02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

It can be written as<br />

where<br />

l(z, ξ) =<br />

ζ(z, ξ) :=<br />

We first study the function k defined by<br />

k(z, τ) =<br />

1<br />

+<br />

â(z)τ 2<br />

�<br />

ζ + 4(1 − κ)√ �<br />

ζ + 1<br />

√ √ (ζ + 2)<br />

ζ + 1 + κζ + 1<br />

−1 , (5.45)<br />

1<br />

, κ(z) :=<br />

â(z)|ξ| 2<br />

4(1 − κ(z))<br />

â(z)τ 2 + 1 + �<br />

� 1<br />

� 1<br />

â(z)τ 2 + 1<br />

1<br />

( ˆb(z)+ 4<br />

3<br />

â(z)<br />

ˆ b(z) + 4<br />

3 â(z).<br />

â(z))τ 2 + 1<br />

, (z, τ) ∈ Σ π<br />

2 +η × Ση.<br />

Remember that both â and ˆ b are analytic functions in C \ R−, since a and b are assumed<br />

to be of type (E).<br />

Lemma 5.3.1 There exist c > 0, η > 0 such that<br />

��<br />

��� 1<br />

|k(z, τ)| ≥ c<br />

â(z)τ 2<br />

� �<br />

�<br />

�<br />

� + 1<br />

, (z, τ) ∈ Σ π<br />

2 +η × Ση. (5.46)<br />

Proof. Let ν = 1/(â(z)τ 2 ). Assume for the moment that z is fixed <strong>with</strong> arg(z) ∈ [0, π/2)<br />

and τ ∈ (0, ∞). Then we have arg(1/ � da(z)) ∈ [0, θa] and arg(1/ � db(z)) ∈ [0, θb]. Now we<br />

examine two cases.<br />

Case 1: arg(1/ � da(z)) ≥ arg(1/ � db(z)). It follows that<br />

� � �<br />

� � �<br />

1<br />

1 ω<br />

1<br />

arg ≤ arg + ≤ arg , ∀ω ≥ 0.<br />

�db(z) �da(z) �db(z) �da(z)<br />

Thus we have<br />

arg(κ) = arg<br />

�<br />

�da(z)<br />

�db(z) + 4<br />

3 � da(z)<br />

�<br />

⎛<br />

= arg ⎝<br />

1<br />

�db(z)<br />

1 4<br />

�da(z)<br />

+ 3<br />

1<br />

�db(z)<br />

⎞<br />

⎠ ≤ 0<br />

as well as arg(1 − κ) ≥ 0. Moreover, it is easy to see that arg(1 − κ) ≤ θa and |κ| < 1.<br />

From arg(1/ � da(z)) ∈ [0, θa] and arg(z) ∈ [0, π/2) we infer that arg(ν) ∈ [0, π/2 + θa).<br />

Since arg(κ) ≤ 0, we have arg(κν) ≤ arg(ν). This together <strong>with</strong> |κν| < |ν| and arg(ν) ≥ 0<br />

implies arg(κν + 1) ≤ arg(ν + 1). Therefore, arg(1 + � (κν + 1)/(ν + 1)) ≤ 0. On the<br />

other hand we have arg(κν) ∈ [0, π/2 + θa), by definition of κ and the inequality<br />

�<br />

0 ≤ arg ( � db(z) + 4<br />

3 � da(z)) −1�<br />

� �<br />

1<br />

≤ arg .<br />

�da(z)<br />

Thus arg(1 + � (κν + 1)/(ν + 1)) ∈ (−(π/4 + θa/2), 0]. By writing<br />

k(z, τ) = ν + 4(1 − κ(z))<br />

89<br />

�<br />

1 +<br />

� �−1 κν + 1<br />

ν + 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!