12.07.2015 Views

TDA8358J Full bridge vertical deflection output circuit in ... - Laro

TDA8358J Full bridge vertical deflection output circuit in ... - Laro

TDA8358J Full bridge vertical deflection output circuit in ... - Laro

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INTEGRATED CIRCUITSDATA SHEET<strong>TDA8358J</strong><strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong><strong>circuit</strong> <strong>in</strong> LVDMOS with east-westamplifierProduct specificationSupersedes data of 1999 Dec 222002 Sep 25


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>FEATURES• Few external components required• High efficiency fully DC-coupled <strong>vertical</strong> <strong>bridge</strong> <strong>output</strong><strong>circuit</strong>• Vertical flyback switch with short rise and fall times• Built-<strong>in</strong> guard <strong>circuit</strong>• Thermal protection <strong>circuit</strong>• Improved EMC performance due to differential <strong>in</strong>puts• East-west <strong>output</strong> stage.GENERAL DESCRIPTIONThe <strong>TDA8358J</strong> is a power <strong>circuit</strong> for use <strong>in</strong> 90° and 110°colour <strong>deflection</strong> systems for 25 to 200 Hz fieldfrequencies, and for 4 : 3 and 16 : 9 picture tubes. The ICconta<strong>in</strong>s a <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong>, operat<strong>in</strong>g as ahigh efficiency class G system. The full <strong>bridge</strong> <strong>output</strong><strong>circuit</strong> allows DC coupl<strong>in</strong>g of the <strong>deflection</strong> coil <strong>in</strong>comb<strong>in</strong>ation with s<strong>in</strong>gle positive supply voltages.The east-west <strong>output</strong> stage is able to supply the s<strong>in</strong>kcurrent for a diode modulator <strong>circuit</strong>.The IC is constructed <strong>in</strong> a Low Voltage DMOS (LVDMOS)process that comb<strong>in</strong>es bipolar, CMOS and DMOSdevices. DMOS transistors are used <strong>in</strong> the <strong>output</strong> stagebecause of absence of second breakdown.QUICK REFERENCE DATASYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNITSuppliesV P supply voltage 7.5 12 18 VV FB flyback supply voltage 2 × V P 45 66 VI q(P)(av) average quiescent supply current dur<strong>in</strong>g scan − 10 15 mAI q(FB)(av) average quiescent flyback supply current dur<strong>in</strong>g scan − − 10 mAP tot total power dissipation − − 15 WInputs and <strong>output</strong>sV i(p-p) <strong>in</strong>put voltage (peak-to-peak value) − 1000 1500 mVI o(p-p) <strong>output</strong> current (peak-to-peak value) − − 3.2 AFlyback switchI o(peak) maximum (peak) <strong>output</strong> current t ≤ 1.5 ms − − ±1.8 AEast-west amplifierV o <strong>output</strong> voltage − − 68 VV I(bias) <strong>in</strong>put bias voltage 2 − 3.2 VI o <strong>output</strong> current − − 750 mAThermal data; <strong>in</strong> accordance with IEC 747-1T stg storage temperature −55 − +150 °CT amb ambient temperature −25 − +85 °CT j junction temperature − − +150 °C2002 Sep 25 2


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>PINNINGSYMBOL PIN DESCRIPTIONINA 1 positive <strong>vertical</strong> <strong>in</strong>putINB 2 negative <strong>vertical</strong> <strong>in</strong>putV P 3 supply voltageOUTB 4 <strong>vertical</strong> <strong>output</strong> voltage BINEW 5 east-west <strong>in</strong>put voltageVGND 6 <strong>vertical</strong> groundEWGND 7 east-west groundOUTEW 8 east-west <strong>output</strong> voltageV FB 9 flyback supply voltageOUTA 10 <strong>vertical</strong> <strong>output</strong> voltage AGUARD 11 guard <strong>output</strong> voltageFEEDB 12 <strong>in</strong>put measur<strong>in</strong>g resistorCOMP 13 <strong>in</strong>put compensation currenthandbook, halfpageINAINBV POUTBINEWVGNDEWGNDOUTEWV FBOUTAGUARDFEEDBCOMP12345678910111213<strong>TDA8358J</strong>MGL867The die has been glued to the metal block of the package. If the metalblock is not <strong>in</strong>sulated from the heats<strong>in</strong>k, the heats<strong>in</strong>k shall only beconnected directly to p<strong>in</strong> VGND.FUNCTIONAL DESCRIPTIONVertical <strong>output</strong> stageThe <strong>vertical</strong> driver <strong>circuit</strong> has a <strong>bridge</strong> configuration. The<strong>deflection</strong> coil is connected between the complimentarydriven <strong>output</strong> amplifiers. The differential <strong>in</strong>put <strong>circuit</strong> isvoltage driven. The <strong>in</strong>put <strong>circuit</strong> is specially designed fordirect connection to driver <strong>circuit</strong>s deliver<strong>in</strong>g a differentialsignal but it is also suitable for s<strong>in</strong>gle-ended applications.For processors with <strong>output</strong> currents, the currents areconverted to voltages by the conversion resistorsR CV1 and R CV2 (see Fig.3) connected to p<strong>in</strong>s INAand INB. The differential <strong>in</strong>put voltage is compared withthe voltage across the measur<strong>in</strong>g resistor R M , thusprovid<strong>in</strong>g feedback <strong>in</strong>formation. The voltage across R M isproportional with the <strong>output</strong> current. The relationshipbetween the differential <strong>in</strong>put voltage and the <strong>output</strong>current is def<strong>in</strong>ed by:V i(dif)(p-p) = I o(p-p) × R M ; V i(dif)(p-p) = V INA − V INBThe <strong>output</strong> current should not exceed 3.2 A (p-p) and isdeterm<strong>in</strong>ed by the value of R M and R CV . The allowable<strong>in</strong>put voltage range is 100 mV to 1.6 V for each <strong>in</strong>put. Theformula given does not <strong>in</strong>clude <strong>in</strong>ternal bondwireresistances. Depend<strong>in</strong>g on the value of R M and the <strong>in</strong>ternalbondwire resistance (typical value 50 mΩ) the actual valueof the current <strong>in</strong> the <strong>deflection</strong> coil will be about 5% lowerthan calculated.Flyback supplyThe flyback voltage is determ<strong>in</strong>ed by the flyback supplyvoltage V FB . The pr<strong>in</strong>ciple of two supply voltages (class G)allows to use an optimum supply voltage V P for scan andan optimum flyback supply voltage V FB for flyback, thusvery high efficiency is achieved. The available flyback<strong>output</strong> voltage across the coil is almost equal to V FB , dueto the absence of a coupl<strong>in</strong>g capacitor which is notrequired <strong>in</strong> a <strong>bridge</strong> configuration. The very short rise andfall times of the flyback switch are determ<strong>in</strong>ed ma<strong>in</strong>ly bythe slew rate value of more than 300 V/µs.ProtectionThe <strong>output</strong> <strong>circuit</strong> conta<strong>in</strong>s protection <strong>circuit</strong>s for:• Too high die temperature• Overvoltage of <strong>output</strong> A.Fig.2 P<strong>in</strong> configuration.2002 Sep 25 4


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>Guard <strong>circuit</strong>A guard <strong>circuit</strong> with <strong>output</strong> p<strong>in</strong> GUARD is provided.The guard <strong>circuit</strong> generates a HIGH-level dur<strong>in</strong>g theflyback period. The guard <strong>circuit</strong> is also activated for oneof the follow<strong>in</strong>g conditions:• Dur<strong>in</strong>g thermal protection (T j ≈ 170 °C)• Dur<strong>in</strong>g an open-loop condition.The guard signal can be used for blank<strong>in</strong>g the picture tubeand signall<strong>in</strong>g fault conditions. The <strong>vertical</strong>synchronization pulses of the guard signal can be used byan On Screen Display (OSD) microcontroller.Damp<strong>in</strong>g resistor compensationHF loop stability is achieved by connect<strong>in</strong>g a damp<strong>in</strong>gresistor R D1 (see Fig.4) across the <strong>deflection</strong> coil. Thecurrent values <strong>in</strong> R D1 dur<strong>in</strong>g scan and flyback aresignificantly different. Both the resistor current and the<strong>deflection</strong> coil current flow <strong>in</strong>to measur<strong>in</strong>g resistor R M ,result<strong>in</strong>g <strong>in</strong> a too low <strong>deflection</strong> coil current at the start ofthe scan.The difference <strong>in</strong> the damp<strong>in</strong>g resistor current valuesdur<strong>in</strong>g scan and flyback have to be externallycompensated <strong>in</strong> order to achieve a short settl<strong>in</strong>g time.For that purpose a compensation resistor R CMP isconnected between p<strong>in</strong>s OUTA and COMP. The value ofR CMP is calculated by:( VR FB – V loss( FB)– V P ) × R D1 ×( R S + 300)CMP = -------------------------------------------------------------------------------------------------------------( V FB– V loss( FB)– I coil( peak)× R coil) × R Mwhere:• R coil is the coil resistance• V loss(FB) is the voltage loss between p<strong>in</strong>s V FB and OUTAat flyback.East-west amplifierThe east-west amplifier is current driven. The <strong>output</strong> canonly s<strong>in</strong>k currents of the diode modulator <strong>circuit</strong>.A feedback resistor (see Fig.4) has to be connectedbetween the <strong>in</strong>put and <strong>output</strong> of the <strong>in</strong>vert<strong>in</strong>g east-westamplifier <strong>in</strong> order to convert the east-west correction <strong>in</strong>putcurrent <strong>in</strong>to an <strong>output</strong> voltage. The <strong>output</strong> voltage of theeast-west <strong>circuit</strong> at p<strong>in</strong> OUTEW is given by:V OUTEW ≈ I INEW × R EWF +V INEWThe maximum <strong>output</strong> voltage is V o(max) = 68 V, while themaximum <strong>output</strong> current of the <strong>circuit</strong> is I o(max) = 750 mA.2002 Sep 25 5


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>LIMITING VALUESIn accordance with the Absolute Maximum Rat<strong>in</strong>g System (IEC 60134).SYMBOL PARAMETER CONDITIONS MIN. MAX. UNITV P supply voltage − 18 VV FB flyback supply voltage − 68 V∆V VGND-EWGNDvoltage difference between− 0.3 Vp<strong>in</strong>s VGND and EWGNDV nDC voltagep<strong>in</strong>s OUTA and OUTEW note 1 − 68 Vp<strong>in</strong> OUTB − V P Vp<strong>in</strong>s INA, INB, INEW, GUARD,−0.5 V P VFEEDB, and COMPI nDC currentp<strong>in</strong>s OUTA and OUTB dur<strong>in</strong>g scan (p-p) − 3.2 Ap<strong>in</strong>s OUTA and OUTB at flyback (peak); t ≤ 1.5 ms − ±1.8 Ap<strong>in</strong>s INA, INB, INEW, GUARD,−20 +20 mAFEEDB, and COMPp<strong>in</strong> OUTEW − 750 mAI lu latch-up current <strong>in</strong>put current <strong>in</strong>to any p<strong>in</strong>;− +200 mAp<strong>in</strong> voltage is 1.5 × V P ; T j = 150 °C<strong>in</strong>put current out of any p<strong>in</strong>; −200 − mAp<strong>in</strong> voltage is −1.5 × V P ; T j = 150 °CV es electrostatic handl<strong>in</strong>g voltage mach<strong>in</strong>e model; note 2 −350 +350 Vhuman body model; note 3 −4000 +4000 VP EW east-west power dissipation note 4 − 4 WP tot total power dissipation − 15 WT stg storage temperature −55 +150 °CT amb ambient temperature −25 +85 °CT j junction temperature note 5 − +150 °CNotes1. When the voltage at p<strong>in</strong> OUTA supersedes 70 V the <strong>circuit</strong> will limit the voltage.2. Equivalent to 200 pF capacitance discharge through a 0 Ω resistor.3. Equivalent to 100 pF capacitance discharge through a 1.5 kΩ resistor.4. For repetitive time durations of t < 0.1 ms or a non-repetitive time duration of t


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>CHARACTERISTICSV P = 12 V; V FB = 45 V; f vert = 50 Hz; V I(bias) = 880 mV; T amb =25°C; measured <strong>in</strong> test <strong>circuit</strong> of Fig.3; unless otherwisespecified.SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNITSuppliesV P operat<strong>in</strong>g supply voltage 7.5 12 18 VV FB flyback supply voltage note 1 2 × V P 45 66 VI q(P)(av) average quiescent supply current dur<strong>in</strong>g scan − 10 15 mAI q(P) quiescent supply current no signal; no load − 45 75 mAI q(FB)(av) average quiescent flyback supply dur<strong>in</strong>g scan − − 10 mAcurrentInputs A and BV i(p-p) <strong>in</strong>put voltage (peak-to-peak value) note 2 − 1000 1500 mVV I(bias) <strong>in</strong>put bias voltage note 2 100 880 1600 mVI I(bias) <strong>in</strong>put bias current − 25 35 µAOutputs A and BV loss(1) voltage loss first scan part note 3I o = 1.1 A − − 4.5 VI o = 1.6 A − − 6.6 VV loss(2) voltage loss second scan part note 4I o = −1.1 A − − 3.3 VI o = −1.6 A − − 4.8 VI o(p-p) <strong>output</strong> current− − 3.2 A(peak-to-peak value)LE l<strong>in</strong>earity error I o(p-p) = 3.2 A; notes 5 and 6adjacent blocks − 1 2 %non-adjacent blocks − 1 3 %V offset offset voltage across R M ; V i(dif) =0VV I(bias) = 200 mV − − ±15 mVV I(bias) =1V − − ±20 mV∆V offset(T)offset voltage variation with across R M ; V i(dif) =0V − − 40 µV/KtemperatureV O DC <strong>output</strong> voltage V i(dif) =0V − 0.5 × V P − VG v(ol) open-loop voltage ga<strong>in</strong> notes 7 and 8 − 60 − dBf −3dB(h) high −3 dB cut-off frequency open-loop − 1 − kHzG v voltage ga<strong>in</strong> note 9 − 1 −∆G v(T)voltage ga<strong>in</strong> variation withtemperature− − 10 −4 K −1PSRR power supply rejection ratio note 10 80 90 − dB2002 Sep 25 7


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNITFlyback switchI o(peak) maximum (peak) <strong>output</strong> current t ≤ 1.5 ms − − ±1.8 AV loss(FB) voltage loss at flyback note 11I o = 1.1 A − 7.5 8.5 VI o = 1.6 A − 8 9 VGuard <strong>circuit</strong>V O(grd) guard <strong>output</strong> voltage I O(grd) = 100 µA 5 6 7 VV O(grd)(max) allowable guard voltage maximum leakage current − − 18 VI L(max) =10µAI O(grd) <strong>output</strong> current V O(grd) = 0 V; not active − − 10 µAV O(grd) = 4.5 V; active 1 − 2.5 mAEast-west amplifierV o <strong>output</strong> voltage at p<strong>in</strong> OUTEW − − 68 VV loss voltage loss I o = 750 mA; note 12 − − 5 VV I(bias) <strong>in</strong>put bias voltage 2 2.5 3.2 VI I(bias) <strong>in</strong>put bias current <strong>in</strong>to p<strong>in</strong> INEW; note 13I o = 100 mA − 2.5 − µAI o = 500 mA − 11.5 − µAG v(ol) open-loop voltage ga<strong>in</strong> − 30 − dBTHD harmonic distortion − 0.5 1 %f −3dB(h) high −3 dB cut-off frequency − − 1 MHz2002 Sep 25 8


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>Notes1. To limit V OUTA to 68 V, V FB must be 66 V due to the voltage drop of the <strong>in</strong>ternal flyback diode between p<strong>in</strong>s OUTAand V FB at the first part of the flyback.2. Allowable <strong>in</strong>put range for both <strong>in</strong>puts: V I(bias) +V i < 1600 mV and V I(bias) − V i > 100 mV.3. This value specifies the sum of the voltage losses of the <strong>in</strong>ternal current paths between p<strong>in</strong>s V P and OUTA, andbetween p<strong>in</strong>s OUTB and GND. Specified for T j = 125 °C. The temperature coefficient for V loss(1) is a positive value.4. This value specifies the sum of the voltage losses of the <strong>in</strong>ternal current paths between p<strong>in</strong>s V P and OUTB, andbetween p<strong>in</strong>s OUTA and GND. Specified for T j = 125 °C. The temperature coefficient for V loss(2) is a positive value.5. The l<strong>in</strong>earity error is measured for a l<strong>in</strong>ear <strong>in</strong>put signal without S-correction and is based on the ‘on screen’measurement pr<strong>in</strong>ciple. This method is def<strong>in</strong>ed as follows. The <strong>output</strong> signal is divided <strong>in</strong> 22 successive equal timeparts. The 1st and 22nd parts are ignored, and the rema<strong>in</strong><strong>in</strong>g 20 parts form 10 successive blocks k. A block consistsof two successive parts. The voltage amplitudes are measured across R M , start<strong>in</strong>g at k = 1 and end<strong>in</strong>g at k = 10,where V k and V k+1 are the measured voltages of two successive blocks. V m<strong>in</strong> , V max and V avg are the m<strong>in</strong>imum,maximum and average voltages respectively. The l<strong>in</strong>earity errors are def<strong>in</strong>ed as:a) LE =V k – V k + 1------------------------- × 100% (adjacent blocks)V max – V m<strong>in</strong>b) LE = ------------------------------ × 100% (non adjacent blocks)6. The l<strong>in</strong>earity errors are specified for a m<strong>in</strong>imum <strong>in</strong>put voltage at p<strong>in</strong> 1 or p<strong>in</strong> 2 of 300 mV. Lower <strong>in</strong>put voltages leadto voltage dependent S-distortion <strong>in</strong> the <strong>in</strong>put stage.7.8. P<strong>in</strong> FEEDB not connected.9.G volV avgV avgV OUTA – V OUTB( ) = -------------------------------------------–V FEEDBV OUTBVG FEEDB – V OUTBV= -------------------------------------------–V INAV INB10. V P(ripple) = 500 mV (RMS value); 50 Hz < f P(ripple) < 1 kHz; measured across R M .11. This value specifies the <strong>in</strong>ternal voltage loss of the current path between p<strong>in</strong>s V FB and OUTA.12. This value specifies the <strong>in</strong>ternal voltage loss of the current path between p<strong>in</strong>s OUTEW and EWGND.13. Measured for R EWF =10kΩ; R EWL =30Ω; V o =6V.a) For I o = 100 mA and a voltage of 9 V at R EWL connected to the l<strong>in</strong>e <strong>output</strong> transformer, the east-west amplifier<strong>in</strong>put current (see Fig.4) is I i = 300 µA.b) For I o = 500 mA and a voltage of 21 V at R EWL connected to the l<strong>in</strong>e <strong>output</strong> transformer, the east-west amplifier<strong>in</strong>put current (see Fig.4) is I i = 350 µA.2002 Sep 25 9


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>APPLICATION INFORMATIONhandbook, full pagewidthV i(p-p)V I(bias)0I I(bias)I i(dif)I I(bias)V i(p-p)V I(bias)0R GRD4.7 kΩV P V FB11 9I iCOMP GUARD133I i INEW 5M6 8 OUTEWCOMP. GUARDCIRCUIT CIRCUITM5D2D3M2D1INA 110 OUTAR CV1M42.2 kΩ(1%)INPUT12 FEEDBANDFEEDBACKCIRCUITINB 2M1R CV24 OUTB2.2 kΩ(1%)M3<strong>TDA8358J</strong>C1100 nFR S2.7 kΩC M10 nFV PV FBC2100 nFR L3.2 ΩR M0.5 ΩI I(av)0I i(p-p)R EWF10 kΩVGND67EWGNDR EWL30 ΩMGL873Fig.3 Test diagram.2002 Sep 25 10


This text is here <strong>in</strong> white to force landscape pages to be rotated correctly when brows<strong>in</strong>g through the pdf <strong>in</strong> the Acrobat reader.This text is here <strong>in</strong>_white to force landscape pages to be rotated correctly when brows<strong>in</strong>g through the pdf <strong>in</strong> the Acrobat reader.This text is here <strong>in</strong>This text is here <strong>in</strong>white to force landscape pages to be rotated correctly when brows<strong>in</strong>g through the pdf <strong>in</strong> the Acrobat reader. white to force landscape pages to be ...2002 Sep 25 11V I(bias)0TV SIGNALPROCESSORV I(bias)0I I(av)0V i(p-p)V i(p-p)I i(p-p)C52.2 nFC62.2 nFR GRD12 kΩdbook, full pagewidthP V FB9COMP GUARD V1311 3C3 C1I i 6712 Ω100 47 µFCOMP. GUARDnF (100 V)CIRCUIT CIRCUITM5D2D3M2R CMPINA 1500 kΩD110 OUTAM4R D1270 ΩRINPUT12 FEEDB SANDFEEDBACK2.7 kΩINB 2 CIRCUITM14 OUTBM3<strong>TDA8358J</strong>INEW 5M6 8 OUTEW to l<strong>in</strong>e <strong>output</strong>R EWLtransformerR CV12.2 kΩR CV22.2 kΩf vert = 50 Hz; t FB = 640 µs; I I(bias) = 400 µA; I i(p-p) = 475 µA; I o(p-p) = 2.4 A.R EWF82 kΩVGNDFig.4 Application diagram.EWGNDMGL874C4100 nF<strong>deflection</strong>coil5 mH6 ΩW66ESFR M0.87 ΩV P = 14 VV FB = 30 VC2220 µFC D47 nFR D21.5 Ω<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifier<strong>TDA8358J</strong>Philips Semiconductors Product specification


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>R M calculationBefore calculat<strong>in</strong>g the measur<strong>in</strong>g resistor (R M ), thedifferential <strong>in</strong>put voltage [V i(dif) ] has to be known. Thisvoltage can be measured between p<strong>in</strong>s INA and INB. TheVcalculation is as follows: R M= i(dif)(p-p)---------------------I o(p-p)Most of the TV signal processors from Philips have acurrent <strong>output</strong>. This current has to be converted byresistors at the <strong>in</strong>put of the <strong>TDA8358J</strong> (R CV1 and R CV2 ).The voltage across these resistors can be calculated. Thedifferential <strong>in</strong>put voltage is given <strong>in</strong> the follow<strong>in</strong>g equation(see also Fig 5):V i(dif)(p-p) =I i1(p-p) × R CV1 − [−I i2(p-p) ] × R CV2I I(bias)0TV SIGNALPROCESSORI I(bias)0I i1(p-p)I i2(p-p)C52.2 nFC62.2 nFR CV12.2 kΩR CV22.2 kΩFig.5 Differential <strong>in</strong>put voltage.Values for these currents are, for <strong>in</strong>stance:I i(bias) = 400 µA; I i1(p-p) =I i2(p-p) = 475 µA.Therefore the differential <strong>in</strong>put voltage be as follows:V i(dif)(p-p) = 475 µA × 2.2 kΩ −(−475 µA × 2.2 kΩ)= 2.09 V12MBL520Supply voltage calculationFor calculat<strong>in</strong>g the m<strong>in</strong>imum required supply voltage,several specific application parameter values have to beknown. These parameters are the required maximum(peak) <strong>deflection</strong> coil current I coil(peak) , the coil impedanceR coil and L coil and the measur<strong>in</strong>g resistance of R M . Therequired maximum (peak) <strong>deflection</strong> coil current shouldalso <strong>in</strong>clude the overscan.The <strong>deflection</strong> coil resistance has to be multiplied by 1.2 <strong>in</strong>order to take account of hot conditions.Chapter “Characteristics” supplies values for the voltagelosses of the <strong>vertical</strong> <strong>output</strong> stage. For the first part of thescan the voltage loss is given by V loss(1) . For the secondpart of the scan the voltage loss is given by V loss(2) .The voltage drop across the <strong>deflection</strong> coil dur<strong>in</strong>g scan isdeterm<strong>in</strong>ed by the coil impedance. For the first part of thescan the <strong>in</strong>ductive contribution and the ohmic contributionto the total coil voltage drop are of opposite sign, while forthe second part of the scan the <strong>in</strong>ductive part and theohmic part have the same sign.For the <strong>vertical</strong> frequency the maximum frequencyoccurr<strong>in</strong>g must be applied to the calculations.The required power supply voltage V P for the first part ofthe scan is given by:V P1 ( ) I coil( peak)( R coil + R M )– L coil × 2I coil( peak)× f vert( max)+ V loss( 1)The required power supply voltage V P for the second partof the scan is given by:The m<strong>in</strong>imum required supply voltage V P shall be thehighest of the two values V P(1) and V P(2) . Spread <strong>in</strong> supplyvoltage and component values also has to be taken <strong>in</strong>toaccount.Flyback supply voltage calculationIf the flyback time is known, the required flyback supplyvoltage can be calculated by the simplified formula:where:=×V P2 ( ) = I coil( peak)×( R coil + R M )+ L coil × 2I coil( peak)× f vert( max)+ V loss( 2)V FB=× R -------------------------- coil + R M( )1 e – t FB–⁄ xI coil p–pL coilR coilR Mx = --------------------------+2002 Sep 25 12


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>The flyback supply voltage calculated this way isapproximately 5% to 10% higher than required.Calculation of the power dissipation of the <strong>vertical</strong><strong>output</strong> stageThe power dissipation of the <strong>vertical</strong> <strong>output</strong> stage is givenby the formula:P V =P sup − P LThe power to be supplied is given by the formula:IP sup = V coil( peak)P × ----------------------- + V2 P × 0.015 [A] + 0.3 [W]In this formula 0.3 [W] represents the average value of thelosses <strong>in</strong> the flyback supply.The average external load power dissipation <strong>in</strong> the<strong>deflection</strong> coil and the measur<strong>in</strong>g resistor is given by theformula:P L( I coil( peak)) 2= ------------------------------- × ( R3coil + R M )ExampleTable 1Table 2Application valuesSYMBOL VALUE UNITI coil(peak) 1.2 AI coil(p-p) 2.4 AL coil 5 mHR coil 6 ΩR M 0.6 Ωf vert 50 Hzt FB 640 µsCalculated valuesSYMBOL VALUE UNITV P 14 VR M +R coil (hot) 7.8 Ωt vert 0.02 sx 0.000641V FB 30 VP sup 8.91 WP L 3.74 WP V 5.17 WPower dissipation calculation for the east-west stageIn general the shape of the east-west <strong>output</strong> wave form isa parabola. The <strong>output</strong> voltage will be higher at thebeg<strong>in</strong>n<strong>in</strong>g and end of the <strong>vertical</strong> scan compared to thevoltage at the scan middle, while the <strong>output</strong> current will behigher at the scan middle. This results <strong>in</strong> an almost uniformpower dissipation distribution dur<strong>in</strong>g scan. Therefore thepower dissipation can be calculated by multiply<strong>in</strong>g theaverage values of the <strong>output</strong> voltage and the <strong>output</strong>current of p<strong>in</strong> OUTEW.When verify<strong>in</strong>g the dissipation the switch-on and switch-offdissipation should also be taken <strong>in</strong>to account. Powerdissipation dur<strong>in</strong>g start-up can be 3 to 5 times higher thandur<strong>in</strong>g normal operation.Heats<strong>in</strong>k calculationThe value of the heats<strong>in</strong>k can be calculated <strong>in</strong> a standardway with a method based on average temperatures. Therequired thermal resistance of the heats<strong>in</strong>k is determ<strong>in</strong>edby the maximum die temperature of 150 °C. In general werecommend a design for an average die temperaturenot exceed<strong>in</strong>g 130 °C. It should be noted that theheats<strong>in</strong>k thermal resistance R th(h-a) found by perform<strong>in</strong>g astandard calculation will be lower then normally found fora <strong>vertical</strong> <strong>deflection</strong> stand alone device, due to thecontribution of the EW power dissipation to this value.EXAMPLEMeasured or known values:P EW = 3 W; P V = 6 W; T amb =40°C; T j = 130 °C;R th(j-c) = 4 K/W; R th(c-h) = 1 K/W.The required heats<strong>in</strong>k thermal resistance is given by:T j – T amb( ) = ------------------------ –( R+th( j – c)+ R th c – hR th h – aP EWP VWhen we use the values known we f<strong>in</strong>d:130 – 40( ) = --------------------- – (3+64 + 1 ) = 5 K/WR th h – aThe heats<strong>in</strong>k temperature will be:( ) )T h =T amb +R th(h-a) × P tot =40+5×9=85°C2002 Sep 25 13


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>Equivalent thermal resistance networkThe <strong>TDA8358J</strong> has two <strong>in</strong>dependent power dissipat<strong>in</strong>gsystems, the <strong>vertical</strong> <strong>output</strong> <strong>circuit</strong> and the east-west<strong>circuit</strong>.It is recommended to verify the <strong>in</strong>dividual maximum (peak)junction temperatures of both <strong>circuit</strong>s. Therefore themaximum (peak) power dissipations of the <strong>circuit</strong>s andalso the heats<strong>in</strong>k temperature should be measured. Themaximum (peak) junction temperatures can be calculatedby us<strong>in</strong>g an equivalent thermal network (see Fig.6).The network only <strong>in</strong>cludes the contribution of themaximum (peak) power dissipation P TRv(peak) , be<strong>in</strong>g thedissipation of the most critical transistor <strong>in</strong>ternallyconnected to p<strong>in</strong>s OUTA and VGND. The model assumesequivalent maximum (peak) power dissipations dur<strong>in</strong>g thedifferent <strong>vertical</strong> scan stages for all the functionally pairedtransistors. The calculated maximum (peak) junctiontemperatures should not exceed T j = 150 °C.EXAMPLEMeasured or known values:• The east-west power dissipation: P EW =3W• The <strong>vertical</strong> power dissipation: P V =6W• The maximum (peak) power dissipation of the mostcritical transistor: P TRv(peak) =5W• The case temperature: T c =85°C.The IC total power dissipation is:P tot =P EW +P V =6+3=9WIt should be noted that the allowed IC total powerdissipation is P tot = 15 W (maximum value).The maximum (peak) temperature T P1(peak) is given by:• T P1(peak) =T c +(P EW +P TRv(peak) ) × R th(P1-c)=85+(3+5)×2.2 = 102.6 °CThe maximum (peak) junction temperatures for the <strong>output</strong><strong>circuit</strong>s are given by:• T j(EW)(peak) =T P1(peak) +R th(EW-P1) × P EW= 102.6 + 10.5 × 3 = 134.1 °C• T j(TRv)(peak) =T P1(peak) +R th(TRv-P1) × P TRv(peak)= 102.6 + 5.2 × 5 = 128.6 °Chandbook, halfpageT EW(M)T TRv(M)R th(EW-P1)10.5 K/WP EWT P1(M)R th(TRv-P1)5.2 K/WP TRv(M)R th(P1-c)2.2 K/WP totT cMGL872Fig.6 Equivalent thermal resistance network.2002 Sep 25 14


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>INTERNAL PIN CONFIGURATIONPIN SYMBOL EQUIVALENT CIRCUIT1 INA1300 ΩMBL1002 INB2300 ΩMBL1023 V P4 OUTB6 VGND9 V FB10 OUTA93104MGL86965 INEW7 EWGND8 OUTEW300 Ω57MGL86882002 Sep 25 15


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>PIN SYMBOL EQUIVALENT CIRCUIT11 GUARD300 Ω11MGL87012 FEEDB300 Ω12MGL87113 COMP300 Ω13MGL8752002 Sep 25 16


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>PACKAGE OUTLINEDBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)SOT141-6non-concavexDhDE hview B: mount<strong>in</strong>g base sidedA 2BjEAL 3LQcv M1 13Z e1w Mm e2b pe0 5 10 mmscaleDIMENSIONS (mm are the orig<strong>in</strong>al dimensions)UNIT A A 2 b p c D (1) d D E (1) e e 1Z (1)h e 2 E h j L L 3 m Q v w xmm 17.015.54.64.40.750.600.480.3824.023.620.019.612.210 3.411.81.75.0863.43.112.411.02.41.64.32.11.80.80.250.032.001.45Note1. Plastic or metal protrusions of 0.25 mm maximum per side are not <strong>in</strong>cluded.OUTLINEVERSIONREFERENCESIEC JEDEC EIAJEUROPEANPROJECTIONISSUE DATESOT141-697-12-1699-12-172002 Sep 25 17


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>SOLDERINGIntroduction to solder<strong>in</strong>g through-hole mountpackagesThis text gives a brief <strong>in</strong>sight to wave, dip and manualsolder<strong>in</strong>g. A more <strong>in</strong>-depth account of solder<strong>in</strong>g ICs can befound <strong>in</strong> our “Data Handbook IC26; Integrated CircuitPackages” (document order number 9398 652 90011).Wave solder<strong>in</strong>g is the preferred method for mount<strong>in</strong>g ofthrough-hole mount IC packages on a pr<strong>in</strong>ted-<strong>circuit</strong>board.Solder<strong>in</strong>g by dipp<strong>in</strong>g or by solder waveThe maximum permissible temperature of the solder is260 °C; solder at this temperature must not be <strong>in</strong> contactwith the jo<strong>in</strong>ts for more than 5 seconds.The total contact time of successive solder waves must notexceed 5 seconds.The device may be mounted up to the seat<strong>in</strong>g plane, butthe temperature of the plastic body must not exceed thespecified maximum storage temperature (T stg(max) ). If thepr<strong>in</strong>ted-<strong>circuit</strong> board has been pre-heated, forced cool<strong>in</strong>gmay be necessary immediately after solder<strong>in</strong>g to keep thetemperature with<strong>in</strong> the permissible limit.Manual solder<strong>in</strong>gApply the solder<strong>in</strong>g iron (24 V or less) to the lead(s) of thepackage, either below the seat<strong>in</strong>g plane or not more than2 mm above it. If the temperature of the solder<strong>in</strong>g iron bitis less than 300 °C it may rema<strong>in</strong> <strong>in</strong> contact for up to10 seconds. If the bit temperature is between300 and 400 °C, contact may be up to 5 seconds.Suitability of through-hole mount IC packages for dipp<strong>in</strong>g and wave solder<strong>in</strong>g methodsSOLDERING METHODPACKAGEDIPPINGDBS, DIP, HDIP, SDIP, SIL suitable suitable (1)WAVENote1. For SDIP packages, the longitud<strong>in</strong>al axis must be parallel to the transport direction of the pr<strong>in</strong>ted-<strong>circuit</strong> board.2002 Sep 25 18


Philips Semiconductors<strong>Full</strong> <strong>bridge</strong> <strong>vertical</strong> <strong>deflection</strong> <strong>output</strong> <strong>circuit</strong><strong>in</strong> LVDMOS with east-west amplifierProduct specification<strong>TDA8358J</strong>DATA SHEET STATUSDATA SHEET STATUS (1) PRODUCTSTATUS (2)DEFINITIONSObjective data Development This data sheet conta<strong>in</strong>s data from the objective specification for productdevelopment. Philips Semiconductors reserves the right to change thespecification <strong>in</strong> any manner without notice.Prelim<strong>in</strong>ary data Qualification This data sheet conta<strong>in</strong>s data from the prelim<strong>in</strong>ary specification.Supplementary data will be published at a later date. PhilipsSemiconductors reserves the right to change the specification withoutnotice, <strong>in</strong> order to improve the design and supply the best possibleproduct.Product data Production This data sheet conta<strong>in</strong>s data from the product specification. PhilipsSemiconductors reserves the right to make changes at any time <strong>in</strong> orderto improve the design, manufactur<strong>in</strong>g and supply. Changes will becommunicated accord<strong>in</strong>g to the Customer Product/Process ChangeNotification (CPCN) procedure SNW-SQ-650A.Notes1. Please consult the most recently issued data sheet before <strong>in</strong>itiat<strong>in</strong>g or complet<strong>in</strong>g a design.2. The product status of the device(s) described <strong>in</strong> this data sheet may have changed s<strong>in</strong>ce this data sheet waspublished. The latest <strong>in</strong>formation is available on the Internet at URL http://www.semiconductors.philips.com.DEFINITIONSShort-form specification ⎯ The data <strong>in</strong> a short-formspecification is extracted from a full data sheet with thesame type number and title. For detailed <strong>in</strong>formation seethe relevant data sheet or data handbook.Limit<strong>in</strong>g values def<strong>in</strong>ition ⎯ Limit<strong>in</strong>g values given are <strong>in</strong>accordance with the Absolute Maximum Rat<strong>in</strong>g System(IEC 60134). Stress above one or more of the limit<strong>in</strong>gvalues may cause permanent damage to the device.These are stress rat<strong>in</strong>gs only and operation of the deviceat these or at any other conditions above those given <strong>in</strong> theCharacteristics sections of the specification is not implied.Exposure to limit<strong>in</strong>g values for extended periods mayaffect device reliability.Application <strong>in</strong>formation ⎯ Applications that aredescribed here<strong>in</strong> for any of these products are forillustrative purposes only. Philips Semiconductors makeno representation or warranty that such applications will besuitable for the specified use without further test<strong>in</strong>g ormodification.DISCLAIMERSLife support applications ⎯ These products are notdesigned for use <strong>in</strong> life support appliances, devices, orsystems where malfunction of these products canreasonably be expected to result <strong>in</strong> personal <strong>in</strong>jury. PhilipsSemiconductors customers us<strong>in</strong>g or sell<strong>in</strong>g these productsfor use <strong>in</strong> such applications do so at their own risk andagree to fully <strong>in</strong>demnify Philips Semiconductors for anydamages result<strong>in</strong>g from such application.Right to make changes ⎯ Philips Semiconductorsreserves the right to make changes, without notice, <strong>in</strong> theproducts, <strong>in</strong>clud<strong>in</strong>g <strong>circuit</strong>s, standard cells, and/orsoftware, described or conta<strong>in</strong>ed here<strong>in</strong> <strong>in</strong> order toimprove design and/or performance. PhilipsSemiconductors assumes no responsibility or liability forthe use of any of these products, conveys no licence or titleunder any patent, copyright, or mask work right to theseproducts, and makes no representations or warranties thatthese products are free from patent, copyright, or maskwork right <strong>in</strong>fr<strong>in</strong>gement, unless otherwise specified.2002 Sep 25 19


Philips Semiconductors – a worldwide companyContact <strong>in</strong>formationFor additional <strong>in</strong>formation please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.© Kon<strong>in</strong>klijke Philips Electronics N.V. 2002 SCA74All rights are reserved. Reproduction <strong>in</strong> whole or <strong>in</strong> part is prohibited without the prior written consent of the copyright owner.The <strong>in</strong>formation presented <strong>in</strong> this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changedwithout notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any licenseunder patent- or other <strong>in</strong>dustrial or <strong>in</strong>tellectual property rights.Pr<strong>in</strong>ted <strong>in</strong> The Netherlands 753504/02/pp20 Date of release: 2002 Sep 25 Document order number: 9397 750 09635

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!