12.07.2015 Views

Land Degradation and Pedological Processes in a Changing Climate

Land Degradation and Pedological Processes in a Changing Climate

Land Degradation and Pedological Processes in a Changing Climate

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R. Lal: Soil degradation processes315<strong>L<strong>and</strong></strong> <strong>Degradation</strong> <strong>and</strong> <strong>Pedological</strong> <strong>Processes</strong> <strong>in</strong> a Chang<strong>in</strong>g <strong>Climate</strong>Rattan LAL*Carbon Management <strong>and</strong> Sequestration Center, The Ohio State University, Columbus, OH 43210Keywords: Soil degradation, Soil quality, Global warm<strong>in</strong>g, Food security, DesertificationAbstract<strong>L<strong>and</strong></strong> degradation <strong>and</strong> retrogression are related processes. <strong>L<strong>and</strong></strong> degradation implies replacement of climax vegetationby secondary vegetation, alteration of humus quantity <strong>and</strong> composition, <strong>and</strong> adverse changes <strong>in</strong> soil quality <strong>and</strong> relatedecosystem services. Retrogression refers to the loss of the upper soil horizon <strong>and</strong> reversion to pioneer conditions (i.e.,bare ground). In comparison, soil degradation implies a decl<strong>in</strong>e <strong>in</strong> the quality <strong>and</strong> capacity of a soil’s productivity throughits misuse. <strong>L<strong>and</strong></strong> <strong>and</strong> soil degradation are also related to poverty, governance, <strong>and</strong> political will. When people are povertystricken, desperate, <strong>and</strong> hungry, they pass on their suffer<strong>in</strong>gs to the l<strong>and</strong>. The biophysical processes are driven by social,cultural, economic, <strong>and</strong> political factors related to human dimensions. These processes can also be traced to human greed,short sightedness, poor plann<strong>in</strong>g, <strong>and</strong> cutt<strong>in</strong>g corner for quick economic returns. <strong>L<strong>and</strong></strong> degradation impacts 33% of the Earth’sl<strong>and</strong> surface <strong>and</strong> affects 2.6 billion people. <strong>Pedological</strong> processes impact<strong>in</strong>g l<strong>and</strong> degradation <strong>in</strong>clude a decl<strong>in</strong>e <strong>in</strong> soil organicmatter (SOM) content, a decrease <strong>in</strong> the amount <strong>and</strong> stability of aggregates, crust<strong>in</strong>g, compaction, accelerated erosion,nutrient depletion, elemental imbalance, sal<strong>in</strong>ization, waterlogg<strong>in</strong>g, a decl<strong>in</strong>e <strong>in</strong> activity <strong>and</strong> species diversity of soil fauna,<strong>and</strong> soil contam<strong>in</strong>ation. In addition to the decl<strong>in</strong>e <strong>in</strong> productivity <strong>and</strong> ecosystem services, l<strong>and</strong> degradation also accentuatesthe emission of CO 2 <strong>and</strong> other greenhouse gases (GHGs) <strong>in</strong>to the atmosphere. It disrupts cycl<strong>in</strong>g of C, N, other elements,<strong>and</strong> water. Underst<strong>and</strong><strong>in</strong>g of both long-term <strong>and</strong> short-term C cycles, along with those of N <strong>and</strong> water, is essential forrevers<strong>in</strong>g the degradation trends. Restor<strong>in</strong>g the soil C pool <strong>in</strong>creases soil resilience as well as adaptation to <strong>and</strong> mitigation ofclimate change. Total C s<strong>in</strong>k capacity of the terrestrial biosphere is 2.55 to 4.96 Pg C/yr, with a projected draw down of about50 ppm of CO 2 by 2100 or 2150. Sequestration of C <strong>in</strong> soils <strong>and</strong> the terrestrial biosphere is a w<strong>in</strong>-w<strong>in</strong> strategy; it enhancesagronomic productivity, advances food security, improves the environment, <strong>and</strong> mitigates climate change.1. IntroductionThe world may be los<strong>in</strong>g 10 ha of arable l<strong>and</strong> everym<strong>in</strong> to a range of degradation processes (Bur<strong>in</strong>gh, 1979),<strong>in</strong>clud<strong>in</strong>g 3 ha to sal<strong>in</strong>ization (Kovoda, 1983). Erosion <strong>and</strong>sal<strong>in</strong>ization, along with depletion of soil organic matter(SOM) <strong>and</strong> plant nutrients, are among the pr<strong>in</strong>cipal pedologicalprocesses affect<strong>in</strong>g l<strong>and</strong> <strong>and</strong> soil degradation.These processes are likely to be exacerbated by climatechange, <strong>and</strong> the attendant <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tensity <strong>and</strong> frequencyof extreme events. With w<strong>in</strong>d <strong>and</strong> water be<strong>in</strong>g thepr<strong>in</strong>cipal contributors to climatic erosivity, an <strong>in</strong>crease <strong>in</strong>the comb<strong>in</strong>ed k<strong>in</strong>etic energy of these two climatic factorscan drastically accelerate soil erosion. Furthermore, water-drivensediment transport can be accentuated by w<strong>in</strong>ddrivenra<strong>in</strong>s, especially dur<strong>in</strong>g extreme events caused byclimate change (Field et al., 2011; Sweet, 1999; Breshearset al., 2003). An <strong>in</strong>crease <strong>in</strong> temperature, especially <strong>in</strong> thehigh latitudes, may also accentuate evaporation <strong>and</strong> exacerbatesal<strong>in</strong>ization <strong>in</strong> semi-arid <strong>and</strong> arid regions underla<strong>in</strong>by parent materials conta<strong>in</strong><strong>in</strong>g high concentrations of solublesalts. Thus, the objective of this article is to describe*Correspond<strong>in</strong>g author: Rattan Lal, E-mail: lal.1@osu.edu, Tel: +614-292-9069, Fax: +614-292-7432Received 22 July 2011; accepted 2 February, 2012


316R. Lal / Pedologist (2012) 315-325the importance of the pedological processes affect<strong>in</strong>g l<strong>and</strong>degradation <strong>in</strong> a chang<strong>in</strong>g climate characterized by a rise<strong>in</strong> temperature, change <strong>in</strong> precipitation, <strong>and</strong> an <strong>in</strong>crease <strong>in</strong>the frequency of extreme events.2. Basic ConceptsThe processes of l<strong>and</strong> <strong>and</strong> soil degradation are set<strong>in</strong>-motionby the loss of equilibrium of a stable soil due tonatural <strong>and</strong>/or anthropogenic factors. “<strong>L<strong>and</strong></strong> degradation”refers to the loss of climax vegetation <strong>and</strong> its replacementby secondary vegetation with an adverse impact on soilquality <strong>and</strong> ecosystem services. In contrast, the term “retrogression”literally means transformation from a complexto a simpler biological form lead<strong>in</strong>g to degeneration, abiotrophy,or change from one state to another through naturalor anthropogenic factors, lead<strong>in</strong>g to an adverse impacton the quality of the upper soil horizon. The process ofretrogression, caused for example by accelerated erosion,may be partial or total <strong>and</strong> is <strong>in</strong>itiated by events such asdeforestation, biomass burn<strong>in</strong>g, overgraz<strong>in</strong>g, <strong>and</strong> plow<strong>in</strong>g.The term “desertification” is degradation of l<strong>and</strong> <strong>in</strong> arid<strong>and</strong> dry sub-humid areas lead<strong>in</strong>g to a decl<strong>in</strong>e <strong>in</strong> ecosystemfunctions <strong>and</strong> services. Drought is a dom<strong>in</strong>ant processdriv<strong>in</strong>g desertification <strong>and</strong> can be one of three types: (i)meteorological drought caused by a long-term decl<strong>in</strong>e <strong>in</strong>precipitation, (ii) hydrological drought caused by a reduction<strong>in</strong> surface runoff <strong>and</strong> fall <strong>in</strong> the water table, <strong>and</strong> (iii)pedological drought caused by a decl<strong>in</strong>e <strong>in</strong> soil moistureavailability. <strong>L<strong>and</strong></strong> degradation, especially desertification,affects all three types of drought, but the effects of pedologicaldrought are observed long before those of meteorological<strong>and</strong> hydrological drought. In contrast to l<strong>and</strong>degradation, the term “soil degradation” refers to the decl<strong>in</strong>e<strong>in</strong> the quality <strong>and</strong> capacity of soil’s productivity dueboth to natural <strong>and</strong> anthropogenic factors. Soil degradationis caused by natural <strong>and</strong> anthropogenic perturbations <strong>in</strong>the hydrological cycle, nutrient/elemental cycl<strong>in</strong>g, energybudget, <strong>and</strong> activity <strong>and</strong> species diversity of soil biota.In the steady state, the pedosphere is <strong>in</strong> dynamicequilibrium with its environment, which comprises the atmosphere,hydrosphere, biosphere, <strong>and</strong> lithosphere (Fig.1). This dynamic equilibrium can be disturbed by naturalevents such as volcanic eruptions, wild fires, flash floods,<strong>and</strong> mass movement. In contrast to natural perturbations,the delicate <strong>and</strong> dynamic equilibrium is also disturbed byanthropogenic activities such as deforestation, l<strong>and</strong> useconversion, dra<strong>in</strong>age of wetl<strong>and</strong>s, biomass burn<strong>in</strong>g, farm<strong>in</strong>gpractices, plow<strong>in</strong>g, <strong>and</strong> use of agrochemicals. The perturbedpedosphere is prone to accelerated erosion (Lal,2001; Pimentel et al., 1995) <strong>and</strong> undergoes a change ofstate <strong>in</strong> response to events such as loss of topsoil, decl<strong>in</strong>e<strong>in</strong> SOM <strong>and</strong> nutrient content, disruption <strong>and</strong> changes <strong>in</strong>elemental <strong>and</strong> hydrologic cycl<strong>in</strong>g <strong>and</strong> balance, alterations<strong>in</strong> energy budget, disruption <strong>in</strong> <strong>in</strong>tra-solum processes,shift <strong>in</strong> activity, <strong>and</strong> species diversity of biota. Thus, thechange <strong>in</strong> l<strong>and</strong> use <strong>and</strong> l<strong>and</strong> cover must be undertaken bythose practices which cause the least disturbance to thepedosphere <strong>and</strong> its environment (Fig. 1; lithosphere, atmosphere,hydrosphere, <strong>and</strong> biosphere).3. <strong>Processes</strong>, Factors, <strong>and</strong> Causes Lead<strong>in</strong>g toPerturbation of the Pedosphere <strong>and</strong> the Attendant<strong>L<strong>and</strong></strong> <strong>Degradation</strong><strong>Processes</strong> are the mechanisms, drivers, source ofrequired energy, <strong>and</strong> the pr<strong>in</strong>cipal controls which lead toperturbations through disturb<strong>in</strong>g the delicate <strong>and</strong> dynamicequilibrium <strong>and</strong> set-<strong>in</strong>-motion the l<strong>and</strong>/soil degradationprocess which adversely affects ecosystem functions <strong>and</strong>services. Strongly <strong>in</strong>teractive pedological processes whichare impacted by degradation <strong>in</strong>clude: physical (weather<strong>in</strong>g,fractionation, sedimentation, translocation, deposition),chemical (dissolution, precipitation, acidification,carbonation), biological (respiration, m<strong>in</strong>eralization, humification),<strong>and</strong> ecological (shift <strong>in</strong> climax vegetation, change<strong>in</strong> l<strong>and</strong> forms <strong>and</strong> terra<strong>in</strong>, alterations <strong>in</strong> dra<strong>in</strong>age density<strong>and</strong> patterns). Factors are environmental parameters, attributes,<strong>and</strong> characteristics, which moderate the direction<strong>and</strong> magnitude of biophysical processes <strong>and</strong> alter theparameters lead<strong>in</strong>g to predom<strong>in</strong>ance of one process overthe others (i.e., physical, chemical, biological, <strong>and</strong> ecological).Pr<strong>in</strong>cipal factors <strong>in</strong>clude climate <strong>and</strong> terra<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>gslope (length, steepness, shape aspect, regularity,complexity). Causes of l<strong>and</strong> degradation are those whichalter <strong>and</strong> moderate the effect of factors on pedosphericdegradation <strong>and</strong> are related to change <strong>in</strong> l<strong>and</strong> use <strong>and</strong> l<strong>and</strong>management. The important causes, which also govern


R. Lal: Soil degradation processes317Fig. 1. Interactive effects between pedospheric processes <strong>and</strong> the environment <strong>in</strong> relation to l<strong>and</strong> degradation.the rate <strong>and</strong> magnitude of perturbation, are deforestationfarm<strong>in</strong>g systems, l<strong>and</strong> use, <strong>and</strong> specific managementof soil, crops, plants, water, <strong>and</strong> animals. The biophysicalprocess of l<strong>and</strong> degradation is driven by social, economic,political, <strong>and</strong> cultural factors. The human dimensions ofl<strong>and</strong> use <strong>and</strong> management, <strong>in</strong>clud<strong>in</strong>g demography <strong>and</strong>gender/ethnic/cultural factors, are important drivers ofthe processes <strong>in</strong>volved (Fig. 2).4. Types of <strong>L<strong>and</strong></strong> <strong>Degradation</strong>On the basis of the predom<strong>in</strong>ant processes, there areseveral types of l<strong>and</strong> degradation <strong>in</strong> relation to specific pedospherictransformation (Fig. 3). Physical degradation ofthe pedosphere comprises a reduction <strong>in</strong> the amount <strong>and</strong>stability of aggregation, susceptibility to slak<strong>in</strong>g, vulnerabilityto crust<strong>in</strong>g <strong>and</strong> seal formation, tendency for water<strong>in</strong>filtration capacity to decl<strong>in</strong>e, <strong>and</strong> proneness to <strong>in</strong>creasedrunoff <strong>and</strong> the attendant susceptibility to erosion by water<strong>and</strong> w<strong>in</strong>d. Densification, reduction <strong>in</strong> total porosity <strong>and</strong>macroporosity, <strong>and</strong> <strong>in</strong>crease <strong>in</strong> water retention can alsolead to anaerobiosis. Furthermore, accelerated soil erosionis a selective process. It leads to preferential removal ofclay, humus, <strong>and</strong> other colloidal materials, leav<strong>in</strong>g coarsefractions (s<strong>and</strong>, gravel) on eroded sites. Reversal of thedownward spiral to restore soil structure, pore cont<strong>in</strong>uity<strong>and</strong> stability, water retention <strong>and</strong> transmission, gaseousexchange, among others <strong>in</strong>volves adoption of l<strong>and</strong> use <strong>and</strong>management practices which improve aggregation whilespecifically accentuat<strong>in</strong>g the stability of microaggregates.Chemical degradation of the pedosphere encompassesa change <strong>in</strong> pH (decrease or <strong>in</strong>crease), reduction <strong>in</strong> cationexchange capacity (CEC), decl<strong>in</strong>e <strong>in</strong> base saturation(Ca +2 , Mg +2 , K + ) <strong>and</strong> <strong>in</strong>crease <strong>in</strong> Al +3 , Fe +2 , <strong>and</strong> Mn +2 , an<strong>in</strong>crease <strong>in</strong> salt concentration <strong>in</strong> the root zone (sal<strong>in</strong>ization)with a predom<strong>in</strong>ance of Na + on the exchange complex(alkalization), nutrient depletion (N, P, K, Zn, Cu), <strong>and</strong>elemental imbalance (toxicity of Al +3 , Mn +3 , Fe +2 ) (Fig. 3).Excessive <strong>and</strong> <strong>in</strong>appropriate use of water, especially forirrigation <strong>in</strong> arid <strong>and</strong> semi-arid regions, is a major causeof secondary sal<strong>in</strong>ization. Of several examples, <strong>in</strong>clud<strong>in</strong>gthose <strong>in</strong> South Asia <strong>and</strong> Australia, degradation of soil <strong>and</strong>water resources <strong>in</strong> the Aral Sea Bas<strong>in</strong> <strong>in</strong> Central Asia (Qadiret al., 2009) is a specific example of irrigation-<strong>in</strong>duced


318R. Lal / Pedologist (2012) 315-325Fig. 2. Biophysical <strong>and</strong> anthropogenic processes, factors <strong>and</strong> causes of l<strong>and</strong> degradation.Fig. 3. Types of l<strong>and</strong> degradation <strong>and</strong> pedological processes.(SOM: soil organic matter)


R. Lal: Soil degradation processes319degradation of pedospheric processes by sal<strong>in</strong>ization.With regard to the threat of climate change, soil can bea source or s<strong>in</strong>k of atmospheric CO 2 <strong>and</strong> other radiativelyactive gases (e.g., CH 4 , N 2 O). Changes <strong>in</strong> the SOM poolhave strong implications on the atmospheric abundanceof CO 2 . Depletion of the SOM pool <strong>in</strong>creases the flux ofCO 2 from the soil <strong>in</strong>to the atmosphere, <strong>and</strong> accretion ofSOM can cause drawdown of CO 2 from the atmosphere. Achange <strong>in</strong> soil fauna <strong>and</strong> flora (below ground biodiversity),<strong>in</strong> conjunction with anaerobiosis <strong>and</strong> the degree of saturation(wetness), also impact methanogenesis (production<strong>and</strong> emission of CH 4 ) <strong>and</strong> nitrification/denitrification processes(production <strong>and</strong> emission of N 2 O). Other biologicalprocesses affect<strong>in</strong>g the quality of the pedosphere <strong>and</strong>its fractions <strong>and</strong> ecosystem services are the quality <strong>and</strong>quantity of the labile C pool, microbial biomass C (MBC),depth:distribution ratio (stratification) of the soil C pool,<strong>and</strong> the relative abundance of soil pathogens vs. predators(Fig. 3).Ecosystem characteristics also impact pedosphericprocesses <strong>and</strong> their ecological functions <strong>and</strong> services.Pr<strong>in</strong>cipal ecosystem services adversely impacted by thedegradation of the pedosphere <strong>in</strong>clude the quantity <strong>and</strong>quality of renewable water resources, ecosystem C pool,terra<strong>in</strong> characteristics <strong>and</strong> l<strong>and</strong> forms, <strong>and</strong> below <strong>and</strong>above ground biodiversity (Fig. 3). The downward spirallead<strong>in</strong>g to degradation of pedospheric processes is oftenset-<strong>in</strong>-motion by extractive farm<strong>in</strong>g (Fig. 4). Depletion ofthe SOM pool <strong>and</strong> decl<strong>in</strong>e <strong>in</strong> soil structure exacerbate thedegradation processes which control physical, chemical,biological, <strong>and</strong> ecological degradation.5. Methods of Assessment of Pedospheric <strong>L<strong>and</strong></strong><strong>Degradation</strong>A large number of reports provide statistics on theextent <strong>and</strong> severity of l<strong>and</strong> degradation, soil degradation,<strong>and</strong> desertification (e.g., Oldeman <strong>and</strong> Van Lynden, 1998;Dregne, 1998; Bai et al., 2008). However, the statisticsare often confus<strong>in</strong>g, contradictory, <strong>and</strong> not comparablebecause the data are based on different term<strong>in</strong>ology <strong>and</strong>on a wide range of non-st<strong>and</strong>ardized methods. The <strong>in</strong>formationis further confounded by the lack of ground truth<strong>in</strong>g<strong>and</strong> does not relate the severity of degradation to netprimary productivity (NPP), agronomic production, or useefficiency of <strong>in</strong>put.Table 1 outl<strong>in</strong>es some methods used <strong>in</strong> assess<strong>in</strong>g differenttypes of pedospheric l<strong>and</strong> degradation such as wa-Fig. 4. The downward spiral set-<strong>in</strong>-motion by l<strong>and</strong> misuse <strong>and</strong> soil mismanagement, <strong>and</strong> extractive farm<strong>in</strong>g whichcreate a negative C <strong>and</strong> nutrient budgets.


320R. Lal / Pedologist (2012) 315-325ter erosion, w<strong>in</strong>d erosion, tillage erosion, desertification,sal<strong>in</strong>ization, <strong>and</strong> physical degradation. Other methodsused have been described by Oldeman <strong>and</strong> Van Lynden(1998), Dregne (1998), <strong>and</strong> Bai et al. (2008). Because ofthe diverse methods used, results are often not comparable.Thus, there is a strong need to st<strong>and</strong>ardize the methodology,<strong>and</strong> relate it to its impact on the loss of NPP <strong>and</strong>agronomic productivity.Table 1. Methods of assessment of l<strong>and</strong> degradationIIIIIIIVVVIVIIVIII<strong>L<strong>and</strong></strong> <strong>Degradation</strong> Process Method ReferenceWater Erosion• Stream bank Mass movement Channel side slope evolution Lohnes (1991)• Cropl<strong>and</strong> erosion Rill/<strong>in</strong>ter-rill Assessment of liquid <strong>and</strong> Wicherek (1991)solid flow rates• Cropl<strong>and</strong> erosion Rill/<strong>in</strong>ter-rill Erosion rate Jankauskas et al. (2002)• <strong>L<strong>and</strong></strong>scape erosion Decl<strong>in</strong>e <strong>in</strong> root<strong>in</strong>g depth P movement downslope Kirkby et al. (1997)• Stream flow Riparian zone Paired catchment Scott (1999)• Sediment yield<strong>Pedological</strong>, hydrogeomorphologicalprocessesRunoff measurement Cammeraat <strong>and</strong> Kooijman(2009)• Soil erosion severity <strong>L<strong>and</strong></strong>scape processes Genetic soil horizon Jankauskas <strong>and</strong> Fullen (2002)• Hillslope erosion Rill, <strong>in</strong>ter-rill Model<strong>in</strong>g Rneard et al. (1991; 1994;1997), Near<strong>in</strong>g et al. (1994)W<strong>in</strong>d Erosion• Soil movement W<strong>in</strong>d erosivity Model<strong>in</strong>g Skidmore (1994)• W<strong>in</strong>d:water driven sediment Aeolian <strong>and</strong> fluvial sediment <strong>Climate</strong> extreme Field et al. (2011)transportTillage Erosion• Soil movementSoil redistribution, diffusiveprocess137Cs analysis Govers et al. (1996)Desertification• S<strong>and</strong> drift Vegetation/soil degradation NDVI from the Red <strong>and</strong> IR Dhir <strong>and</strong> Sharma (1991)B<strong>and</strong>s Soil Brightness <strong>in</strong>dex• Soil surface properties Soil surface roughness <strong>and</strong> Remote sens<strong>in</strong>g Anderson <strong>and</strong> Croft (2009)moisture• Steppe degradationUnwanted morphological <strong>Pedological</strong> assessment Meyer et al. (2008)processes• <strong>L<strong>and</strong></strong> cover Ecosystem transformation Model<strong>in</strong>g (descriptive,empirical, statistical,dynamic)Lamb<strong>in</strong> (1997)Sal<strong>in</strong>ization• Human-<strong>in</strong>duced Sal<strong>in</strong>ity <strong>in</strong> the root zone Surface & ground water Ghassemi et al. (1991)models• Productivity Crop tolerance Species adaptation models Rozema <strong>and</strong> Flowers (2008)• Global l<strong>and</strong> area <strong>Processes</strong> of sal<strong>in</strong>ization Carbon stock Lal (2009)• Secondary sal<strong>in</strong>ization Soil structural stability Spatial analysis Odeh <strong>and</strong> Onus (2008)• Salt affected soils Salt balance Spatial scales Thayalakumaran et al. (2007)Physical <strong>Degradation</strong>• Decl<strong>in</strong>e <strong>in</strong> soil structure Slak<strong>in</strong>g Permeability Coughlan et al. (1991)• Soil compaction Changes <strong>in</strong> bulk density Porosity & pore size Horn et al. (1995)distribution• Aggregation Macro- <strong>and</strong> microaggregates Aggregate stability Boix-Fayos et al. (2001)Vegetation <strong>Degradation</strong>• Overgraz<strong>in</strong>g Denudation Satellite, Remote sens<strong>in</strong>g Hill et al. (1998)Economic Loss• Cost of l<strong>and</strong> degradation Productivity decl<strong>in</strong>e Measure of economic losses Bojö (1996)


R. Lal: Soil degradation processes3216. Cost of Inaction <strong>in</strong> Address<strong>in</strong>g <strong>L<strong>and</strong></strong> <strong>Degradation</strong>Fig. 5 outl<strong>in</strong>es a range of costs of <strong>in</strong>action <strong>in</strong> revers<strong>in</strong>gthe degradation trends. Some estimates of the costof <strong>in</strong>action have been made by Nkonya et al. (2011). Thecosts may be economic (gross vs. net, f<strong>in</strong>ancial vs. material),unsusta<strong>in</strong>ability (short-term vs. long-term, one timevs. cumulative), decl<strong>in</strong>e <strong>in</strong> productivity (on-site vs. offsite,transient vs. permanent), reduction <strong>in</strong> profit marg<strong>in</strong>(absolute vs. relative, normal vs. real/actual), <strong>and</strong> damageto ecosystems <strong>and</strong> environment (l<strong>and</strong> vs. soil, biodiversityvs. climate, quantity vs. quality of renewable waterresources) (Bojö, 1996). These costs must be assessed atsoilscape, l<strong>and</strong>scape, regional, watershed, national, <strong>and</strong> <strong>in</strong>ternationalscales. Similar to the variability <strong>in</strong> estimates ofthe area affected, the cost of <strong>in</strong>action must also be evaluatedby st<strong>and</strong>ardized procedures <strong>and</strong> must be determ<strong>in</strong>ed<strong>in</strong> relation to on-site <strong>and</strong> off-site impacts, short-term <strong>and</strong>long-term damages, economic <strong>and</strong> material losses, <strong>and</strong>damages to <strong>in</strong>fra-structure <strong>and</strong> the environment. The latterconsists of the adverse impacts on water resources,biodiversity, <strong>and</strong> climate.<strong>L<strong>and</strong></strong> degradation by pedospheric processes is asevere problem <strong>in</strong> develop<strong>in</strong>g countries, where soil <strong>and</strong>natural resources are already under great stress. Consequently,there is a large yield gap for major gra<strong>in</strong> crops, especiallythose grown <strong>in</strong> ra<strong>in</strong>fed climates. The data <strong>in</strong> Table2 provide estimates of actual yield as a percent of atta<strong>in</strong>ableyield. In some countries, actual yield under ra<strong>in</strong>fed conditionsis merely 10% of atta<strong>in</strong>able yield. Therefore, restorationof degraded l<strong>and</strong>s <strong>and</strong> improvement <strong>in</strong> soil qualitythrough adoption of recommended management practices(RMPs) can quadruple agronomic production. Here<strong>in</strong> liesthe strategy of advanc<strong>in</strong>g food security through improv<strong>in</strong>gTable 2. Actual yield of ra<strong>in</strong>fed gra<strong>in</strong> crops as a percent ofatta<strong>in</strong>able yield (recalculated from Rockström et al.,2010).Country% of Atta<strong>in</strong>ableYieldYield ImprovementFactor by RMPsBotswana 27.6 3.6Burk<strong>in</strong>a Faso 23.7 4.2Ethiopia 31.6 3.2India 42.1 2.4Iran 18.4 5.4Iraq 17.1 5.8Jordan 18.4 5.4Kenya 28.9 3.5Morocco 25.0 4.0Niger 26.3 3.4Pakistan 10.5 9.5Syria 18.4 5.4Tanzania 23.7 4.2Thail<strong>and</strong> 52.6 1.9Ug<strong>and</strong>a 23.7 4.2Vietnam 63.1 1.6Yemen 10.5 9.5Zambia 31.6 3.2Zimbabwe 31.6 3.2RMP: recommended management practicesFig. 5. Economic cost of <strong>in</strong>action on l<strong>and</strong> degradation <strong>and</strong> padological processes.


322R. Lal / Pedologist (2012) 315-325quality of degraded/desertified soils. The loss <strong>in</strong> productionis not only of immediate concern, but also has cumulativeeffects over time (Fig. 5).7. <strong>Climate</strong> Change <strong>and</strong> Pedospheric <strong>Processes</strong>Soils are affected by climate change. Thus, the importanceof <strong>in</strong>clud<strong>in</strong>g a soil evolution module <strong>in</strong> modelsfor predict<strong>in</strong>g future climate change is widely recognized(Montagne <strong>and</strong> Cornu, 2010). Soils affect climate changethrough emission of radiatively active gases (i.e., CO 2 ,CH 4 , N 2 O). Depletion of SOM, through biological degradation,exacerbates gaseous emissions <strong>in</strong>to the atmosphere.Increases <strong>in</strong> temperature due to global warm<strong>in</strong>g may accentuatethe rate of m<strong>in</strong>eralization of SOM, reduce aggregation<strong>and</strong> aggregate stability, <strong>and</strong> accelerate soil erosionrisks. An <strong>in</strong>crease <strong>in</strong> frequency of extreme events, large<strong>and</strong> <strong>in</strong>tense ra<strong>in</strong>s <strong>and</strong> high w<strong>in</strong>ds, can <strong>in</strong>crease climaticerosivity. Therefore, climate change may accentuateclimate erosivity while <strong>in</strong>creas<strong>in</strong>g soil erodibility. An <strong>in</strong>crease<strong>in</strong> evaporation can decrease available water capacity,reduce vegetation cover, <strong>and</strong> decrease the amount ofbiomass-C returned to the soil. Thaw<strong>in</strong>g of permafrost(cryosols) <strong>and</strong> dra<strong>in</strong>age of peat soils can create positivefeedback, accentuat<strong>in</strong>g the rate of m<strong>in</strong>eralization of SOM<strong>and</strong> further exacerbat<strong>in</strong>g climate change.Yet, restoration of degraded/desertified soils can <strong>in</strong>creasethe ecosystem C pool <strong>and</strong> off-set some anthropogenicemissions. The potential of C sequestration is estimatedat 0.2–0.7 Pg C/yr through desertification control,<strong>and</strong> 0.3–0.7 Pg C/yr through restoration of salt affectedsoils. In addition, adoption of RMPs can sequester 0.4–1.2Pg C/yr <strong>in</strong> cropl<strong>and</strong> soils, 0.3–0.5 Pg C/yr <strong>in</strong> grassl<strong>and</strong>/graz<strong>in</strong>g l<strong>and</strong> soils, <strong>and</strong> 1.4–1.9 Pg C/yr through afforestation/deforestation<strong>and</strong> the establishment of forest plantations.Thus, the total technical potential of C sequestration<strong>in</strong> the terrestrial biosphere is 2.55–4.96 Pg C/yr (Lal,2010).Thus, the threat of human-<strong>in</strong>duced climate changecreates challenges <strong>and</strong> opportunities. The challenge lies<strong>in</strong> the <strong>in</strong>creased risks of pedospheric l<strong>and</strong> degradation becauseof higher rates of depletion of SOM, acceleration <strong>in</strong>soil erosion, <strong>and</strong> high risks of sal<strong>in</strong>ization. Yet, there areopportunities to improve soil quality, <strong>and</strong> restore degradedsoils by sequestration of C <strong>in</strong> the terrestrial biosphere.The w<strong>in</strong>-w<strong>in</strong> option is important for restor<strong>in</strong>g degradedsoils, mitigat<strong>in</strong>g climate change, improv<strong>in</strong>g water quality<strong>and</strong> the environment, <strong>and</strong> advanc<strong>in</strong>g food security.8. Technological Options of Restor<strong>in</strong>g DegradedSoil <strong>and</strong> Desertified <strong>L<strong>and</strong></strong>sThe key strategy of revers<strong>in</strong>g the degradation spiral isrestoration of soil quality (Fig. 6). The goal is to conservewater <strong>and</strong> nutrients, <strong>in</strong>crease vegetation cover, <strong>and</strong> improvethe SOM pool. Soil quality is <strong>in</strong>deed an appropriate<strong>in</strong>dicator of susta<strong>in</strong>able l<strong>and</strong> management (Herrick, 2000),<strong>and</strong> the quantity <strong>and</strong> quality of the SOM pool are importantdeterm<strong>in</strong>ants of soil quality. There is a threshold levelof SOM concentration <strong>in</strong> the root zone (1.9–3.4%), whichdepends on climate, soil type, l<strong>and</strong>scape position, dra<strong>in</strong>age,<strong>and</strong> profile/solum depth. Rather than concentratedonly <strong>in</strong> the surface soil, deep SOM storage is also a keyfactor, but the processes govern<strong>in</strong>g deep SOM (sub-soilbelow 50 cm depth) placement <strong>and</strong> dynamics are poorlyunderstood (Lorenz <strong>and</strong> Lal, 2005; Rumpel <strong>and</strong> Kogel-Knabner, 2011).There are strong synergies between mitigation of <strong>and</strong> adaptationto climate change, especially <strong>in</strong> the context of agriculture(Smith <strong>and</strong> Oleson, 2010). Biotic sequestration ofatmospheric CO 2 has strong cost-effectiveness. Becauseof the strong <strong>in</strong>teraction between C <strong>and</strong> water (Evett <strong>and</strong>Tolk, 2009), <strong>and</strong> between C <strong>and</strong> N (Lal, 2010), the strategyis to adopt l<strong>and</strong> use <strong>and</strong> management practices whichaccentuate the use of efficient energy-based <strong>in</strong>put (fertilizers,irrigation, tillage), <strong>and</strong> create a positive C budget(Lal, 2010). Management of soil fertility, <strong>in</strong> conjunctionwith that of C <strong>and</strong> water, is an important factor, especiallyfor restor<strong>in</strong>g degraded soils managed by resource-poorfarmers through extractive farm<strong>in</strong>g practices <strong>in</strong> develop<strong>in</strong>gcountries. <strong>L<strong>and</strong></strong> application of organic by-products orco-products (misnomered as waste) is relevant to restor<strong>in</strong>gsoil ecosystem (Odlare et al., 2010). This strategy canbe adopted <strong>in</strong> conjunction with production of biofuels. Degraded/depletedsoils are prone to drought stress, havelow soil fertility, <strong>and</strong> are constra<strong>in</strong>ed by elemental imbalances(Al +3 toxicity). Such challenges of low soil fertility


R. Lal: Soil degradation processes325Geology, 31: 115-130.Meyer, B.C., Schre<strong>in</strong>er, V., Smolentseva, E.N. <strong>and</strong> Smolentsev,B.A. 2008. Indicators of desertification <strong>in</strong> theKulunda Steppe <strong>in</strong> the south of Western Siberia. Archivesof Agronomy <strong>and</strong> Soil Science, 54: 585-603.Montagne, D. <strong>and</strong> Cornu, S. 2010. Do we need to <strong>in</strong>cludesoil evolution module <strong>in</strong> models for prediction of futureclimate change? Climatic Change, 98: 75-86.Nyonya, E., Gerber, N., Baumgartner, P., von Braun, J.,P<strong>in</strong>to, A.D., Graw, V., Kato, E., Kloos, J., <strong>and</strong> Walter, T.2011. The Economics of Desertification, <strong>L<strong>and</strong></strong> <strong>Degradation</strong><strong>and</strong> Drought: Toward an Integrated Global Assessment.IFPRI/GFE, Wash<strong>in</strong>gton, D.C., Bonn, Germany.Near<strong>in</strong>g, M.A., Lane, L.J. <strong>and</strong> Lopes, V.L. 1994. Model<strong>in</strong>gsoil erosion. In R. Lal Ed. “Soil Erosion Research Methods”,pp. 127-154, Soil Water Cons. Soc., Ankenyk, IA.Odeh, I.O.A. <strong>and</strong> Onus, A. 2008. Spatial analysis of soilsal<strong>in</strong>ity <strong>and</strong> soil structural stability <strong>in</strong> a semi-arid regionof NSW, Australia. Env. Management, 42: 265-278.Oldeman, J.R., Van Lynden, G.W.J. 1998. Revisit<strong>in</strong>g theGLASOD methodology. In Lal, R., Blum, W.H., Valent<strong>in</strong>e,C., Stewart, B.A. Eds. “Methods of Assessment ofSoil <strong>Degradation</strong>”, pp 423-427, CRC Press, Boca Raton,FL.Odlare, M., Arthuson, V., Pell, M., Svensson, K., Nehremheim,E., Abubakei, J. 2010. <strong>L<strong>and</strong></strong> application oforganic waste-effects on soil ecosystem. Appl. Energy,88: 2210-2218.Pimentel, D., Harvey, C., Resosudarmo, P., S<strong>in</strong>clair, K.,Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L.,Saffouri, R. <strong>and</strong> Blair, R. 1995. Environmental <strong>and</strong> economicalcosts of soil erosion <strong>and</strong> conservation benefits.Science, 267: 1117-1123.Qadir, M., Noble, A.D., Qureshi, A.S., Gupta, R.K., Yuldashev,T. <strong>and</strong> Karimov, A. 2009. Salt-<strong>in</strong>duced l<strong>and</strong> <strong>and</strong>water degradation <strong>in</strong> the Aral Sea bas<strong>in</strong>: A challengeto susta<strong>in</strong>able agriculture <strong>in</strong> Central Asia. Natural ResourcesForum, 33: 134-149.Renard, K.G., Foster, G.R., Weesies, G.A. <strong>and</strong> Porter, J.P.1991. RUSLE: Revised Universal Soil Loss Equation. J.Soil Water Cons., 46: 30-33.Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K.<strong>and</strong> Yoder, D.C. 1997. Predict<strong>in</strong>g Soil Erosion by Water:A Guide to Conservation Plann<strong>in</strong>g with the RUSLE.USDA H<strong>and</strong>book #703, USDA, Wash<strong>in</strong>gton, D.C.Renard, K.G., Laflen, J.M., Foster, G.R. <strong>and</strong> McCool, D.K.1994. The Revised Universal Soil Loss Equation. In R.Lal Ed. “Soil Erosion Research Methods”, pp. 105-125,Soil Water Cons. Soc., Ankeny, IA.Rockström, J., Karlberg, L., Wani, S.P., Barron, J., Hatibu,N., Oweis, T., Burggeman, A., Farahani, J. <strong>and</strong> Qiang, Z.2010. Manag<strong>in</strong>g water <strong>in</strong> ra<strong>in</strong>fed agriculture = the needfor a paradigm shift. Agricultural Water Management,97: 543-550.Rozeme, J. <strong>and</strong> Flowers, T.J. 2008. Crops for a sal<strong>in</strong>izedworld. Science, 322: 1478-1480.Rumpel, C. <strong>and</strong> Kögel-Knabner, I. 2011. Deep soil organicmatter- a key but poorly understood component of terrestrialC cycle. Plan Soil, 338: 143-158.Scott, D.F. 1999. Manag<strong>in</strong>g riparian zone vegetation tosusta<strong>in</strong> streamflow: results of paired catchment experiments<strong>in</strong> South Africa. Can. J. For. Res., 29: 1149-1157.Skidmore, E.L. 1994. W<strong>in</strong>d erosion. In R. Lal Ed. “SoilErosion Research Methods”, pp. 295-330, Soil WaterCons. Soc., Ankeny, IA.Smith, P. <strong>and</strong> Olesen, J.E. 2010. Synergies between themitigation of, <strong>and</strong> adaptation to, climate change <strong>in</strong> agriculture.Journal of Agricultural Science, 148: 543-552.St. Clair, S.B. <strong>and</strong> Lynch, J.P. 2010. The open<strong>in</strong>g of P<strong>and</strong>ora’sBox: climate change impacts on soil fertility <strong>and</strong>crop nutrition <strong>in</strong> develop<strong>in</strong>g countries. Plant Soil, 335:101-115.Sweet, M.L. 1999. Interaction between Aeolian, fluvial<strong>and</strong> playa environments <strong>in</strong> the Permian Upper RothiegendGroup, U.K. Southern North Sea. Sedimentology,46: 171-187.Thayalakumaran, T., Belhune, M.G. <strong>and</strong> McMahon, T.A.2007. Achiev<strong>in</strong>g a salt balance: should it be a managementobjective? Agric. Water Management, 92: 1-12.Wicherek, S. 1991. New approach to the study of erosion<strong>in</strong> cultivated l<strong>and</strong>s. Soil Technology, 4: 99-110.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!