02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ψ(f, g) ≤ Mρ + |bξ(·, ·, w)|∞, m, f, g ∈ Σ,<br />

M being independent of T because (f − g)|t=0 = 0. Hence the assertion follows <strong>with</strong><br />

µ(T ) = [w] 0,s<br />

(Y 1<br />

1 ) m + T<br />

r−s1+ 1<br />

p . �<br />

By repeating the above considerations <strong>with</strong> the roles of J and Ω being reversed, one<br />

obtains (under the corresponding assumptions, cf. (H4) in Section 6.1) the estimate<br />

�<br />

�<br />

≤ C ρ + µ(T ) + |bξ(·, ·, w)|∞, m<br />

[b(·, ·, f) − b(·, ·, g)] Y 0,s 2<br />

2<br />

We come now to exponents greater than 1.<br />

|f − g| (Y 0,s 1<br />

1<br />

∩Y 0,s2 2 ) m, f, g ∈ Σ.<br />

Lemma 6.2.2 Let w ∈ (Y 1,s1<br />

1 ∩ Y 1,s2<br />

2 ) m be a fixed K-valued function and ρ > 0. Let<br />

further Σ be as described above. Suppose bξ, btξ ∈ L∞(J × Ω × K, Rm ), bξξ ∈ L∞(J ×<br />

Ω × K, Rm×m ), and assume that there exist CHL > 0, r1 ∈ (s1, 1), and Cb ∈ Lp(Ω) such<br />

that<br />

|btξ(t, x, ξ) − btξ(τ, x, η)| ≤ CHL(Cb(x)|t − τ| r1 + |ξ − η|),<br />

|bξξ(t, x, ξ) − bξξ(τ, x, η)| ≤ CHL(|t − τ| r1 + |ξ − η|),<br />

for all t, τ ∈ J, ξ, η ∈ K, and a.a. x ∈ Ω. Then there exists a constant C > 0 not<br />

depending on T and ρ such that<br />

�<br />

�<br />

≤ C ρ + µ(T ) + |bξ(·, ·, w)|∞, m<br />

[b(·, ·, f) − b(·, ·, g)] Y 1,s 1<br />

1<br />

|f − g| (Y 1,s 1<br />

1<br />

∩Y 1,s2 2 ) m, f, g ∈ Σ.<br />

Proof. For brevity we set Y = Y 1,s1<br />

1 ∩ Y 1,s2<br />

2 . Remember that we have the embedding<br />

Y ↩→ Cr (J; C( ¯ Ω)) for some r ∈ (s1, 1). Let now f, g ∈ Σ be arbitrary functions. Put<br />

h1(t, τ, x) = bt(t, x, f(t, x)) − bt(t, x, g(t, x)) − bt(τ, x, f(τ, x)) + bt(τ, x, g(τ, x)),<br />

h2(t, τ, x) = bξ(t, x, f(t, x)) · ft(t, x) − bξ(t, x, g(t, x)) · gt(t, x)<br />

for t, τ ∈ J, and a.a. x ∈ Ω. Then<br />

[b(·, ·, f) − b(·, ·, g)] 1,s<br />

Y 1<br />

1<br />

� T � T �<br />

≤<br />

2�<br />

(<br />

i=1<br />

−bξ(τ, x, f(τ, x)) · ft(τ, x) + bξ(τ, x, g(τ, x)) · gt(τ, x)<br />

0<br />

0<br />

Ω<br />

= (<br />

� T � T<br />

0<br />

0<br />

�<br />

Ω<br />

(|h1(t, τ, x) + h2(t, τ, x)|) p<br />

|t − τ| 1+s1p<br />

|hi(t, τ, x)| p<br />

1<br />

dx dτ dt) p =: I1 + I2.<br />

|t − τ| 1+s1p<br />

dx dτ dt) 1<br />

p<br />

Concerning I1, we may use the estimates from the proof of Lemma 6.2.1, thereby obtaining<br />

�<br />

I1 ≤ C (ρ + |btξ(·, ·, w)|∞, m)[f − g] 0,s<br />

(Y 1<br />

1 ) m �<br />

+ (ρ + µ(T ))|f − g|∞, m<br />

�<br />

�<br />

≤ C<br />

(ρ0 + |btξ|∞, m)µ(T )[f − g] (Cr 1 ) m + M(ρ + µ(T ))|f − g|Y m<br />

≤ C(ρ + µ(T ))|f − g|Y m.<br />

The term I2 is more sophisticated. We employ the identity<br />

aA − bB − cC + dD = (a − b − c + d)D + (−a + b + c)(A − B − C + D) +<br />

106

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!