12.07.2015 Views

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

• Sett<strong>in</strong>g a 0 := ‖c 0 ‖ 1 + ε, we have ‖c i ‖ 1 ≤ a 0 .• By equation (ii) <strong>in</strong> lemma 10.25,len(c 0 ) − 2π‖c 0 − c i ‖ 1 ≤ len(c i ) ≤ len(c 0 ) + 2π‖c 0 − c i ‖ 1<strong>and</strong> <strong>in</strong> particular2πε ≤ len(c i ) ≤ len(c 0 ) + 2πε .Let f i = ∇˜H1E(c i ) be the gradient, whose formula was expressed <strong>in</strong> (10.24).We decompose f i us<strong>in</strong>g the relation T c M = lR n ⊕ D c M, as done previously:<strong>and</strong> obta<strong>in</strong>f i = avg ci(f i ) ∈ lR n , ˜fi = f − avg ci(f i ) ∈ D ci Mf i = avg ci(c i ) − v1˜f i = P ci Π ci h i , whereλL 2 ih i := D s c i 〈(avg ci(c i ) − v), (c i − avg ci(c i ))〉 , (10.36)by rewrit<strong>in</strong>g (10.25) <strong>in</strong> the notation <strong>of</strong> this pro<strong>of</strong>.We will then exploit all the <strong>in</strong>equalities <strong>in</strong> the lemmas to prove that|f 1 − f 2 | ≤ a 1 ‖c 1 − c 2 ‖ 1 , ‖ ˜f 1 − ˜f 2 ‖ 1 ≤ a 2 ‖c 1 − c 2 ‖ 1for two constants a 1 , a 2 > 0 <strong>and</strong> all c 1 , c 2 near c 0 ; this effectively proves that|f 1 − f 2 | ≤ (a 1 + a 2 )‖c 1 − c 2 ‖ 1that is, ∇˜H1E(c) is a locally Lipschitz functional.The first term is dealt with equation (iv) <strong>in</strong> lemma 10.25, whence we obta<strong>in</strong>∫∫|f 1 − f 2 | = | c 1 (s) ds − c 2 (s) ds| ≤ a 1 ‖c 1 − c 2 ‖ 1 with a 1 := 2a2 0c 1 c 2ε 2 .By repeated applications <strong>of</strong> the <strong>in</strong>equalities listed <strong>in</strong> lemma 10.25, we provethat, <strong>in</strong> the designed neighborhood, the follow<strong>in</strong>g <strong>in</strong>equalities hold‖h 2 − h 1 ‖ 0 ≤ a 3 ‖c 2 − c 1 ‖ 1‖h i ‖ ≤ a 4for two constants a 3 , a 4 > 0. So we can choose constants P, Q > 0 such that the<strong>in</strong>equality (10.30) holds uniformly <strong>in</strong> the neighborhood, <strong>and</strong> then‖P c1 Π c1 h 1 − P c2 Π c2 h 2 ‖ 1 ≤ P ‖c ′ 1 − c ′ 2‖ 0 + Q ‖h 2 − h 1 ‖ 0 ≤≤ (P + Qa 3 )‖c 1 − c 2 ‖ 179

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!