02.12.2012 Views

Brechtelsbauer - Workspace - Imperial College London

Brechtelsbauer - Workspace - Imperial College London

Brechtelsbauer - Workspace - Imperial College London

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Stirred Tank Scale-Up<br />

An (ex-) Practitioner’s View<br />

MemTide Process Development Course<br />

<strong>London</strong>, 23-24 February 2012<br />

Dr. Clemens <strong>Brechtelsbauer</strong><br />

Principal Teaching Fellow<br />

Department of Chemical Engineering<br />

<strong>Imperial</strong> <strong>College</strong> <strong>London</strong><br />

c.brechtelsbauer@imperial.ac.uk


Contents<br />

� Further Reading<br />

� The Design Environment<br />

� Manufacturing steps<br />

� Unit operations<br />

� The design base<br />

� Mixing<br />

� Vessels, impellers and baffles<br />

� Flow regimes<br />

� Power draw<br />

� Scale-Up<br />

� Similarity concept<br />

� Scale-up rules<br />

� Multiphase systems<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 2 Stirred Tank Scale-Up


Further Reading<br />

� Edward L. Paul, Victor A. Atiemo-Obeng, Suzanne M. Kresta (Eds.)<br />

Handbook of Industrial Mixing<br />

John Wiley & Sons, 2004<br />

� Ekato Ruehr- und Mischtechnik GmbH<br />

Ekato Handbook of Mixing Technology<br />

Ekato GmbH, 2000<br />

� John H. Atherton, Keith J. Carpenter<br />

Process Development: Physicochemical Concepts<br />

Oxford University Press, 1999<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 3 Stirred Tank Scale-Up


Steps in API/Fine Chem Manufacture<br />

Risk<br />

Scale<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 4 Stirred Tank Scale-Up


Reactions<br />

• Kinetics<br />

• Multi-<br />

phase<br />

Reaction<br />

Extraction<br />

Unit Operations<br />

Chemistry: Reactions and Separations Particle Forming Unit Operations<br />

Separations<br />

• Distillation<br />

• Extraction<br />

Environmental<br />

• Mass Balance<br />

• Recovery<br />

Distillation<br />

Crystallisation<br />

• Scale-up<br />

Crystallisation<br />

Isolation<br />

• Filtration<br />

• Centri-<br />

fuges<br />

Filtration<br />

Drying<br />

• Filter-<br />

Dryers<br />

Drying<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 5 Stirred Tank Scale-Up


The Nature of the Beast<br />

Process = Chemistry + Equipment Physics<br />

Or<br />

“chemical rate constants are scale independent,<br />

whereas physical parameters are not”<br />

John H. Atherton<br />

Author of<br />

“Process Development: Physicochemical Concepts”<br />

Simply put:<br />

“Ye cannae change the<br />

laws of physics, Jim!”<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 6 Stirred Tank Scale-Up


H=T<br />

Standard Vessel Geometry<br />

D<br />

T<br />

B<br />

=<br />

T/10<br />

C=T/3<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 7 Stirred Tank Scale-Up


Ship’s Wheel vs. Cartwheel<br />

� Low shear<br />

� Good for solid suspension<br />

� High shear<br />

� Good for dispersions<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 8 Stirred Tank Scale-Up


D<br />

D<br />

V static � 1 % V nominal<br />

V stir, min � 5 % V nominal<br />

V dish � 7 % V nominal<br />

V mix, min � 30-40 % V nominal<br />

Beware of the Dork Side<br />

V(stir, min) / V(mix, min) [L]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Minimum Stir and Mixing Volumes<br />

0 500 1000 1500 2000 2500 3000<br />

Nominal vessel volume [L]<br />

“Minimum stirred volume”<br />

d o e s n o t m e a n<br />

“Minimum mixed volume”<br />

V stir min [L]<br />

V mix min [L]<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 9 Stirred Tank Scale-Up


Impeller Types<br />

� Radial flow impeller<br />

� Discharges liquid radially outwards<br />

towards vessel walls<br />

• Transitional & turbulent regime<br />

• Good for dispersing<br />

� Axial flow impeller<br />

� Discharges liquid axially towards base<br />

or liquid surface depending on<br />

rotation direction<br />

• Transitional & turbulent regime<br />

• Good for blending & suspending<br />

� Mixed flow impeller<br />

� Flow predominantly in axial direction<br />

with also a radial component<br />

• Transitional & turbulent regime<br />

• Good for blending, suspending &<br />

dispersing<br />

� Close clearance impeller<br />

� Ensures good motion near vessel walls<br />

• Laminar regime<br />

• Good for blending<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 10 Stirred Tank Scale-Up


Understanding the Force<br />

In a stirred vessel, the presence of baffles is essential to convert the vortexing motion of<br />

the impeller into top to bottom mixing.<br />

No baffles is worst. Partial baffling is better. Full baffling is best.<br />

� Baffles are needed to promote the flow pattern<br />

characteristic of the impeller type<br />

� 4 Baffles, typical width T/12 (US) or T/10 (EU)<br />

with wall gap to prevent solids build-up<br />

� Beavertail and finger baffles are often used in<br />

glass-lined vessels<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 11 Stirred Tank Scale-Up


Power Draw<br />

� The power drawn by an<br />

impeller is expressed through a<br />

power number equation:<br />

P = Po ρ N 3 D 5<br />

� Power number<br />

� Po, or Newton number, Ne<br />

� Depends on<br />

• Impeller type<br />

• Impeller and vessel<br />

dimensions<br />

• Properties of the phases<br />

present<br />

� Must be measured!<br />

DE/V<br />

E 1/V<br />

E 2/V<br />

A 1, v 1, h 1, p 1<br />

A 2, v 2, h 2, p 2<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 12 Stirred Tank Scale-Up


Flow Regimes<br />

� Different parts of a vessel can<br />

experience different flow conditions<br />

� Assess by Reynolds number<br />

2<br />

� N D Inertial Force<br />

Re � �<br />

� Frictional Force<br />

� The “power curve” Po vs Re can be used<br />

to evaluate the flow regime for the<br />

whole process<br />

� Laminar: Re < 10<br />

• Po � Re -1<br />

� Transitional: 10 < Re < 10 3<br />

• Po = f(Re)<br />

� Turbulent: Re > 10 3<br />

• Po = constant<br />

Ekato Handbook of Mixing<br />

Technology, p. 15<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 13 Stirred Tank Scale-Up


Geometric Similarity<br />

� A single scale ratio, s, defines the relative magnitude of all<br />

linear dimensions between the large and small scale:<br />

H 1<br />

D 1<br />

T 1<br />

C 1<br />

D<br />

D<br />

2 2 2<br />

s � � � �<br />

1<br />

T<br />

T<br />

1<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 14 Stirred Tank Scale-Up<br />

H<br />

H<br />

1<br />

C<br />

C<br />

2<br />

1<br />

H 2<br />

D 2<br />

T 2<br />

C 2


Kinematic & Dynamic Similarity<br />

� Kinematic Similarity<br />

� Velocities at<br />

geometrically similar<br />

positions remain<br />

constant<br />

• Constant tip speed<br />

• Constant superficial<br />

gas velocity<br />

• Constant maximum<br />

liquid velocity in<br />

impeller discharge<br />

� Dynamic Similarity<br />

� Ratio of forces<br />

(dimensionless groups)<br />

remain constant at<br />

different scales<br />

• Beware:<br />

– The relationship<br />

between process<br />

performance and the<br />

dimensionless group<br />

may not be linear!<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 15 Stirred Tank Scale-Up


Process Requirements<br />

� A process may be controlled by one or more of:<br />

� Liquid blending<br />

• reaction<br />

• homogenisation<br />

� Solid-liquid mixing<br />

• solid catalysed reaction<br />

• dispersion<br />

� Gas-liquid mixing<br />

• fermentation<br />

• hydrogenation<br />

� Dispersing immiscible liquid<br />

• reaction<br />

• emulsions<br />

� Heat transfer<br />

� Defining controlling duty is key to successful scale-up!<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 16 Stirred Tank Scale-Up


Scale-Up Rules<br />

� Geometrically similar vessels<br />

� Turbulent regime<br />

Process Rule Constant Parameter<br />

Liquid blending Equal tip speed N � D<br />

Solid suspension Zwietering N js � D 0.85<br />

Solid distribution Equal energy input P / V<br />

Gas-liquid Equal mass transfer P / V (= k La)<br />

Heat transfer Equal Re N � D 2<br />

Fast reactions Equal mixing time N<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 17 Stirred Tank Scale-Up


Scale-Up Decisions<br />

Scale-up experiments and modelling essential!<br />

(1) Constant Mixing Time<br />

(2) Constant P/V<br />

(3) Just suspension<br />

(4) Tip speed<br />

(5) Reynolds number<br />

Note:<br />

• Criteria are mutually exclusive<br />

• On scale-up, impeller speed<br />

goes down<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 18 Stirred Tank Scale-Up


� Mixing design by function<br />

� Principles<br />

Future Multi-Purpose Plants<br />

� Focused diversity by unit<br />

operation<br />

� Multi-flight agitation<br />

� Vessel types<br />

� A: Reactor with work-up<br />

� B: Reactor / crystalliser<br />

� C: Crystalliser<br />

� D: Reactor / hydrogenator<br />

� E: Hydrogenator<br />

� Physical properties determine<br />

process design envelope<br />

� Implemented at GSK<br />

A<br />

B C<br />

E<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 19 Stirred Tank Scale-Up<br />

D


Multiphase Systems Scale-Up<br />

Process Assessment<br />

Scale-down Study<br />

Continuous<br />

Improvement<br />

Plant Supplies Campaign<br />

Scale-up Projection<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 20 Stirred Tank Scale-Up


Process Assessment<br />

� Respiratory portfolio, final stage re-crystallisation<br />

� Important for process success:<br />

� Minimisation of variability on scale-up of “particle forming step”<br />

� Reproducible, narrow particle size distribution<br />

• Homogeneous growth conditions to promote particle uniformity<br />

• Low shear to prevent attrition<br />

� Initial hydro-dynamic simulation of flow profile by CFD for pilot and plant vessels<br />

1500 L Pilot Plant 4000 L Manufacturing<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 21 Stirred Tank Scale-Up


� To determine the effect of<br />

shear & suspension on<br />

particle size & distribution,<br />

which cannot be predicted<br />

through CFD<br />

� 2 L conical base lab reactor<br />

set up to scale-down<br />

manufacturing reactor<br />

Scale-Down Study<br />

� Effect of improved suspension:<br />

� No effect on particle size<br />

� Effect of shear:<br />

� No effect on particle size or<br />

distribution (PSD)<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 22 Stirred Tank Scale-Up


Scale-Up Projection<br />

� Just suspension speed determined experimentally for 2L lab reactor<br />

� CFD multi-phase<br />

simulation based on<br />

experimental stirrer<br />

speed:<br />

� Plant operating impeller speeds recommended to maintain<br />

homogeneous suspension<br />

� Stevenage pilot plant (1500 L): 60-70 RPM<br />

� prevent risk of settling<br />

� provide homogeneous growth conditions<br />

� verify negligible shear effect<br />

Lab, 2 L, 400 RPM Pilot Plant, 1500 L, 60-70 RPM<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 23 Stirred Tank Scale-Up


(P/V)large / (P/V)lab<br />

Plant Supplies Campaign<br />

� Analysis of lab and pilot plant<br />

results by different scale-up<br />

parameters<br />

� solid suspension<br />

� shear<br />

� overall energy input<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Scale-up by constant<br />

mixing time<br />

energy input<br />

solid suspension<br />

shear<br />

heat transfer<br />

Penney Diagram<br />

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04<br />

Vplant / Vlab<br />

� Shear and energy input have<br />

� no effect on particle size<br />

� Increased suspension on scale-up:<br />

� no effect on particle size<br />

� slightly narrower PSD<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 24 Stirred Tank Scale-Up<br />

[microns]


� Extrapolation to Manufacturing:<br />

Process Assessment<br />

Jurong V460 (4000 L), 48 RPM<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 25 Stirred Tank Scale-Up


The Voice of Scale-Up Experience<br />

Do Don’t<br />

Collaborate Add solids to a reaction<br />

Log Evaporate to dryness<br />

Sample Use “all in & heat”<br />

Safety test & review Rely on critical timing<br />

Use test Do hot filtrations<br />

Keep it simple Risk all in one batch<br />

McConville, F. X., CEP 103 (2007) 18-19<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 26<br />

Stirred Tank Scale-Up


As Clear as Mud?<br />

"No one will believe you solved this problem in one day!<br />

We've been working on it for months.<br />

Now, go act busy for a few weeks and I'll let you know<br />

when it's time to tell them."<br />

(R&D supervisor, Minnesota Mining and Manufacturing/3M Corp.)<br />

Dr. Clemens <strong>Brechtelsbauer</strong> Slide 27 Stirred Tank Scale-Up

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!