12.07.2015 Views

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.6 Goals (revisited) . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.6.1 Well posedness . . . . . . . . . . . . . . . . . . . . . . . . 394.6.2 Are the goal properties consistent? . . . . . . . . . . . . . 395 Representation/embedd<strong>in</strong>g/quotient <strong>in</strong> the current literature 405.1 The representation/embedd<strong>in</strong>g/quotient paradigm . . . . . . . . 405.2 Current literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 <strong>Metrics</strong> <strong>of</strong> sets 416.1 Some more math on distance <strong>and</strong> geodesics . . . . . . . . . . . . 416.1.1 Length <strong>in</strong>duced by a distance . . . . . . . . . . . . . . . . 426.1.2 M<strong>in</strong>imal geodesics . . . . . . . . . . . . . . . . . . . . . . 426.1.3 Existence <strong>of</strong> geodesics <strong>and</strong> <strong>of</strong> average . . . . . . . . . . . . 426.1.4 Geodesic rays . . . . . . . . . . . . . . . . . . . . . . . . . 436.1.5 Hopf–R<strong>in</strong>ow , Cohn-Vossen Theorem . . . . . . . . . . . . 436.2 Hausdorff metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 436.2.1 An alternative def<strong>in</strong>ition . . . . . . . . . . . . . . . . . . . 446.2.2 Uncountable many geodesics . . . . . . . . . . . . . . . . 456.2.3 Curves <strong>and</strong> connected sets . . . . . . . . . . . . . . . . . . 456.2.4 Applications <strong>in</strong> computer vision . . . . . . . . . . . . . . . 466.3 A Hausdorff-like distance <strong>of</strong> compact sets . . . . . . . . . . . . . 466.3.1 Analogy with the Hausdorff metric, L p vs L ∞ . . . . . . 466.3.2 Cont<strong>in</strong>gent cone . . . . . . . . . . . . . . . . . . . . . . . 476.3.3 Riemannian metric . . . . . . . . . . . . . . . . . . . . . . 486.3.4 Polar coord<strong>in</strong>ates <strong>of</strong> smooth convex sets . . . . . . . . . . 486.3.5 Smooth deformations <strong>of</strong> a convex set . . . . . . . . . . . . 496.3.6 Pullback <strong>of</strong> the metric on convex boundaries . . . . . . . 496.3.7 Pullback <strong>of</strong> the metric on smooth contours . . . . . . . . 506.3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 507 F<strong>in</strong>sler geometries <strong>of</strong> <strong>curves</strong> 517.1 Tangent <strong>and</strong> normal . . . . . . . . . . . . . . . . . . . . . . . . . 517.2 L ∞ metric <strong>and</strong> Fréchet distance . . . . . . . . . . . . . . . . . . . 517.3 L 1 metric <strong>and</strong> Plateau problem . . . . . . . . . . . . . . . . . . . 528 Riemannian metrics <strong>of</strong> <strong>curves</strong> up to pose 528.1 Shape Representation us<strong>in</strong>g direction functions . . . . . . . . . . 528.1.1 Multiple measurable representations . . . . . . . . . . . . 548.1.2 Cont<strong>in</strong>uous vs measurable lift<strong>in</strong>g — no w<strong>in</strong>d<strong>in</strong>g . . . . . . 558.2 A metric with explicit geodesics . . . . . . . . . . . . . . . . . . . 568.2.1 Curves up to rotation ↔ Grassmanian . . . . . . . . . . . 578.2.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . 588.2.3 Quotient w.r.to representation . . . . . . . . . . . . . . . 58103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!