12.07.2015 Views

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pro<strong>of</strong>. Fix α 0 ∈ S \ Z. Let T = T α0 S be the tangent at α 0 . T is the vectorspace orthogonal to ∇φ i (α 0 ) for i = 1, 2, 3. Let e i = e i (s) ∈ L 2 ∩ Cc∞ be near∇φ i (α 0 ) <strong>in</strong> L 2 , so that the map (x, y) : T × lR 3 → L 2(x, y) ↦→ α = α 0 + x +3∑e i y i (8.4)is an isomorphism. Let S ′ be S <strong>in</strong> these coord<strong>in</strong>ates; by the Implicit FunctionTheorem (5.9 <strong>in</strong> Lang [30]), there exists an open set U ′ ⊂ T , 0 ∈ U ′ , an openV ′ ⊂ lR 3 , 0 ∈ V ′ , <strong>and</strong> a smooth function F : U → lR 3 such that the local partS ′ ∩ (U ′ × V ′ ) <strong>of</strong> the manifold S ′ is the graph <strong>of</strong> y = F (x).We immediately def<strong>in</strong>e a smooth projection π : U ′ × V ′ → S ′ by sett<strong>in</strong>gπ ′ (x, y) = (x, F (x)); this may be expressed <strong>in</strong> the orig<strong>in</strong>al L 2 space; let(x(α), y(α)) be the <strong>in</strong>verse <strong>of</strong> (8.4) <strong>and</strong> U = x −1 (U ′ ); we def<strong>in</strong>e the projectionπ : U → S by sett<strong>in</strong>gThenπ(α)(s) − α(s) =π(α) = α 0 + x +i=13∑e i F i (x(α))i=13∑e i (s)a i , a i := (F i (x(α)) − y i (α)) ∈ lR (8.5)i=1so if α(s) is smooth, then π(α)(s) is smooth.Let α n be smooth functions such that α n → α <strong>in</strong> L 2 , then π(α n ) → α 0 ; ifwe choose them to satisfy α n (2π) − α n (0) = 2πh, then, by the formula (8.5),π(α)(2π) − π(α)(0) = 2πh so that π(α n ) ∈ S <strong>and</strong> it represents a smooth curvewith the assigned rotation <strong>in</strong>dex h.8.2 A metric with explicit geodesicsA similar method has been proposed recently <strong>in</strong> Michor et al. [39], based onan idea orig<strong>in</strong>ally <strong>in</strong> [68]. We consider immersed planar <strong>curves</strong> <strong>and</strong> aga<strong>in</strong> weidentify lR 2 = IC.Proposition 8.9 (Cont<strong>in</strong>uous lift<strong>in</strong>g <strong>of</strong> square root) If ξ : [0, 2π] → IC isan immersed planar curve, then ξ ′ is cont<strong>in</strong>uous <strong>and</strong> ξ ′ ≠ 0, so there exists acont<strong>in</strong>uous function α :→ IC satisfy<strong>in</strong>gξ ′ (θ) = α(θ) 2 (8.6)<strong>and</strong> α is uniquely identified up to multiply<strong>in</strong>g by ±1.If the rotation <strong>in</strong>dex <strong>of</strong> ξ is even then α(0) = α(2π), whereas if the rotation<strong>in</strong>dex <strong>of</strong> ξ is odd then α(0) = −α(2π).56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!