02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

for all t, τ ∈ J, ξ, η ∈ K, and a.a. x ∈ Ω. Then there exists a constant C > 0 not<br />

depending on T and ρ such that<br />

�<br />

�<br />

≤ C ρ + µ(T ) + |bξ(·, ·, w)|∞, m<br />

[b(·, ·, f) − b(·, ·, g)] Y 0,s 1<br />

1<br />

Proof. Let f and g be arbitrary functions in Σ. Put<br />

|f − g| (Y 0,s 1<br />

1<br />

∩Y 0,s2 2 ) m, f, g ∈ Σ.<br />

h(t, τ, x) = b(t, x, f(t, x)) − b(t, x, g(t, x)) − b(τ, x, f(τ, x)) + b(τ, x, g(τ, x))<br />

for t, τ ∈ J, and a.a. x ∈ Ω. Then<br />

[b(·, ·, f) − b(·, ·, g)] Y 0,s 1<br />

1<br />

� T � T �<br />

= (<br />

0 0 Ω<br />

|h(t, τ, x)| p<br />

1<br />

dx dτ dt) p .<br />

|t − τ| 1+s1p<br />

Letting φ(t, τ, x, θ) = bξ(t, x, g(τ, x) + θ(f(τ, x) − g(τ, x))), t, τ ∈ J, x ∈ Ω, θ ∈ [0, 1], we<br />

write<br />

h(t, τ, x) =<br />

=<br />

� 1<br />

0<br />

� 1<br />

0<br />

� 1<br />

+<br />

φ(t, t, x, θ) dθ · (f(t, x) − g(t, x))−<br />

� 1<br />

φ(t, t, x, θ) dθ · (f(t, x) − f(τ, x) − g(t, x) + g(τ, x))+<br />

0<br />

(φ(t, t, x, θ) − φ(τ, τ, x, θ)) dθ · (f(τ, x) − g(τ, x)).<br />

0<br />

φ(τ, τ, x, θ) dθ · (f(τ, x) − g(τ, x))<br />

With ψ(f, g) := ess sup{|φ(t, t, x, θ)| : t ∈ J, x ∈ Ω, θ ∈ [0, 1]}, we therefore have<br />

|h(t, τ, x)| ≤ ψ(f, g)|f(t, x) − f(τ, x) − g(t, x) + g(τ, x)| +<br />

� � 1<br />

+ ((1 − θ)|g(t, x) − g(τ, x)| + θ|f(t, x) − f(τ, x)|) dθ +<br />

CHL<br />

0<br />

+CHLCb(x)|t − τ| r�<br />

· |f(τ, x) − g(τ, x)|<br />

≤ ψ(f, g)|f(t, x) − f(τ, x) − g(t, x) + g(τ, x)| + CHL|f − g|∞ ·<br />

·(|f(t, x) − f(τ, x)| + |g(t, x) − g(τ, x)| + Cb(x)|t − τ| r )<br />

for all t, τ ∈ J, and a.a. x ∈ Ω. On the whole we thus find that<br />

[b(·, ·, f) − b(·, ·, g)] Y 0,s 1<br />

1<br />

≤ ψ(f, g)[f − g] (Y 0,s 1<br />

1<br />

+[g] 0,s<br />

(Y 1<br />

1 ) m + |Cb| Lp(Ω)(<br />

= ψ(f, g)[f − g] (Y 0,s 1<br />

1<br />

+[g] 0,s<br />

(Y 1<br />

1 ) m + |Cb| Lp(Ω)C1T<br />

where C1 = 2 1/p [(r − s1)p(1 + (r − s1)p)] −1/p .<br />

Y 0,s1<br />

1<br />

�<br />

[f] 0,s<br />

(Y 1<br />

1 ) m +<br />

) m + CHL|f − g|∞, m<br />

� T � T dτ dt<br />

� 1<br />

) p<br />

0 0 |t − τ| 1+(s1−r)p<br />

�<br />

) m + CHL|f − g|∞, m<br />

r−s1+ 1<br />

p<br />

�<br />

,<br />

[f] 0,s<br />

(Y 1<br />

1 ) m +<br />

By definition of Σ, the Lipschitz estimate for bξ, and in view of the embedding<br />

↩→ C(J; C( ¯ Ω)), we have the inequalities<br />

∩ Y 0,s2<br />

2<br />

[f − g]∞, m ≤ M|f − g| 0,s<br />

(Y 1<br />

1 ∩Y 0,s2 2 ) m, [f] 0,s<br />

(Y 1<br />

1 ) m + [g] 0,s<br />

(Y 1<br />

1 ) m ≤ 2(ρ + [w] 0,s<br />

(Y 1<br />

1 ) m),<br />

105

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!