02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Theorem 3.5.1 Let p ∈ (1, ∞) and X be a Banach space of class HT . Suppose that<br />

a ∈ K1 �<br />

1<br />

(α, θa) <strong>with</strong> α ∈ (0, 2) \ p , �<br />

2 1 3<br />

2p−1 , 1 + p , 1 + 2p−1 and A ∈ BIP(X) <strong>with</strong> power<br />

angle θA. Assume further θa + θA < π. Then the problem (3.27) has a unique solution<br />

in Z if and only if the data f and φ satisfy the following <strong>conditions</strong>.<br />

(i) f ∈ H α p (J; Lp(R+; X));<br />

(ii) φ ∈ B<br />

1<br />

α(1− 2p )<br />

pp<br />

2<br />

2− pα<br />

pp<br />

(J; X) ∩ Lp(J; DA(1 − 1 , p));<br />

(iii) f|t=0 ∈ B (R+; X) ∩ Lp(R+; DA(1 − 1<br />

1<br />

pα , p)), if α > p ;<br />

(iv) f|t=0, y=0 = φ|t=0, if α > 2<br />

2p−1 ;<br />

(v) ∂tf|t=0 ∈ B<br />

1 1<br />

2(1− − α pα )<br />

pp<br />

2p<br />

(R+; X) ∩ Lp(R+; DA(1 − 1<br />

(vi) ∂tf|t=0, y=0 = ˙ φ|t=0, if α > 1 + 3<br />

2p−1 .<br />

If this is the case, then additionally<br />

α<br />

1<br />

1<br />

− pα , p)), if α > 1 + p ;<br />

(vii) f|t=0, y=0, φ|t=0 ∈ DA(1 − 1 1<br />

2p − pα , p), if α > 2<br />

2p−1 ;<br />

(viii) ∂tf|t=0, y=0, φ|t=0<br />

˙ ∈ DA(1 − 1 1 1<br />

3<br />

2p − α − pα , p), if α > 1 + 2p−1 .<br />

Proof. We begin <strong>with</strong> the necessity part. Suppose that u ∈ Z is a solution of (3.27).<br />

Then clearly f = u − a ∗ ∂ 2 yu + a ∗ Au ∈ H α p (J; Lp(R+; X)), i.e. the first condition is<br />

satisfied.<br />

Next we extend u w.r.t. y to all of R by u(t, y) = 3u(t, −y) − 2u(t, −2y), y < 0,<br />

resulting in a function (again denoted by u) that belongs to<br />

H α p (J; Lp(R; X)) ∩ Lp(J; H 2 p(R; X)) ∩ Lp(J; Lp(R; DA)).<br />

Define A as the natural extension of A to Y := Lp(R; X) and let G = −∂ 2 y <strong>with</strong> domain<br />

D(G) = H 2 p(R; X). Then G is sectorial and belongs to the class BIP(Y ) <strong>with</strong> power<br />

angle θG = 0. Since both operators commute in the resolvent sense, Theorem 2.3.1 yields<br />

that<br />

Λ := A + G (3.28)<br />

<strong>with</strong> domain D(Λ) = D(A) ∩ D(G) is sectorial and belongs to BIP(Y ) <strong>with</strong> power angle<br />

θΛ ≤ θA, in particular Λ ∈ RS(Y ) <strong>with</strong> R-angle φ R Λ ≤ θA, by Theorem 2.2.3. It now<br />

follows from Theorem 3.1.4 that u|t=0 ∈ DΛ(1 − 1/pα, p), if α > 1/p. Proposition 2.3.1<br />

gives<br />

DΛ(1 − 1<br />

pα , p) = DG(1 − 1<br />

pα , p) ∩ DA(1 − 1<br />

pα , p)<br />

= B<br />

2<br />

2− pα<br />

pp<br />

(R; X) ∩ Lp(R; DA(1 − 1<br />

pα , p)), (3.29)<br />

which entails the third condition, by restriction to y ∈ R+. If α > 1+1/p, then Theorem<br />

3.1.4 further yields ∂tu|t=0 ∈ DΛ(1 − 1/α − 1/pα, p). By employing Proposition 2.3.1<br />

once more, we get<br />

DΛ(1 − 1 1<br />

α − pα<br />

1<br />

α<br />

, p) = B2(1−<br />

pp<br />

Thus, after restriction to y ∈ R+ we arrive at condition (v).<br />

1<br />

− pα )<br />

(R; X) ∩ Lp(R; DA(1 − 1 1<br />

α − pα , p)). (3.30)<br />

49

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!