ter should result <strong>in</strong> decreased balance between phytoplanktongrowth and graz<strong>in</strong>g <strong>in</strong> spr<strong>in</strong>g, when <strong>the</strong> surfacelayer restratifies. Phytoplankton production shouldbe less efficiently utilized by grazers, and more productionshould be lost to mix<strong>in</strong>g and s<strong>in</strong>k<strong>in</strong>g below <strong>the</strong> surfacelayer.But, <strong>in</strong> fact, <strong>the</strong>re is not much <strong><strong>in</strong>terannual</strong> variation<strong>in</strong> MLD at Station P because <strong>of</strong> <strong>the</strong> halocl<strong>in</strong>e, and overTABLE 3Yearly Anomalies <strong>of</strong> Simulated OSCURS Trajectoriesfrom Ocean Station P North or South <strong>of</strong> <strong>the</strong> Long-TermMean Trajectory, <strong>in</strong> Three-Month (Dec.-Feb.)Trajectories for 1946 to 1994North475253575859606263676 9757677787980828385868990919391South<strong>the</strong> observed <strong><strong>in</strong>terannual</strong> range <strong>of</strong> w<strong>in</strong>ter MLD (80-130m), Frost's (1993) model suggests that such <strong>variations</strong>would have relatively little effect on biological productionor <strong>zooplankton</strong> <strong>biomass</strong> at Station P (Frost, unpubl.data). Us<strong>in</strong>g a 1-D dynamic mixed-layer model (rnodifiedGanvood model) coupled to a nitrate-phytoplankton-<strong>zooplankton</strong>(NPZ) model, McCla<strong>in</strong> et al. (1996)found surpris<strong>in</strong>gly little <strong><strong>in</strong>terannual</strong> variation <strong>in</strong> phytoplanktonproduction rate at Station P.464849505154555661646.566687071727374818487889290


BRODEUR ET At.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 199645O40'45'40'Figure 15.Same as figure 14 but with <strong>the</strong> simulations started 5" south <strong>of</strong> Station P (45"N, 145'W).92


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 199660' 50' N 40a140'W1 zoo30'30'Figure 16. Mean simulated flow trajectories for OSCURS model runs for <strong>the</strong> 5-year period before (upper) and after (lower) <strong>the</strong> regimeshift. Model runs were started at 145"W on January 1 and run for 12 months. The size <strong>of</strong> <strong>the</strong> arrow head and <strong>the</strong> length <strong>of</strong> <strong>the</strong> shaft <strong>in</strong>dicate<strong>the</strong> relative current speed. Each trajectory is marked with a circle after 6 months.93


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996It is likely that events at Station P are not generallyrepresentative <strong>of</strong> <strong>the</strong> entire open Gulf <strong>of</strong> Alaska, dueboth to <strong>the</strong> s<strong>in</strong>gularity <strong>of</strong> <strong>the</strong> station and its location.Polov<strong>in</strong>a et al. (1995) reported on <strong><strong>in</strong>terannual</strong> changes<strong>in</strong> w<strong>in</strong>ter-spr<strong>in</strong>g mixed-layer depth throughout <strong>the</strong> NorthPacific Ocean. There was considerable spatial variation<strong>in</strong> change <strong>in</strong> MLD, with <strong>the</strong> region <strong>of</strong> Station P show<strong>in</strong>glittle long-term change but o<strong>the</strong>r areas show<strong>in</strong>g ra<strong>the</strong>rlarge changes (eg, <strong>the</strong> nor<strong>the</strong>ast Gulf <strong>of</strong> Alaska). Poloviriaet al. (1995) used an NPZ model to look at <strong>the</strong> effects<strong>of</strong> <strong>the</strong>ir modeled changes <strong>in</strong> MLD. The niodel predictsthat large changes <strong>in</strong> MLD will have little effect on phytoplanktonstock, but potentially large effects on phytoplanktonproduction rate and <strong>zooplankton</strong> stock <strong>in</strong><strong>the</strong> mixed layer. Thus, spatial variation <strong>in</strong> <strong>the</strong> processescontroll<strong>in</strong>g production rate may expla<strong>in</strong> <strong>the</strong> apparent <strong>in</strong>crease<strong>in</strong> <strong>zooplankton</strong> stock evident on a large spatialscale <strong>in</strong> <strong>the</strong> eastern subarctic Pacific Ocean dur<strong>in</strong>g <strong>the</strong>1980s. This hypo<strong>the</strong>sis is difficult to test because <strong>the</strong>reare no bas<strong>in</strong>wide data on nutrient concentrations andbiological observations.To our knowledge, <strong>the</strong>re is no extensive time series<strong>of</strong> phytoplankton stand<strong>in</strong>g stock for <strong>the</strong> CaliforniaCurrent region comparable to <strong>the</strong> data set from Station€? However, <strong>the</strong> analysis by Fargion et al. (1993) <strong>of</strong> CoastalZone Color Scanner data and <strong>in</strong> situ chlorophyll measurements<strong>in</strong>dicates little seasonal variation <strong>in</strong> phytoplanktonstock <strong>in</strong> <strong>the</strong> <strong>of</strong>fshore area represented by <strong>the</strong><strong>zooplankton</strong> data presented here (30” to 35”N). Moreover,phytoplankton pigment concentrations are similarto those at Station P (cf. Chavez 1995). Because <strong>the</strong>California Current region covered by <strong>the</strong> <strong>zooplankton</strong>data is at considerably lower latitude than Station P, it isprobable that higher phytoplankton production accountsfor <strong>the</strong> higher <strong>zooplankton</strong> stand<strong>in</strong>g stock observed (figure7).Two factors h<strong>in</strong>der def<strong>in</strong>itive identification <strong>of</strong> a lead/lagor “out-<strong>of</strong>-phase” relationship between <strong>zooplankton</strong>productivity at Station P and <strong>the</strong> CalCOFI region. First,as noted earlier, <strong>the</strong>re is a great deal <strong>of</strong> miss<strong>in</strong>g data <strong>in</strong>both regions. Secondly, <strong>the</strong> high observed autocorrelation,<strong>the</strong> robust estimation <strong>of</strong> which is also h<strong>in</strong>dered bydata gaps, needs to be removed. Despite <strong>the</strong>se difikulties,<strong>the</strong>re is evidence that <strong>the</strong> two regions are negativelyrelated. It is less clear whe<strong>the</strong>r <strong>the</strong>re is a consistent lagtime between <strong>the</strong> two regions. The evidence po<strong>in</strong>ts moretoward anomalies at Station P lead<strong>in</strong>g anomalies atCalCOFI. It is possible that <strong>the</strong> <strong>in</strong>verse relationship isdue to differential (i.e., <strong>in</strong>verse) flow from <strong>the</strong> SubarcticCurrent, but that <strong>the</strong> flow speed with<strong>in</strong> each regime ishighly variable, hence <strong>the</strong> lack <strong>of</strong> a consistent lag relationship.El Nifio-Sou<strong>the</strong>rn Oscillation (ENSO) events areano<strong>the</strong>r factor that may play a role <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g and <strong>in</strong>-tensity <strong>of</strong> anomalous <strong>zooplankton</strong> production. Dur<strong>in</strong>gENSO events. positive SST anomalies are propagatedpoleward <strong>in</strong> <strong>the</strong> form <strong>of</strong> coastally trapped Kelv<strong>in</strong> waves.Roemmich and McGowan (1995a, b) attributed <strong>the</strong> decl<strong>in</strong>e<strong>in</strong> CalCOFI region <strong>zooplankton</strong> <strong>biomass</strong> to seasurfacewarm<strong>in</strong>g, part <strong>of</strong> which resulted from a largenumber <strong>of</strong> ENSO events s<strong>in</strong>ce <strong>the</strong> mid-1970s. Whilesea-surface temperature anomalies associated with ENSOevents have occurred <strong>in</strong> <strong>the</strong> Gulf <strong>of</strong> Alaska (Wooster andFluharty 1985), as <strong>of</strong>ten as not, <strong>the</strong>re has not been anyNorth Pacific Ocean response (Freeland 1990; Baileyet al. 1995). Thus, depend<strong>in</strong>g on <strong>the</strong> magnitude andnorthward extent <strong>of</strong> <strong>the</strong> ENSO event and <strong>the</strong> StationP <strong>zooplankton</strong> response to surface warm<strong>in</strong>g, <strong>the</strong>re is <strong>the</strong>potential for a Station P response to lag a CalCOFI response.At <strong>the</strong> very least, <strong>the</strong> ENSO factor serves tocloud <strong>the</strong> relative effects on <strong>zooplankton</strong> productivityfrom <strong>variations</strong> <strong>in</strong> <strong>the</strong> Subarctic Current.It niay not be co<strong>in</strong>cidental that <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>zooplankton</strong>shown here <strong>in</strong> <strong>the</strong> Subarctic Pacific is oppositeto <strong>the</strong> trend for California Current <strong>zooplankton</strong> reportedby Roemmich and McGowan (1 995a, b). Although<strong>the</strong>re is some <strong>in</strong>direct biological evidence for <strong>the</strong> oceancirculationmodel proposed by Hollowed and Wooster(1992), <strong>the</strong> hydrographic evidence is more limited.However, several recent papers shed some light on <strong>the</strong>issue and suggest considerable modification to <strong>the</strong> model.Tabata (1991), <strong>in</strong> reexam<strong>in</strong><strong>in</strong>g <strong>the</strong> Chelton and Davis(1982) premise, found a correlation between <strong>the</strong> coastalcomponent <strong>of</strong> <strong>the</strong> Alaska Current and California coastalsea levels, particularly dur<strong>in</strong>g El Niiio years. He attributedthis correlation, however, to <strong>the</strong> coastal currentsbe<strong>in</strong>g <strong>in</strong> phase from Canada to California ra<strong>the</strong>r than tochanges <strong>in</strong> <strong>the</strong> bifurcation <strong>of</strong> <strong>the</strong> Subarctic Current. Kellyet al. (1993) analyzed sea-surface height anomalies for<strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean over a 2.5-year period. Theirresults tended to support those <strong>of</strong> Chelton and Davis(1982) that <strong>the</strong> California and Alaska Current systemsfluctuate “out <strong>of</strong> phase,” co<strong>in</strong>cid<strong>in</strong>g with <strong>variations</strong> <strong>in</strong>w<strong>in</strong>d-stress curl <strong>in</strong> <strong>the</strong> North Pacific Ocean and subsequentdiversion <strong>of</strong> flow from <strong>the</strong> Alaska Gyre <strong>in</strong>to <strong>the</strong>California Current, as well as with some correlation withENSO dynamics. Van Scoy and Druffel (1993), <strong>in</strong> ananalysis <strong>of</strong> tritium (‘H) concentrations <strong>in</strong> seawater fromOcean Station P and a station <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn CaliforniaCurrent, suggest that <strong>the</strong>re is <strong>in</strong>creased advection <strong>of</strong> subpolarwater <strong>in</strong>to <strong>the</strong> California Current dur<strong>in</strong>g non-ElNifio years and that ventilation <strong>of</strong> <strong>the</strong> Alaska Gyre (<strong>in</strong>tensification)occurs dur<strong>in</strong>g El Nifio years.Lagerloef (1995), <strong>in</strong> his analysis <strong>of</strong> dynamic topography<strong>in</strong> <strong>the</strong> Alaska Gyre dur<strong>in</strong>g 1968-90, suggested thatafter <strong>the</strong> well-documented climatic regime shift <strong>of</strong> <strong>the</strong>late 1970s, <strong>the</strong> Alaska Gyre was centered more to <strong>the</strong> eastand that its circulation appeared weaker after <strong>the</strong> shift94


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996than before. The implication is that <strong>the</strong> <strong>in</strong>tensification<strong>of</strong> <strong>the</strong> w<strong>in</strong>ter Aleutian Low associated with <strong>the</strong> regimeshift did not result <strong>in</strong> a sp<strong>in</strong>-up <strong>of</strong> <strong>the</strong> Alaska Gyre.F<strong>in</strong>ally, Miller (1996) reviews some recent advances<strong>in</strong> large-scale model<strong>in</strong>g <strong>of</strong> <strong>the</strong> California Current andits <strong>in</strong>teraction with bas<strong>in</strong>-scale circulation and forc<strong>in</strong>g.He reports <strong>the</strong> significant deepen<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>the</strong>rmocl<strong>in</strong>e<strong>of</strong>f California after <strong>the</strong> 1976-77 regime shift similar tothat described by Roemrnich and McGowan (1995a)and attributes this to bas<strong>in</strong>-scale changes <strong>in</strong> w<strong>in</strong>d stresscurl. This is achieved at two time scales-<strong>the</strong> first at <strong>the</strong>decadal and North Pacific Gyre scale, forced by significantdeepen<strong>in</strong>g and weaken<strong>in</strong>g <strong>of</strong> <strong>the</strong> Aleutian Low, and<strong>the</strong> second at <strong>the</strong> <strong><strong>in</strong>terannual</strong> ENSO scale, forced bywaves propagat<strong>in</strong>g through <strong>the</strong> ocean from <strong>the</strong> tropics.Miller (1996) also reported that after <strong>the</strong> 1976-77 regimeshift <strong>the</strong>re appeared to be a stronger than normal northwardflow <strong>in</strong>to <strong>the</strong> central Gulf <strong>of</strong> Alaska but little change<strong>in</strong> <strong>the</strong> flow <strong>in</strong>to <strong>the</strong> California Current system.If <strong>zooplankton</strong> <strong>biomass</strong> is advected preferentially toei<strong>the</strong>r region, as <strong>the</strong> current-simulation model suggests,<strong>the</strong>n this allochthonous <strong>biomass</strong> should be higher thanthat produced locally for our results to be valid. Thereare few coniparable measurements <strong>of</strong> <strong>zooplankton</strong> <strong>biomass</strong><strong>in</strong> both <strong>the</strong> Transition Donia<strong>in</strong> and SubarcticDonia<strong>in</strong>. Our data for <strong>the</strong> large-scale sampl<strong>in</strong>g dur<strong>in</strong>g<strong>the</strong> 1980s suggest that levels were high <strong>in</strong> <strong>the</strong> TransitionDoma<strong>in</strong> and are somewhat higher than <strong>in</strong> <strong>the</strong> centralpart <strong>of</strong> <strong>the</strong> Alaska Gyre. Data taken <strong>in</strong> summer for severalyears from north-south transects <strong>in</strong> <strong>the</strong> western subarctic(155"E, 170"E, 175.5"E, and 180"E) show elevated<strong>zooplankton</strong> wet weights <strong>in</strong> <strong>the</strong> transition zonecompared with those <strong>in</strong> <strong>the</strong> subarctic (Shiga et al. 1995).Sampl<strong>in</strong>g along 180" and <strong>in</strong> <strong>the</strong> Gulf <strong>of</strong> Alaska dur<strong>in</strong>gJune and July <strong>of</strong> 1987 revealed higher <strong>zooplankton</strong> <strong>biomass</strong><strong>in</strong> transition zone waters than <strong>in</strong> <strong>the</strong> central SubarcticDoma<strong>in</strong>, especially <strong>in</strong> <strong>the</strong> 150-300-ni depth strata(Kawaniura 1988).An alternative explanation for <strong>the</strong> <strong>in</strong>verse relationship<strong>in</strong> <strong>zooplankton</strong> might be that similar large-scale changes<strong>in</strong> <strong>the</strong>rmal structure <strong>of</strong> <strong>the</strong> western North Pacific (Venricket al. 1987; Royer 1989; Roemmich and McGowan1995a; Miller 1996) could have radically different effectson biological production <strong>in</strong> <strong>the</strong> two regions. At StationP, <strong>the</strong> slightly warmer temperature <strong>of</strong> <strong>the</strong> mixed layercould directly affect <strong>in</strong>creased <strong>zooplankton</strong> productionrate and stand<strong>in</strong>g stock, as suggested by Conversi andHameed (1996). The same warm<strong>in</strong>g and associated deepen<strong>in</strong>g<strong>of</strong> <strong>the</strong> upper mixed layer (Miller 1996) could causedecreased <strong>zooplankton</strong> production and stand<strong>in</strong>g stock <strong>in</strong><strong>the</strong> California Current region by imped<strong>in</strong>g <strong>the</strong> supply<strong>of</strong> nutrients to <strong>the</strong> surface layer (Roemmich andMcGowan 1995a). Our data are not sufficient to allowexam<strong>in</strong>ation <strong>of</strong> this alternate hypo<strong>the</strong>sis.IMPLICATIONS FOR HIGHER TROPHIC LEVELSThe dramatic <strong>in</strong>crease and change <strong>in</strong> distribution <strong>of</strong>meso<strong>zooplankton</strong> <strong>biomass</strong> seen <strong>in</strong> <strong>the</strong> subarctic PacificOcean between <strong>the</strong> periods 195642 and 1980-89 wouldbe expected to have important ramifications for highertrophic levels dependent on <strong>the</strong>se food sources. Brodeurand Ware (1995) documented substantial <strong>in</strong>creases <strong>in</strong> <strong>the</strong>catch rates <strong>of</strong> most pelagic nekton (fishes, squids, andelasmobranchs) caught <strong>in</strong> research gill nets over roughly<strong>the</strong> same time periods. The only species that showed adecl<strong>in</strong>e <strong>in</strong> catch rates (jack mackerel, Tvachuvus symmetvirus)is primarily a California Current species which migrates<strong>in</strong>to <strong>the</strong> Gulf <strong>of</strong> Alaska only dur<strong>in</strong>g periods <strong>of</strong>peak abundance. Although <strong>the</strong>se authors were not ableto convert catch rates to abundance or <strong>biomass</strong> because<strong>of</strong> <strong>the</strong> paucity <strong>of</strong> collaborative time series <strong>of</strong> abundancesfor <strong>the</strong> noncommercial species, Brodeur and Ware (1 995)estimated that total salmon abundance nearly doubledbetween <strong>the</strong>se two periods.For <strong>the</strong> present study, we comb<strong>in</strong>ed catch data <strong>of</strong><strong>the</strong> 14 species exam<strong>in</strong>ed by Brodeur and Ware (1995)and plotted nekton catch-rate distributions for roughly<strong>the</strong> same two time periods over <strong>the</strong> same geographicrange exam<strong>in</strong>ed previously for <strong>zooplankton</strong>. Although<strong>the</strong>re are differences between <strong>the</strong>m, <strong>the</strong> nekton distributionplots (figure 17) showed some similarities to <strong>the</strong><strong>zooplankton</strong> distribution <strong>in</strong> that most concentrations are<strong>of</strong>fshore <strong>in</strong> <strong>the</strong> Alaska Gyre dur<strong>in</strong>g <strong>the</strong> 1950s and occur<strong>in</strong> a band around <strong>the</strong> outside <strong>of</strong> <strong>the</strong> gyre <strong>in</strong> <strong>the</strong> 1980s.The magnitude <strong>of</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> catch rate (figure 17<strong>in</strong>set) is also similar to that <strong>of</strong> <strong>the</strong> plankton. Althoughthis is not cogent evidence <strong>of</strong> a strong l<strong>in</strong>k between <strong>the</strong>setrophic levels, s<strong>in</strong>ce <strong>the</strong>re is <strong>of</strong>ten an additional trophiclevel (macro<strong>zooplankton</strong> and micronekton) between <strong>the</strong>meso<strong>zooplankton</strong> and <strong>the</strong> larger nekton, <strong>the</strong>re is enoughcommonality <strong>in</strong> <strong>the</strong> distribution patterns to suggest that<strong>the</strong> distribution and abundance <strong>of</strong> <strong>zooplankton</strong> is positivelyrelated to that <strong>of</strong> higher-level predators.Coastal fishes <strong>in</strong> <strong>the</strong> Gulf <strong>of</strong> Alaska would be expectedto benefit most from <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>zooplankton</strong> bio<strong>in</strong>assthat we observed dur<strong>in</strong>g <strong>the</strong> 1980s. High rates <strong>of</strong>upwell<strong>in</strong>g <strong>in</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong> Alaska Gyre would pushnutrients and subsequent phytoplankton and <strong>zooplankton</strong>production onto <strong>the</strong> shelf along <strong>the</strong> edge <strong>of</strong> <strong>the</strong> <strong>gulf</strong>,<strong>the</strong>reby stimulat<strong>in</strong>g coastal production. Cooney (1986)has suggested that large oceanic species <strong>of</strong> copepods(Neocalanus spp. and Eircalanus buugii) are transportedonto <strong>the</strong> shelf <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Alaska, provid<strong>in</strong>grich food resources for <strong>the</strong> coastal community. Adirect l<strong>in</strong>k between atmospheric circulation, oceaniccopepod production, and sablefish (Anol?lol70n~a-f<strong>in</strong>zbvia)recruitment has been hypo<strong>the</strong>sized by McFarlane andBeamish (1992), but such mechanisms have not beenexplored for o<strong>the</strong>r demersal fishes.95


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996Figure 17. Large-scale catch-rate distribution for 14 species <strong>of</strong> nekton commonly caught <strong>in</strong> research gill nets dur<strong>in</strong>g<strong>the</strong> periods <strong>in</strong>dicated. See Brodeur and Ware (1995) for sampl<strong>in</strong>g methodology, locations <strong>of</strong> sampl<strong>in</strong>g stations, andspecies <strong>in</strong>cluded. Insets show nekton <strong>biomass</strong> pixel distributions as a percentage <strong>of</strong> <strong>the</strong> total number <strong>of</strong> pixels for eachtime period. The overall mean and standard deviation <strong>of</strong> <strong>biomass</strong> for <strong>the</strong> time periods are given.


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996For an <strong>in</strong>vestigation <strong>of</strong> ocean effects on fish species,Pacific salmon are an attractive group to study, s<strong>in</strong>ce <strong>the</strong>yhave a relatively short life span, show substantial <strong><strong>in</strong>terannual</strong>variability <strong>in</strong> mar<strong>in</strong>e survival, and can be reliablycensused at least several times dur<strong>in</strong>g <strong>the</strong>ir life history.As discussed previously, Pacific salmon stocks have substantially<strong>in</strong>creased <strong>in</strong> abundance s<strong>in</strong>ce <strong>the</strong> mid-1970s <strong>in</strong>Alaska waters, whereas sou<strong>the</strong>rn stocks have shown oppositetrends (Pearcy 1992; Beaiiiish 1994; Hare andFrancis 1995). In some cases, <strong>the</strong> <strong>in</strong>verse relation betweenstocks <strong>in</strong> <strong>the</strong> two doma<strong>in</strong>s is strik<strong>in</strong>g (Francis andSibley 1991). Our analyses suggest that <strong>zooplankton</strong> <strong>biomass</strong><strong>in</strong> <strong>the</strong> subarctic region is <strong>in</strong>versely related to that<strong>in</strong> <strong>the</strong> California Current region. A conlb<strong>in</strong>ation <strong>of</strong> <strong>in</strong>creasedtransport <strong>in</strong>to <strong>the</strong> Alaska Current and advection<strong>of</strong> nutrients and <strong>zooplankton</strong> onto <strong>the</strong> shelf would probably<strong>in</strong>crease <strong>the</strong> carry<strong>in</strong>g capacity for juvenile salmonenter<strong>in</strong>g Alaska coastal waters (Cooney 1984).By study<strong>in</strong>g time lags between atmosphere/ocean andsalmon statistics, Francis and Hare (1994) <strong>in</strong>dicated thatthis regime-scale effect on Alaska sahiion production ismost likely to be felt dur<strong>in</strong>g <strong>the</strong> early ocean life history.If salmonid production and survival are l<strong>in</strong>iited by factorsoccurr<strong>in</strong>g early <strong>in</strong> <strong>the</strong>ir mar<strong>in</strong>e life history, <strong>the</strong>n <strong>the</strong>relative flow <strong>in</strong>to <strong>the</strong> California Current and AlaskaCurrent may pr<strong>of</strong>oundly affect <strong>the</strong>ir dynamics by eiihanc<strong>in</strong>gprey production for siiiolts <strong>in</strong> <strong>the</strong> coastal zone.However, <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> salmon surviv<strong>in</strong>g tomaturation <strong>in</strong> <strong>the</strong> open ocean after <strong>the</strong> regime shift mayhave imposed an excess burden upon <strong>the</strong> oceanic <strong>zooplankton</strong>,which did not appear to <strong>in</strong>crease as dramaticallyas those <strong>in</strong> <strong>the</strong> coastal zone (figure 10). It is likelythat <strong>the</strong> amount <strong>of</strong> <strong>zooplankton</strong> available per <strong>in</strong>dividualsalmon has decreased over this period, as suggestedby Peterman (1987), which may be manifested <strong>in</strong> <strong>the</strong>long-term decreases <strong>in</strong> size at age and <strong>the</strong> older age <strong>of</strong>maturity witnessed <strong>in</strong> several salmon stocks (Ishida et al.1993; Helle and H<strong>of</strong>fiiian 1995).SUGGESTIONS FOR FURTHER STUDY1. Exam<strong>in</strong>e taxonomic composition <strong>of</strong> <strong>zooplankton</strong>over time to see if shifts <strong>in</strong> species co<strong>in</strong>position haveoccurred along with <strong>the</strong> decadal-scale <strong>biomass</strong> shifts.This objective has been facilitated by <strong>the</strong> entry <strong>of</strong><strong>the</strong> entire Station P detailed <strong>zooplankton</strong> data set<strong>in</strong> digital format that may be amenable to analyses(Waddell and McK<strong>in</strong>nel 19‘95).2. Construct more spatially-explicit coupled physicaland NPZ models to account for geographic variability<strong>in</strong> ocean condtions, nutrient <strong>in</strong>put, and phytoplanktonand <strong>zooplankton</strong> species composition(eg, as <strong>in</strong> McGillicuddy et al. 1995).3. Use models to exam<strong>in</strong>e potential top-down controlon phytoplankton and Zooplankton populations,extendng-if possiblesonie <strong>of</strong> <strong>the</strong> presently availablemodels (e.g., Frost 1993) to <strong>in</strong>clude nekton.Establish new oceanic sampl<strong>in</strong>g sites for coniparisonwith Station P to see whe<strong>the</strong>r processes occurr<strong>in</strong>gat Station P are representative <strong>of</strong> <strong>the</strong> subarcticregion as a whole.Cont<strong>in</strong>ue any present time series sampl<strong>in</strong>g, andifpossible-revive discont<strong>in</strong>ued sampl<strong>in</strong>g. It is <strong>in</strong>perativethat <strong>the</strong> methodology does riot changesubstantially dur<strong>in</strong>g any time series. If it becomesnecessary to make changes, <strong>the</strong>n at least a sufficientnumber <strong>of</strong> <strong>in</strong>tercalibration studies between old andnew methodologies should be coiiducted to providea seamless time series.Exam<strong>in</strong>e factors that control <strong>the</strong> production ufphytoplankton<strong>in</strong> <strong>the</strong> open subarctic Pacific. A majoruncerta<strong>in</strong>ty concerns <strong>the</strong> rate <strong>of</strong> supply <strong>of</strong> iron,which may stimulate <strong>the</strong> growth rate <strong>of</strong> large phytoplanktonspecies, enhance <strong>the</strong> growth rate <strong>of</strong>large <strong>zooplankton</strong>, and produce favorable feed<strong>in</strong>gand growth conditions for pelagic fish.ACKNOWLEDGMENTSWe thank Michael Mull<strong>in</strong> <strong>of</strong> <strong>the</strong> Scripps Institution<strong>of</strong> Oceanography for <strong>in</strong>vit<strong>in</strong>g us to participate <strong>in</strong> <strong>the</strong>symposium. Paul Smith <strong>of</strong> <strong>the</strong> La Jolla NMFS laboratorygenerously provided <strong>the</strong> CalCOFI data. Earlier drafts<strong>of</strong> <strong>the</strong> manuscript were reviewed by Art Kendall andMichael Mull<strong>in</strong>. This is NOAA’s Fisheries OceanographyCoordiiiated Iiivestigations Contribution FOCI-0273.97


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996Chelton, D. B. 1984. Short-term climate variability <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast PacificOcean. 61 The <strong>in</strong>fluence <strong>of</strong> ocean conditions on <strong>the</strong> production <strong>of</strong> salmonids<strong>in</strong> <strong>the</strong> North Pacific, W. G. I’earcy, ed. Corvallis: Oregon State Univ. SeaGrant Rep. W-83-001, pp. 87-99.Chelton, D. B., and R. E. Davis. 1982. Monthly nieaii sea level variabilityalong <strong>the</strong> western coast <strong>of</strong> North America. J. Phy!. Oceaiiog. 12:757-784.Chelton, D. U., 1’. A. Bernal, and J. A. McGowan. 1982. Large-scale <strong><strong>in</strong>terannual</strong>physical aiid biological <strong>in</strong>teraction <strong>in</strong> <strong>the</strong> California Current. J. Mar.Kes. 40:1095-1125.Chiversi, A., and S. Hameed. 1996. Quasi-biennial component <strong>of</strong> <strong>zooplankton</strong><strong>biomass</strong> variability <strong>in</strong> <strong>the</strong> subarctic Pacific. J. Geophyc. Res.Cooney, K. T. 1984. Some thoughts on <strong>the</strong> Alaska Coastal Current as afeed<strong>in</strong>g habitat for juvenile salnioii. In The <strong>in</strong>fluence <strong>of</strong> ocean conditionson <strong>the</strong> production <strong>of</strong> salmonids <strong>in</strong> <strong>the</strong> North Pacific, W. G Pearcy, ed.Corvallis: Oregon State Univ. Sea Grant Rep. W-83-001, pp. 256-268.. 1986. The seasonal occurrence <strong>of</strong> Riwralaniij crisratio, Seocalanusybnrcl<strong>in</strong>rs, and Eiicalanur 6ro1,qii over <strong>the</strong> <strong>the</strong>lf <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Alaska.Cont. Shelf Res. 5:541-553.Emery, W. J., aiid K. Hamilton. 1985. Atmospheric forc<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>terannual</strong>variability <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean: connections with El Nirio. J.Geophys. Res. 90:857-868.Fargion, G. S., J. A. McGowan, and R. H. Stewart. 1993. Seasoiiality <strong>of</strong>chlorophyll concentrations <strong>in</strong> <strong>the</strong> California Current: a comparison <strong>of</strong> twomethods. Calif. Coop. Ocemic Fish. Invest. Rep. 34:35-50.Fashani, M. J. K. 1995. Variations <strong>in</strong> <strong>the</strong> seasonal cycle <strong>of</strong> biological production<strong>in</strong> subarctic oceans: a model sensitivity analysis. Deep-Sea Res.421111-1149.Francis, R. C. 1993. Cli<strong>in</strong>ate change and salnioiiid production <strong>in</strong> <strong>the</strong> NorthPacific Ocean. [ti Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> N<strong>in</strong>th Annual Pacific Climate (PA-CLIM) Workshop, K. T. Iiedmond and V. L. Tharp, eds. Calif. Dcp.Water Res. Tech. Rep. 34, pp. 33-43.Francis, R. C. and S. R. Hare. 1994. Ilecadal-scale regime shifts <strong>in</strong> <strong>the</strong>large mar<strong>in</strong>e ecosytenis <strong>of</strong> <strong>the</strong> North-east Pacific: a case for historical science.Fish. Oceanog. 3:279-291.Francis, R. C. aiid T. H. Sibley. 1991. Climate change and fisheries: whatare <strong>the</strong> real issues? NW Eiiviron. J. 7:295-307.Freeland, H. J. 1990. Sea surface temperatures along <strong>the</strong> coast <strong>of</strong> BritishCklunibia: regional evidence for a wariii<strong>in</strong>g trend. Can. J. Fish. Aquat.SCI. 47:346-350.Frost, B. W. 1983. lnterannual variation <strong>of</strong> <strong>zooplankton</strong> stand<strong>in</strong>g stock <strong>in</strong><strong>the</strong> open Gulf <strong>of</strong> Alaska. 117 From year to year: <strong><strong>in</strong>terannual</strong> variability <strong>of</strong><strong>the</strong> environnient and fisheries <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong>Alask3 aiid <strong>the</strong> Eastern Her<strong>in</strong>gSea, W. S. Wooster, ed. Seattle: Wash<strong>in</strong>gton Sea Grant, pp. 146-157.. 1993. A modell<strong>in</strong>g study <strong>of</strong> processes regulat<strong>in</strong>g plankton stand<strong>in</strong>gstock and production <strong>in</strong> <strong>the</strong> open rubarctic Pacific Ocean. Prog. Oceanogr.32: 17-56.Fulton, J. 1983. Seasonal and annual <strong>variations</strong> <strong>of</strong> net <strong>zooplankton</strong> at OceanStation “P”, 1956-1980. Can. Ilata Rep. Fish. Aquat. Sci. 374, 65 pp.Grahaiii, N E. 1995. Simulation <strong>of</strong> recent global temperature trends. Science267:666-671.Hare, S. li., and K. C. Francis. 1995. Cl<strong>in</strong>iate change and salnioii production<strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean. 1i1 Climate change and nor<strong>the</strong>rn fishpopulations, K. Beaiiirh, ed. Can. Spec. Pub. Fish. Aquat. Sci. 121:357372.Helle, J. H., and M. S. H<strong>of</strong>fiiian. 1995. Size decl<strong>in</strong>e and older age at iiiaturity<strong>of</strong> two chum salmon (Oncorhyidictr kcfa) xocks <strong>in</strong> western NorthAmerica, 1972-92. Jii Climate change and nor<strong>the</strong>rn fish populations, K.Beaiiiish, ed. Can. Spec. Pub. Fish. Aquat. Sci. 121 :245-260.Hollowed, A. B., and W. S. Woo\ter. 1992. Variability <strong>of</strong>w<strong>in</strong>ter ocean conditionsand strong year classes <strong>of</strong> Nor<strong>the</strong>ast Pacific groundfish. ICESMar. Sci. Synip. 195:433-444.Hrieh, W. W., arid G. J. Boer. 1992. Global climate change and ocean upwell<strong>in</strong>g.Fish. Ocranogr. 1333-338Ingraham, W. J.,Jr., and R. K. Miyahara. 1988. Ocean surface current \<strong>in</strong>ulations<strong>in</strong> <strong>the</strong> North I’asific Ocean and Benng Sea (OSCURS- NumericalModel). US. Llep. Conimer., NOAA Tech Memo. NMFS F/NWC-130,15.5 pp.Ishida, Y., S. lto, M. Kaeriyama, S. McK<strong>in</strong>nell, and K. Nagasawa. 1993.Recent changes <strong>in</strong> age and size <strong>of</strong> chum salmon (Oricorliyrirhr~s keta) 111<strong>the</strong> North Pacific Ocesn and possible causes. Can. J. Fish. Aquat. Sci..50: 2Y0-295.Katz, K. W. 1988. Use <strong>of</strong> cross correlations <strong>in</strong> <strong>the</strong> search for teleconnectioiis.J. Climatology 8:241-2.53.Kawatnura, A. 1988. Characteristics <strong>of</strong> <strong>the</strong> <strong>zooplankton</strong> <strong>biomass</strong> distribution<strong>in</strong> <strong>the</strong> standard NORPAC net catches <strong>in</strong> <strong>the</strong> North Pacific regon. Bull.Plankton Soc. Jpn. 35:175-177.Kelly, K. A,, Caruso, M. J., and J. A. Aust<strong>in</strong>. 1993. W<strong>in</strong>d-forced variation<strong>in</strong> sea surface height <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean. J. Phys. Oceanogr.232392-241 I.Lagerloef, G. S. E. 1095. liiterdecadal variation\ <strong>in</strong> <strong>the</strong> Alaska Gyre. J. Phys.Oceanogr. 252242-22.58,Mart<strong>in</strong>, J. H., and S. Fitzwater. 1988. Iron deficiency limits phytoplanktongrowth <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific subarctic. Nature 331:341-343.McAllister, C. 11. 1962. Data record, photosyn<strong>the</strong>sis and chlorophyll measureiiientsat Ocean Wea<strong>the</strong>r Station “l’”, July 1959 to November 1961.Fish. Res. Board Can., Manuscript Rep. Ser. (Oceanogr. Limnol.), No.126, 14 pp.McAllistrr, C. D., T R. Parsons, and J. D. H. Strickland. 19.59. Data record,oceanic fertility and productivity tiiea~ureiiients at Ocean Wea<strong>the</strong>r Station“P”, July and August lY59. Fish. Res. Board Can., Manuscript Rep. Ser.(Oceanogr. Limnol.), No. 5.5, 31 pp.McCla<strong>in</strong>, C. R., K. Arrigo, K. Tal, arid D. Turk. 1996. Observations andsimulations <strong>of</strong> physical and biological processes at Ocean Wea<strong>the</strong>r StationP, 1951-1980. J. Geophys. Res. 101:3697-3713.McFarlane, G. A,, and R. J. Heaniisli. 1992. Cliiiiatic <strong>in</strong>fluence l<strong>in</strong>kiiig copepodproduction with mong year-classes <strong>in</strong> sablefish, An‘ip~iipo,iiaiii,Ihr?’a.Can. J. Fish. Aquat. Sci. 59743-753.McGillicuddy, 11. J., Jr., A. R. Rob<strong>in</strong>son, and J. J. McCarthy. 1995. Coupledphysical and biologcal modell<strong>in</strong>g <strong>of</strong><strong>the</strong> spr<strong>in</strong>g bloom <strong>in</strong> <strong>the</strong> North Atlantic(11): three d<strong>in</strong>iensioiid bloom and post-bloom processes. Deep-sea Res.421359-1398,Miller, A. J. 1996. Recent advances <strong>in</strong> California Current model<strong>in</strong>g: decadaland iiiterat<strong>in</strong>ual <strong>the</strong>rmocl<strong>in</strong>e <strong>variations</strong>. Cali6 Chp. Oceanic Fish. Invest.Rep. 37 (this volunie).Miller, A. J., D. R. Cayan, T. P. Baniett, N. E. Graham, and J. M. Oberhuber.1994. The 1976-77 climate shift <strong>of</strong> <strong>the</strong> Pacific Ocean. Oceanography7:21-26.Myers, I


BRODEUR ET AL.: VARIABILITY IN ZOOPLANKTON BIOMASSCalCOFl Rep., Vol. 37, 1996Shiga, N., K. Nuniata, and K. Fujita. 1995. Long-term <strong>variations</strong> <strong>in</strong> <strong>zooplankton</strong>community and <strong>biomass</strong> <strong>in</strong> <strong>the</strong> Subarctic Pacific transition doma<strong>in</strong>.Mar. Sci. 17:408-414 (<strong>in</strong> Japanete).Stephens, K. 1964. Data record, productivity measurenients <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>astPacific with associated chemical and physical data, 1958-1964. Fish. Res.Board Can., Manuscript Rep. Ser. (Oceanogr. Limnol.) No. 179, 168 pp.. 1966. Data record. Primary production data from <strong>the</strong> Nor<strong>the</strong>astPacific, January 1964 to December 1965. Fish. Res. Board Can., ManuscriptRep. Ser. (OceanobT. Limnol.) No. 209, 14 pp.. 1968. Data record. Primary production data from <strong>the</strong> Nor<strong>the</strong>astPacific, January 1966 to Deceniber 1967. Fish. Res. Board Can., ManuscnptRep. Ser. (Oceanogr. Limnol.) No. 957, 58 pp.1977. Primary production data from wea<strong>the</strong>rships occupy<strong>in</strong>g OceanStation “P” 1969 to 1975. Fish. Mar. Serv. Data Rep. 38, 88 pp.Tabata, S. 1991. Annual and <strong><strong>in</strong>terannual</strong> \wiability <strong>of</strong> barocl<strong>in</strong>ic transportsacross L<strong>in</strong>e P <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean. Deep Sea Res. 38 (Suppl.l):S221-S245.Trenberth, K. E. 1984. Some effects <strong>of</strong> f<strong>in</strong>ite sample size and persistence onmeteorological statistics. Part I: autocorrelations. Man. Wea<strong>the</strong>r Kev.112:2359-2368.. 1990. Recent observed <strong>in</strong>terdecadal climate changes <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>rnHemisphere. Bull. Am. Meteorol. Soc. 71 :988-993.Trenberth, K. E. and J. W. Hurrell. 1994. Decadal atmosphere-ocean <strong>variations</strong><strong>in</strong> <strong>the</strong> Pacific. Clim. Dynamics 9:303-319.Van Scoy, K. A,, and E. K. M. Druffel. 1993. Ventilation and transport <strong>of</strong><strong>the</strong>rmocl<strong>in</strong>e and <strong>in</strong>termediate waters <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast Pacific dur<strong>in</strong>g recentEl Nirios. J. Geophys. Kes. 98:18,083-18,088.Venrick, E. L., J. A. McGowan, D. R. Cayan, and T. L. Hayward. 1987.Climate and chlorophyll a: long-term trends <strong>in</strong> <strong>the</strong> central North PacificOcean. Science 238:70&72.Waddell, B. J., and S. McK<strong>in</strong>nell. 1995. Ocean Station “Papa” detailed <strong>zooplankton</strong>data: 1956-1980. Can. Tech. Rep. Fish. Aquat. Sci. 2056, 21 pp.Ware, D. M., and G. A. McFarlane. 1989. Fisheries production doma<strong>in</strong>s <strong>in</strong><strong>the</strong> Nor<strong>the</strong>ast Pacific Ocean. In Effects <strong>of</strong> ocean variability on recruitmentand an evaluation <strong>of</strong> parameters used <strong>in</strong> stock assessment models, R. J.Beamish and G. A. McFarlane, eds. Can. Spec. Publ. Fish. Aqudt. Sci.108:359-379.Welschmeyer, N. A., S. Strom, R. Goericke, G. DiTullio, M. Belv<strong>in</strong>, andW. Petersen. 1993. Primary production <strong>in</strong> <strong>the</strong> subarctic Pacific Ocean:Project SUPER. Prog. Oceanogr. 32:lOl-135.Wickett, W. P. 1967. Ekman transport and <strong>zooplankton</strong> concentration <strong>in</strong><strong>the</strong> North Pacific Ocean. J. Fish. Res. Board Can. 24:581-594.Wiebe, P. H. 1988. Functional regression equations for <strong>zooplankton</strong> displacementvolume, wet weight, dry weight, and carbon: a correction. Fish.Bull. U.S. 86:833-835.Wong, C. S., F. A. Whitney, K. Iseki, J. S. Page, and J. Zeng. 1995. Analysis<strong>of</strong> trends <strong>in</strong> primary productivity and chlorophyll-a over two decades atOcean Station P (50”N, I45’W) <strong>in</strong> <strong>the</strong> Subarctic Nor<strong>the</strong>act Pacific Ocean.In Climate change and nor<strong>the</strong>rn fish populations, R. Beamish, ed. Can.Spec. Pub. Fish. Aquat. Sci. 121:107-117.Wooster, W. S., and D. L. Fluharty. 1985. El Nifio north. Seattle: Wash<strong>in</strong>gtonSea Grant, Univ. Wash., 312 pp.99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!