chemistry and surface chemistry of vessels in ... - Revista O Papel

chemistry and surface chemistry of vessels in ... - Revista O Papel chemistry and surface chemistry of vessels in ... - Revista O Papel

revistaopapel.org.br
from revistaopapel.org.br More from this publisher

Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012<strong>and</strong> reported that the lign<strong>in</strong> contents <strong>of</strong> the fibres <strong>and</strong> <strong>vessels</strong> were0.19-0.22 g/g <strong>and</strong> 0.24-0.28 g/g respectively. They found that thefibre secondary wall conta<strong>in</strong>ed mostly syr<strong>in</strong>gyl lign<strong>in</strong>, while thevessel secondary wall conta<strong>in</strong>ed mostly guaiacyl lign<strong>in</strong>.A histochemical study on heterogeneity <strong>of</strong> lign<strong>in</strong> <strong>in</strong> eucalyptusspecies by Watanabe et al., (2004) correlates with the results fromFergus <strong>and</strong> Gor<strong>in</strong>g (1970). The fibre cell walls <strong>of</strong> E. camaldulensisconta<strong>in</strong> both guaiacyl <strong>and</strong> syr<strong>in</strong>gyl units, vessel walls conta<strong>in</strong>mostly guaiacyl units. Fibres <strong>in</strong> E. globulus conta<strong>in</strong> ma<strong>in</strong>ly syr<strong>in</strong>gylunits, while vessel walls conta<strong>in</strong> both guaiacyl <strong>and</strong> syr<strong>in</strong>gyl units.There are other authors, as well, show<strong>in</strong>g that the vessel walls <strong>in</strong>hardwood species conta<strong>in</strong> mostly guaiacyl lign<strong>in</strong> units (Alves, 2005;Tateishi et al., 2004; Musha et al., 1975). Tateishi et al. (2004) add,anyway, that assumption <strong>of</strong> the real significance <strong>of</strong> extracted lign<strong>in</strong>fragments to vessel morphology is difficult, s<strong>in</strong>ce lign<strong>in</strong> pyrolysismechanism is not yet clear.The proportions <strong>of</strong> vessel, fibres <strong>and</strong> parenchyma cells differamong hardwoods species. In most species the fibres contributeapproximately 50% or more <strong>of</strong> the total wood volume, <strong>and</strong> are thema<strong>in</strong> constituents <strong>of</strong> the hardwood pulps (Ilvessalo-Pfäffi, 1995).But not only the proportions differ, the morphology <strong>of</strong> these“build<strong>in</strong>gs blocks” varies depend<strong>in</strong>g on the species or habitat. Forexample: the mean fibre length <strong>of</strong> oak species ranges between1.10 <strong>and</strong> 1.35 mm <strong>and</strong> that <strong>of</strong> Mediterranean shrubs between0.56 <strong>and</strong> 0.82 mm. The mean values <strong>of</strong> vessel dimensions ranges0.22–0.31 mm (vessel length) <strong>and</strong> 0.080–0.087 mm (vesseldiameter) for oaks <strong>and</strong> 0.19–0.40 mm (vessel length) <strong>and</strong> 0.033–0.043 mm (vessel diameter) for Mediterranean shrubs. With<strong>in</strong>treevariations <strong>in</strong> the eucalyptus vessel morphology can be alsonotable, e.g. the average radial diameter <strong>in</strong> E. camaldulensis isapproximately 0.134 mm, while <strong>in</strong> E. globulus the same valueis 0.159 mm. In E. camaldulensis the vessel frequency is also muchhigher compared with E. Globulus: 13.85 per mm 2 <strong>and</strong> 8.65 per mm 2respectively (Ohshima, 2004). Accord<strong>in</strong>g to the results from Onaet al., (2004) by Raman spectroscopy the vessel elements <strong>in</strong> E.camaldulensis are shorter than <strong>in</strong> E. Globulus: 0.204 mm <strong>and</strong>0.240 mm, respectively.Ona et al., (2001) performed an <strong>in</strong>vestigation <strong>of</strong> relationshipsbetween cell <strong>and</strong> kraft pulp properties <strong>in</strong> Eucalyptus camaldulensis<strong>and</strong> Eucalyptus globulus by exam<strong>in</strong>ation <strong>of</strong> with<strong>in</strong>-tree propertyvariations. They found that the characteristics <strong>of</strong> the ray <strong>and</strong>axial parenchyma have a significant <strong>in</strong>fluence on pulp properties,but all cell types are important for predict<strong>in</strong>g pulp properties.In E. camaldulensis cell length relates to burst factor, break<strong>in</strong>glength, fold<strong>in</strong>g endurance <strong>and</strong> Kappa number, while <strong>in</strong> E. globulusto sheet density <strong>and</strong> fold<strong>in</strong>g factor. Proportions <strong>of</strong> ray <strong>and</strong>axial parenchyma (not <strong>vessels</strong>) correlate with almost all pulpproperties <strong>in</strong> E. Camaldulensis, <strong>and</strong> <strong>in</strong> E. globulus with pulp yield,kappa number <strong>and</strong> unbleached brightness (Ona et al., 2001). Wallthickness <strong>of</strong> fibres, parenchyma cells <strong>and</strong> <strong>vessels</strong> are importantfactors for pulp properties <strong>in</strong> E. camaldulensis. In E. globulusvessel <strong>and</strong> cell wall thickness are significantly related to tearfactor <strong>and</strong> kappa number. Vessel wall thickness is more importantthan axial parenchyma wall thickness (Ona et al., 2001). Therelationships between diameters <strong>of</strong> fibres or <strong>vessels</strong> <strong>and</strong> pulpproperties have a major species divergence. Tear factor relatesto fibre radial <strong>and</strong> average diameters <strong>in</strong> E. camaldulensis, <strong>and</strong>to vessel radial <strong>and</strong> average diameters <strong>in</strong> E. globulus. Pulp yieldrelates to fibre lumen diameter <strong>in</strong> E. camaldulensis <strong>and</strong> to vesseltangential <strong>and</strong> average diameters <strong>in</strong> E. globulus. Unbleachedbrightness <strong>and</strong> kappa number relates to fibre lumen diameter <strong>in</strong>E. camaldulensis, <strong>and</strong> to vessel <strong>and</strong> fibre tangential <strong>and</strong> averagediameters <strong>in</strong> E. globulus (Ona et al., 2001).Radial/tangential diameter ratio <strong>of</strong> vessel is related to paperstrength <strong>in</strong> E. globulus <strong>and</strong> the <strong>vessels</strong> are notably larger <strong>in</strong> diameterthan those <strong>of</strong> E. camaldulensis. Vessel percentage is only 11% (w/w)<strong>in</strong> E. Globulus (15% <strong>in</strong> E. Camaldulensis), thus, the <strong>in</strong>dividual cellstrength cannot be so important. Bond<strong>in</strong>g between <strong>vessels</strong> <strong>and</strong> fibresis considered to be very central because <strong>vessels</strong>, which have largerradial/tangential ratios, will fold easier <strong>and</strong> make more contacts withthe fibres dur<strong>in</strong>g press<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g (Ona et al., 2001).The effects <strong>of</strong> pulp<strong>in</strong>g are diverse at fibre <strong>chemistry</strong> <strong>and</strong> fibre<strong>surface</strong> <strong>chemistry</strong> levels. At the <strong>surface</strong> <strong>chemistry</strong> level, pulp<strong>in</strong>g canbe categorised as a process <strong>in</strong> which carbohydrates are exposedwith concomitant lign<strong>in</strong> removal, <strong>in</strong>creas<strong>in</strong>g the work <strong>of</strong> adhesionwith water. The extractives play different roles at the fibre <strong>chemistry</strong><strong>and</strong> <strong>surface</strong> <strong>chemistry</strong> levels. These low molar mass componentsare removed dur<strong>in</strong>g pulp<strong>in</strong>g <strong>and</strong> subsequently redeposited on the<strong>surface</strong> (Fardim <strong>and</strong> Duran, 2002, 2004, 2005). When Fergus <strong>and</strong>Gor<strong>in</strong>g (1970) exam<strong>in</strong>ed the distribution <strong>of</strong> lign<strong>in</strong> <strong>in</strong> birch wood theyfound that the vessel tori disappeared <strong>in</strong> the <strong>in</strong>itial stages <strong>of</strong> kraftpulp<strong>in</strong>g. But generally little work has been reported <strong>of</strong> the effect <strong>of</strong>kraft cook<strong>in</strong>g on the vessel elements. More attention has been put onthe <strong>in</strong>vestigations <strong>of</strong> pulp<strong>in</strong>g effects on the fibres <strong>and</strong> relationshipsbetween cell <strong>and</strong> pulp properties.In this work, we <strong>in</strong>vestigate the effects <strong>of</strong> cook<strong>in</strong>g <strong>and</strong> bleach<strong>in</strong>gon <strong>chemistry</strong> <strong>and</strong> <strong>surface</strong> <strong>chemistry</strong> <strong>of</strong> eucalyptus vessel elementsus<strong>in</strong>g advanced methods <strong>of</strong> chemical <strong>and</strong> <strong>surface</strong> chemical analyses.EXPERIMENTALSampl<strong>in</strong>gThe eucalyptus pulp samples, E. gr<strong>and</strong>is <strong>and</strong> E. dunnii mixtures,were collected from different po<strong>in</strong>ts at the fibre l<strong>in</strong>e <strong>in</strong> two F<strong>in</strong>nishpulp mills. The taken samples were chips, blow l<strong>in</strong>e, O 2, ZD 0/D 0<strong>and</strong>pulp sheets. Pulps were washed with distilled <strong>and</strong> deionised water<strong>and</strong> then centrifuged to dry matter content <strong>of</strong> approx. 30%.Vessel separationThe separation method is based on flotation followed byselective separation by size exclusion. 30 g (o.d.) pulp wasdis<strong>in</strong>tegrated, filtered <strong>in</strong>to a pad <strong>and</strong> air-dried for three days.66 <strong>Revista</strong> O <strong>Papel</strong> - setembro/September 2012


Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012After the dry<strong>in</strong>g, a fraction <strong>of</strong> the pad was put <strong>in</strong> deionizedwater at 60˚C for 20 m<strong>in</strong> <strong>and</strong> then allowed to settle. A fractionrich <strong>in</strong> parenchyma could be collected from the water <strong>surface</strong>.The pulp fraction conta<strong>in</strong><strong>in</strong>g fibres <strong>and</strong> <strong>vessels</strong> was poured <strong>in</strong>tothe Åbo Akademi (ÅA) separation jar equipped with a screen sothat the <strong>in</strong>put consistency was 1% <strong>in</strong> the 2 litres jar. At first, thefibre bundles were collected from a wire <strong>of</strong> 15 mesh, <strong>and</strong> thenvessel elements <strong>and</strong> fibres were separated from each other witha screen with 80 μm net. Deionized water <strong>in</strong> a closed system wasused dur<strong>in</strong>g the whole separation process. The separation processwas monitored by light microscopy.Acid hydrolysisThe amount <strong>of</strong> cellulose was determ<strong>in</strong>ed by acid hydrolysis(Sundberg et al., 1996). Some modifications were <strong>in</strong>serted to themethod. Approximately 10 mg with 0.01 mg accuracy <strong>of</strong> extracted,freeze-dried pulp sample was weighted <strong>in</strong> a test tube. Parallelsamples <strong>of</strong> each vessel fraction <strong>and</strong> cotton l<strong>in</strong>ter for calibration wereanalysed. In the primary hydrolysis 0.2 mL <strong>of</strong> 72% sulphuric acid(H 2SO 4) was added, <strong>and</strong> the test tubes were <strong>in</strong> a vacuum oven for 2hours. 0.5 mL <strong>of</strong> deionised water was added <strong>and</strong> the sample was keptat room temperature for 4 hours, after which 6.0 mL deionised waterwas added. The secondary hydrolysis was performed by autoclav<strong>in</strong>gat 125°C for 90 m<strong>in</strong>. 1 mL <strong>of</strong> <strong>in</strong>ternal st<strong>and</strong>ard conta<strong>in</strong><strong>in</strong>g 5 mgm -1 sorbitol was added. 1 mL <strong>of</strong> hydrolysate was evaporated undernitrogen gas flow <strong>and</strong> silylated with a silylation solution conta<strong>in</strong><strong>in</strong>g80 μL pyrid<strong>in</strong>e, 170 μL hexamethyldisilazane (HMDS) <strong>and</strong> 70 μLtrimethylchlorosilane (TMCS). The silylated sample was analysedwith GC the next day.Py-GC-MSThe identification <strong>of</strong> lign<strong>in</strong> components was performed us<strong>in</strong>g a HP6890-5973 GC-MSD <strong>in</strong>strument (GC-MS) equipped with Pyrola 2000(foil pulse pyrolyzer). Pyrolysis temperature/time was 650°C/2000ms, <strong>and</strong> GC column was HP-1 25 m, 0.20 mm i.d., 0.11 μm filmthickness. Helium was used as a carrier gas with constant flow <strong>of</strong> 0.8mL/m<strong>in</strong>, split flow was 20 mL/m<strong>in</strong>. Injector temperature was 260°C.Oven temperature program was 50°C (0.5 m<strong>in</strong>) – 300°C, at 8°C/m<strong>in</strong>heat<strong>in</strong>g rate. MS ionisation mode was EI at 70 eV electron energy.FE-SEMThe ultrastructures <strong>of</strong> vessel elements were analysed by FE-SEM (Field Emission - Secondary Electron Microscopy). FE-SEManalyzes the <strong>surface</strong>s <strong>of</strong> solid samples <strong>and</strong> produces images <strong>of</strong>higher resolution than optical microscopy. Secondary electrons aregenerated by an electron beam, which is scanned across the sample<strong>surface</strong>. Secondary electron imag<strong>in</strong>g reveals the <strong>surface</strong> topography<strong>and</strong> backscattered imag<strong>in</strong>g expose the distribution <strong>of</strong> compounds orelements <strong>in</strong> 10 nm depth on the <strong>surface</strong>. The vessel elements wereplaced on an alum<strong>in</strong>ium folio <strong>and</strong> attached to the sample holder, <strong>and</strong>coated with the Agar scientific coater for 10 seconds with Au/Pd.AFMThe SPM (Scann<strong>in</strong>g Probe Microscopy) <strong>in</strong>clud<strong>in</strong>g high spatialresolution AFM (Atomic Force Microscopy) enables to achievedetailed 3-dimensional data about <strong>surface</strong> topography. The<strong>surface</strong> images were recorded with a NanoScope IIIa SPM(Digital Instruments, Santa Barbara, Calif., USA) equipped withan extender electronics module, which enables phase imag<strong>in</strong>g <strong>in</strong>the tapp<strong>in</strong>g mode. In the tapp<strong>in</strong>g mode, silicon cantilevers (noAl) with a resonance fequency <strong>of</strong> f0 = 327,91 Hz was used. Afterengag<strong>in</strong>g, the retrace <strong>and</strong> trace signals were set to be identical.Scan rate was 1.2-1.8 Hz. All images were measured <strong>in</strong> air <strong>and</strong> n<strong>of</strong>ilter<strong>in</strong>g was used dur<strong>in</strong>g scann<strong>in</strong>g. Scan size was 2 μm x 2 μm,<strong>and</strong> the resonance frequency <strong>of</strong> the cantilever was 328 Hz (=f0).The cantilever was <strong>of</strong> type NSC15/no Al. Three different vesselelements were measured from each sample.XPSThe vessel fractions were acetone/water (9:1 v/v) extracted.A physical electronics Quantum 2000 <strong>in</strong>strument us<strong>in</strong>g amonochromatic Al K X-ray source operat<strong>in</strong>g at 25 W withtake-<strong>of</strong>f angle 45° was used to obta<strong>in</strong> X-ray photoelectronspectra <strong>of</strong> <strong>surface</strong>s <strong>of</strong> the vessel elements. Pass energy forlow-resolution mode was 187 eV, step 0.8 eV, <strong>and</strong> measur<strong>in</strong>gtime was 10 m<strong>in</strong>. For high resolution mode the pass energywas 23.5 eV, step 0.1 eV, <strong>and</strong> exposure time was 20 m<strong>in</strong>. C 1scurve fitt<strong>in</strong>g C1 reference was 284.8 <strong>and</strong> Shirley backgroundwas used. Low resolution XPS (X-ray photoelectronspectroscopy) was applied to def<strong>in</strong>e the elemental <strong>surface</strong>composition <strong>and</strong> for calculations <strong>of</strong> O/C ratios. C 1s spectrawere recorded us<strong>in</strong>g high-resolution XPS.Methylene blue sorptionA 60 mM barbital buffer mother solution was prepared bydissolv<strong>in</strong>g 2.763 g <strong>of</strong> pure 5-5 diethylbarbituric acid <strong>in</strong> about225 mL <strong>of</strong> deionised water <strong>and</strong> add<strong>in</strong>g 5 mL <strong>of</strong> 2 M NaOH <strong>and</strong>filled to 250 mL. The methylene blue solution was preparedby dissolv<strong>in</strong>g 1.128 g <strong>of</strong> 3,7-bis-(dimethylam<strong>in</strong>o)phenothiaz<strong>in</strong>-5-ium chloride (C16H18CIN3S) powder <strong>in</strong> 200 mL deionisedwater, add<strong>in</strong>g 10 mL <strong>of</strong> barbital mother solution, <strong>and</strong> fill<strong>in</strong>g to1000 mL with deionised water. About 20 mg <strong>of</strong> each o.d. vesselrich fractions were transferred <strong>in</strong>to two flasks, <strong>and</strong> differentvolumes <strong>of</strong> methylene blue solutions were added. Eachmixture, <strong>in</strong>clud<strong>in</strong>g a blank sample, was allowed to react for 20m<strong>in</strong> under cont<strong>in</strong>uous stirr<strong>in</strong>g. The samples were then filtered<strong>and</strong> the filtrate was analyzed by ultraviolet spectroscopy at664 nm aga<strong>in</strong>st a blank barbital buffer solution. A calibrationcurve was made by dilut<strong>in</strong>g different volumes (0.1 mL, 0.2 mL,0.5 mL, 1 mL <strong>and</strong> 2 mL) <strong>of</strong> methylene blue solution to 50 mL<strong>and</strong> measur<strong>in</strong>g the absorbance. The filtered vessel fractionswere air dried <strong>and</strong> preserved for XPS analyses (Fardim et al.,2005, Orbl<strong>in</strong> et al., 2012).setembro/September 2012 - <strong>Revista</strong> O <strong>Papel</strong>67


Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012RESULTSVessel separationDur<strong>in</strong>g separation, fibres <strong>and</strong> parenchyma cells were removedextensively, but long fibres rema<strong>in</strong>ed <strong>in</strong> some extent <strong>in</strong> the vesselrichfractions (see Figure 1). A vessel element to fibre ratio <strong>of</strong> 2:1was achived.The <strong>surface</strong> <strong>of</strong> the vessel element is more damaged <strong>in</strong> the B. Thearrangements <strong>of</strong> the micr<strong>of</strong>ibril aggregates are sparser <strong>and</strong> anoriented layer beneath those is <strong>in</strong> more evidence.The AFM images shown <strong>in</strong> Figure 4 represent also <strong>surface</strong>structures <strong>of</strong> vessel element after blow l<strong>in</strong>e stage. The phaseimages resolve the micr<strong>of</strong>ibril aggregates. It can be observedthat the <strong>surface</strong> <strong>of</strong> a vessel element is composed ma<strong>in</strong>ly <strong>of</strong>cellulose. The micr<strong>of</strong>ibril aggregates are oriented <strong>in</strong> some extent<strong>in</strong> A. In the B sample can be observed that the <strong>surface</strong> is moregranulated than <strong>in</strong> the correspond<strong>in</strong>g A <strong>surface</strong>. The granulesare perhaps extractives, which are removed <strong>in</strong> the subsequentprocess steps (see Figure 4).Figure 1. Vessel-rich fractions separated from a pulp sheet sampleBlow L<strong>in</strong>e ABlow L<strong>in</strong>e BVessel morphology <strong>and</strong> nanostructureThe ultrastructure <strong>of</strong> vessel elements was <strong>in</strong>vestigated by FE-SEM.Images from a wood cross section <strong>and</strong> <strong>in</strong>side the vessel elementshow the vestures <strong>in</strong> the region <strong>of</strong> the pits (see Figure 2). The pitswere supposedly covered by nutrients: calcium salts, oxalates orextractives that are removed dur<strong>in</strong>g the pulp<strong>in</strong>g processes.Figure 4. AFM pictures from the <strong>surface</strong>s <strong>of</strong> blow l<strong>in</strong>e samples.Scan size 2 μm x 2 μm, resonance frequency <strong>of</strong> the cantilever = f0 = 328 Hz,cantilever type NSC15/no AlFigure 2. FE-SEM imag<strong>in</strong>g show<strong>in</strong>g the vestures <strong>in</strong> the pits regionBlow l<strong>in</strong>eIn Figure 3 can be observed that the fibril aggregates <strong>in</strong> theA sample are not oriented <strong>in</strong> same extent as <strong>in</strong> the B sample.OxygenCompared to blow l<strong>in</strong>e, the structures <strong>of</strong> fibrils are more open<strong>and</strong> longer distances between them are observed. Different cell walllayers are apparent.O 2ABlow L<strong>in</strong>e AO 2BBlow L<strong>in</strong>e BFigure 5. The cell wall <strong>of</strong> a vessel element after oxygen stageFigure 3. FE-SEM imag<strong>in</strong>g from the <strong>surface</strong> <strong>of</strong> two vessel elements afterblow l<strong>in</strong>e stage. The layer<strong>in</strong>g is obvious <strong>in</strong> both illustrationsZD 0<strong>and</strong> D 0After ozone treatment the <strong>surface</strong> <strong>of</strong> a vessel element seems tobe very clean. Some unoriented micr<strong>of</strong>ibrils can be still observed top68 <strong>Revista</strong> O <strong>Papel</strong> - setembro/September 2012


Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012on more oriented layer (see A <strong>in</strong> Figure 6). The pits are surroundedby fibril aggregates (B <strong>in</strong> Figure 6) <strong>and</strong> an open layer is observed.These fibril aggregates can be also remnants from a preced<strong>in</strong>g wallor formed dur<strong>in</strong>g cook<strong>in</strong>g.ZD 0Athe secondary wall appears to be oriented. Although the vesselelements have passed through the whole fibre l<strong>in</strong>e, they are entire<strong>and</strong> unbroken at the end <strong>of</strong> the fibre l<strong>in</strong>e.Sheet AD 0BSheet BFigure 6. FE-SEM picture show<strong>in</strong>g the orientation <strong>of</strong> micr<strong>of</strong>ibril aggregatesFigure 7. FE-SEM imag<strong>in</strong>g show<strong>in</strong>g the <strong>surface</strong> <strong>of</strong> vessel elements thathas passed through the whole fibre l<strong>in</strong>ePulp sheetThe micr<strong>of</strong>ibril aggregates <strong>of</strong> mach<strong>in</strong>e dried vessel elements aremore oriented compared to <strong>surface</strong>s from earlier stages. It can beassumed that the outermost (primary) wall is completely gone <strong>and</strong>Cellulose contentThe amounts <strong>of</strong> cellulose for eucalyptus chips <strong>and</strong> vessel fractionsare presented on Figures 8 <strong>and</strong> 9. The cellulose contents for chipsare <strong>in</strong> agreement with the published results (Patt et al., 2006; NetoFigure 8. Cellulose content <strong>of</strong> wood chips <strong>and</strong> vessel rich fractions <strong>in</strong> % <strong>of</strong> o.d. pulpFigure 9. Cellulose content <strong>of</strong> wood chips <strong>and</strong> vessel rich fractions <strong>in</strong> % <strong>of</strong> o.d. pulpsetembro/September 2012 - <strong>Revista</strong> O <strong>Papel</strong>69


Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012et al., 2004). The higher amounts <strong>of</strong> cellulose <strong>in</strong> the vessel fractionsare due to the removal <strong>of</strong> other wood components dur<strong>in</strong>g the pulp<strong>in</strong>g<strong>and</strong> bleach<strong>in</strong>g processes. The cellulose content for vessel fractionsBL, O 2<strong>and</strong> ZD 0/D 0are similar consider<strong>in</strong>g the st<strong>and</strong>ard deviations.The vessel fractions for sheets have the highest content <strong>of</strong> cellulose,<strong>and</strong> the content is higher when compared with ECF bleached fibre.Lign<strong>in</strong> identification by Py-GC/MSThe identification <strong>of</strong> lign<strong>in</strong> components <strong>in</strong> the vessel fractions wasdeterm<strong>in</strong>ed by Py-GC/MS. The results are shown <strong>in</strong> Table 1. Theseresults <strong>in</strong>dicate that the cell walls <strong>of</strong> vessel elements conta<strong>in</strong> mostlysyr<strong>in</strong>gol-type lign<strong>in</strong> units. From results it can be seen that also vesselelements after bleach<strong>in</strong>g sequences conta<strong>in</strong> lign<strong>in</strong>. The publishedresults argue that the eucalyptus vessel walls are composed ma<strong>in</strong>ly<strong>of</strong> guaiacyl units (Tateishi et al., 2004; Watanabe et al., 2004).Nevertheless, Tateishi et al., (2004) noted that the thicker vessel wallrelates more cis-propenylsyr<strong>in</strong>gol <strong>and</strong> trans-s<strong>in</strong>apyl alcohol. It mustbe mentioned that Tateishi et al. (2004) performed the measurementson microtome cross-sections <strong>of</strong> 15 μm from various parts <strong>in</strong> thetrunk, while here all measurements have been done on <strong>in</strong>dividualvessel elements. In addition, we have also been characteriz<strong>in</strong>g<strong>vessels</strong> isolated from chemical pulps that were modified by pulp<strong>in</strong>g<strong>and</strong> bleach<strong>in</strong>g treatments.Results from the identification <strong>of</strong> lign<strong>in</strong> components <strong>in</strong> the fibresshowed no residual lign<strong>in</strong> <strong>in</strong> the bleached samples (see Table 2)Surface coverage by lign<strong>in</strong> <strong>and</strong> extractivesResults for <strong>surface</strong> coverage by lign<strong>in</strong> (Table 3) <strong>in</strong>dicate thatlign<strong>in</strong> can be found on the <strong>surface</strong> from the blow l<strong>in</strong>e sample.Approximately one-tenth <strong>of</strong> <strong>surface</strong> area was covered by lign<strong>in</strong>.Although a low amounts <strong>of</strong> lign<strong>in</strong> could be detected on the ZD 0A,Table 1. Identification <strong>of</strong> lign<strong>in</strong> components <strong>in</strong> vessel fractions by Py-GC/MSSample Syr<strong>in</strong>gol Methylsyr<strong>in</strong>gol Ethylsyr<strong>in</strong>gol V<strong>in</strong>ylsyr<strong>in</strong>gol Syr<strong>in</strong>gylpropene Syr<strong>in</strong>galaldehydeBL A X X X X X XO 2A X X - X X XZD 0A - - - - - XSheets A - - - - - XBL B X X X X X XO 2B X X - X X XD 0B - - - - - XSheets B - - - - - XTable 2. Identification <strong>of</strong> lign<strong>in</strong> components <strong>in</strong> fibres by Py-GC/MSSample V<strong>in</strong>ylguaicyl Syr<strong>in</strong>gol Methylsyr<strong>in</strong>gol 3-syr<strong>in</strong>golprop-2-ene V<strong>in</strong>ylsyr<strong>in</strong>gol Syr<strong>in</strong>galdehydeBL A X X X X X XSheets B - - - - - -BL B X X X X X XSheets B - - - - - -Table 3. Surface coverage (%) by carbohydrates, lign<strong>in</strong> <strong>and</strong> extractives exam<strong>in</strong>ed by XPSSample (carb.) (lign<strong>in</strong>) (extr.)BL A 88 ± 8 12 ± 6 15.3 ± 5.3O 2A > 96 < 4 6.6 ± 0.8ZD 0A > 96 < 4 0Sheet A 100 0 0BL B > 94 < 6 13.2 ± 3.3O 2B > 95 < 5 1.0 ± 1.3D 0B > 96 < 4 0Sheet B > 94 < 6 070 <strong>Revista</strong> O <strong>Papel</strong> - setembro/September 2012


Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012Table 4. Surface anionic groups on different vessel fractions (µmol/g) measured by XPSSample SAG (µmol/g) SAG/AG (µmol/g) x 100 N/SBL A 195 ± 5 1.05 3.61 ± 0.80O 2A 182 ± 5 1.07 2.96 ± 1.00ZD 0A 121 ± 5 1.15 3.50 ± 1.40Sheet A 200 ± 4 2.25 2.79 ± 0.70BL B 171 ± 5 0.88 3.50 ± 0.50O 2B 170 ± 5 0.99 3.00 ± 0.01D 0B 146 ± 1 1.68 3.33 ± 0.60Sheet B 170 ± 5 2.88 2.94 ± 0.60<strong>and</strong> on D 0B. However, <strong>surface</strong> coverage by lign<strong>in</strong> decreased while<strong>surface</strong> coverage by carbohydrates <strong>in</strong>creased with bleach<strong>in</strong>g.Surface coverage by extractives decreased along fibre l<strong>in</strong>e (Table3). As expected, no extractives were detected on either ZD 0, D 0orsheet samples.Surface analysis <strong>of</strong> methylene blue treated vesselelements by XPSThe <strong>surface</strong> composition <strong>of</strong> methylene blue (MB) treated vesselelements were determ<strong>in</strong>ed by XPS. The results are presented <strong>in</strong>Table 4. The N/S ratio is the proportion <strong>of</strong> nitrogen <strong>and</strong> sulphur onthe <strong>surface</strong> <strong>of</strong> a MB molecule. Consider<strong>in</strong>g the st<strong>and</strong>ard deviations,samples from A <strong>and</strong> B showed equal amounts <strong>of</strong> <strong>surface</strong> anionicgroups. Both sample series are also show<strong>in</strong>g a similar pattern <strong>in</strong>the contents <strong>of</strong> SAG. Although the SAGs kept unchanged dur<strong>in</strong>gpulp<strong>in</strong>g processes, the relative content <strong>of</strong> SAG to AG (data notpresented) is clearly <strong>in</strong>creas<strong>in</strong>g.DISCUSSION AND CONCLUSIONPulp<strong>in</strong>g processes have a similar effect on the chemicalcomposition <strong>of</strong> a vessel element <strong>in</strong> comparison to fibres.Pulp<strong>in</strong>g <strong>and</strong> delignification processes remove componentsfrom the vessel wall structure <strong>and</strong> from the <strong>surface</strong>. The large<strong>surface</strong> areas <strong>of</strong> vessel elements are cleaned by bleach<strong>in</strong>gstages, but at the same time the sensitive <strong>surface</strong>s are exposedto contam<strong>in</strong>ation.However, vessel elements have a quite similar chemical <strong>and</strong> <strong>surface</strong>chemical composition as fibres. The most significant differentiationcan be found <strong>in</strong> cellulose <strong>and</strong> lign<strong>in</strong> content – vessel elements arericher <strong>in</strong> cellulose when compared to fibres, <strong>and</strong> lign<strong>in</strong> can be found<strong>in</strong> <strong>vessels</strong> even after the bleach<strong>in</strong>g stages.Cell wall structure <strong>of</strong> vessel elements cannot be comparedto the structure <strong>of</strong> a fibre wall due to the FE-SEM pictures thatare suggest<strong>in</strong>g the cell wall structure <strong>of</strong> vessel elements islayered <strong>and</strong> very complex, <strong>and</strong> the different layers are removedlayer by layer dur<strong>in</strong>g the pulp<strong>in</strong>g processes. The layered wallstructure strengthen the vessel elements <strong>and</strong> due to this uniquecomplicated construction the vessel elements may pass throughthe whole fibre l<strong>in</strong>e almost undamaged.There still are many questions to be answered: why the vesselwall rema<strong>in</strong>s rich <strong>in</strong> lign<strong>in</strong> after bleach<strong>in</strong>g? Why the <strong>surface</strong>s <strong>of</strong>vessel elements are so susceptible to contam<strong>in</strong>ants? What wouldbe the best way for elim<strong>in</strong>at<strong>in</strong>g the vessel elements withoutdamag<strong>in</strong>g the fibres <strong>and</strong> <strong>in</strong> parallel ma<strong>in</strong>ta<strong>in</strong> the pulp yield <strong>and</strong>pulp strength properties?After all, it would be ideal to manufacture eucalyptus pulp free fromvessel pick<strong>in</strong>g problem. Elim<strong>in</strong>ation <strong>of</strong> vessel elements by chemicalmodification dur<strong>in</strong>g pulp<strong>in</strong>g could be a solution, but, then aga<strong>in</strong>,reduced pulp yield is also a f<strong>in</strong>ancial loss. More pr<strong>of</strong>itable would beto break the <strong>vessels</strong> to f<strong>in</strong>es dur<strong>in</strong>g low-consistency (LC) ref<strong>in</strong><strong>in</strong>g,<strong>and</strong> keep them <strong>in</strong> the pulp. The pulp yield would rema<strong>in</strong> unchanged,<strong>and</strong> the amount <strong>of</strong> f<strong>in</strong>es, which e. g. improves paper opacity, would<strong>in</strong>crease. Other possibility would be to promote the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong><strong>vessels</strong> <strong>and</strong> fibres <strong>in</strong> papermak<strong>in</strong>g by addition <strong>of</strong> polysaccharides. Theselection <strong>of</strong> the best approach depends on process economics <strong>and</strong>end product requirements.•AcknowledgementsPr<strong>of</strong>. Bjarne Holmbom <strong>and</strong> Mr. Markku Reunanen for the Py-GC/MSmeasurements.setembro/September 2012 - <strong>Revista</strong> O <strong>Papel</strong>71


Technical Article / Peer-reviewed ArticleO PAPEL vol. 73, num. 9, pp. 65 - 72 SEP 2012REFERENCES1. Alén, R. (2000); Structure <strong>and</strong> chemical composition <strong>of</strong> wood. In: Papermak<strong>in</strong>g Science <strong>and</strong> Technology. Book 3: Forest Products Chemistry.Eds. Stenius. P,.Pakar<strong>in</strong>en. H. FapetOy. Hels<strong>in</strong>ki. pp. 20–21.2. Alves, E.F. (2005); Interação de fibras e elementos de vasos de polpa kraft de eucalipto com t<strong>in</strong>tas de de impressão <strong>of</strong>fset. Master’s Thesis.Universidade Federal de Visçoca. 117 pp.3. Browl<strong>in</strong>g, B. L.; Methods <strong>of</strong> wood <strong>chemistry</strong>. Volume 1. Interscience Publishers. New York. 1967. pp. 7. 9.4. Chen, F., Evans, R. (2005); A robust approach for vessel identification <strong>and</strong> quantification <strong>in</strong> eucalypt pulps woods. Appita 58(6): 442–447.5. Fardim, P., Duran, N. (2002); Surface Chemistry <strong>of</strong> Eucalyptus Wood Pulp Fibres: Effects <strong>of</strong> Chemical Pulp<strong>in</strong>g. Holzforschung 56(6): 615–622.6. Fardim, P., Duran, N. (2004); Modification <strong>of</strong> fibre <strong>surface</strong>s dur<strong>in</strong>g pulp<strong>in</strong>g <strong>and</strong> ref<strong>in</strong><strong>in</strong>g as analysed by SEM, XPS <strong>and</strong> ToF-SIMS. Colloids Surf.A 223: 263–276.7. Fardim, P., Duran, N. (2005); Effects <strong>of</strong> Kraft Pulp<strong>in</strong>g on the Interfacial Properties <strong>of</strong> Eucalyptus Pulp Fibres. J. Braz. Chem. Soc., 16(5) 915–921.8. Fardim, P., Moreno, T., Holmbom, B. (2005); Anionic groups on cellulosic fiber <strong>surface</strong>s <strong>in</strong>vestigated by XPS, FTIR-ATR, <strong>and</strong> different sorptionmethods. Colloid Interface Sci. 290: 383–391.9. Fergus, B. J., Gor<strong>in</strong>g, D.A. (1970); The Distribution <strong>of</strong> Lign<strong>in</strong> <strong>in</strong> Birch as Determ<strong>in</strong>ed by Ultraviolet Microscopy. Holzforschung 24(4):118–124.10. Ilvessalo-Pfäffli, M.-S. (1995); Fiber Atlas - Identification <strong>of</strong> Papermak<strong>in</strong>g Fibers. Spr<strong>in</strong>ger-Verlag. Berl<strong>in</strong>. pp. 22. 254.11. Musha, Y., Gor<strong>in</strong>g, D. A. I. (1975); Distribution <strong>of</strong> Syr<strong>in</strong>gyl <strong>and</strong> Guaiacyl Moieties <strong>in</strong> Hardwoods as Indicated by Ultraviolet Microscopy. WoodSci. Technol. 9: 45–58.12. 12. Ohshima, J., Yokota, S., Yoshizawa, N., Toshihiro, O. (2004); With<strong>in</strong>-tree variation <strong>of</strong> vessel morphology <strong>and</strong> frequency. <strong>and</strong>represantiveheights for estimat<strong>in</strong>g whole-tree values <strong>in</strong> Eucalyptus camaldulensis <strong>and</strong> E. Globulus. Appita 57(1): 64–69.13. 13. Ona, T., Sonoda, T., Ito, K., Shibata, M., Tamai, Y., Kojima, Y., Ohshima, J., Yokota, S., Yoshizawa, N. (2001); Investigation <strong>of</strong> relationshipsbetween cell <strong>and</strong> pulp properties <strong>in</strong> Eucalyptus by exam<strong>in</strong>ation <strong>of</strong> with<strong>in</strong>-tree property variations. Wood Sci. Technol. 35: 229–243.14. Ona, T., Ohshima, J., Adachi, K., Yokota, S., Yoshizawa, N. (2004); Length determ<strong>in</strong>ation <strong>of</strong> vessel elements <strong>in</strong> tree trunks used for water <strong>and</strong>nutrient transport by Fourier transform Raman spectroscopy. Anal BioanalChem 380: 958–963.15. Orbl<strong>in</strong>, E., L<strong>in</strong>dströn, N., Fardim, P. (2012); Prob<strong>in</strong>g the chemical <strong>and</strong> <strong>surface</strong> chemical modification <strong>of</strong> vessel cell walls dur<strong>in</strong>g bleach<strong>in</strong>g <strong>of</strong>eucalyptus pulp. Holzforschung 66: DOI: 10.1515/hf-2011-0117, June 201216. PascoalNeto, C., Silvestre, A., Evtugu<strong>in</strong>, D., Freire, C., P<strong>in</strong>to, P., Santiago, A., Fardim, P., Holmbom, B. (2004); Bulk <strong>and</strong> <strong>surface</strong> composition<strong>of</strong> ECF bleached hardwood kraft pulp fibres. Nord. Pulp Pap. Res. J. 19(4): 513–520.17. Patt, R., Kordsachia, O., Fehr, J. (2006); European hardwoods versus Eucalyptus globulus as a raw material for pulp<strong>in</strong>g. Wood SciTechnol 40:39–48.18. del Río, J.C., Gutiérrez, A., Hern<strong>and</strong>o, M. L<strong>and</strong>ín, P., Romero, J., Martínez, À.T. (2005); Determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>fluence <strong>of</strong> eucalypt lign<strong>in</strong>composition <strong>in</strong> paper pulp yield us<strong>in</strong>g Py-GC/MS. J. Anal. Appl. Pyrolysis 74: 110–115.19. Rodrigues, J. Meier, D., Faix, O., Pereira, H. (1999); Determ<strong>in</strong>ation <strong>of</strong> tree to tree variation <strong>in</strong> syr<strong>in</strong>gyl:guaiacyl ratio <strong>of</strong> Eucalyptus globulus woodlign<strong>in</strong> by analytical pyrolysis. J. Anal. Appl. Pyrolysis 48:121–128.20. Sundberg, A., Sundberg, K., Lill<strong>and</strong>t, C., Holmbom, B. (1996); Determ<strong>in</strong>ation <strong>of</strong> hemicelluloses <strong>and</strong> pect<strong>in</strong>s <strong>in</strong> wood <strong>and</strong> pulp fibres by acidmethanolysis <strong>and</strong> gas chromatography. Nord. Pulp Pap. Res. J. 4: 216–219.21. Tateishi, M., Se<strong>in</strong>o, T. Ona, T., Ohshima, J., Adachi, K., Yokota, S., Yoshizawa, N., (2004); Rapid assessment <strong>of</strong> vessel anatomical features bypyrolysis-gas chromatography. In: Proceed<strong>in</strong>gs <strong>of</strong> IUFRO Conference on Eucalyptus <strong>in</strong> a Chang<strong>in</strong>g World. Aveiro. Portugal. 3 pp.22. Watanabe, Y., Kojima, Y., Ona, T., Asada, T., Sano., Fukazawa, K., Funada, R., (2004); Histochemical study on heterogeneity <strong>of</strong> lign<strong>in</strong> <strong>in</strong>Eucalyptus species II. The distribution <strong>of</strong> lign<strong>in</strong> <strong>and</strong> polyphenols <strong>in</strong> the walls <strong>of</strong> various cell types. IAWA Journal 25(3): 283–295.72 <strong>Revista</strong> O <strong>Papel</strong> - setembro/September 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!