02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

which allows us to write the first two equations in (5.21) as<br />

� ∂tv − da ∗ (∆xv + ∂ 2 yv) + db ∗ ∇x(p − p|t=0) + 1<br />

3 da ∗ ∇xp = fv − b(∇xp|t=0),<br />

∂tw − da ∗ (∆xw + ∂ 2 yw) + db ∗ ∂y(p − p|t=0) + 1<br />

3 da ∗ ∂yp = fw − b(∂yp|t=0).<br />

(5.56)<br />

Owing to (v, w) ∈ Z and<br />

(∇x(p − p|t=0), ∂y(p − p|t=0)) ∈ (0H κ p (J; Lp(R n+1<br />

+ )))n+1 ,<br />

it is clear that all terms on the left-hand side of (5.56) are functions in the space<br />

Hδa−1 p (J; Lp(R n+1<br />

+ )). Thus<br />

<strong>with</strong><br />

and furthermore<br />

fv = hv + b(∇xp|t=0), fw = hw + b(∂yp|t=0), (5.57)<br />

(hv, hw) ∈ (H δa−1<br />

p (J; Lp(R n+1<br />

+ )))n+1 , (5.58)<br />

(hv, hw)|t=0 ∈ (B<br />

1 1<br />

2(1− − δa pδa )<br />

pp (R n+1<br />

+ ))n+1 . (5.59)<br />

As in the two cases before one can see that (5.14),(5.16),(5.17) are necessary.<br />

We now consider (5.23). Note that in view of (5.57) and (5.58) we have in the<br />

distributional sense<br />

∇x · fv + ∂yfw = ∇x · hv + ∂yhw + b(∆x + ∂ 2 y)p|t=0.<br />

So it follows from (v, w) ∈ Z and (5.49), cp. Theorem 3.3.1, that<br />

and<br />

(∇x · hv + ∂yhw)|t=0 ∈ B<br />

2κ<br />

1+ − δb 2<br />

− δb 2<br />

pδb pp<br />

Turning to gw, observe first that (v, w) ∈ Z and (5.49) entail<br />

Therefore<br />

δb2 +κ−1<br />

∂tp ∈ Hp<br />

(J; Lp(R n+1<br />

δb2 (1−<br />

γ∂tp ∈ B<br />

1<br />

p )+κ−1<br />

pp<br />

as well as<br />

δb2 (1−<br />

γp ∈ B<br />

1<br />

p )+κ<br />

pp<br />

+ )) ∩ Lp(J; H<br />

(J; Lp(R n )) ∩ Lp(J; B<br />

2κ<br />

1+ − δb 2<br />

δb p<br />

(J; Lp(R n )) ∩ H κ p (J; B<br />

(γ∂tp)|t=0 ∈ B η pp(R n ), if η := 1 + 2κ<br />

δb<br />

(R n+1<br />

+ ). (5.60)<br />

(R n+1<br />

+ )), if δb<br />

2 + κ − 1 > 0,<br />

1<br />

1− p<br />

pp (R n )).<br />

2κ<br />

1+ − δb 2<br />

− δb 1<br />

p<br />

pp (R n )), if δb<br />

2<br />

2 2 1<br />

− − − δb pδb p > 0,<br />

1 (1 − p ) + κ > 1,<br />

the latter also being a consequence of (5.60). So we conclude from (5.22) that gw is of<br />

the structure<br />

gw = da ∗ ψ1 + db ∗ ψ2, <strong>with</strong> ψ1 ∈ Y, ψ2 ∈ Yκ, (5.61)<br />

where Yκ is defined as in the previous case, that is<br />

δb2 (1−<br />

Yκ = B<br />

1<br />

p )+κ<br />

pp<br />

(J; Lp(R n )) ∩ H κ p (J; B<br />

93<br />

1<br />

1− p<br />

pp (R n )),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!