12.07.2015 Views

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

• The length functional (from C 1 to lR) is Lipschitz, s<strong>in</strong>celen(c 1 ) − len(c 2 ) ≤ 2π‖c ′ 1 − c ′ 2‖ 0 ;(ii)• if h 1 , h 2 : S 1 → lR n are cont<strong>in</strong>uous fields, by (i)|∫h 1 (s) ds −c 1∫h 2 (s) ds|c 2≤ π(‖h 1 ‖ 0 + ‖h 2 ‖ 0 )‖c ′ 1 − c ′ 2‖ 0 ++ π(‖c ′ 1‖ 0 + ‖c ′ 2‖ 0 )‖h 1 − h 2 ‖ 0 ; (iii)• similarly|∫h 1 (s) ds −c 1∫h 2 (s) ds| ≤ A‖c ′ 1 − c ′ 2‖ 0 + ‖h 1 − h 2 ‖ 0c 2(iv)whereA := 2π2 (‖h 1 ‖ 0 + ‖h 2 ‖ 0 )(‖c ′ 1‖ 0 + ‖c ′ 2‖ 0 )len(c 0 ) len(c 1 ). (v)• Let then Π c be the projection operator (as <strong>in</strong> def<strong>in</strong>ition (10.17)); note that(Π c h) ′ = h ′ ; from all above <strong>in</strong>equalities we obta<strong>in</strong> that‖Π c1 h 1 − Π c2 h 2 ‖ 0 ≤ A‖c ′ 1 − c ′ 2‖ 0 + 2‖h 1 − h 2 ‖ 0‖Π c1 h 1 − Π c2 h 2 ‖ 1 = ‖Π c1 h 1 − Π c2 h 2 ‖ 0 + ‖(Π c1 h 1 ) ′ − (Π c2 h 2 ) ′ ‖ 0 ≤≤ A‖c ′ 1 − c ′ 2‖ 0 + 2‖h 1 − h 2 ‖ 0 + ‖h ′ 1 − h ′ 2‖ 0≤ A‖c 1 − c 2 ‖ 1 + 2‖h 1 − h 2 ‖ 1 . (vi)We will now prove the local Lipschitz regularity <strong>of</strong> the operators P c (h), D c (h)(that were def<strong>in</strong>ed <strong>in</strong> 10.14) <strong>in</strong> both the two variables h <strong>and</strong> c. Unfortunatelyto prove the theorem 10.29 we will need to also compare the action <strong>of</strong> P c fordifferent values <strong>of</strong> c; s<strong>in</strong>ce P c h is properly def<strong>in</strong>ed only when h ∈ D c M (<strong>and</strong> <strong>in</strong>general D c1 M ≠ D c2 M), we will actually need to study the composite operatorP c Π c h.Lemma 10.26 Let Π c the projector from T c M to D c M (that we def<strong>in</strong>ed <strong>in</strong>eqn. (10.17)). Let c, c 1 , c 2 be C 1 immersed <strong>curves</strong>, <strong>and</strong> h, h 1 , h 2 be cont<strong>in</strong>uousfields; then‖P c Π c h‖ 1 ≤ (2π + 2)‖c ′ ‖ 0 ‖h‖ 0 (10.29)<strong>and</strong>‖P c1 Π c1 h 1 − P c2 Π c2 h 2 ‖ 1 ≤ P ‖c ′ 1 − c ′ 2‖ 0 + (10.30)+ Q ‖h 2 − h 0 ‖ 0whereQ := (1/2 + π)(‖c ′ 2‖ 0 + ‖c ′ 1‖ 0 ) .74

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!