02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where we used the assumption s ≥ 2(1/p − γ) for the second summand. Furthermore,<br />

Thus, Theorem 3.1.4 yields<br />

1 + γ<br />

(1−θ)s −<br />

u(0) ∈ (Xθ, DA) 1− 1<br />

1<br />

1<br />

(1−θ)ps = 1 − η .<br />

η , p = (D(Aθ ), D(A)) 1<br />

1− , p, η<br />

which entails, by the reiteration theorem (cf. Amann [5, Section 2.8]),<br />

u(0) ∈ (X, D(A)) 1 1<br />

θ +(1− η η ), p = DA(1 − 1−θ<br />

η , p) = DA(1 + γ 1<br />

s − ps , p).<br />

Hence, u(0) ∈ DA(1 + γ/s − 1/ps, p) is established for all s > 1/p.<br />

Suppose now that s + γ > n + 1/p <strong>with</strong> n ∈ N. If u ∈ Z, then u k (0) exists for all<br />

0 ≤ k ≤ n. Taking θ = 1 − (k − γ)/s in (3.18) shows that<br />

u (k) ∈ H s+γ−k<br />

p (J; X) ∩ Lp(J; D 1−<br />

A k−γ ).<br />

s<br />

k−γ<br />

1− So, <strong>with</strong> B = A s , the above mapping property of the trace operator implies that<br />

u (k) (0) ∈ DB(1 −<br />

1<br />

(s+γ−k)p , p) = D k−γ (1 −<br />

1−<br />

A s<br />

1<br />

(s+γ−k)p , p) = DA(1 + γ k 1<br />

s − s − ps , p),<br />

(3.19)<br />

using once more Theorem 2.2.2.<br />

If we replace in (3.17) and (3.19) the operator A by A s , assuming A ∈ RS(X) and<br />

φ R A < π/s, we see that the composition of Dk t and the trace operator tr<br />

tr ◦ D k t : H s+γ<br />

p<br />

(J; X) ∩ H γ p (J; DAs) → DA(s + γ − k − 1<br />

p , p) (3.20)<br />

is bounded. Thus, by real interpolation, we obtain boundedness of<br />

tr ◦ Dk t : B s+γ<br />

pp (J; X) ∩ H γ p (J; DA(s, p)) → DA(s + γ − k − 1,<br />

p). (3.21)<br />

Strong continuity of the translation group then yields (3.22) and (3.23) in the following<br />

Theorem 3.2.1 Let X be a Banach space of class HT , p ∈ (1, ∞), γ ∈ [0, 1/p), and<br />

s + γ > n + 1/p <strong>with</strong> n ∈ N0. Let further J = [0, T ] or R+, and A be an R-sectorial<br />

operator in X <strong>with</strong> R-angle φR A < π/s. Then for all 0 ≤ k ≤ n,<br />

and<br />

H s+γ<br />

p<br />

(J; X) ∩ H γ p (J; DAs) ↩→ BUCk (J; DA(s + γ − k − 1<br />

p , p)) (3.22)<br />

B s+γ<br />

pp (J; X) ∩ H γ p (J; DA(s, p)) ↩→ BUC k (J; DA(s + γ − k − 1,<br />

p)). (3.23)<br />

The proof of the previous result is inspired by [43]. Theorem 3.2.1 is an extension of [65,<br />

Proposition 3], where κ = 0 and A is assumed to have bounded imaginary powers.<br />

45<br />

p<br />

p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!