12.07.2015 Views

FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Boundary Value Problems for Differential Equations of Fractional Order 71(2.1) IfK g2(b − a) γΓ(γ + 1) + L g[(b − a) γ−θΓ(γ + 1)Γ(2 − θ) + (b −]a)γ−θ< 1, (3.29)Γ(γ + 1 − θ)then there exists a unique solution for FBVP (3.3)–(3.4) in P 1 .(2.2) IfK g(γ − 1) γ−1 (b − a) γγ γ Γ(γ + 1)+ L g(2γ − θ)(b − a) γ−θγΓ(γ − θ + 1)< 1, (3.30)then there exists a unique solution for FBVP (3.9)–(3.10) in the space P 2 .Proof. The proof for (1.1): For u(t), v(t) ∈ P, and (t, s) ∈ [a, b] × [a, b],according to the definition for the operator “T f ”, we have∣ Tf u(t) − T f v(t) ∣ ∣ ≤∫ba{ ∫b≤ ‖u − v‖ fThus∥ Tf u − T f v ∥ ∥f= maxaa≤t≤b K f|G(t, s)| · |f(s, u(s)) − f(s, v(s))| ds ≤(t − a)(b − s) γ−1(b − a)Γ(γ)∫ tds +≤a(t − s) γ−1Γ(γ)2(b − a)γΓ(γ + 1) ‖u − v‖ f .}ds ≤∣ Tf u(t) − T f v(t) ∣ 2K f (b − a) γ≤ ‖u − v‖ f .Γ(γ + 1)Considering (3.27), we finish the proof according to Lemma 3.2.The proof for (2.1): On one hand, we have∣∣T g u(t) − T g v(t) ∣ 2(b − a)γ≤Γ(γ + 1) ‖u − v‖ gfor u(t), v(t) ∈ P 1 , and (t, s) ∈ [a, b] × [a, b], which is similar to (1.1). Onthe other hand, according to Lemma 3.1, we haveCa D θ t T g u(t) =∫ b= (t−a)1−θ (b−s) γ−1Γ(2−θ) Γ(γ)(b − a) g( s, u(s), C a Dsu(s) θ ) ds−Ja γ−θ g ( t, u(t), C a Dt θ u(t) ) .aThen∣∣Ca Dt θ T g u − C a Dt θ T g v ∣ [≤ ‖u − v‖ g ·(b − a) γ−θΓ(2 − θ)Γ(γ + 1)(b −]a)γ−θ+ .Γ(γ − θ + 1)Combined with the definition of ‖ · ‖ g and Lemma 3.2, (3.29) holds.The proof for (1.2) and (2.2) are referred to [33].□

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!