12.07.2015 Views

Sommerfeld Model Derivation of Schrödinger Equations

Sommerfeld Model Derivation of Schrödinger Equations

Sommerfeld Model Derivation of Schrödinger Equations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Physical ElectronicsLecture 5<strong>Sommerfeld</strong> <strong>Model</strong><strong>Derivation</strong> <strong>of</strong> <strong>Schrödinger</strong> <strong>Equations</strong>Seung-Ki Lee Dankook Univ., School <strong>of</strong> Electrical, Electronic and Computer Eng. 1Mathematical Backgrounds• Operator: definition <strong>of</strong> an operation∂, ∇,∇∂x2• Linear operatorA isa linear operator ifA(Ψ + ϕ)= AΨ + AϕAλΨ= λAΨ( λ is a constant)• Eigenfunction and eigenvalueonly followings are true for arbitrary function Ψ and ϕusually AΨ ( r,t)= ϕ(r,t)but in some cases AU ( r,t)= aU ( r,t)( a is a constant)U is an eigenfunction <strong>of</strong> operator Aa is an eigenvalue <strong>of</strong> eigenfunction U→ddxeix= i ⋅eixSeung-Ki Lee Dankook Univ., School <strong>of</strong> Electrical, Electronic and Computer Eng. 2


Description <strong>of</strong> wave-particle motion2d y 2particle: + w y = 02dt22∂ y 2 ∂ ywave: = v22∂t∂x2( w =fm)start from the solution <strong>of</strong> wave equationy(x,t)= a cos( kx −ωt)→ y(x,t)= a exp[ i(kx −ωt)]using2πmv pk = = 2π=λ h hand2πEω = 2πν= hν=h hwave function Ψ ( x,t)is expressed asp E⇒ Ψ ( x,t)= a exp[ i(x − t)]:wave - particle motionh hSeung-Ki Lee Dankook Univ., School <strong>of</strong> Electrical, Electronic and Computer Eng. 3Time-dependent <strong>Schrödinger</strong> Equationp E• Start from wave function: Ψ ( x,t)a exp[ i(x t)]h− h= )]differentiate both sides for22∂ Ψ p p E= −aexp[ i(x − t)]22∂xh h h∂ΨE p E= −iaexp[ i(x − t)]∂th h h2∂ Ψ h→ −2∂xph−p22h−p222∂ Ψ ∂ΨE − ih= 02∂x∂t1( mv22 2h ∂ Ψ h− −22m∂xp22∂Ψh= −∂tiE2x and t2∂ Ψ ∂Ψ+ V ) − ih= 02∂x∂t222∂ Ψ ∂ΨV − ih= 02∂x∂t22∂ Ψ psince = − Ψ2 2∂xh2 2 2 2h ∂ Ψ h p ∂Ψ→ − − V ( − Ψ ) − ih= 02 2 22m∂xp h ∂t2 2h ∂ Ψ ∂Ψ∴− + VΨ − ih= 022m∂x∂t[Note: Ψ = Ψ ( x,t),V = V ( xTime-dependent <strong>Schrödinger</strong> equationSeung-Ki Lee Dankook Univ., School <strong>of</strong> Electrical, Electronic and Computer Eng. 4


Time-independent <strong>Schrödinger</strong> Equation• Start from time-dependent <strong>Schrödinger</strong> equationusing separation <strong>of</strong> variableslet Ψ ( x,t)= ϕ(x)⋅T( t)22∂ΨdT ∂ Ψ d ϕthen = ϕ , = T22∂tdt ∂xdx2 2h d ϕdT→ − T + VϕT− ihϕ= 022mdxdtdivide by ϕT2 2h d ϕ 1− + V − ih22mϕdx TdTdt= 02 2h d ϕ1− + V [only x]= ih22mϕdxTdTdt[only t]2 2h d ϕ∴− + V = E22mϕdx2 2h ∂ Ψ ∂Ψ− + VΨ − ih= 022m∂x∂ttΨ = ϕT= ϕ(x)exp(constant⋅ )ihcomparingp Ep EΨ = a exp[ i(x − t)]= a exp( i x)exp(−it)h hh h→ constant = E2 2h d ϕ⇒ − + Vϕ= Eϕ[Note: ϕ = ϕ(x)]22mdxthis is possible only when it is a constant1ihTdTdtt= constant → T = exp(constant ⋅ )ihTime-independent <strong>Schrödinger</strong> equationSeung-Ki Lee Dankook Univ., School <strong>of</strong> Electrical, Electronic and Computer Eng. 5Time-independent <strong>Schrödinger</strong> Equation• Operator equation and meaning2 2h d ϕ− + Vϕ= Eϕ22mdx2 2h dHamilton operator (Hamiltonian): H = − + V22mdx→ Hϕ= Eϕϕ : wavefunction <strong>of</strong> an electron2h(in 3- dim. H = − ∇2m2+ V )wavefunction → eigenfunction <strong>of</strong> Hamiltonian, E → eigenvaluesolving Schrodinger equation → finding eigenfunction ϕ <strong>of</strong> Hamiltonian∗ ∗probability <strong>of</strong> finding an electron ϕϕ → ϕϕ ∆V∗∫ ϕϕ dV = 1: normalization <strong>of</strong> wavefunctionSeung-Ki Lee Dankook Univ., School <strong>of</strong> Electrical, Electronic and Computer Eng. 6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!