12.07.2015 Views

FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Boundary Value Problems for Differential Equations of Fractional Order 59Since the solution (2.37) is an entire function of the parameter λ, we have∞∑u(x, λ) = S n (x)λ n . (2.38)Substituting (2.38) in (2.37) we have= x +∫ x0From (2.39) it followsn=0S 0 (x) + λS 1 (x) + λ 2 S 2 (x) + · · · =[(x − t) 1−α − λ(x − t) ][ S 0 (t) + · · · + λ n S n (t) + · · · ] dt. (2.39)S 0 (x) = x +S 1 (x) = −S 2 (x) =∫ x0∫ x0∫ x0(x − t) 1−α u(t) dt, (2.40)(x − t)S 0 (t) dt +∫ x(x − t) 1−α S 2 (x) dt +0∫ x(x − t) 1−α S 1 (x) dt, (2.41)0(x − t) 1−α S 1 (x) dt, (2.42). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Solving the equation (2.40), we obtainS 0 (x) = xE ρ (x 1/ρ ; 2); S 0 (1) = 1.For solution of the equation (2.41) we will calculateThen∫ x0(x − t)S 0 (t) dt =a 0 (x)=x 3 E ρ (x 1/ρ ; 4)+∫ x0∫ x0tE ρ (t 1/ρ ; 2)(x − t) dt = x 3 E ρ (x 1/ρ ; 4).((x − t) 1/ρ−1 E ρ (x−t) 1/ρ ; 1 )t 3 E ρ (t 1/ρ ; 4) dt =ρ=−c 1(x 3 E ρ (x 1/ρ ; 4)+c 0 ρx 3+1/ρ[ E ρ(x 1/ρ ; 3+ 1 ρIt is likewise possible to show that(− 3+ 1 ( )E ρ x 1/ρ ; 4+ 1 ρρ)] ) .a 2 (x) = −cx 5 E ρ (x 1/ρ ; 6) + cρx 5+1/ρ E ρ(x 1/ρ ; 5 + 1 ρ)−(− cρ 5 + 1 ()x 5+1/ρ E ρ x 1/ρ ; 6 + 1 )−ρρ)−

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!