02.12.2012 Views

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

Quasilinear parabolic problems with nonlinear boundary conditions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(d) bD ∈ C(J0 × ΓD × U0), ∃Cb1 ∈ Lp(ΓD), Cb1 ≥ 0, ∃Cb2 ∈ Lp(J), Cb2 ≥ 0, and<br />

∃σ2 > 1 − 1<br />

p such that in case κ < 1: ∃σ1 > κ s.t.<br />

|b D xΓ (t, x, ξ) − bD xΓ (t, ¯x, ξ)| ≤ Cb2 (t)|x − ¯x|σ2 , (6.12)<br />

|b D ξ (t, x, ξ) − bD ξ (¯t, x, ξ)| ≤ Cb1 (x)|t − ¯t| σ1 ,<br />

|b D xΓξ (t, x, ξ) − bD xΓξ (t, ¯x, ¯ ξ)| ≤ Cb2 (t)|x − ¯x|σ2 + C|ξ − ¯ ξ|, (6.13)<br />

|b D ξξ (t, x, ξ) − bD ξξ (t, ¯x, ¯ ξ)| ≤ C(|x − ¯x| σ2 + |ξ − ¯ ξ|),<br />

and in case κ > 1: ∃σ1 > κ − 1 s.t. (6.12), (6.13),<br />

|b D t (t, x, ξ) − b D t (¯t, x, ξ)| ≤ Cb1 (x)|t − ¯t| σ1 ,<br />

|b D tξ (t, x, ξ) − bD tξ (¯t, x, ¯ ξ)| ≤ Cb1 (x)|t − ¯t| σ1 + C|ξ − ¯ ξ|,<br />

|b D ξξ (t, x, ξ) − bD ξξ (¯t, ¯x, ¯ ξ)| ≤ C(|t − ¯t| σ1 + |x − ¯x| σ2 + |ξ − ¯ ξ|),<br />

all these inequalities being true for t, ¯t ∈ J0, x, ¯x ∈ ΓD, ξ, ¯ ξ ∈ U0; each of the<br />

derivatives of b D occurring above is Carathéodory and essentially bounded on<br />

J0 × ΓD × U0;<br />

(e) bN ∈ C(J0×ΓN ×U), bN ζ ∈ L∞(J0×ΓN ×U; Rn+1 ) is Carathéodory, ∃Cb1 ∈ Lp(ΓN),<br />

, s.t.<br />

Cb1 ≥ 0, ∃Cb2 ∈ Lp(J), Cb2 ≥ 0, ∃σ1 > (1 + α)( 1 1<br />

2 − 2p ), ∃σ2 > 1 − 1<br />

p<br />

|b N (t, x, ζ) − b N (¯t, ¯x, ζ)| ≤ Cb1 (x)|t − ¯t| σ1 + Cb2 (t)|x − ¯x|σ2 ,<br />

|b N ζ (t, x, ζ) − bN ζ (¯t, ¯x, ¯ ζ)| ≤ Cb1 (x)|t − ¯t| σ1 + Cb2 (t)|x − ¯x|σ2 + C|ζ − ¯ ζ|,<br />

t, ¯t ∈ J0, x, ¯x ∈ ΓN, ζ, ¯ ζ ∈ U;<br />

(H4) (initial data): u0 ∈ Y0; u1 ∈ Y1, if α > 1<br />

p (u1(x) := f(0, x, u0(x), ∇u0(x)), x ∈ Ω);<br />

f(·, ·, u0(·), ∇u0(·)), g(·, ·, u0(·), ∇u0(·)) ∈ X T0 .<br />

(H5) (compatibility): (u0(x), ∇u0(x)) ∈ U0 × U1, x ∈ Ω;<br />

b D (0, x, u0(x)) = 0, x ∈ ΓD;<br />

b N (0, x, u0(x), ∇u0(x)) = 0, x ∈ ΓN;<br />

b D t (0, x, u0(x)) + b D ξ (0, x, u0(x))u1(x) = 0, x ∈ ΓD, if α > 3<br />

2p−1 ;<br />

(H6) (ellipticity): a(0, x, u0(x), ∇u0(x)) ∈ Sym{n}, x ∈ Ω; ∃c0 > 0 s.t.<br />

(H7) (normality):<br />

We have now the following result.<br />

a(0, x, u0(x), ∇u0(x))ϱ · ϱ ≥ c0|ϱ| 2 , x ∈ Ω, ϱ ∈ R n ;<br />

b D ξ (0, x, u0(x)) �= 0, x ∈ ΓD;<br />

b N η (0, x, u0(x), ∇u0(x)) · ν(x) �= 0, x ∈ ΓN.<br />

Theorem 6.1.1 Suppose that the assumptions (H1)-(H7) are satisfied. Let φ ∈ Z T0 be<br />

as above, and assume that ρ ≤ ρ1. Then there exists T3 ∈ (0, T2] such that for each<br />

T ∈ (0, T3] the following statements hold:<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!