02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>with</strong> two positive constants C1, C2 not depending on λ. Therefore, we can estimate η as<br />

follows.<br />

η ≤<br />

� ∞ 1<br />

κ−<br />

C1 sup{(<br />

(s p |â(<br />

σ∈R 1<br />

T<br />

(1+iσ)s<br />

√<br />

1+σ2 )|−1 |A(s α + A) −1 p ds<br />

x|X)<br />

s )1/p } +<br />

� ∞<br />

1<br />

α+κ−<br />

+C2( (s p |A(s α + A) −1 p ds<br />

x|X)<br />

1<br />

T<br />

=: η1 + η2.<br />

s )1/p<br />

As for η2, by employing the change of variables r = sα we get<br />

� ∞ κ 1<br />

1+ −<br />

η2 ≤ C2( (r α pα |A(r + A) −1 p dr<br />

x|X)<br />

( 1<br />

T )α<br />

rα )1/p ≤ ˜ C2|x| DA(1+ κ 1<br />

− , p).<br />

α pα<br />

Concerning η1, there exists C3 > 0 independent of λ such that |â(|λ|) | ≤ C3|â(λ)|, for<br />

all Re λ ≥ 0, λ �= 0, see Lemma 2.6.1. Thus,<br />

� ∞ 1<br />

κ−<br />

η1 ≤ C1C3( (s p |â(s)| −1 |A(s α + A) −1 p ds<br />

x|X)<br />

s )1/p .<br />

1<br />

T<br />

Exploiting the assumption lim infµ→∞ | â(µ)| µ α > 0 for a bound |â(s)| sα ≥ C4 > 0,<br />

1/T ≤ s < ∞, we deduce that<br />

η1 ≤ C1C3<br />

� ∞<br />

1<br />

α+κ−<br />

( (s p |A(s<br />

C4<br />

α + A) −1 p ds<br />

x|X)<br />

s )1/p ,<br />

1<br />

T<br />

i.e. we have the same expression as above for η2, hence the desired estimate follows.<br />

So if x ∈ DA(1 + κ/α − 1/pα, p), then BκAu ∈ Lp(J; X), which is equivalent to Au ∈<br />

Hκ p (J; X) = 0H κ p (J; X), by Corollary 2.8.1. Applying this once more it follows then that<br />

a ∗ Au ∈ 0H α+κ<br />

p (J; X), thus u = x − a ∗ Au ∈ Hα+κ p (J; X). Hence u ∈ Z.<br />

We now prove (3.7). Suppose y ∈ D(A), and put u(·) = (1 ∗ S)(·)y. To show that the<br />

Lp(J; X)-norm of BκAu can be estimated above by the DA(1+κ/α−1/α−1/pα, p)-norm<br />

of y, we use once more the representation of u via Laplace transform. With<br />

(tBκ(1 ∗ S))ˆ(λ) = − d<br />

dλ (Bκ(1 ∗ S))ˆ(λ) = − d<br />

� �<br />

λκ (1 + â(λ)A)−1<br />

dλ λ2 = 2 − κ<br />

λ3−κ (1 + â(λ)A)−1 + 1<br />

λ2−κ â′ (λ)A (1 + â(λ)A) −2<br />

and φ as well as Gκ from above (see (3.8),(3.9)), we have this time<br />

(tBκA(1 ∗ S))ˆ(λ) =<br />

φ(λ) + 1<br />

λ 3 Gκ(λ), Reλ > 0.<br />

By repeating all steps from the first part of the proof, we get<br />

� ∞<br />

1<br />

α+κ−1−<br />

|BκAu| Lp(J;X) ≤ C (s p |A(s<br />

1<br />

T<br />

α + A) −1 p ds<br />

x|X)<br />

s<br />

� ∞ κ<br />

1+<br />

= C (r α<br />

( 1<br />

T )α<br />

1 1<br />

− − α pα |A(r + A) −1 p dr<br />

x|X)<br />

rα ≤ ˜ C|y| DA(1+κ/α−1/α−1/pα, p).<br />

So by approximation, we see that y ∈ DA(1 + κ/α − 1/α − 1/pα, p) implies BκAu ∈<br />

Lp(J; X). As in the first part, we obtain u ∈ Z. �<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!