12.07.2015 Views

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

Metrics of curves in shape optimization and analysis - Andrea Carlo ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Metrics</strong> <strong>of</strong> <strong>curves</strong> <strong>in</strong> <strong>shape</strong> <strong>optimization</strong> <strong>and</strong><strong>analysis</strong><strong>Andrea</strong> C. G. MennucciLevel set <strong>and</strong> PDE based reconstruction methods:applications to <strong>in</strong>verse problems <strong>and</strong> image process<strong>in</strong>gCIME, Cetraro, 2008Key words: Shape space, <strong>shape</strong> <strong>optimization</strong>, <strong>shape</strong> <strong>analysis</strong>, computer vision,Riemannian geometry, manifold <strong>of</strong> <strong>curves</strong>, hyperspace <strong>of</strong> compact sets, edgedetection, image segmentation, visual track<strong>in</strong>g, curve evolution, gradient flow,active contour, sobolev active contour.IntroductionIn these lecture notes we will explore the mathematics <strong>of</strong> the space <strong>of</strong> immersed<strong>curves</strong>, as is nowadays used <strong>in</strong> applications <strong>in</strong> computer vision. In this field,the space <strong>of</strong> <strong>curves</strong> is employed as a “<strong>shape</strong> space”; for this reason, we will alsodef<strong>in</strong>e <strong>and</strong> study the space <strong>of</strong> geometric <strong>curves</strong>, that are immersed <strong>curves</strong> upto reparameterizations. To develop the usages <strong>of</strong> this space, we will considerthe space <strong>of</strong> <strong>curves</strong> as an <strong>in</strong>f<strong>in</strong>ite dimensional differentiable manifold; we willthen deploy an effective form <strong>of</strong> calculus <strong>and</strong> <strong>analysis</strong>, compris<strong>in</strong>g tools such as aRiemannian metric, so as to be able to perform st<strong>and</strong>ard operations: m<strong>in</strong>imiz<strong>in</strong>ga goal functional by gradient descent, or comput<strong>in</strong>g the distance between two<strong>curves</strong>. Along this path <strong>of</strong> mathematics, we will also present some currentliterature results. (Another common <strong>and</strong> <strong>in</strong>terest<strong>in</strong>g example <strong>of</strong> “<strong>shape</strong> spaces”is the space <strong>of</strong> all compact subsets <strong>of</strong> lR n — we will briefly discuss this optionas well, <strong>and</strong> relate it to the aforementioned theory).These lecture notes aim to be as self-conta<strong>in</strong>ed as possible, so as to be accessibleto young mathematicians <strong>and</strong> non-mathematicians as well. For this reason,many examples are <strong>in</strong>termixed with the def<strong>in</strong>itions <strong>and</strong> pro<strong>of</strong>s; <strong>in</strong> present<strong>in</strong>gadvanced <strong>and</strong> complex mathematical ideas, the rigorous mathematical def<strong>in</strong>itions<strong>and</strong> pro<strong>of</strong>s were sometimes sacrificed <strong>and</strong> replaced with an <strong>in</strong>tuitive description.These lecture notes are organized as follows. Section 1 <strong>in</strong>troduces the def<strong>in</strong>itions<strong>and</strong> some basilar concepts related to immersed <strong>and</strong> geometric <strong>curves</strong>.Section 2 overviews the realm <strong>of</strong> applications for a <strong>shape</strong> space <strong>in</strong> computervision, that we divide <strong>in</strong> the fields <strong>of</strong> “<strong>shape</strong> <strong>optimization</strong>” <strong>and</strong> “<strong>shape</strong> <strong>analysis</strong>”;1


<strong>and</strong> hilights features <strong>and</strong> problems <strong>of</strong> those theories as were studied up to afew years ago, so as to identify the needs <strong>and</strong> obstacles to further developments.Section 3 conta<strong>in</strong>s a summary <strong>of</strong> all mathematical concepts that are needed forthe rest <strong>of</strong> the notes. Section 4 coalesces all the above <strong>in</strong> more precise def<strong>in</strong>itions<strong>of</strong> spaces <strong>of</strong> <strong>curves</strong> to be used as “<strong>shape</strong> spaces”, <strong>and</strong> sets mathematicalrequirements <strong>and</strong> goals for applications <strong>in</strong> computer vision. Section 5 <strong>in</strong>dexesexamples <strong>of</strong> “<strong>shape</strong> spaces” from the current literature, <strong>in</strong>sert<strong>in</strong>g it <strong>in</strong> a commonparadigm <strong>of</strong> “representation <strong>of</strong> <strong>shape</strong>”; some <strong>of</strong> this literature is then elaboratedupon <strong>in</strong> the follow<strong>in</strong>g sections 6,7,8,9, conta<strong>in</strong><strong>in</strong>g two examples <strong>of</strong> metrics <strong>of</strong>compact subsets <strong>of</strong> lR n , two examples <strong>of</strong> F<strong>in</strong>sler metrics <strong>of</strong> <strong>curves</strong>, two examples<strong>of</strong> Riemannian metrics <strong>of</strong> <strong>curves</strong> “up to pose”, <strong>and</strong> four examples <strong>of</strong> Riemannianmetrics <strong>of</strong> immersed <strong>curves</strong>. The last such example is the family <strong>of</strong> Sobolev-typeRiemannian metrics <strong>of</strong> immersed <strong>curves</strong>, whose properties are studied <strong>in</strong> Section10, with applications <strong>and</strong> numerical examples. Section 11 presents advancedmathematical topics regard<strong>in</strong>g the Riemannian spaces <strong>of</strong> immersed <strong>and</strong> geometric<strong>curves</strong>.I gratefully acknowledge that a part <strong>of</strong> the theory <strong>and</strong> many numericalexperiments exposited were developed <strong>in</strong> jo<strong>in</strong>t work with Pr<strong>of</strong>. Yezzi (GaTech)<strong>and</strong> Pr<strong>of</strong>. Sundaramoorthi (UCLA); other numerical experiments were by A.Duci <strong>and</strong> myself. I also deeply thank the organizers for <strong>in</strong>vit<strong>in</strong>g me to Cetraroto give the lectures that were the basis for these lecture notes.1 Shapes & <strong>curves</strong>What is this course about? In the first two sections we beg<strong>in</strong> by summariz<strong>in</strong>g <strong>in</strong>a simpler form the def<strong>in</strong>itions, review<strong>in</strong>g the goals, <strong>and</strong> present<strong>in</strong>g some usefulmathematical tools.1.1 ShapesA wide <strong>in</strong>terest for the study <strong>of</strong> <strong>shape</strong> spaces arose <strong>in</strong> recent years, <strong>in</strong> particular<strong>in</strong>side the computer vision community. Some examples <strong>of</strong> <strong>shape</strong> spaces are asfollows.• The family <strong>of</strong> all collections <strong>of</strong> k po<strong>in</strong>ts <strong>in</strong> lR n .• The family <strong>of</strong> all non empty compact subsets <strong>of</strong> lR n .000 111000 111000 111000 111000 111• The family <strong>of</strong> all closed <strong>curves</strong> <strong>in</strong> lR n .There are two different (but <strong>in</strong>terconnected) fields <strong>of</strong> applications for a good<strong>shape</strong> space <strong>in</strong> computer vision:<strong>shape</strong> <strong>optimization</strong> where we want to f<strong>in</strong>d the <strong>shape</strong> that best satisfies adesign goal; a topic <strong>of</strong> <strong>in</strong>terest <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g at large;2


<strong>shape</strong> <strong>analysis</strong> where we study a family <strong>of</strong> <strong>shape</strong>s for purposes <strong>of</strong> statistics,(automatic) catalog<strong>in</strong>g, probabilistic model<strong>in</strong>g, among others, <strong>and</strong> possiblycreate an a-priori model for a better <strong>shape</strong> <strong>optimization</strong>.1.2 CurvesWe will use formulæ <strong>of</strong> the form A := B to mean that the formula A is def<strong>in</strong>edby the formula B.S 1 = {x ∈ lR 2 | |x| = 1} is the circle <strong>in</strong> the plane. S 1 is the template for allpossible closed <strong>curves</strong>. (Open <strong>curves</strong> will be called paths, to avoid confusion).Def<strong>in</strong>ition 1.1 (Classes <strong>of</strong> <strong>curves</strong>) • A C 1 curve is a cont<strong>in</strong>uously differentiablemap c : S 1 → lR n such that the derivative c ′ (θ) := ∂ θ c(θ) existsat all po<strong>in</strong>ts θ ∈ S 1 .• An immersed curve is a C 1 curve c such that c ′ (θ) ≠ 0 at all po<strong>in</strong>tsθ ∈ S 1 .c : S 1 → c(S 1 )✓✏↦→✒✑Note that, <strong>in</strong> our term<strong>in</strong>ology , the “curve” is the function c, <strong>and</strong> not just theimage c(S 1 ) <strong>in</strong>side lR n .Most <strong>of</strong> the theory follow<strong>in</strong>g will be developed for <strong>curves</strong> <strong>in</strong> lR n , when thisdoes not complicate the math. We will call planar <strong>curves</strong> those whose imageis <strong>in</strong> lR 2 .The class <strong>of</strong> immersed <strong>curves</strong> is a differentiable manifold. For the purposes<strong>of</strong> this <strong>in</strong>troduction, we present a simple, <strong>in</strong>tuitive def<strong>in</strong>ition.Def<strong>in</strong>ition 1.2 The manifold <strong>of</strong> (parametric) <strong>curves</strong> M is the set <strong>of</strong> allclosed immersed <strong>curves</strong>. Suppose that c ∈ M, c : S 1 → lR n is a closed immersedcurve.• A deformation <strong>of</strong> c is a function h : S 1 → lR n .• The set <strong>of</strong> all such h is the tangent space T c M <strong>of</strong> M at c.• An <strong>in</strong>f<strong>in</strong>itesimal deformation <strong>of</strong> the curve c 0 <strong>in</strong> “direction” h will yield (onfirst order) the curve c 0 (u) + εh(u).• A homotopy C connect<strong>in</strong>g c 0 to c 1 is a cont<strong>in</strong>uously differentiablefunction C : [0, 1] × S 1 → lR n such that c 0 (θ) = C(0, θ)<strong>and</strong> c 1 (θ) = C(1, θ).By def<strong>in</strong><strong>in</strong>g γ(t) = C(t, ·) we can associate C to a path γ :[0, 1] → M <strong>in</strong> the space <strong>of</strong> <strong>curves</strong> M, connect<strong>in</strong>g c 0 to c 1 .Mhc 0c 1When deal<strong>in</strong>g with homotopies C = C(t, θ), we will use the “prime notation” C ′for the derivative ∂ θ C <strong>in</strong> the “curve parameter” θ, <strong>and</strong> the “dot notation” Ċ forthe derivative ∂ t C <strong>in</strong> the “time parameter” t.3


1.3 Geometric <strong>curves</strong> <strong>and</strong> functionalsShapes are usually considered to be geometric objects. Represent<strong>in</strong>g a curveus<strong>in</strong>g c : S 1 → lR n forces a choice <strong>of</strong> parameterization, that is not really part<strong>of</strong> the concept <strong>of</strong> “<strong>shape</strong>”. To get rid <strong>of</strong> this, we first summarily present whatreparameterizations are.Def<strong>in</strong>ition 1.3 Let Diff(S 1 ) be the family <strong>of</strong> diffeomorphisms <strong>of</strong> S 1 : all themaps φ : S 1 → S 1 that are C 1 <strong>and</strong> <strong>in</strong>vertible, <strong>and</strong> the <strong>in</strong>verse φ −1 is C 1 .Diff(S 1 ) enjoys some important mathematical properties.• Diff(S 1 ) is a group, <strong>and</strong> its group operation is the composition φ, ψ ↦→φ ◦ ψ.• Diff(S 1 ) is divided <strong>in</strong> two connected components, the family Diff + (S 1 )<strong>of</strong> diffeomorphisms with derivative φ ′ > 0 at all po<strong>in</strong>ts; <strong>and</strong> the familyDiff − (S 1 ) <strong>of</strong> diffeomorphisms with derivative φ ′ < 0 at all po<strong>in</strong>ts.Diff + (S 1 ) is a subgroup <strong>of</strong> Diff(S 1 ).• Diff(S 1 ) acts on M, the action 1 is the right function composition c ◦ φ.The result<strong>in</strong>g curve c ◦ φ is a reparameterization <strong>of</strong> c.The action <strong>of</strong> the subgroup Diff + (S 1 ) moreover does not change the orientation<strong>of</strong> the curve.Def<strong>in</strong>ition 1.4 The quotient spaceB := M/Diff(S 1 )is the space <strong>of</strong> <strong>curves</strong> up to reparameterization, also called geometric <strong>curves</strong><strong>in</strong> the follow<strong>in</strong>g. Two parametric <strong>curves</strong> c 1 , c 2 ∈ M such that c 1 = c 2 ◦ φ are thesame geometric curve <strong>in</strong>side B.For some applications we may choose <strong>in</strong>stead to consider the quotient w.r.toDiff + (S 1 ); the quotient space M/Diff + (S 1 ) is the space <strong>of</strong> geometric oriented<strong>curves</strong>.B is mathematically def<strong>in</strong>ed as the set B = {[c]} <strong>of</strong> all equivalence classes[c] <strong>of</strong> <strong>curves</strong> that are equal but for reparameterization,[c] := {c ◦ φ for φ ∈ Diff(S 1 )} ;<strong>and</strong> similarly for the quotient M/Diff + (S 1 ). More properties <strong>of</strong> these quotientswill be presented <strong>in</strong> Section 4.5.We can now def<strong>in</strong>e the geometric functionals (that are, loosely speak<strong>in</strong>g<strong>in</strong>variant w.r.to reparameterization <strong>of</strong> the curve).Def<strong>in</strong>ition 1.5 A functional F (c) def<strong>in</strong>ed on <strong>curves</strong> will be called geometricif one <strong>of</strong> the two follow<strong>in</strong>g alternative def<strong>in</strong>itions holds.1 We will provide more detailed def<strong>in</strong>itions <strong>and</strong> properties <strong>of</strong> the “actions” <strong>in</strong> Section 3.8.4


• F (c) = F (c ◦ φ) for all <strong>curves</strong> c <strong>and</strong> for all φ ∈ Diff(S 1 ).• For all <strong>curves</strong> c <strong>and</strong> all φ, if φ ∈ Diff + (S 1 ) then F (c) = F (c ◦ φ), whereasif φ ∈ Diff − (S 1 ) then F (c) = −F (c ◦ φ)In the first case, F can be “projected” to B, that is, it may be considered as afunction F : B → lR. In the second case, F can be “projected” to M/Diff + (S 1 ).It is important to remark that “geometric” theories have <strong>of</strong>ten provided thebest results <strong>in</strong> computer vision.1.4 Curve–related quantitiesA good way to specify the design goal for <strong>shape</strong> <strong>optimization</strong> is to def<strong>in</strong>e anobjective function (a.k.a. energy) F : M → lR that is m<strong>in</strong>imum <strong>in</strong> the curvethat is most fit for the task.When design<strong>in</strong>g our F , we will want it to be geometric; this is easily accomplishedif we use geometric quantities to start from. We now list the mostimportant such quantities.In the follow<strong>in</strong>g, given v, w ∈ lR n we will write |v| for the st<strong>and</strong>ard Euclideannorm, <strong>and</strong> 〈v, w〉 or (v · w) for the st<strong>and</strong>ard scalar product. We will aga<strong>in</strong>write c ′ (θ) := ∂ θ c(θ).Def<strong>in</strong>ition 1.6 (Derivations) If the curve c is immersed, we can def<strong>in</strong>e thederivation with respect to the arc parameter∂ s = 1|c ′ | ∂ θ .(We will sometimes also write D s <strong>in</strong>stead <strong>of</strong> ∂ s .)Def<strong>in</strong>ition 1.7 (Tangent) At all po<strong>in</strong>ts where c ′ (θ) ≠ 0, we def<strong>in</strong>e the tangentvectorT (θ) = c′ (θ)|c ′ (θ)| = ∂ sc(θ) .(At the po<strong>in</strong>ts where c ′ = 0 we may def<strong>in</strong>e T = 0).It is easy to prove (<strong>and</strong> quite natural for our geometric <strong>in</strong>tuition) that D s <strong>and</strong> Tare geometric quantities (accord<strong>in</strong>g to the second Def<strong>in</strong>ition 1.5).Def<strong>in</strong>ition 1.8 (Length) The length <strong>of</strong> the curve c is∫len(c) := |c ′ (θ)| dθ . (1.1)S 1We can def<strong>in</strong>e formally the arc parameter s byds := |c ′ (θ)| dθ ;we use it only <strong>in</strong> <strong>in</strong>tegration, as follows.5


Def<strong>in</strong>ition 1.9 (Integration by arc parameter) We def<strong>in</strong>e the <strong>in</strong>tegrationby arc parameter <strong>of</strong> a function g : S 1 → lR k along the curve c by∫∫g(s) ds := g(θ)|c ′ (θ)| dθ .cS 1<strong>and</strong> the average <strong>in</strong>tegral∫cg(s) ds := 1 ∫g(s) dslen(c) c<strong>and</strong> we will sometimes shorten this as avg c (g).The above <strong>in</strong>tegrations are geometric quantities (accord<strong>in</strong>g to the first Def<strong>in</strong>ition1.5).1.4.1 CurvatureSuppose moreover that the curve is immersed <strong>and</strong> is C 2 regular (that means thatit is twice differentiable, <strong>and</strong> the second derivative is cont<strong>in</strong>uous); <strong>in</strong> this casewe may def<strong>in</strong>e curvatures, that <strong>in</strong>dicate how much the curve bends. There aretwo different def<strong>in</strong>itions <strong>of</strong> curvature <strong>of</strong> an immersed curve: mean curvature H<strong>and</strong> signed curvature κ, that is def<strong>in</strong>ed when c is planar. H <strong>and</strong> k are extr<strong>in</strong>siccurvatures, they are properties <strong>of</strong> the embedd<strong>in</strong>g <strong>of</strong> c <strong>in</strong>to lR n .Def<strong>in</strong>ition 1.10 (H) If c is C 2 regular <strong>and</strong> immersed, we can def<strong>in</strong>e the meancurvature H <strong>of</strong> c asH = ∂ s ∂ s c = ∂ s Twhere ∂ s = 1|c ′ | ∂ θ is the derivation with respect to the arc parameter. It enjoysthe follow<strong>in</strong>g properties.Properties 1.11 • It is easy to prove that H ⊥ T .• H is a geometric quantity.˜H = H ◦ φ.If ˜c = c ◦ φ <strong>and</strong> ˜H is its curvature, then• 1/|H| is the radius <strong>of</strong> a tangent circle that best approximates the curve tosecond order.Def<strong>in</strong>ition 1.12 (N) When the curve c is immersed <strong>and</strong> planar, we can def<strong>in</strong>ea normal vector N to the curve, by requir<strong>in</strong>g that |N| = 1, N ⊥ T <strong>and</strong> N isrotated π/2 radians anticlockwise with respect to T .Def<strong>in</strong>ition 1.13 (κ) If c is planar <strong>and</strong> C 2 regular, then we can def<strong>in</strong>e a signedscalar curvature κ = 〈H, N〉, so that∂ s T = κN = H <strong>and</strong> ∂ s N = −κT .See fig. 1 on the follow<strong>in</strong>g page. The above equality implies that κ is a geometricquantity, accord<strong>in</strong>g to the second Def<strong>in</strong>ition 1.5.6


κ > 0HNNHNHκ < 0Figure 1: Example <strong>of</strong> a regular curve <strong>and</strong> its curvature.2 Shapes <strong>in</strong> applicationsA number <strong>of</strong> methods have been proposed <strong>in</strong> <strong>shape</strong> <strong>analysis</strong> to def<strong>in</strong>e distancesbetween <strong>shape</strong>s, averages <strong>of</strong> <strong>shape</strong>s <strong>and</strong> statistical models <strong>of</strong> <strong>shape</strong>s. At thesame time, there has been much previous work <strong>in</strong> <strong>shape</strong> <strong>optimization</strong>, for exampleimage segmentation via active contours, 3D stereo reconstruction viadeformable surfaces; <strong>in</strong> these later methods, many authors have def<strong>in</strong>ed energyfunctionals F (c) on <strong>curves</strong> (or on surfaces), whose m<strong>in</strong>ima represent the desiredsegmentation/reconstruction; <strong>and</strong> then utilized the calculus <strong>of</strong> variations to derivecurve evolutions to search m<strong>in</strong>ima <strong>of</strong> F (c), <strong>of</strong>ten referr<strong>in</strong>g to these evolutionsas gradient flows. The reference to these flows as gradient flows implies a certa<strong>in</strong>Riemannian metric on the space <strong>of</strong> <strong>curves</strong>; but this fact has been largelyoverlooked. We call this metric H 0 , <strong>and</strong> properly def<strong>in</strong>e it <strong>in</strong> eqn. (2.4).2.1 Shape <strong>analysis</strong>Many method <strong>and</strong> tools comprise the <strong>shape</strong> <strong>analysis</strong>. We may list• distances between <strong>shape</strong>s,• averages for <strong>shape</strong>s,• pr<strong>in</strong>ciple component <strong>analysis</strong> for <strong>shape</strong>s <strong>and</strong>• probabilistic models <strong>of</strong> <strong>shape</strong>s.We will present a short overview <strong>of</strong> the above, <strong>in</strong> theory <strong>and</strong> <strong>in</strong> applications. Webeg<strong>in</strong> by def<strong>in</strong><strong>in</strong>g the distance function <strong>and</strong> signed distance function, two toolsthat we will use <strong>of</strong>ten <strong>in</strong> this theory.Def<strong>in</strong>ition 2.1 Let A, B ⊂ lR n be compact sets.7


• u A (x) := <strong>in</strong>f y∈A |x − y| is the distance function,u Au Bx 2ABx 1• b A (x) := u A (x) − u lR n \A(x) is the signed distance function.b Ab Bx 2ABx 12.1.1 Shape distancesA variety <strong>of</strong> distances have been proposed for measur<strong>in</strong>g the difference betweentwo given <strong>shape</strong>s. Two examples follows.Def<strong>in</strong>ition 2.2 The Hausdorff distance( )d H (A, B) := u B (x)supx∈A(∨supx∈B)u A (x)where A, B ⊂ lR n are compact, <strong>and</strong> u A (x) is the distance function.(2.1)The above can be used for <strong>curves</strong>; <strong>in</strong> this case a distance may be def<strong>in</strong>ed byassociat<strong>in</strong>g to the two <strong>curves</strong> c 1 , c 2 the Hausdorff distance <strong>of</strong> the image <strong>of</strong> the<strong>curves</strong>d H (c 1 (S 1 ), c 2 (S 1 )) .If c 1 , c 2 are immersed <strong>and</strong> planar, we may otherwise use d H (˚c 1 ,˚c 2 ) where˚c 1 ,˚c 2 denote the <strong>in</strong>ternal region enclosed by c 1 , c 2 .Def<strong>in</strong>ition 2.3 Let A, B ⊂ lR n be two measurable sets, letA∆B := (A \ B) ∪ (B \ A)be the set symmetric difference; let |A| be the Lebesgue measure <strong>of</strong> A. Wedef<strong>in</strong>e the set symmetric distance asd(A, B) = ∣ ∣ A∆B∣ ∣ ,(where it is to be <strong>in</strong>tended that two sets are considered “equal” if they differ by ameasure zero set).8


In the case <strong>of</strong> planar <strong>curves</strong> c 1 , c 2 , we can apply to above idea to def<strong>in</strong>e2.1.2 Shape averagesd(c 1 , c 2 ) = ∣ ∣˚c1 ∆˚c 2∣ ∣ .Many def<strong>in</strong>itions have also been proposed for the average ¯c <strong>of</strong> a f<strong>in</strong>ite set <strong>of</strong><strong>shape</strong>s c 1 , . . . , c N . There are methods based on the arithmetic mean (that arerepresentation dependent).• One such case is when the <strong>shape</strong>s are def<strong>in</strong>ed by a f<strong>in</strong>ite family <strong>of</strong> Nparameters; so we can def<strong>in</strong>e the parametric or l<strong>and</strong>mark averag<strong>in</strong>g¯c(p) = 1 NN∑c n (p)n=1where p is a common parameter/l<strong>and</strong>mark.• More <strong>in</strong> general, we can def<strong>in</strong>e the signed distance level set averag<strong>in</strong>gby us<strong>in</strong>g as a representative <strong>of</strong> a <strong>shape</strong> its signed distance function, <strong>and</strong>comput<strong>in</strong>g the average <strong>shape</strong> by¯c = { x | ¯b(x) = 0 } , where ¯b(x) = 1 NN∑b cn (x)where b cn is the signed distance function <strong>of</strong> c n ; or <strong>in</strong> case <strong>of</strong> planar <strong>curves</strong>,<strong>of</strong> the part <strong>of</strong> plane enclosed by c n .Then there are non parametric, representation <strong>in</strong>dependent, methods. The(possibly) most famous one is theDef<strong>in</strong>ition 2.4 The distance-based average. 2 Given a distance d M between<strong>shape</strong>s, an average <strong>shape</strong> ¯c may be found by m<strong>in</strong>imiz<strong>in</strong>g the sum <strong>of</strong> its squareddistances.N∑¯c = arg m<strong>in</strong> d M (c, c n ) 2cn=1It is <strong>in</strong>terest<strong>in</strong>g to note that <strong>in</strong> Euclidean spaces there is an unique m<strong>in</strong>imum,that co<strong>in</strong>cides with the arithmetic mean; while <strong>in</strong> general there may be nom<strong>in</strong>imum, or more than one.2.1.3 Pr<strong>in</strong>cipal component <strong>analysis</strong> (PCA)Def<strong>in</strong>ition 2.5 Suppose that X is a r<strong>and</strong>om vector tak<strong>in</strong>g values <strong>in</strong> lR n ; letX = E(X) be the mean <strong>of</strong> X. The pr<strong>in</strong>cipal component <strong>analysis</strong> is therepresentation <strong>of</strong> X asn∑X = X + Y i S ii=12 Due to Fréchet, 1948; but also attributed to Karcher.n=19


where S i are constant vectors, <strong>and</strong> Y i are uncorrelated real r<strong>and</strong>om variableswith zero mean, <strong>and</strong> with decreas<strong>in</strong>g variance. S i is known as the i-th mode <strong>of</strong>pr<strong>in</strong>cipal variation.The PCA is possible <strong>in</strong> general <strong>in</strong> any f<strong>in</strong>ite dimensional l<strong>in</strong>ear space equippedwith an <strong>in</strong>ner product. In <strong>in</strong>f<strong>in</strong>ite dimensional spaces, or equivalently <strong>in</strong> case <strong>of</strong>r<strong>and</strong>om processes, the PCA is obta<strong>in</strong>ed by the Karhunen-Loève theorem.Given a f<strong>in</strong>ite number <strong>of</strong> samples, it is also possible to def<strong>in</strong>e an empiricalpr<strong>in</strong>cipal component <strong>analysis</strong>, by estimat<strong>in</strong>g the expectation <strong>and</strong> variance <strong>of</strong> thedata.In many practical cases, the variances <strong>of</strong> Y i decrease quite fast: it is thensensible to replace X by a simplified variable˜X := X +k∑Y i S iwith k < n.So, if <strong>shape</strong>s are represented by some “l<strong>in</strong>ear” representation, the PCA isa valuable tool to study the statistics, <strong>and</strong> it has then become popular forimpos<strong>in</strong>g <strong>shape</strong> priors <strong>in</strong> various <strong>shape</strong> <strong>optimization</strong> problems. For more generalmanifold representations <strong>of</strong> <strong>shape</strong>s, we may use the exponential map (def<strong>in</strong>ed <strong>in</strong>3.29), replac<strong>in</strong>g S n by tangent vectors <strong>and</strong> follow<strong>in</strong>g geodesics to perform thesummation.We present here an example <strong>in</strong> applications.Example 2.6 (PCA by signed distance representation) In these pictureswe see an example <strong>of</strong> synergy between <strong>analysis</strong> <strong>and</strong> <strong>optimization</strong>, from Tsai et al.[60]. The figure 2 conta<strong>in</strong>s a row <strong>of</strong> pictures that represent the (empirical)PCA <strong>of</strong> signed distance function <strong>of</strong> a family <strong>of</strong> plane <strong>shape</strong>s. The figure 3 onthe follow<strong>in</strong>g page conta<strong>in</strong>s a second row <strong>of</strong> images that represent: an image <strong>of</strong>a plane <strong>shape</strong> (a) occluded (b) <strong>and</strong> noise degraded (c), an <strong>in</strong>itialization for the<strong>shape</strong> optimizer (d) <strong>and</strong> the f<strong>in</strong>al optimal segmentation (e).i=1(a) (b) (c) (d) (e) (f) (g)} {{ }mean} {{ }first mode} {{ }second mode} {{ }third modeFigure 2: PCA <strong>of</strong> plane <strong>shape</strong>s.(From Tsai et al. [60] c○ 2001 IEEE. Reproduced with permission).10


(a) (b) (c) (d) (e)Figure 3: Segmentation <strong>of</strong> occluded plane <strong>shape</strong>.(From Tsai et al. [60] c○ 2001 IEEE. Reproduced with permission).2.2 Shape <strong>optimization</strong> & active contours2.2.1 A short history <strong>of</strong> active contoursIn the late 20th century, the most common approach to image segmentationwas a comb<strong>in</strong>ation <strong>of</strong> edge detection <strong>and</strong> contour cont<strong>in</strong>uation. With edgedetection [5], small edge elements would be identified by a local <strong>analysis</strong> <strong>of</strong>the image; then a cont<strong>in</strong>uation method would be employed to reconstructfull contours. The methods were suffer<strong>in</strong>g from two drawbacks, edge detectionbe<strong>in</strong>g too sensitive to noise <strong>and</strong> to photometric features (such as, sharp shadows,reflections) that were not related to the physical structure <strong>of</strong> the image; <strong>and</strong>cont<strong>in</strong>uation was <strong>in</strong> essence a NP-complete algorithm.Active contours were <strong>in</strong>troduced by Kass et al. [26] as a simpler approachto the segmentation problem. The idea is to m<strong>in</strong>imize an energy F (c) (wherethe variable c is a contour i.e. a curve), that conta<strong>in</strong>s an edge-based attractionterm <strong>and</strong> a smoothness term, which becomes large when the curve is irregular.To search for the m<strong>in</strong>imum <strong>of</strong> F (c), a curve evolution method was derived fromthe calculus <strong>of</strong> variations. The evolv<strong>in</strong>g curve would then be attracted to thefeatures <strong>of</strong> <strong>in</strong>terest, while manta<strong>in</strong><strong>in</strong>g the property <strong>of</strong> be<strong>in</strong>g a closed smoothcontour.An unjustified feature <strong>of</strong> the model <strong>of</strong> [26] is that the evolution is dependenton the way the contour is parameterized. Hence Caselles et al. [6], Malladi et al.[33] revisited the idea <strong>of</strong> [26] <strong>in</strong> the new form <strong>of</strong> a geometric evolution, whichcould be implemented by the level set method <strong>in</strong>vented by Osher <strong>and</strong> Sethian[44]. Thereafter, Kichenassamy et al. [27] Caselles et al. [7] presented the activecontour approach to the edge detection problem <strong>in</strong> the form <strong>of</strong> the m<strong>in</strong>imization<strong>of</strong> a geometric energy that is a generalization <strong>of</strong> Euclidean arc length. Aga<strong>in</strong>, theauthors derived the gradient descent flow <strong>in</strong> order to m<strong>in</strong>imize the geometricenergy.In contrast to the edge-based approaches for active contours (mentionedabove), region-based energies for active contours have been proposed <strong>in</strong> Ronfard[46] Zhu et al. [69] Yezzi et al. [64] Chan <strong>and</strong> Vese [8]. In these approaches, anenergy is designed to be m<strong>in</strong>imized when the curve partitions the image <strong>in</strong>tostatistically dist<strong>in</strong>ct regions. This k<strong>in</strong>d <strong>of</strong> energy has provided many desirablefeatures; for example, it provides less sensitivity to noise, better ability to capture11


concavities <strong>of</strong> objects, more dependence on global features <strong>of</strong> the image, <strong>and</strong> lesssensitivity to the <strong>in</strong>itial contour placement.In Mumford <strong>and</strong> Shah [42, 43], the authors <strong>in</strong>troduced <strong>and</strong> rigorously studieda region-based energy that was designed to both extract the boundary <strong>of</strong> dist<strong>in</strong>ctregions while also smooth<strong>in</strong>g the image with<strong>in</strong> these regions. Subsequently, Tsaiet al. [61] Vese <strong>and</strong> Chan [63] implemented a level set method for the curveevolution m<strong>in</strong>imiz<strong>in</strong>g the energy functional considered by Mumford&Shah.2.2.2 Energies <strong>in</strong> computer visionA variational approach to solv<strong>in</strong>g <strong>shape</strong> <strong>optimization</strong> problems is to def<strong>in</strong>e <strong>and</strong>consequently m<strong>in</strong>imize geometric energy functionals F (c) where c is a planarcurve. We may identify two ma<strong>in</strong> families <strong>of</strong> energies,• the region based energies:∫∫RF (c) = f <strong>in</strong> (x) dx + f out (x) dx2RR cwhere ∫ · · · dx is area element <strong>in</strong>tegral, <strong>and</strong> R <strong>and</strong> R care the <strong>in</strong>terior <strong>and</strong> exterior areas outl<strong>in</strong>ed by c; <strong>and</strong>• the boundary based energies:∫F (c) = φ(c(s)) dscR c R cwhere φ is designed to be small on the salient features <strong>of</strong> the image, <strong>and</strong> ∫ C · · · dsis the <strong>in</strong>tegration by arc parameter def<strong>in</strong>ed <strong>in</strong> 1.9. Note that φ(x) ds may be<strong>in</strong>terpreted as a conformal metric on lR 2 , so m<strong>in</strong>ima <strong>curves</strong> are geodesics w.r.tothe conformal metric.2.2.3 Examples <strong>of</strong> geometric energy functionals for segmentationSuppose I : Ω → [0, 1] is the image (<strong>in</strong> black & white). We propose two examples<strong>of</strong> energies taken from the above families.• The Chan-Vese segmentation energy [63]F (c) =∫Rwhere avg R I = 1|R|∣∣I(x) − avg R (I) ∣ 2 dx +∫R∫ ∣ ∣∣I(x) − avgR c(I) ∣ 2 dxR cI(x)dx is the average <strong>of</strong> I on the region R.• The geodesic active contour, (Caselles et al. [7],Kichenassamy et al. [27])∫F (c) = φ(c(s)) ds (2.2)c12


where φ may be chosen to beφ(x) =11 + |∇I(x)| 2that is small on sharp discont<strong>in</strong>uities <strong>of</strong> I (∇I is the gradient <strong>of</strong> I w.r.tox). S<strong>in</strong>ce real images are noisy, the function φ <strong>in</strong> practice would be more<strong>in</strong>fluenced by the noise than by the image features; for this reason, usuallythe function φ is actually def<strong>in</strong>ed byφ(x) =11 + |∇G ⋆ I(x)| 2where G is a smooth<strong>in</strong>g kernel, such as the Gaussian.2.3 Geodesic active contour method2.3.1 The “geodesic active contour” paradigmThe general procedure for geodesic active contours goes as follows.1. Choose an appropriate geometric energy functional, E.2. Compute the directional derivative 3DE(c; h) =d dt E(c + th) ∣∣∣∣t=0where c is a curve <strong>and</strong> h is an arbitrary perturbation <strong>of</strong> c.3. Manipulate DE(c; h) <strong>in</strong>to the form∫h(s) · v(s) ds .c4. Consider v to be the “gradient”, the direction which <strong>in</strong>creases E fastest.5. Evolve c = c(t, θ) by the differential equation ∂ t c = −v; this is called thegradient descent flow.2.3.2 Example: geodesic active contour edge modelWe propose an explicit computation start<strong>in</strong>g from the classical active contourmodel.1. Start from an energy that is m<strong>in</strong>imal along image contours:∫E(c) = φ(c(s)) dscwhere φ is def<strong>in</strong>ed to extract relevant features; for examples as discussedafter eqn. (2.2).3 The directional derivative is the basis for the def<strong>in</strong>ition 3.13 <strong>of</strong> the Gâteaux differential,that will be then discussed <strong>in</strong> Section 3.7 <strong>and</strong> 4.2.13


2. Calculate the directional derivative:∫DE(c; h) = ∇φ(c) · h + φ(c)(D s h · D s c) dsc∫= ∇φ(c) · h − ( ∇φ(c) · D s c ) (h · D s c) − φ(c)(h · D ss c) dsc∫= h · ((∇φ(c)· N)N − φ(c)κN ) ds . (2.3)3. Deduce the “gradient”:4. Write the gradient flowc∇E = −φκN + (∇φ · N)N .∂c= φκN − (∇φ · N)N .∂t(Note that the flow <strong>of</strong> geometric energies moves only <strong>in</strong> orthogonal direction w.r.tthe curve — this phenomenon will be expla<strong>in</strong>ed <strong>in</strong> <strong>in</strong> Section 11.10.)2.3.3 Implicit assumption <strong>of</strong> H 0 <strong>in</strong>ner productWe have made a critical assumption <strong>in</strong> go<strong>in</strong>g from the directional derivative∫DE(c; h) = h(s) · v(s) dscto deduc<strong>in</strong>g that the gradient <strong>of</strong> E is ∇E(c) = v. Namely, the def<strong>in</strong>ition <strong>of</strong> thegradient 4 is based on the follow<strong>in</strong>g equality∫〈h(s), ∇E〉 = h(s) · v(s) ds,c }{{} }{{}h 1=h h 2=∇Ethat needs an <strong>in</strong>ner-product structure.This implies that we have been presum<strong>in</strong>g all along that <strong>curves</strong> are equippedwith a H 0 -type <strong>in</strong>ner-product def<strong>in</strong>ed as follows∫〈 〉h1 , h 2 := hH 0 1 (s) · h 2 (s) ds . (2.4)2.4 Problems & goalscWe will now briefly list some examples that show some limits <strong>of</strong> the usual activecontour method.4 The precise def<strong>in</strong>ition <strong>of</strong> what the gradient is is <strong>in</strong> section 3.7.14


2.4.1 Example: geometric heat flowWe first review one <strong>of</strong> the most mathematically studied gradient descent flows <strong>of</strong><strong>curves</strong>. By direct computation, the Gâteaux differential <strong>of</strong> the length <strong>of</strong> a closedcurve is∫∫D len(c; h) = ∂ s h · T ds = − h · H ds (2.5)cLet C = C(t, θ) be an evolv<strong>in</strong>g family <strong>of</strong> <strong>curves</strong>. The geometric heat flow(also known as motion by mean curvature) is∂C∂t = Hwhere H := ∂ s ∂ s C is the mean curvature. In the H 0 <strong>in</strong>ner-product, this flow isthe gradient descent for curve length. 5This flow has been studied deeply by the mathematical community, <strong>and</strong> isknown to enjoy the follow<strong>in</strong>g properties.Properties 2.7• Embedded planar <strong>curves</strong> rema<strong>in</strong> embedded.• Embedded planar <strong>curves</strong> converge to a circular po<strong>in</strong>t.• Comparison pr<strong>in</strong>ciple: if two embedded <strong>curves</strong> are used as <strong>in</strong>itialization,<strong>and</strong> the first conta<strong>in</strong>s the second, then it will conta<strong>in</strong> the second for alltime <strong>of</strong> evolution. This is important for level set methods.• The flow is well posed only for positive times, that is, for <strong>in</strong>creas<strong>in</strong>g t(similarly to the usual heat equation).For the pro<strong>of</strong>s, see Gage <strong>and</strong> Hamilton [21], Grayson [23].2.4.2 Short length biasThe usual edge-based active contour energy is <strong>of</strong> the form∫E(c) = g(c(s)) dscsuppos<strong>in</strong>g that g is reasonably constant <strong>in</strong> the region where c is runn<strong>in</strong>g, thenE(c) ≃ g len(c), due to the <strong>in</strong>tegral be<strong>in</strong>g performed w.r.to the arc parameter ds.So one way to reduce E is to shr<strong>in</strong>k the curve. Consequently, when the image issmooth <strong>and</strong> featureless (as <strong>in</strong> medical imag<strong>in</strong>g), the usual edge based energieswould <strong>of</strong>ten drive the curve to a po<strong>in</strong>t.To avoid it, an <strong>in</strong>flationary term νN (with ν > 0) was usually added tothe curve evolution, to obta<strong>in</strong>∂c= φκN − ∇φ + νN ,∂tsee [7, 27]. Unfortunately, this adds a parameter that has to be tuned to matchthe characteristics <strong>of</strong> each specific image.5 A different gradient descent flow for curve length will be discussed <strong>in</strong> Remark 10.32.c15


2.4.3 Average weighted lengthAs an alternative approach we may normalize the energy to obta<strong>in</strong> a morelength-<strong>in</strong>dependent energy, the average weighted lengthavg c (g) := 1 ∫g(c(s)) ds (2.6)len(c)but this generates an ill-posed H 0 -flow, as we will now show.2.4.4 Flow computationsHere we write L := len(c). Let g : lR n → lR k ; letavg c (g(c)) := 1 ∫g(c(s)) ds = 1 ∫g(c(θ))|c ′ (θ)| dθ ;L c L S 1then the Gâteaux differential isD[avg c (g(c))](c; h) = 1 ∫∇g(c) · h + g(c)(∂ s h · T ) ds − (2.7)L c− 1 ∫ ∫L 2 g(c) ds ∂ s h · T ds =cc∫= ∇g(c) · h + ( g(c) − avg c (g(c)) ) (∂ s h · T ) ds .cIn the above, we omit the argument (s) for brevity; ∇g is the gradient <strong>of</strong> g.If the curve is planar, we def<strong>in</strong>e the normal <strong>and</strong> tangent vectors N <strong>and</strong> T asby 1.12 <strong>and</strong> 1.13; then, <strong>in</strong>tegrat<strong>in</strong>g by parts, the above becomesD[avg c (g(c))](c; h) = 1 ∫∇g(c) · h − (∇g(c) · T )(h · T ) − (2.8)L=cc− ( g(c) − avg c (g(c)) ) (h · Dsc) 2 ds =∫ (∇g(c) · N − κ ( g(c) − avg c (g(c)) )) (h · N) ds .cSuppose now that we have a <strong>shape</strong> <strong>optimization</strong> functional E <strong>in</strong>clud<strong>in</strong>g a term<strong>of</strong> the form avg c (g(c)); let C = C(t, θ) be an evolv<strong>in</strong>g family <strong>of</strong> <strong>curves</strong> try<strong>in</strong>g tom<strong>in</strong>imize E; this flow would conta<strong>in</strong> a term <strong>of</strong> the form∂C∂t = . . . ( g(c(s)) − avg c (g) ) κN . . .unfortunately the above flow is ill def<strong>in</strong>ed: it is a backward-runn<strong>in</strong>g geometricheat flow on roughly half <strong>of</strong> the curve. We will come back to this example <strong>in</strong>Section 10.8.1; more examples <strong>and</strong> methods for comput<strong>in</strong>g Gâteaux differentialsare <strong>in</strong> Section 4.2.16


2.4.5 Centroid energyWe will now propose another simple example where the above phenomenon isaga<strong>in</strong> evident.Example 2.8 (Centroid-based energy) Let us fix a target po<strong>in</strong>t v ∈ lR n .We recall that avg c (c) is the center <strong>of</strong> mass <strong>of</strong> the curve. The energyE(c) := 1 2 |avg c(c) − v| 2 (2.9)penalizes the distance from the center <strong>of</strong> mass to v. Let <strong>in</strong> the follow<strong>in</strong>g c =avg c (c) for simplicity. The directional derivative <strong>of</strong> E <strong>in</strong> direction h is〈〉DE(c; h) = c − v, D(c)(c; h)where <strong>in</strong> turn (by eqn. (2.7) <strong>and</strong> (2.8))∫D(c)(c; h) = h + (c − c)(D s h · D s c) ds = (2.10)c∫= h − D s c (h · D s c) − (c − c)(h · Dsc) 2 dssuppos<strong>in</strong>g that the curve is planar, thench − D s c (h · D s c) = N(h · N)soDE(c; h) =∫〈c − v, N〉(h · N) − 〈c − v, c − c〉κ(h · N) ds .The H 0 gradient descent flow is then∂c∂t = −∇ H 0E(c) = 〈(v − c), N〉N − κN〈 (c − c), (v − c) 〉 .The first term 〈(v − c) · N〉N <strong>in</strong> this gradient descentflow moves the whole curve towards v.PvLet P := {w : 〈(w − c) · (v − c) 〉 ≥ 0} be the half plane“on the v side” . The second term −κN 〈 (c − c) · (v − c) 〉<strong>in</strong> this gradient descent flow tries to decrease the curvelength out <strong>of</strong> P <strong>and</strong> <strong>in</strong>crease the curve length <strong>in</strong> P , <strong>and</strong>this is ill posed.ccWe will come back to this example <strong>in</strong> Proposition 10.20.17


2.4.6 ConclusionsMore recent works that use active contours for segmentation are not only basedon <strong>in</strong>formation from the image to be segmented (edge-based or region-based),but also prior <strong>in</strong>formation, that is <strong>in</strong>formation known about the <strong>shape</strong> <strong>of</strong> thedesired object to be segmented. The work <strong>of</strong> Leventon et al. [31] showed how to<strong>in</strong>corporate prior <strong>in</strong>formation <strong>in</strong>to the active contour paradigm. Subsequently,there have been a number <strong>of</strong> works, for example Tsai et al. [62], Rousson <strong>and</strong>Paragios [47], Chen et al. [12], Cremers <strong>and</strong> Soatto [13], Raviv et al. [45], whichdesign energy functionals that <strong>in</strong>corporate prior <strong>shape</strong> <strong>in</strong>formation <strong>of</strong> the desiredobject. In these works, the ma<strong>in</strong> idea is design<strong>in</strong>g a novel term <strong>of</strong> the energythat is small when the curve is close, <strong>in</strong> some sense, to a pre-specified <strong>shape</strong>.The need for prior <strong>in</strong>formation terms arose from several factors such as• the fact that some images conta<strong>in</strong> limited <strong>in</strong>formation,• the energies functions considered previously could not <strong>in</strong>corporate complex<strong>in</strong>formation,• the energies had too many extraneous local m<strong>in</strong>ima, <strong>and</strong> the gradient flowsto m<strong>in</strong>imize these energies allowed for arbitrary deformations that gaverise to unlikely <strong>shape</strong>s; as <strong>in</strong> the example <strong>in</strong> Fig. 4 <strong>of</strong> segmentation us<strong>in</strong>gthe Chan-Vese energy, where the flow<strong>in</strong>g contour gets trapped <strong>in</strong>to noise.Figure 4: H 0 gradient descent flow <strong>of</strong> Chan–Vese energy, to segment a noisysquareWorks on <strong>in</strong>corporat<strong>in</strong>g prior <strong>shape</strong> knowledge <strong>in</strong>to active contours haveled to a fundamental question on how to def<strong>in</strong>e distance between two <strong>curves</strong>or <strong>shape</strong>s. Many works, for example Younes [68], Soatto <strong>and</strong> Yezzi [51], Mio<strong>and</strong> Srivastava [40], Charpiat et al. [9], Michor <strong>and</strong> Mumford [37], Yezzi <strong>and</strong>Mennucci [67, 65], <strong>in</strong> the <strong>shape</strong> <strong>analysis</strong> literature have proposed different ways<strong>of</strong> def<strong>in</strong><strong>in</strong>g this distance.However, [37, 65] observed that all previous works on geometric activecontours that derive gradient flows to m<strong>in</strong>imize energies, which were describedearlier, imply a natural notion <strong>of</strong> Riemannian metric, given by the geometric<strong>in</strong>ner product H 0 (that we just “discovered” <strong>in</strong> eqn. (2.4)). Subsequently, [37, 67]have shown a surpris<strong>in</strong>g property: the H 0 Riemannian metric on the space <strong>of</strong><strong>curves</strong> is pathological, s<strong>in</strong>ce the “distance” between any two <strong>curves</strong> is zero.In addition to the pathologies <strong>of</strong> the Riemannian structure <strong>in</strong>duced by H 0 ,there are also undesirable features <strong>of</strong> H 0 gradient flows. Some <strong>of</strong> these featuresare listed below.18


<strong>shape</strong>s. Unfortunately, H 0 does not yield a well def<strong>in</strong>e metric structure, s<strong>in</strong>cethe associated distance is identically zero.So to achieve our goal, we will need to devise new metrics.3 Basic mathematical notionsIn this section we provide the mathematical theory that will be needed <strong>in</strong> therest <strong>of</strong> the course. (Some <strong>of</strong> the def<strong>in</strong>itions are usually known to mathematics’students; we will present them nonetheless as a chance to remark less knownfacts.)We will though avoid technicalities <strong>in</strong> the def<strong>in</strong>itions, <strong>and</strong> for the most partjust provide a base <strong>in</strong>tuition <strong>of</strong> the concepts. The <strong>in</strong>terested reader may obta<strong>in</strong>more details from a books <strong>in</strong> <strong>analysis</strong>, such as [2], <strong>in</strong> functional <strong>analysis</strong>, suchas [48], <strong>and</strong> <strong>in</strong> differential <strong>and</strong> Riemannian geometry, such as [14], [29] or [30].We start with a basic notion, <strong>in</strong> a quite simplified form.Def<strong>in</strong>ition 3.1 (Topological spaces) A topological space is a set M withassociated a topology τ <strong>of</strong> subsets, that are the open sets <strong>in</strong> M.The topology is the simplest <strong>and</strong> most general way to def<strong>in</strong>e what are the“convergent sequences <strong>of</strong> po<strong>in</strong>ts” <strong>and</strong> the “cont<strong>in</strong>uous functions”. We will notprovide details regard<strong>in</strong>g topological spaces, s<strong>in</strong>ce <strong>in</strong> the follow<strong>in</strong>g we will mostlydeal with normed spaces <strong>and</strong> metric spaces, where the topology is <strong>in</strong>duced by anorm or a metric. We just recall this def<strong>in</strong>ition.Def<strong>in</strong>ition 3.2 A homeomorphism is an <strong>in</strong>vertible cont<strong>in</strong>uous function φ :M → N between two topological spaces M, N, whose <strong>in</strong>verse φ −1 is aga<strong>in</strong>cont<strong>in</strong>uous.3.1 Distance <strong>and</strong> metric spaceDef<strong>in</strong>ition 3.3 Given a set M, a distance d = d M is a functionsuch that1. d(x, x) = 0,2. if d(x, y) = 0 then x = y,3. d(x, y) = d(y, x) (d is symmetric)d : M × M → [0, ∞]4. d(x, z) ≤ d(x, y) + d(y, z) (the triangular <strong>in</strong>equality).There are some possible generalizations.• The second request may be waived, <strong>in</strong> this case d is a semidistance.• The third request may be waived: then d would be an asymmetricdistance. Most theorems we will see can be generalized to asymmetricdistances; see [34].20


3.1.1 Metric spaceThe pair (M, d) is a metric space. A metric space has a dist<strong>in</strong>guished topology,generated by balls <strong>of</strong> the form B(x, r) := {y | d(x, y) < r}; accord<strong>in</strong>g to thistopology, x n → n x iff d(x n , x) → n 0; <strong>and</strong> functions are cont<strong>in</strong>uous if they mapconvergent sequences to convergent sequences. We will assume <strong>in</strong> the follow<strong>in</strong>gthat the reader is acqua<strong>in</strong>ted with the concepts <strong>of</strong> “open, closed, compact sets”<strong>and</strong> “cont<strong>in</strong>uous functions” <strong>in</strong> metric spaces. We recall though the def<strong>in</strong>ition <strong>of</strong>“completeness”.Def<strong>in</strong>ition 3.4 A metric space (M, d) is complete iff, for any given sequence(c n ) n ⊂ M, the fact thatlimm,n→∞ d(c m, c n ) = 0implies that c n converges.Example 3.5• lR n is usually equipped with the Euclidean distance∑d(x, y) = |x − y| = √ n (x i − y i ) 2 ;i=1<strong>and</strong> (lR n , d) is a complete metric space.• Any closed subset <strong>of</strong> a complete space is complete.• If we cut away an accumulation po<strong>in</strong>t out <strong>of</strong> a space, the result<strong>in</strong>g space isnot complete.A complete metric space is a space without “miss<strong>in</strong>g po<strong>in</strong>ts”. This is important<strong>in</strong> <strong>optimization</strong>: if a space is not complete, any <strong>optimization</strong> method that movesthe variable <strong>and</strong> searches for the optimal solution may fail s<strong>in</strong>ce the solutionmay, <strong>in</strong> a sense, be “miss<strong>in</strong>g” from the space.3.2 Banach, Hilbert <strong>and</strong> Fréchet spacesDef<strong>in</strong>ition 3.6 Given a vector space E, a norm ‖ · ‖ is a functionsuch that1. ‖ · ‖ is convex2. if ‖x‖ = 0 then x = 0.3. ‖λx‖ = |λ| ‖x‖ for λ ∈ lR‖ · ‖ : E → [0, ∞]Aga<strong>in</strong>, there are some possible generalizations.21


• If the second request is waived, then ‖ · ‖ is a sem<strong>in</strong>orm.• If the third request holds only for λ ≥ 0, then the norm is asymmetric;<strong>in</strong> this case, it may happen that ‖x‖ ≠ ‖ − x‖.Each (semi/asymmetric)norm ‖ · ‖ def<strong>in</strong>es a (semi/asymmetric)distanceSo a norm <strong>in</strong>duces a topology.d(x, y) := ‖x − y‖.3.2.1 Examples <strong>of</strong> spaces <strong>of</strong> functionsWe present some examples <strong>and</strong> def<strong>in</strong>itions.Def<strong>in</strong>ition 3.7 A locally-convex topological vector space E (shortenedas l.c.t.v.s. <strong>in</strong> the follow<strong>in</strong>g) is a vector space equipped with a collection <strong>of</strong>sem<strong>in</strong>orms ‖ · ‖ k (with k ∈ K an <strong>in</strong>dex set); the sem<strong>in</strong>orms <strong>in</strong>duce a topology,such that c n → c iff ‖c n − c‖ k → n 0 for all k; <strong>and</strong> all vector space operationsare cont<strong>in</strong>uous w.r.to this topology.The simplest example <strong>of</strong> l.c.t.v.s. is obta<strong>in</strong>ed when there is only one norm; thisgives raise to two renowned examples <strong>of</strong> spaces.Def<strong>in</strong>ition 3.8 (Banach <strong>and</strong> Hilbert spaces) • A Banach space is avector space E with a norm ‖ · ‖ def<strong>in</strong><strong>in</strong>g a distance d(x, y) := ‖x − y‖ suchthat E is metrically complete.• A Hilbert space is a space with an <strong>in</strong>ner product 〈f, g〉, that def<strong>in</strong>es anorm ‖f‖ := √ 〈f, g〉 such that E is metrically complete.(Note that a Hilbert space is also a Banach space).Example 3.9 Let I ⊂ lR k be open; let p ∈ [1, ∞]. A st<strong>and</strong>ard example <strong>of</strong>Banach space is the L p space <strong>of</strong> functions f : I → lR n . If p ∈ [1, ∞), the L pspace conta<strong>in</strong>s all functions such that |f| p is Lebesgue <strong>in</strong>tegrable, <strong>and</strong> is equippedwith the norm√ ∫‖f‖ L p := p |f(x)| p dx .IFor the case p = ∞, L ∞ conta<strong>in</strong>s all Lebesgue measurable functions f : I →lR n such that there is a constant c ≥ 0 for which |f(x)| ≤ c for all x ∈ I \ N,where N is a set <strong>of</strong> measure zero; <strong>and</strong> L ∞ is equipped with the norm‖f‖ L ∞ := supess I |f(x)|that is the lowest possible constant c.If p = 2, L 2 is a Hilbert space by <strong>in</strong>ner product∫〈f, g〉 := f(x) · g(x) dx .INote that, <strong>in</strong> these spaces, by def<strong>in</strong>ition, f = g iff the set {f ≠ g} hasLebesgue measure zero.22


3.2.2 Fréchet spaceThe follow<strong>in</strong>g citations [24] are referred to the first part <strong>of</strong> Hamilton’s 1982survey on the Nash&Moser theorem.Def<strong>in</strong>ition 3.10 A Fréchet space E is a complete Hausdorff metrizable l.c.t.v.s.;where we def<strong>in</strong>e that the l.c.t.v.s. E iscomplete when, for any sequence (c n ), the fact thatfor all k implies that c n converges;lim ‖c m − c n ‖ k = 0m,n→∞Hausdorff when, for any given c, if ‖c‖ k = 0 for all k then c = 0;metrizable when there are countably many sem<strong>in</strong>orms associated to E.The reason for the last def<strong>in</strong>ition is that, if E is metrizable, then we can def<strong>in</strong>e adistance∞∑ 2 −k ‖x − y‖ kd(x, y) :=1 + ‖x − y‖ kk=0that generates the same topology as the family <strong>of</strong> sem<strong>in</strong>orms ‖ · ‖ k ; <strong>and</strong> the viceversa is true as well, see [48].3.2.3 More examples <strong>of</strong> spaces <strong>of</strong> functionsExample 3.11 Let I ⊂ lR m be open <strong>and</strong> non empty.• The Banach space C j (I → lR n ), with associated norm‖f‖ := supi≤jsup |f (i) (t)| ;t∈Iwhere f (i) is the i-th derivative.uniformly for all i ≤ j.In this space f n → f iff f (i)n→ f (i)• The Sobolev space H j (I → lR n ), with scalar product∫〈f, g〉 H n := f(t) · g(t) + · · · + f (j) · g (j) dtIwhere f (j) is the j-th derivative 6 .6 The derivatives are computed <strong>in</strong> distributional sense, <strong>and</strong> must exists as Lebesgue <strong>in</strong>tegrablefunctions.23


• The Fréchet space <strong>of</strong> smooth functions C ∞ (I → lR n ).The sem<strong>in</strong>orms are‖f‖ k = sup |f (k) (x)|x∈Iwhere f (k) is the k-th derivative. In this space, f n → f iff all the derivativesf n(k) (x) converge to derivatives f (k) (x), <strong>and</strong> for any fixed k the convergenceis uniform w.r.to x ∈ I.This last is the strongest topology between the topologies usually associated tospaces <strong>of</strong> functions.3.2.4 Dual spaces.Def<strong>in</strong>ition 3.12 Given a l.c.t.v.s. E, the dual space E ∗ is the space <strong>of</strong> alll<strong>in</strong>ear functions L : E → lR.If E is a Banach space, it is easy to see that E ∗ is aga<strong>in</strong> a Banach space, withnorm‖L‖ E ∗ := sup‖x‖ E ≤1|Lx| .The biggest problem when deal<strong>in</strong>g with Fréchet spaces, is that the dual <strong>of</strong>a Fréchet space is not <strong>in</strong> general a Fréchet space, s<strong>in</strong>ce it <strong>of</strong>ten fails to bemetrizable. (In most cases, the duals <strong>of</strong> Fréchet spaces are “quite wide” spaces;a classical example be<strong>in</strong>g the dual elements <strong>of</strong> smooth functions, that are thedistributions). So given F, G Fréchet spaces, we cannot easily work with “thespace L(F, G) <strong>of</strong> l<strong>in</strong>ear functions between F <strong>and</strong> G”.As a workaround, given an auxiliary space H, we will consider “<strong>in</strong>dexedfamilies <strong>of</strong> l<strong>in</strong>ear maps” L : F × H → G, where L(·, h) is l<strong>in</strong>ear, <strong>and</strong> L is jo<strong>in</strong>tlycont<strong>in</strong>uous; but we will not consider L as a maph ↦→ (f ↦→ L(f, h))H → L(F, G)(3.1)3.2.5 DerivativesAn example is the Gâteaux differential.Def<strong>in</strong>ition 3.13 We say that a cont<strong>in</strong>uous map P : U → G, where F, G areFréchet spaces <strong>and</strong> U ⊂ F is open, is Gâteaux differentiable if for any h ∈ Fthe limitP (f + th) − P (f)DP (f; h) := lim= [∂ t P (f + th)]|t→0 tt=0(3.2)exists. The map DP (f; ·) : F → G is the Gâteaux differential.Def<strong>in</strong>ition 3.14 We say that P is C 1 if DP : U × F → G exists <strong>and</strong> is jo<strong>in</strong>tlycont<strong>in</strong>uous.24


(This is weaker than what is usually required <strong>in</strong> Banach spaces).The basics <strong>of</strong> the usual calculus hold.Theorem 3.15 ([24, Thm. 3.2.5]) If P is C 1 then DP (f; h) is l<strong>in</strong>ear <strong>in</strong> h.Theorem 3.16 (Cha<strong>in</strong> rule [24, Thm. 3.3.4]) If P, Q are C 1 then P ◦ Q isC 1 <strong>and</strong>D(P ◦ Q)(f; h) = DP ( Q(f); DQ(f; h) ) .Also, the implicit function theorem holds, <strong>in</strong> the form due to Nash&Moser:see aga<strong>in</strong> [24] for details.3.2.6 Troubles <strong>in</strong> calculusBut some important parts <strong>of</strong> calculus are <strong>in</strong>stead lost.Example 3.17 Suppose P : U ⊂ F → F is smooth, <strong>and</strong> consider the O.D.E.ddt f = P fto be solved for a solution f : (−ε, ε) → F .• if F is a Banach space, then, given <strong>in</strong>itial condition f(0) = x, the solutionwill exist <strong>and</strong> be unique (for ε > 0 small enough);• but if F is a Fréchet space, then f may fail to exist or be unique.See [24, Sec. 5.6]A consequence (that we will discuss more later on) is that the exponentialmap <strong>in</strong> Riemannian manifolds may fail to be locally surjective. See [24, Sec.5.5.2].3.3 ManifoldTo build a manifold <strong>of</strong> <strong>curves</strong>, we have ahead two ma<strong>in</strong> def<strong>in</strong>itions <strong>of</strong> “manifold”to choose from.Def<strong>in</strong>ition 3.18 (Differentiable Manifold) An abstract differentiablemanifold is a topological space M associated to a model l.c.t.v.s. U. It isequipped with an atlas <strong>of</strong> charts φ k : U k → V k , where U k ⊂ U are open sets,<strong>and</strong> V k ⊂ M are open sets that cover M. The maps φ k are homeomorphisms.The composition φ −11 ◦ φ 2 restricted to φ −12 (V 1 ∩ V 2 ) isusually required to be a smooth map.The dimension dim(M) <strong>of</strong> M is the dimension <strong>of</strong> U.When M is f<strong>in</strong>ite-dimensional, the model space is alwaysU = lR n .UU 1V 2cφ 1MV 1U 2φ 225


S<strong>in</strong>ce φ k are homeomorphisms, then the topology <strong>of</strong> M is “identical” to thetopology <strong>of</strong> U. The rôle <strong>of</strong> the charts is to def<strong>in</strong>e the differentiable structure <strong>of</strong>M mimick<strong>in</strong>g that <strong>of</strong> U. See for example the def<strong>in</strong>ition <strong>of</strong> directional derivative<strong>in</strong> eqn. (3.4).3.3.1 SubmanifoldDef<strong>in</strong>ition 3.19 Suppose A, B are open subsets <strong>of</strong> two l<strong>in</strong>ear spaces. A diffeomorphismis an <strong>in</strong>vertible C 1 function φ : A → B, whose <strong>in</strong>verse φ −1 is aga<strong>in</strong>C 1 .Let U be a fixed closed l<strong>in</strong>ear subspace <strong>of</strong> a l.c.t.v.s. X.Def<strong>in</strong>ition 3.20 A submanifold is a subset M<strong>of</strong> X, such that, at any po<strong>in</strong>t c ∈ M we may f<strong>in</strong>da chart φ k : U k → V k , with V k , U k ⊂ X open sets,c ∈ V k . The maps φ k are diffeomorphisms, <strong>and</strong>φ k maps U ∩ U k onto M ∩ V k .Most <strong>of</strong>ten, M = {Φ(c) = 0} where Φ : X → Y ; so, to prove that M is asubmanifold, we will use the implicit function theorem.Note that M is itself an abstract manifold, <strong>and</strong> the model space is U; sodim(M) = dim(U) ≤ dim(X). Vice versa any abstract manifold is a submanifold<strong>of</strong> some large X (by well known embedd<strong>in</strong>g theorems).3.4 Tangent space <strong>and</strong> tangent bundleLet us fix a differentiable manifold M, <strong>and</strong> c ∈ M. We want to def<strong>in</strong>e thetangent space T c M <strong>of</strong> M at c.Def<strong>in</strong>ition 3.21 • The tangent space T c M is more easily described forsubmanifolds; <strong>in</strong> this case, we choose a chart φ k <strong>and</strong> a po<strong>in</strong>t x ∈ U k s.t.φ k (x) = c; T c M is the image <strong>of</strong> the l<strong>in</strong>ear space U under the derivativeD x φ k . T c M is itself a l<strong>in</strong>ear subspace <strong>in</strong> X. In figure 5 on the follow<strong>in</strong>gpage, we graphically represent T c M though as an aff<strong>in</strong>e subspace, bytranslat<strong>in</strong>g it to the po<strong>in</strong>t c.• The tangent bundle T M is the collection <strong>of</strong> all tangent spaces. If M isa submanifold <strong>of</strong> the vector space X, thenT M := {(c, h) | c ∈ M, h ∈ T c M} ⊂ X × X .The tangent bundle T M is itself a differentiable manifold; its charts are <strong>of</strong> theform (φ k , Dφ k ), where φ k are the charts for M.XU 1Mφ 1UV 1c26


T cMMV 1cφ 1xU 1UFigure 5: Tangent space3.5 Fréchet ManifoldWhen study<strong>in</strong>g the space <strong>of</strong> all <strong>curves</strong>, we will deal with Fréchet manifolds,where the model space E will be a Fréchet space, <strong>and</strong> the composition <strong>of</strong> localcharts φ −11 ◦ φ 2 is smooth.Some objects that we may f<strong>in</strong>d useful <strong>in</strong> the follow<strong>in</strong>g are Fréchet manifolds.Example 3.22 (Examples <strong>of</strong> Fréchet manifolds) Given two f<strong>in</strong>ite-dimensionalmanifolds S, R, with S compact <strong>and</strong> n-dimensional,• [24, Example 4.1.3]. the space C ∞ (S; R) <strong>of</strong> smooth maps f : S → R is aFréchet manifold. It is modeled on U = C ∞ (lR n ; R).• [24, Example 4.4.6]. The space <strong>of</strong> smooth diffeomorphisms Diff(S) <strong>of</strong> Sonto itself is a Fréchet manifold. The group operation φ, ψ → φ ◦ ψ issmooth.• But if we try to model Diff(S) on C k (S; S), then the group operation isnot even differentiable.• [24, Example 4.6.6]. The quotient <strong>of</strong> the two aboveC ∞ (S; R)/Diff(S)is a Fréchet manifold. It conta<strong>in</strong>s “all smooth maps from S to R, up to adiffeomorphism <strong>of</strong> S”.So the theory <strong>of</strong> Fréchet space seems apt to def<strong>in</strong>e <strong>and</strong> operate on the manifold<strong>of</strong> geometric <strong>curves</strong>.3.6 Riemann & F<strong>in</strong>sler geometryWe first def<strong>in</strong>e Riemannian geometries, <strong>and</strong> then we generalize to F<strong>in</strong>sler geometries.27


3.6.1 Riemann metric, lengthDef<strong>in</strong>ition 3.23 • A Riemannian metric G on a differentiable manifoldM def<strong>in</strong>es a scalar product 〈h 1 , h 2 〉 G|c on h 1 , h 2 ∈ T c M, dependent onthe po<strong>in</strong>t c ∈ M. We assume that the scalar product varies smoothly w.r.toc.• The scalar product def<strong>in</strong>es the norm |h| c = |h| G|c = √ 〈h, h〉 G|c.Suppose γ : [0, 1] → M is a path connect<strong>in</strong>g c 0 to c 1 .∫ 1• The length is Len(γ) := | ˙γ(v)| γ(v) dv0γwhere ˙γ(v) := ∂ v γ(v).c 1∫ M1c 0• The energy (or action) is E(γ) := | ˙γ(v)| 2 γ(v) dv3.6.2 F<strong>in</strong>sler metric, lengthDef<strong>in</strong>ition 3.24 We def<strong>in</strong>e a F<strong>in</strong>sler metric to be a function F : T M → lR + ,such that• F is cont<strong>in</strong>uous <strong>and</strong>,• for all c ∈ M , v ↦→ F (c, v) is a norm on T c M.We will sometimes write |v| c := F (c, v).(Sometimes F is called a “M<strong>in</strong>kowsky norm”).As for the case <strong>of</strong> norms, a F<strong>in</strong>sler metric may be asymmetric; but, for sake<strong>of</strong> simplicity, we will only consider the symmetric case.Us<strong>in</strong>g the norm |v| c we can then aga<strong>in</strong> def<strong>in</strong>e the length <strong>of</strong> paths byLen F (γ) =<strong>and</strong> similarly the action.3.6.3 Distance∫ 10| ˙γ(t)| γ(t) dt =0∫ 10F (γ(t), ˙γ(t)) dtDef<strong>in</strong>ition 3.25 The distance d(c 0 , c 1 ) is the <strong>in</strong>fimum <strong>of</strong> Len(γ) between allC 1 paths γ connect<strong>in</strong>g c 0 , c 1 ∈ M.Remark 3.26 In the follow<strong>in</strong>g chapter, we will def<strong>in</strong>e some differentiable manifoldsM <strong>of</strong> <strong>curves</strong>, <strong>and</strong> add a Riemann (or F<strong>in</strong>sler) metric G on those; thereare two different choices for the model space,• suppose we model the differentiable manifold M on a Hilbert space U, withscalar product 〈, 〉 U ; this implies that M has a topology τ associated toit, <strong>and</strong> this topology, through the charts φ, is the same as that <strong>of</strong> U. Let28


now G be a Riemannian metric; s<strong>in</strong>ce the derivative <strong>of</strong> a chart Dφ(c)maps U onto T c M, one natural hypothesis will be to assume that 〈, 〉 U <strong>and</strong>〈, 〉 G,c be locally equivalent (uniformly w.r.to small movements <strong>of</strong> c); asa consequence, the topology generated by the Riemannian distance d willco<strong>in</strong>cide with the orig<strong>in</strong>al topology τ. A similar request will hold for thecase <strong>of</strong> a F<strong>in</strong>sler metric G, <strong>in</strong> this case U will be a Banach space with anorm equivalent to that def<strong>in</strong>ed by G on T c M.• We will though f<strong>in</strong>d out that, for technical reasons, we will <strong>in</strong>itially modelthe spaces <strong>of</strong> <strong>curves</strong> on the Fréchet space C ∞ ; but <strong>in</strong> this case there cannotbe a norm on T c M that generates the same orig<strong>in</strong>al topology (for the pro<strong>of</strong>,see I.1.46 <strong>in</strong> [48]).3.6.4 M<strong>in</strong>imal geodesicsDef<strong>in</strong>ition 3.27 If there is a path γ ∗ provid<strong>in</strong>g the m<strong>in</strong>imum <strong>of</strong> Len(γ) betweenall paths connect<strong>in</strong>g c 0 , c 1 ∈ M, then γ ∗ is called a m<strong>in</strong>imal geodesic.The m<strong>in</strong>imal geodesic is also the m<strong>in</strong>imum <strong>of</strong> the action (up to reparameterization).Proposition 3.28 Let ξ ∗ provide the m<strong>in</strong>imum m<strong>in</strong> γ E(γ) <strong>in</strong> the class <strong>of</strong> allpaths γ <strong>in</strong> M connect<strong>in</strong>g x to y. Then ξ ∗ is a m<strong>in</strong>imal geodesic <strong>and</strong> its speed| ˙ξ ∗ | is constant.Vice versa, let γ ∗ be a m<strong>in</strong>imal geodesic, then there is a reparameterizationξ ∗ = γ ∗ ◦ φ s.t. ξ ∗ provides the m<strong>in</strong>imum m<strong>in</strong> γ E(γ).A pro<strong>of</strong> may be found <strong>in</strong> [34].3.6.5 Exponential mapThe action E is a smooth <strong>in</strong>tegral, quadratic <strong>in</strong> ˙γ, <strong>and</strong> we can compute theEuler-Lagrange equations; its m<strong>in</strong>ima are more regular, s<strong>in</strong>ce they are guaranteedto have constant speed; consequently, when try<strong>in</strong>g to f<strong>in</strong>d geodesics, we will tryto m<strong>in</strong>imize the action <strong>and</strong> not the length. This also related to the idea <strong>of</strong> theexponential map.Def<strong>in</strong>ition 3.29 Let ¨γ = Γ( ˙γ, γ) be the Euler-Lagrange ODE <strong>of</strong> the actionE(γ) = ∫ 10 | ˙γ(v)|2 dv. Any solution <strong>of</strong> this ODE is a critical geodesic. Notethat any m<strong>in</strong>imal geodesic is a critical geodesic.Def<strong>in</strong>e the exponential map exp c : T c M → M as exp c (η) = γ(1), whereγ is the solution <strong>of</strong>{¨γ(v) = Γ( ˙γ(v), γ(v)), γ(0) = c, ˙γ(0) = η (3.3)Solv<strong>in</strong>g the above ODE (3.3) is <strong>in</strong>formally known as shoot<strong>in</strong>g geodesics.The exponential map is <strong>of</strong>ten used as a chart, s<strong>in</strong>ce it is the least possiblydeform<strong>in</strong>g map at the orig<strong>in</strong>.29


Theorem 3.30 Suppose that M is a smooth differentiable manifold modeledon a Hilbert space with a smooth Riemannian metric. The derivative <strong>of</strong> theexponential map exp c : T c M → M at the orig<strong>in</strong> is an isometry, hence exp c is alocal diffeomorphism between a neighborhood <strong>of</strong> 0 ∈ T c M <strong>and</strong> a neighborhood <strong>of</strong>c ∈ M.(See [30], VIII §5). The exponential map can then “l<strong>in</strong>earize” small portions <strong>of</strong>M, <strong>and</strong> so it will enable us to use l<strong>in</strong>ear methods such as the pr<strong>in</strong>cipal component<strong>analysis</strong>. Unfortunately, the above result does not hold if M is modeled on aFréchet space.3.6.6 Hopf–R<strong>in</strong>ow theoremTheorem 3.31 (Hopf–R<strong>in</strong>ow) Suppose M is a f<strong>in</strong>ite dimensional Riemannianor F<strong>in</strong>sler manifold. The follow<strong>in</strong>g statements are equivalent:• (M, d) is metrically complete;• the O.D.E. (3.3) can be solved for all c ∈ M, η ∈ T c M <strong>and</strong> v ∈ lR;• the map exp cis surjective;<strong>and</strong> all those imply that, ∀x, y ∈ M there exists a m<strong>in</strong>imal geodesic connect<strong>in</strong>g xto y.3.6.7 Drawbacks <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimensionsIn a certa<strong>in</strong> sense, <strong>in</strong>f<strong>in</strong>ite dimensional manifolds are simpler than their correspond<strong>in</strong>gf<strong>in</strong>ite-dimensional counterparts: <strong>in</strong>deed, by Eells <strong>and</strong> Elworthy [18],Theorem 3.32 (Eells–Elworthy) Any smooth differentiable manifold M modeledon an <strong>in</strong>f<strong>in</strong>ite dimensional separable Hilbert space H may be embedded asan open subset <strong>of</strong> that Hilbert space.In other words, it is always possible to express M us<strong>in</strong>g one s<strong>in</strong>gle chart. (Butnote that this may not be the best way for computations/applications).When M is an <strong>in</strong>f<strong>in</strong>ite dimensional Riemannian manifold, though, only asmall part <strong>of</strong> the Hopf–R<strong>in</strong>ow theorem still holds.Proposition 3.33 Suppose M is <strong>in</strong>f<strong>in</strong>ite dimensional, modeled on a Hilbertspace, <strong>and</strong> (M, d) is complete, then the O.D.E. (3.3) <strong>of</strong> a critical geodesic canbe solved for all v ∈ lR.But other implications fails.Example 3.34 (Atk<strong>in</strong> [3]) There exists an <strong>in</strong>f<strong>in</strong>ite dimensional complete Hilbertsmooth manifold M <strong>and</strong> x, y ∈ M such that there is no critical geodesic connect<strong>in</strong>gx to y.30


That is,• (M, d) is complete ⇏ exp c is surjective,• <strong>and</strong> (M, d) is complete ⇏ m<strong>in</strong>imal geodesics exist.It is then, <strong>in</strong> general, quite difficult to prove that an <strong>in</strong>f<strong>in</strong>ite dimensionalmanifold admits m<strong>in</strong>imal geodesics (even when it is known to be metricallycomplete). There are though some positive results, such as Ekel<strong>and</strong> [19] (thatwe cannot properly discuss for lack <strong>of</strong> space); or the follow<strong>in</strong>g.Theorem 3.35 (Cartan–Hadamard) Suppose that M is connected, simplyconnected <strong>and</strong> has sem<strong>in</strong>egative sectional curvature; then these are equivalent:• (M, d) is complete• there exists a c ∈ M such that the map η → exp c (η) is well def<strong>in</strong>ed<strong>and</strong> then there exists an unique m<strong>in</strong>imal geodesic connect<strong>in</strong>g any two po<strong>in</strong>ts.For the pro<strong>of</strong>, see Corollary 3.9 <strong>and</strong> 3.11 <strong>in</strong> sec. IX.§3 <strong>in</strong> Lang [30].3.7 Gradient <strong>in</strong> abstract differentiable manifoldLet M be a differentiable manifold, c ∈ M, <strong>and</strong> φ : U → V be a chart withc ∈ V .Def<strong>in</strong>ition 3.36 Let E : M → lR be a functional; we say that it is Gâteauxdifferentiable at c if for all h ∈ T c M there exists the directional derivativeat c <strong>in</strong> direction hwhere x = φ −1 (c), k = [Dφ(c)] −1 (h).DE(c; h) := limt→0E(φ(x + tk)) − E(c)t. (3.4)Fix<strong>in</strong>g c (<strong>and</strong> then x), DE(c; ·) is a l<strong>in</strong>ear function from h ∈ T c M <strong>in</strong>to lR;for this reason it is considered an element <strong>of</strong> the cotangent space T ∗ c M (thatis the dual space <strong>of</strong> T c M — <strong>and</strong> we will not discuss here further). Suppose nowthat we add a Riemannian geometry to M; this def<strong>in</strong>es an <strong>in</strong>ner product 〈·, ·〉 con T c M, so we can then def<strong>in</strong>e the gradient.Def<strong>in</strong>ition 3.37 (Gradient) The gradient ∇E(c) <strong>of</strong> E at c is the uniquevector v ∈ T c M such that〈v, h〉 c = DE(c; h) ∀h ∈ T c M .If M is modeled on a Hilbert space H, <strong>and</strong> the <strong>in</strong>ner product 〈·, ·〉 c used onT c M is equivalent to the <strong>in</strong>ner product <strong>in</strong> H (as we discussed <strong>in</strong> 3.26), then theabove equation uniquely def<strong>in</strong>es what the gradient is. When M is modeled on aFréchet space, though, there is no choice <strong>of</strong> <strong>in</strong>ner product that is “compatible”with M; <strong>and</strong> there are pathological situations where the gradient does not exist.31


Example 3.38 Let M = C ∞ ([−1, 1] → lR); s<strong>in</strong>ce M is a vector space, then it istrivially a manifold, with a s<strong>in</strong>gle identity chart; <strong>and</strong> T c M = M. Let E : M → lRbe the evaluation functional E(f) = f(0), then DE(f; h) = h(0); let〈f, g〉 =∫ 1−1f(t)g(t) dt ;then the gradient <strong>of</strong> E would be δ 0 (the Dirac’s delta), that is a distribution (ormore simply a probability measure) but not an element <strong>of</strong> M.3.8 Group actionsDef<strong>in</strong>ition 3.39 Let G be a group, M a set. We say that G acts on M if thereis a mapG × M → Mg, m ↦→ g · mthat respects the group operations:• if e is the identity element then e · m = m, <strong>and</strong>• for any g, h ∈ G, m ∈ Mh · (g · m) = (h · g) · m . (3.5)If G is topological group, that is, a group with a topology such that the groupoperation is cont<strong>in</strong>uous, <strong>and</strong> M has a topology as well, we will require that theaction be cont<strong>in</strong>uous. Similarly for smooth actions between smooth manifolds.The action <strong>of</strong> a group G on M <strong>in</strong>duces an equivalence relation ∼, def<strong>in</strong>edbym 1 ∼ m 2 iff there exists g such that m 1 = g · m 2 .We can then def<strong>in</strong>e the follow<strong>in</strong>g objects.Def<strong>in</strong>ition 3.40m.• The orbit [m] <strong>of</strong> m is the family <strong>of</strong> all m 1 equivalent to• The quotient M/G is the space M/ ∼ <strong>of</strong> equivalence classes.• There is a projection π : M → M/G, send<strong>in</strong>g each m to its orbit π(m) =[m].We will see many examples <strong>of</strong> actions <strong>in</strong> Example 4.8.32


3.8.1 Distances <strong>and</strong> groupsLet d M (x, y) be a distance on a space M, <strong>and</strong> G a group act<strong>in</strong>g on M; we mayth<strong>in</strong>k <strong>of</strong> def<strong>in</strong><strong>in</strong>g a distance on B = M/G byd B ([x], [y]) :=<strong>in</strong>f d M (x, y) = <strong>in</strong>f d M (g · x, h · y) (3.6)x∈[x],y∈[y] g,h∈Gthat is the lowest distance between two orbits. Unfortunately, this def<strong>in</strong>itiondoes not <strong>in</strong> general satisfy the triangle <strong>in</strong>equality.Proposition 3.41 If d M is <strong>in</strong>variant w.r.to the action <strong>of</strong> the group G,that isd M (g · x, g · y) = d M (x, y) ∀g ∈ G ,then the above (3.6) can be simplified to<strong>and</strong> d B is a semidistance.d B ([x], [y]) = <strong>in</strong>fg∈G d M (g · x, y) . (3.7)Pro<strong>of</strong>. We write d B (x, y) <strong>in</strong>stead <strong>of</strong> d B ([x], [y]) for simplicity. It is easy to checkthatd B (x, y) = <strong>in</strong>fg∈G d M (g · x, y) = <strong>in</strong>fg∈G d M (y, g · x) = <strong>in</strong>fg∈G d M (g −1 · y, x) = d B (y, x) .For the triangle <strong>in</strong>equality,d B (x, z) + d B (z, y) = <strong>in</strong>f d M (g · x, z) + <strong>in</strong>f d M (z, h · y) =g∈G h∈G= <strong>in</strong>f d M (g · x, z) + d M (z, h · y) ≥ <strong>in</strong>f d M (g · x, h · y) = d B (x, y)g,h∈G g,h∈GRemark 3.42 There is a ma<strong>in</strong> problem: is d B ([x], [y]) > 0 when [x] ≠ [y] ?That is, there is no guarantee, <strong>in</strong> l<strong>in</strong>e <strong>of</strong> pr<strong>in</strong>ciple, that the above def<strong>in</strong>ition (3.7)won’t simply result <strong>in</strong> d B ≡ 0.4 Spaces <strong>and</strong> metrics <strong>of</strong> <strong>curves</strong>In this section we review the mathematical def<strong>in</strong>itions regard<strong>in</strong>g the space <strong>of</strong><strong>curves</strong> <strong>in</strong> full detail, <strong>and</strong> express a set <strong>of</strong> mathematical goals for the theory.4.1 Classes <strong>of</strong> <strong>curves</strong>Remember that S 1 = {x ∈ lR 2 | |x| = 1} is the circle <strong>in</strong> the plane.We will <strong>of</strong>ten associate lR 2 = IC, for convenience. Consequently,33


• sometimes S 1 will be identified with lR/(2π) (that is lR modulus 2π translations).• but other times (<strong>and</strong> <strong>in</strong> particular if the curve is planar) we will associateS 1 = {e it , t ∈ lR} = {z, |z| = 1} ⊂ IC.We recall that a curve is a map c : S 1 → lR n . The image <strong>of</strong> the curve isc(S 1 ).Def<strong>in</strong>ition 4.1 (Classes <strong>of</strong> Curves)• Imm(S 1 , lR n ) is the class <strong>of</strong> immersed <strong>curves</strong> c, such that c ′ ≠ 0at all po<strong>in</strong>ts.• Imm f (S 1 , lR n ) is the class <strong>of</strong> freely immersed curve, the immersed<strong>curves</strong> c such that, moreover, if φ : S 1 → S 1 is a diffeomorphism <strong>and</strong>c(φ(t)) = c(t) for all t, then φ =Id. So, <strong>in</strong> a sense, the curve is “completely”characterized by its image.• Emb(S 1 , lR n ) are the embedded <strong>curves</strong>, maps c that are diffeomorphiconto their image c(S 1 ); <strong>and</strong> the image is an embeddedsubmanifold <strong>of</strong> lR n <strong>of</strong> dimension 1.Each class conta<strong>in</strong>s the one follow<strong>in</strong>g it.non-freely immersed curve.The follow<strong>in</strong>g is an example <strong>of</strong> aExample 4.2 We def<strong>in</strong>e the doubly traversed circle us<strong>in</strong>g the complex notationc(z) = z 2 for z ∈ S 1 ⊂ IC; or otherwise identify<strong>in</strong>g S 1 = lR/(2π), <strong>and</strong> <strong>in</strong>this casec(θ) = (cos(2θ), s<strong>in</strong>(2θ))for θ ∈ lR/(2π). Sett<strong>in</strong>g φ(t) = t + π, we have that c = c ◦ φ, so c is not freelyimmersed.Vice versa, the follow<strong>in</strong>g result is a sufficient condition to assert that a curve isfreely immersed.Proposition 4.3 (Michor <strong>and</strong> Mumford [37]) If c is immersed <strong>and</strong> thereis a x ∈ lR n s.t. c(t) = x for one <strong>and</strong> only one t, then c is freely immersed.Remark 4.4 Imm(S 1 , lR n ) , Imm f (S 1 , lR n ) , Emb(S 1 , lR n ) , are open subset<strong>of</strong> the Banach space C r (S 1 → lR n ) when r ≥ 1, so they are trivially submanifolds(the charts are identity maps); <strong>and</strong> similarly for the Fréchet space C ∞ (S 1 → lR n ).Imm(S 1 , lR n ) , Imm f (S 1 , lR n ) , Emb(S 1 , lR n ) are connected iff n ≥ 3;whereas <strong>in</strong> the case n = 2 <strong>of</strong> planar <strong>curves</strong>, they are divided <strong>in</strong> connectedcomponents each conta<strong>in</strong><strong>in</strong>g <strong>curves</strong> with the same w<strong>in</strong>d<strong>in</strong>g number (see Prop. 8.1for the def<strong>in</strong>ition).34


4.2 Gâteaux differentials <strong>in</strong> the space <strong>of</strong> immersed <strong>curves</strong>Let once aga<strong>in</strong> M be the manifold <strong>of</strong> smooth immersed <strong>curves</strong>. We will ma<strong>in</strong>ly be<strong>in</strong>terested <strong>in</strong> the Gâteaux derivation <strong>of</strong> operators O <strong>and</strong> functions E : M → lR k .By operator we mean any one <strong>of</strong> these possible operations.• An operatorO : M → T c Msuch that O(c) is a smooth a vector field; examples are the operations <strong>of</strong>comput<strong>in</strong>g the tangent field T , <strong>and</strong> the curvature H.• An operatorO : M → Msuch that O(c) is an immersed curve; examples are all the group actionslisted <strong>in</strong> Section 4.3• An operatorO : M → (T c M → T c M)such that O(c) is itself an operator on vector fields along c; an example isthe derivative D s ;• or sometimesO : M → (T c M → lR n )such as the average along the curve O(c) = avg c (·).In all above cases, the evaluated operator O(c) is itself a function; for thisreason, to avoid confusion <strong>in</strong> the notation, <strong>in</strong> this section we write the Gâteauxderivation as D c,h O <strong>in</strong>stead <strong>of</strong> DO(c; h).The charts <strong>in</strong> M are trivial (as noted <strong>in</strong> 4.4), so the def<strong>in</strong>ition (3.4) <strong>of</strong> Gâteauxdifferential simplifies toD c,h E := ∂ t E(c + th)| t=0(4.1)<strong>and</strong> similarly for an operator.These rules follow<strong>in</strong>g are the build<strong>in</strong>g blocks that are used (by means <strong>of</strong>st<strong>and</strong>ard calculus rules for derivatives) to compute the derivation <strong>of</strong> all othergeometric operators usually found <strong>in</strong> computer vision applications.Proposition 4.5D c,h len(c) =∫c∫(D s h · D s c) ds = −c(h · D 2 sc) ds , (4.2)D c,h (D s O) = −(D s h · D s c)(D s O) + D s (D c,h O) , (4.3)∫∫D c,h O ds = D c,h O + O. (D s h · D s c) ds , (4.4)cc∫∫∫ ∫D c,h O ds = D c,h O + O.(D s h · D s c) ds − O ds (D s h · D s c) dscccc(4.5)35


The pro<strong>of</strong> is by direct computation.For example, from (4.5) we easily obta<strong>in</strong> (2.7), that is∫D c,h avg c (c) = h + (c − avg c (c))(D s h · D s c) ds .cIf C(t, θ) is a homotopy, we can obta<strong>in</strong> a different <strong>in</strong>terpretation <strong>of</strong> all previousequalities substitut<strong>in</strong>g formally C for O, ∂ t for D c,h <strong>and</strong> eventually ∂ t C for h.The above proposition helps <strong>in</strong> formaliz<strong>in</strong>g <strong>and</strong> speed<strong>in</strong>g up calculus ongeometric quantities, as <strong>in</strong> this example.Example 4.6 We can Gâteaux-derive the “second arc parameter derivativeoperator D ss ” by repeated applications <strong>of</strong> (4.3), as followsD c,h (D ss g) = −(D s h · D s c)D ss g + D s [D c,h (D s g)] == −(D s h · D s c)D ss g + D s [−(D s h · D s c)(D s g) + D s (D c,h g)] == D ss (D c,h g) − 2(D s h · D s c)D ss g − [D s (D s h · D s c)](D s g)<strong>and</strong> hence obta<strong>in</strong> the Gâteaux differential <strong>of</strong> the curvatureD c,h D ss c = D ss h − 2(D s h · D s c)D ss c − [D s (D s h · D s c)]D s c<strong>and</strong> eventually obta<strong>in</strong> the Gâteaux differential <strong>of</strong> the elastica energy bysubstitut<strong>in</strong>g this last equality <strong>in</strong> (4.4)∫∫D c,h |D ss c| 2 ds = 2D ss c · (D c,h D ss c) + |D ss c| 2 . (D s h · D s c) ds =cc∫= 2D ss c · D ss h − 3(D s h · D s c)|D ss c| 2 dss<strong>in</strong>ce (D ss c · D s c) = 0.cRemark 4.7 Most objects we deal with share an important property: they arereparameterization <strong>in</strong>variant. In the case <strong>of</strong> operators, <strong>in</strong> all cases <strong>in</strong> whichO(c) is a curve or a vector field, then this means that for any diffeomorphismϕ ∈ Diff + (S 1 ) there holdsO(c ◦ φ)(θ) = O(c)(φ(θ)) . (4.6)(whereas for ϕ ∈ Diff − (S 1 ) there is a possible sign choice as expla<strong>in</strong>ed <strong>in</strong> Def<strong>in</strong>ition1.5).By consider<strong>in</strong>g an <strong>in</strong>f<strong>in</strong>itesimal perturbation a : S 1 → lR <strong>of</strong> the identity <strong>in</strong>Diff(S 1 ), we obta<strong>in</strong> the formulaD c,h O(c)(θ) = a(θ) . ∂ θ O(c)(θ) for any h(θ) = a(θ).∂ θ c(θ) (4.7)<strong>and</strong> this last may be rewritten <strong>in</strong> arc parameterD c,h O(c)(s) = a(s) . D s O(c)(s) for any h(s) = a(s).D s c(s) . (4.8)Similarly if E : M → lR is a reparameterization <strong>in</strong>variant energy, thenD c,h E(c) = 0 for any h = a.D s c . (4.9)36


It is also possible to prove that the condition (4.8) is equivalent to say<strong>in</strong>g thatthe operator is reparameterization <strong>in</strong>variant; <strong>and</strong> similarly for E.4.3 Group actions on <strong>curves</strong>Let M aga<strong>in</strong> be the manifold <strong>of</strong> immersed <strong>curves</strong>. An example <strong>of</strong> group actionthat we saw <strong>in</strong> Def<strong>in</strong>ition 1.3 is obta<strong>in</strong>ed when G = Diff(S 1 ); G acts on <strong>curves</strong>by right compositionc, φ ↦→ c ◦ φ<strong>and</strong> this action is the reparameterization.In general, all groups that act on lR n also act on M; many are <strong>of</strong> <strong>in</strong>terest<strong>in</strong> computer vision. The action <strong>of</strong> these groups on <strong>curves</strong> is always <strong>of</strong> the formc, A ↦→ A ◦ c, where A : lR n → lR n is the group action on lR n .Example 4.8 • O(n) is the group <strong>of</strong> rotations <strong>in</strong> lR n . It is represented bythe group <strong>of</strong> orthogonal matrixesO(n) := {A ∈ lR n×n | AA t = A t A = Id}The action on v ∈ lR n is the matrix·vector multiplication Av.• SO(n) is the group <strong>of</strong> special rotations <strong>in</strong> lR n with det(A) = 1.• lR n is the group <strong>of</strong> translations <strong>in</strong> lR n . The action on v ∈ lR n is thevector sum v ↦→ v + T .• E(n) is the Euclidean group, generated by rotations <strong>and</strong> translations.• lR + is the group <strong>of</strong> rescal<strong>in</strong>gs.The quotient spaces M/G are the spaces <strong>of</strong> <strong>curves</strong> up to rotation <strong>and</strong>/ortranslations <strong>and</strong>/or scal<strong>in</strong>g (. . . ).4.4 Two categories <strong>of</strong> <strong>shape</strong> spacesLet M be a manifold <strong>of</strong> <strong>curves</strong>. We should dist<strong>in</strong>guish two different ideas <strong>of</strong><strong>shape</strong> spaces <strong>of</strong> <strong>curves</strong>.geometric <strong>curves</strong> up togeometric <strong>curves</strong>pose<strong>curves</strong> up to reparameterization,rotation, translation,<strong>curves</strong> up to reparameterization,The space <strong>of</strong> <strong>shape</strong>sscal<strong>in</strong>g,is modeled as M/Diff(S 1 ) , M/Diff(S 1 )/E(n)/lR + ,is well-suited to <strong>shape</strong> <strong>optimization</strong>. <strong>shape</strong> <strong>analysis</strong>.Michor <strong>and</strong> Mumford [37], Srivastava et al. [52], Mio <strong>and</strong>References:Yezzi-M.-Sundaramoorthi Srivastava [41], Klassen et al.[53–58] [35] Glaunès et al. [28], Younes [68], Michor et al.[22], Trouvé <strong>and</strong> Younes [59] [39]37


The term pre<strong>shape</strong> space is sometimes used for the leftmost space, when bothspaces are studied <strong>in</strong> the same paper.4.5 Geometric <strong>curves</strong>Unfortunately the quotientB i = Imm(S 1 , lR n )/Diff(S 1 )<strong>of</strong> immersed <strong>curves</strong> up to reparameterization is not a Fréchet manifold.We (re)def<strong>in</strong>e the space <strong>of</strong> geometric <strong>curves</strong>.Def<strong>in</strong>ition 4.9B i,f (S 1 , lR n ) = Imm f (S 1 , lR n )/Diff(S 1 )is the quotient <strong>of</strong> Imm f (S 1 , lR n ) (the free immersions) by the diffeomorphismsDiff(S 1 ) (that act as reparameterizations).The good news is thatProposition 4.10 (§2.4.3 <strong>in</strong> Michor <strong>and</strong> Mumford [37]) If Imm f has thetopology <strong>of</strong> the Fréchet space <strong>of</strong> C ∞ functions, then B i,f is a Fréchet manifoldmodeled on C ∞ .The bad news is that• when we add a simple Riemannian metric to B i,f , the result<strong>in</strong>g metricspace is not metrically complete; <strong>in</strong>deed, there cannot be any norm on C ∞that generates the same topology <strong>of</strong> the Fréchet space C ∞ (as we discussed<strong>in</strong> 3.26);• by model<strong>in</strong>g B i,f as a Fréchet manifold, some calculus is lost, as we saw <strong>in</strong>Section 3.2.5.Remark 4.11 It seems that this is the only way to properly def<strong>in</strong>e the manifold.If otherwise we choose M = C k (S 1 → lR n ) to be the manifold <strong>of</strong> <strong>curves</strong>, then ifc ∈ M, c ′ ∉ T c M. Hence we (must?) model M on C ∞ functions.4.5.1 Research pathFollow<strong>in</strong>g Michor <strong>and</strong> Mumford [37] we so obta<strong>in</strong>ed a possible program <strong>of</strong> mathresearch:• def<strong>in</strong>eB = B i,f (S 1 , lR n ) = Imm f (S 1 , lR n )/Diff(S 1 )<strong>and</strong> consider B as a Fréchet manifold modeled on C ∞ ,• def<strong>in</strong>e a Riemann/F<strong>in</strong>sler geometry on it, study its properties,• metrically complete the space.In the last step, we would hope to obta<strong>in</strong> a differentiable manifold; unfortunately,this is sometimes not true, as we will see <strong>in</strong> the overview <strong>of</strong> the literature.38


4.6 Goals (revisited)We formulate an abstract set <strong>of</strong> goal properties on a metric 〈h 1 , h 2 〉 G|c on spaces<strong>of</strong> <strong>curves</strong>.1. [rescal<strong>in</strong>g <strong>in</strong>variance] For any λ > 0, if we rescale c to λc, then〈h 1 , h 2 〉 G|λc = λ a 〈h 1 , h 2 〉 G|c(where a ∈ lR is an universal constant);2. [Euclidean <strong>in</strong>variance] Suppose that A is an Euclidean transformation,<strong>and</strong> R is its rotational part; if we apply A to c <strong>and</strong> R to h 0 , h 1 , then〈Rh 1 , Rh 2 〉 G|Ac = 〈h 1 , h 2 〉 G|c ;3. [parameterization <strong>in</strong>variance]the metric does not depend on the parameterization <strong>of</strong> the curve, that is‖˜h‖˜c = ‖h‖ c when ˜c(t) = c(ϕ(t)) <strong>and</strong> ˜h(t) = h(ϕ(t)).If a metric satisfies the above three properties, we say that it is a geometricmetric.4.6.1 Well posednessWe also add a more basic set <strong>of</strong> requirements.0. [well-posedness <strong>and</strong> existence <strong>of</strong> m<strong>in</strong>imal geodesics]• The metric <strong>in</strong>duces a good distance d: that is, the distance between different<strong>curves</strong> is positive, <strong>and</strong> d generates the same topology that the atlas <strong>of</strong> themanifold M <strong>in</strong>duces;• (M, d) is complete;• for any two <strong>curves</strong> <strong>in</strong> M, there exists a m<strong>in</strong>imal geodesic connect<strong>in</strong>g them.4.6.2 Are the goal properties consistent?So we state the abstract problem:Problem 4.12 Consider the space <strong>of</strong> <strong>curves</strong> M, <strong>and</strong> the family <strong>of</strong> all Riemannian(or, F<strong>in</strong>sler) Geometries F on M.Does there exist a metric F satisfy<strong>in</strong>g the above properties 0,1,2,3?Consider metrics F that may be written <strong>in</strong> <strong>in</strong>tegral form∫F (c, h) = f ( c(s), ∂ s c(s), . . . , ∂ j sc(s), h(s), . . . , ∂ i j s ih(s)) dscwhat is the relationship between the degrees i, j <strong>and</strong> the properties <strong>in</strong> this section?All this boils down to a fundamental question: can we design metrics to satisfyour needs?39


5 Representation/embedd<strong>in</strong>g/quotient <strong>in</strong> the currentliterature5.1 The representation/embedd<strong>in</strong>g/quotient paradigmA common way to model <strong>shape</strong>s is by representation/embedd<strong>in</strong>g:• we represent the <strong>shape</strong> A by a function u A• <strong>and</strong> then we embed this representation <strong>in</strong> a space E, so that we canoperate on the <strong>shape</strong>s A by operat<strong>in</strong>g on the representations u A .Most <strong>of</strong>ten, representation/embedd<strong>in</strong>g alone do not directly provide a satisfactory<strong>shape</strong> space. In particular, <strong>in</strong> many cases it happens that the representationis “redundant”, that is, the same <strong>shape</strong> has many different possible representations.An appropriate quotient is then <strong>in</strong>troduced.There are many examples <strong>of</strong> <strong>shape</strong> spaces <strong>in</strong> the literature that are studiedby means <strong>of</strong> the representation/embedd<strong>in</strong>g/quotient scheme. Underst<strong>and</strong><strong>in</strong>g thebasic math properties <strong>of</strong> these three operations is then a key step <strong>in</strong> underst<strong>and</strong><strong>in</strong>g<strong>shape</strong> spaces <strong>and</strong> design<strong>in</strong>g/improv<strong>in</strong>g them.We now present a rapid overview <strong>of</strong> how this scheme is exploited <strong>in</strong> thecurrent literature <strong>of</strong> <strong>shape</strong> spaces; then we will come back to some <strong>of</strong> them toexpla<strong>in</strong> more <strong>in</strong> depth.5.2 Current literatureExample 5.1 (The family <strong>of</strong> all non empty compact subsets <strong>of</strong> lR N ) Ast<strong>and</strong>ard representation is obta<strong>in</strong>ed by associat<strong>in</strong>g each closed subset A to thedistance function u A or the signed distance function b A (that were def<strong>in</strong>ed <strong>in</strong>Def<strong>in</strong>ition 2.1). We may then def<strong>in</strong>e a topology <strong>of</strong> <strong>shape</strong>s by decid<strong>in</strong>g thatA n → A when u An → u A uniformly on compact sets. This convergence co<strong>in</strong>cideswith the Kuratowski topology <strong>of</strong> closed sets; if we limit <strong>shape</strong>s to be compact sets,the Kuratowski topology is <strong>in</strong>duced by the Hausdorff distance. See section 6.2.Example 5.2 Trouvé-Younes et al (see Glaunès et al. [22], Trouvé <strong>and</strong> Younes[59] <strong>and</strong> references there<strong>in</strong>) modeled the motion <strong>of</strong> <strong>shape</strong>s by study<strong>in</strong>g a left<strong>in</strong>variant Riemannian metric on the family G <strong>of</strong> diffeomorphisms <strong>of</strong> the spacelR N ; to recover a true metric <strong>of</strong> <strong>shape</strong>s, a quotient is then performed w.r.to alldiffeomorphisms G 0 that do not move a template <strong>shape</strong>.But the representation/embedd<strong>in</strong>g/quotient scheme is also found when deal<strong>in</strong>gwith spaces <strong>of</strong> <strong>curves</strong>:Example 5.3 (Representation by angle function) In the work <strong>of</strong> Klassenet al. [28], Srivastava et al. [52], Mio <strong>and</strong> Srivastava [41], smooth planar closed<strong>curves</strong> c : S 1 → lR 2 <strong>of</strong> length 2π are represented by a pair <strong>of</strong> angle-velocityfunctions c ′ (u) = exp(φ(u) + iα(u)) (identify<strong>in</strong>g lR 2 = IC) then (φ, α) areembedded as a subset N <strong>in</strong> L 2 (0, 2π) or W 1,2 (0, 2π). S<strong>in</strong>ce the goal is to obta<strong>in</strong>40


a <strong>shape</strong> space representation for <strong>shape</strong> <strong>analysis</strong> purposes, a quotient is then<strong>in</strong>troduced on N. See Section 8.1.Example 5.4 Another representation <strong>of</strong> planar <strong>curves</strong> for <strong>shape</strong> <strong>analysis</strong> isfound <strong>in</strong> Younes [68]. In this case the angle function is considered mod(π). Thisrepresentation is both simple <strong>and</strong> very powerful at the same time. Indeed, it ispossible to prove that geodesics do exist <strong>and</strong> to explicitly show examples<strong>of</strong> geodesics. See Section 8.2.Example 5.5 (Harmonic representation) A. Duci et al (see [16, 17]) representa closed planar contour as the zero level <strong>of</strong> a harmonic function. This novelrepresentation for contours is explicitly designed to possess a l<strong>in</strong>ear structure,which greatly simplifies l<strong>in</strong>ear operations such as averag<strong>in</strong>g, pr<strong>in</strong>cipal component<strong>analysis</strong> or differentiation <strong>in</strong> the space <strong>of</strong> <strong>shape</strong>s.And, <strong>of</strong> course, we have <strong>in</strong> this list the spaces <strong>of</strong> embedded <strong>curves</strong>.Example 5.6 When study<strong>in</strong>g embedded <strong>curves</strong>, usually, for the sake <strong>of</strong> mathematical<strong>analysis</strong>, the <strong>curves</strong> are modeled as immersed parametric <strong>curves</strong>; aquotient w.r.to the group <strong>of</strong> possible reparameterizations <strong>of</strong> the curve c (thatco<strong>in</strong>cides with the group <strong>of</strong> diffeomorphisms Diff(S 1 )) is applied afterward to allthe mathematical structures that are def<strong>in</strong>ed (such as the manifold <strong>of</strong> <strong>curves</strong>, theRiemannian metric, the <strong>in</strong>duced distance, etc.).It is <strong>in</strong>terest<strong>in</strong>g to note this fact.Remark 5.7 (A remark on the quotient<strong>in</strong>g order) When we started talk<strong>in</strong>g<strong>of</strong> geometric <strong>curves</strong>, we proposed the quotient B = M/Diff(S 1 ) (the space <strong>of</strong><strong>curves</strong> up to reparameterization); <strong>and</strong> this had to be followed by other quotientsw.r.to Euclidean motions <strong>and</strong>/or scal<strong>in</strong>g, to obta<strong>in</strong> M/Diff(S 1 )/E(n)/lR + . Inpractice, though, the space B happens to be more difficult to study; hence most<strong>shape</strong> space theories that deal with <strong>curves</strong> prefer a different order: the quotientM/E(n)/lR + is modeled <strong>and</strong> studied first; then the quotient M/E(n)/lR + /Diff(S 1 )is performed (<strong>of</strong>ten, only numerically).6 <strong>Metrics</strong> <strong>of</strong> setsWe now present two examples <strong>of</strong> Shape Theories where a <strong>shape</strong> may be a genericsubset <strong>of</strong> the plane; with particular attention to how they behave w.r.to <strong>curves</strong>.6.1 Some more math on distance <strong>and</strong> geodesicsWe start by review<strong>in</strong>g some basic results <strong>in</strong> abstract metric spaces theory.41


6.1.1 Length <strong>in</strong>duced by a distanceIn this subsection (M, d) is a generic metric space.Def<strong>in</strong>ition 6.1 (Length by total variation) Def<strong>in</strong>e the length <strong>of</strong> a cont<strong>in</strong>uouscurve γ : [α, β] → M, by us<strong>in</strong>g the total variationn∑Len d γ := sup d ( γ(t i−1 ), γ(t i ) ) t 1t 6t 4.Ti=1t 0 t 2 t5where the supremum is carried out over all f<strong>in</strong>ite subsets T = {t 0 , · · · , t n } ⊂[α, β] <strong>and</strong> t 0 ≤ · · · ≤ t n .Def<strong>in</strong>ition 6.2 (The <strong>in</strong>duced geodesic distance)d g (x, y) := <strong>in</strong>fγ Lend γ (6.1)the <strong>in</strong>fimum is <strong>in</strong> the class <strong>of</strong> all cont<strong>in</strong>uous γ <strong>in</strong> M connect<strong>in</strong>g x to y.Note that d g (x, y) < ∞ iff x, y may be connected by a Lipschitz path.6.1.2 M<strong>in</strong>imal geodesicsDef<strong>in</strong>ition 6.3 If <strong>in</strong> the def<strong>in</strong>ition (6.1) there is a curve γ ∗ provid<strong>in</strong>g them<strong>in</strong>imum, then γ ∗ is called a m<strong>in</strong>imal geodesic connect<strong>in</strong>g x to y.Proposition 6.4 In Riemann <strong>and</strong> F<strong>in</strong>sler manifolds, the <strong>in</strong>tegral length Len(γ)that we def<strong>in</strong>ed <strong>in</strong> Section 3.6.1 co<strong>in</strong>cides with the total variation length Len d γthat we def<strong>in</strong>ed <strong>in</strong> Def<strong>in</strong>ition 6.1. As a consequence, d = d g : we say that d ispath-metric.In general, though, it is easy to devise examples where d ≠ d g .Example 6.5 The set M = S 1 ⊂ lR 2 is a metric space, ifassociated with d(x, y) = |x − y| (that is represented as a dottedsegment <strong>in</strong> the picture); <strong>in</strong> this case, d g (x, y) = | arg(x)−arg(y)|(that is represented as a dashed arc <strong>in</strong> the picture).6.1.3 Existence <strong>of</strong> geodesics <strong>and</strong> <strong>of</strong> averageProposition 6.6 If for a ρ > 0 the closed ballD g (x, ρ) := {y | d g (x, y) ≤ ρ}is compact, then x <strong>and</strong> any y ∈ D g may be connected by a geodesic.Proposition 6.7 If for a x ∈ M <strong>and</strong> all ρ > 0, D g (x, ρ) is compact, then thedistance-based average (that was def<strong>in</strong>ed <strong>in</strong> 2.4) exists.The pro<strong>of</strong>s may be found <strong>in</strong> [15].t 342


6.1.4 Geodesic raysMore <strong>in</strong> general,Def<strong>in</strong>ition 6.8 a cont<strong>in</strong>uous curve γ : I → M (where I ⊂ lR is an <strong>in</strong>terval) isa geodesic ray if for each t ∈ I there is a ε > 0 s.t. J = [t − ε, t + ε] ⊂ I <strong>and</strong>γ restricted to J is the geodesic between γ(t − ε) <strong>and</strong> γ(t + ε).A critical geodesic <strong>in</strong> a Riemann or F<strong>in</strong>sler smooth manifold is always ageodesic ray, as <strong>in</strong> this example.Example 6.9 The multiply traversed full circle γ(t) = (0, cos(t), s<strong>in</strong>(t)) witht ∈ lR is a geodesic ray <strong>in</strong> the sphere S 2 .6.1.5 Hopf–R<strong>in</strong>ow , Cohn-Vossen TheoremDef<strong>in</strong>ition 6.10 • We recall that (M, d) is path-metric if d = d g .• Moreover, (M, d) is locally compact if small closed balls are compact.Theorem 6.11 (Hopf–R<strong>in</strong>ow , Cohn-Vossen) Suppose (M, d) is locally compact<strong>and</strong> path-metric; the follow<strong>in</strong>g statements are equivalent:• for all x ∈ M, ρ > 0, the closed ballis compact;• (M, d) is complete;D(x, ρ) := {y | d(x, y) ≤ ρ}• any geodesic ray γ : [0, 1) → M may be extended on [0, 1];<strong>and</strong> all imply that any two po<strong>in</strong>ts may be connected by a m<strong>in</strong>imal geodesic.Note that the above theorem cannot be used <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimensional differentiablemanifolds, s<strong>in</strong>ce the the closed balls are never compact <strong>in</strong> that case (seeTheorems 1.21, 1.22 <strong>in</strong> Chapter I <strong>in</strong> [48]).6.2 Hausdorff metricLet Ξ be the collection <strong>of</strong> all compact subsets <strong>of</strong> lR N . (This is sometimescalled the “topological hyperspace” <strong>of</strong> lR N ). Let A, B ⊂ lR N compact non-empty.We already def<strong>in</strong>ed the distance function u A (x) := <strong>in</strong>f y∈A |x − y|, <strong>and</strong> theHausdorff distance <strong>of</strong> two sets A, B as( ) ( )d H (A, B) := u B (x) ∨ u A (x) .supx∈AWe now list some known properties.supx∈B43


0101200000000000011111111111110000 111101010101010101010101Figure 6: Fatten<strong>in</strong>g <strong>of</strong> a setProperties 6.12• (Ξ, d H ) is path-metric;• d H (A, B) = supx∈lR N |u A (x) − u B (x)| .• each family <strong>of</strong> compact sets that are conta<strong>in</strong>ed <strong>in</strong> a fixed large closed ball<strong>in</strong> lR N is compact <strong>in</strong> (Ξ, d H ); so• any closed ball D(A, ρ) := {B | d H (A, B) ≤ ρ} is compact <strong>in</strong> (Ξ, d H ), <strong>and</strong>moreover• by Theorem 6.11, m<strong>in</strong>imal geodesics exist <strong>in</strong> (Ξ, d H ).6.2.1 An alternative def<strong>in</strong>itionLet D r (x) be the closed ball <strong>of</strong> center x <strong>and</strong> radius r > 0 <strong>in</strong> lR N , <strong>and</strong> D r = D r (0).We def<strong>in</strong>e the fattened set to beA + D r := {x + y | x ∈ A, |y| ≤ r} = ⋃D r (x) = {y | u A (y) ≤ r}.Note that the fattened set is always closed, (s<strong>in</strong>ce the distance function u A (x) iscont<strong>in</strong>uous).Example 6.13 In figure 6 we see an example <strong>of</strong> a set A fattened to r = 1, 2;the set A is the black polygon (<strong>and</strong> is filled <strong>in</strong>), whereas the dashed l<strong>in</strong>es <strong>in</strong> thedraw<strong>in</strong>g are the contours <strong>of</strong> the fattened sets. 7We can then state the follow<strong>in</strong>g equivalent def<strong>in</strong>ition <strong>of</strong> the Hausdorff distance:x∈Ad H (A, B) = m<strong>in</strong>{δ > 0 | A ⊂ (B + D δ ), B ⊂ (A + D δ )} .7 The fattened sets are not drawn filled — otherwise they would cover A.44


6.2.2 Uncountable many geodesicsUnfortunately d H is quite “unsmooth”. There are choices <strong>of</strong> A, B compact thatmay be jo<strong>in</strong>ed by an uncountable number <strong>of</strong> geodesics. In fact we can considerthis simple example.Example 6.14 (Duci <strong>and</strong> Mennucci [15]) Let us setA = {x = 0, 0 ≤ y ≤ 2}B = {x = 2, 0 ≤ y ≤ 1}C t = { x = 1, 0 ≤ y ≤ 2} 3 ∪ {y = 0, 1 ≤ x ≤ t}ACtBwith 1 ≤ t ≤ √ 5/2;<strong>and</strong> <strong>in</strong> the picture we represent (dashed) the fattened sets A + D √ 5/2 <strong>and</strong>B + D √ 5/2 . Note that d H(A, B) = √ 5 while d H (A, C t ) = d H (B, C t ) = √ 5/2:so C t are all midpo<strong>in</strong>ts that are on different geodesics between A <strong>and</strong> B.6.2.3 Curves <strong>and</strong> connected setsLet aga<strong>in</strong> Ξ be the collection <strong>of</strong> all compact subsets <strong>of</strong> lR N . Let Ξ c be thesubclass <strong>of</strong> compact connected subsets <strong>of</strong> lR N . We now relate the space <strong>of</strong> <strong>curves</strong>to this metric space, by list<strong>in</strong>g these properties <strong>and</strong> remarks.• Ξ c is a closed subset <strong>of</strong> (Ξ, d H );• Ξ c is the closure <strong>in</strong> (Ξ, d H ) <strong>of</strong> the class <strong>of</strong> (images <strong>of</strong>) all embedded <strong>curves</strong>.• Ξ c is Lipschitz-path-connected 8 ;• for all above reasons, it is possible to connect any two A, B ∈ Ξ c by am<strong>in</strong>imal geodesic mov<strong>in</strong>g <strong>in</strong> Ξ c .• So, if we try to f<strong>in</strong>d a m<strong>in</strong>imal geodesic connect<strong>in</strong>g two <strong>curves</strong> us<strong>in</strong>g themetric d H , we will end up f<strong>in</strong>d<strong>in</strong>g a geodesic <strong>in</strong> (Ξ c , d H ); <strong>and</strong> similarly ifwe try to optimize an energy def<strong>in</strong>ed on <strong>curves</strong>.• But note that Ξ c is not geodesically convex <strong>in</strong> Ξ, that is, there exist twopo<strong>in</strong>ts A, B ∈ Ξ c <strong>and</strong> a m<strong>in</strong>imal geodesics ξ connect<strong>in</strong>g A to B <strong>in</strong> themetric space (Ξ, d), such that the image <strong>of</strong> ξ is not conta<strong>in</strong>ed <strong>in</strong>side Ξ c .• We don’t know if (Ξ c , d H ) is path-metric.8 That is, any A, B ∈ Ξ c can be connected by a Lipschitz arc γ : [0, 1] → Ξ c45


6.2.4 Applications <strong>in</strong> computer visionCharpiat et al. [9] propose an approximation method to compute len H (ξ) bymeans <strong>of</strong> a family <strong>of</strong> energies def<strong>in</strong>ed us<strong>in</strong>g a smooth <strong>in</strong>tegr<strong>and</strong>; the approximationis ma<strong>in</strong>ly based on the property ‖f‖ L p → p ‖f‖ L ∞, for any measurable functionf def<strong>in</strong>ed on a bounded doma<strong>in</strong>; they successively devise a method to f<strong>in</strong>dapproximation <strong>of</strong> geodesics.6.3 A Hausdorff-like distance <strong>of</strong> compact setsIn Duci <strong>and</strong> Mennucci [15] a L p -like distance on the compact subsets <strong>of</strong> lR N wasproposed. (Here p ∈ [1, ∞).)To this end, we fix ϕ : [0, ∞) → (0, ∞) , decreas<strong>in</strong>g, C 1 , with ϕ(|x|) ∈ L p . Wethen def<strong>in</strong>e v A (x) := ϕ(u A (x)), where u A is the distance function. We eventuallydef<strong>in</strong>e the distanced(A, B) := ‖v A − v B ‖ L p . (6.2)Remark 6.15 This <strong>shape</strong> space is a perfect example <strong>of</strong> the representation/embedd<strong>in</strong>g/quotient scheme. Indeed, this <strong>shape</strong> space is represented as N c ={v A | A compact} <strong>and</strong> embedded <strong>in</strong> L p . Given v ∈ N c , we recover the <strong>shape</strong>A = {v = ϕ −1 (0)} (that is a level set <strong>of</strong> v).Example 6.16 A simple example (that works for all p) is given by ϕ(t) = e −t ,so that v A (x) = exp (−u A (x)); <strong>in</strong> this case, A = {v = 1}.The distance d <strong>of</strong> eqn. (6.2) enjoys the follow<strong>in</strong>g properties.Properties 6.17• It is Euclidean <strong>in</strong>variant;• it is locally compact but not path-metric;• the topology <strong>in</strong>duced is the same as that <strong>in</strong>duced by d H ;• m<strong>in</strong>imal geodesics do exist, s<strong>in</strong>ce D g := {B | d g (A, B) ≤ ρ} is compact.The pro<strong>of</strong>s are <strong>in</strong> [15]. We present a numerical computation <strong>of</strong> a m<strong>in</strong>imal geodesic(by A. Duci) <strong>in</strong> Figure 7 on the next page.6.3.1 Analogy with the Hausdorff metric, L p vs L ∞We recall that d H (A, B) = ‖u A (x) − u B (x)‖ L ∞ ; whereas <strong>in</strong>stead now we arepropos<strong>in</strong>g d(A, B) := ‖v A −v B ‖ L p . The idea be<strong>in</strong>g that this distance <strong>of</strong> compactsets is modeled on L p , whereas the Hausdorff distance is “modeled” on L ∞ .(Note that the Hausdorff distance is not really obta<strong>in</strong>ed by embedd<strong>in</strong>g, s<strong>in</strong>ceu A ∉ L ∞ ). L p is more regular than L ∞ , as shown by this remark.Remark 6.18 Given any f, g ∈ L p with p ∈ (1, ∞), the segment connect<strong>in</strong>gf to g is the unique m<strong>in</strong>imal geodesic connect<strong>in</strong>g them. Suppose now that thedimension <strong>of</strong> L ∞ (Ω, A, µ) is greater than 1. Given generically f, g ∈ L ∞ , thereis an uncountable number <strong>of</strong> m<strong>in</strong>imal geodesics connect<strong>in</strong>g them. 99 “Generically” is meant <strong>in</strong> the Baire sense: the set <strong>of</strong> exceptions is <strong>of</strong> first category.46


Figure 7: Example <strong>of</strong> a m<strong>in</strong>imal geodesic(For the pro<strong>of</strong> see 2.11 & 2.13 <strong>in</strong> [15]). The above result suggests that it maybe possible to shoot geodesics <strong>in</strong> the “Riemannian metric” associated to thisdistance.6.3.2 Cont<strong>in</strong>gent coneLet aga<strong>in</strong> N c = {v A | A compact} be the family <strong>of</strong> all representations. Given av ∈ N c , let T v N c ⊂ L p be the cont<strong>in</strong>gent coneT v N c := {lim t n (v n − v) | t n > 0, v n ∈ N c , v n → v}n{}v n − v= λ lim | λ ≥ 0, v n → v ,n ‖v n − v‖ L pwhere it is <strong>in</strong>tended that the above limits are <strong>in</strong> the sense <strong>of</strong> strong convergence<strong>in</strong> L p .T v N c conta<strong>in</strong>s all directions <strong>in</strong> which it is possible “<strong>in</strong> the L p sense” to<strong>in</strong>f<strong>in</strong>itesimally deform a compact set. For example, if Φ(x, t) : lR N × (−ε, ε) →lR N is smooth diffeomorphical motion <strong>of</strong> lR N , <strong>and</strong> A t := Φ(A, t), then v At is(locally) Lipschitz, so it is differentiable for almost all t, <strong>and</strong> the derivativeis <strong>in</strong> T N c . This <strong>in</strong>cludes all perspective, aff<strong>in</strong>e, <strong>and</strong> Euclidean deformations.Unfortunately the cont<strong>in</strong>gent cone is not capable <strong>of</strong> express<strong>in</strong>g some <strong>shape</strong>deformations.Example 6.19 We consider the remov<strong>in</strong>g motion; let A be compact, <strong>and</strong>suppose that x is <strong>in</strong> the <strong>in</strong>ternal part <strong>of</strong> A; let A t := A \ B(x, t) be the removal47


<strong>of</strong> a small ball from A. The motion v At <strong>in</strong>side N c is Lipschitz, but the limitlimt→0+v At − v A‖v At − v A ‖ L pdoes not exist <strong>in</strong> L p . (Morally, if p = 1, the limit would be the measure δ x ).6.3.3 Riemannian metricLet now p = 2. The set N c may fail to be a smooth submanifold <strong>of</strong> L 2 ; yetwe will, as much as possible, pretend that it is, <strong>in</strong> order to <strong>in</strong>duce a sort <strong>of</strong>“Riemannian metric” on N c from the st<strong>and</strong>ard L 2 metric.Def<strong>in</strong>ition 6.20 We def<strong>in</strong>e the “Riemannian metric” on N c simply by〈h, k〉 := 〈h, k〉 L 2for h, k ∈ T v N c <strong>and</strong> correspond<strong>in</strong>gly a norm bywhere T v N c is the cont<strong>in</strong>gent cone.|h| := √ 〈h, h〉Proposition 6.21 The distance <strong>in</strong>duced by this “Riemannian metric” co<strong>in</strong>cideswith the geodesically <strong>in</strong>duce distance d g .The pro<strong>of</strong> is <strong>in</strong> 3.22 <strong>in</strong> Duci <strong>and</strong> Mennucci [15].To conclude, we propose an explicit computation <strong>of</strong> the Riemannian Metricfor the case <strong>of</strong> compact sets <strong>in</strong> the plane with smooth boundaries; we then pullback the metric to obta<strong>in</strong> a metric <strong>of</strong> closed embedded planar <strong>curves</strong>. We startwith the case <strong>of</strong> convex sets.We fix p = 2, N = 2.6.3.4 Polar coord<strong>in</strong>ates <strong>of</strong> smooth convex setsLet Ω ⊂ lR 2 be a convex set with smooth boundary; let y(θ) : [0, L] → ∂Ω bea parameterization <strong>of</strong> the boundary (by arc parameter), ν(θ) the unit vectornormal to ∂Ω <strong>and</strong> po<strong>in</strong>t<strong>in</strong>g external to Ω. The follow<strong>in</strong>g “polar” change <strong>of</strong>coord<strong>in</strong>ates ψ holds:ψ : lR + × [0, L] → lR \ Ω , ψ(ρ, θ) = y(θ) + ρν(θ) (6.3)see figure 8 on the follow<strong>in</strong>g page. We suppose that y(θ) moves on ∂Ω <strong>in</strong>anticlockwise direction; so ν = J∂ s y, ∂ ss y = −κν; where J is the rotation matrix(<strong>of</strong> angle −π/2), κ is the curvature, <strong>and</strong> ∂ s y is the tangent vector.We can then express a generic <strong>in</strong>tegral through this change <strong>of</strong> coord<strong>in</strong>ates as∫∫f(x) dx = f(ψ(ρ, s))|1 + ρκ(s)| dρ dslR 2 \Ω∫lR + ∂Ωwhere s is arc parameter, <strong>and</strong> ds is <strong>in</strong>tegration <strong>in</strong> arc parameter.48


y(θ)ν(θ)y(θ) + ρν(θ)Figure 8: Polar coord<strong>in</strong>ates around a convex set6.3.5 Smooth deformations <strong>of</strong> a convex setWe want to study a smooth deformation <strong>of</strong> Ω, that we call Ω t ; then the bordery(θ, t) depends on a time parameter t. Suppose also that κ(θ) > 0, that is, thatthe set is strictly convex: then for small smooth deformations, the set Ω t willstill be strictly convex. We suppose that the border <strong>of</strong> Ω t moves with orthogonalspeed α; more precisely, we assume that (∂ t y) ⊥ ∂ s y, that is, (∂ t y) = αν withα = α(t, θ) ∈ lR. S<strong>in</strong>ce this deformation is smooth, we expect that it will beassociated to a vector h α ∈ T v N c , def<strong>in</strong>ed by h α := ∂ t v Ωt . We now show brieflyhow to explicitly compute it.Suppose that x is a fixed po<strong>in</strong>t <strong>in</strong> the plane, x ∉ Ω t , <strong>and</strong> express it us<strong>in</strong>gpolar coord<strong>in</strong>ates x = ψ(ρ, θ), with ρ = ρ(t), θ = θ(t). With some computations,ρ ′ = −α. Now, for x ∉ Ω t , u Ωt (x) = ρ(t) hence we obta<strong>in</strong> the explicit formulafor h αh α := ∂ t v Ωt (x) = −ϕ ′ (u Ωt (x))α ;whereas h α (x) = 0 for x ∈ ˚Ω t .6.3.6 Pullback <strong>of</strong> the metric on convex boundariesLet us fix two orthogonal smooth vector fields α(s)ν(s), β(s)ν(s), that representtwo possible deformations <strong>of</strong> ∂Ω; those correspond to two vectors h α , h β ∈ T v N c ;so the Riemannian Metric that we def<strong>in</strong>ed <strong>in</strong> 6.20 can be pulled back on ∂Ω, toprovide the metric∫∫〈α, β〉 := h α (x)h β (x)dx = h α (x)h β (x)dx =lR 2 lR 2 \Ω∫ [∫]=(ϕ ′ (ρ)) 2 (1 + ρκ(s)) dρ α(s)β(s)ds∂Ω lR +that is,with∫〈α, β〉 =∂Ω(a + bκ(s))α(s)β(s)ds (6.4)∫∫a := (ϕ ′ (ρ)) 2 dρlR + , b := (ϕ ′ (ρ)) 2 ρ dρ .lR +49


CutΩ(The arrows represent the distance R(s) from y(s) ∈ ∂Ω to the cutlocus).Figure 9: Smooth contour <strong>and</strong> cutlocus.6.3.7 Pullback <strong>of</strong> the metric on smooth contoursIf Ω is smooth but not convex, then the above formula holds up to the cutlocus.Def<strong>in</strong>ition 6.22 The cutlocus ( a.k.a. the external skeleton) is the set <strong>of</strong>po<strong>in</strong>ts x ∉ Ω such that there are two (or more) different po<strong>in</strong>ts y 1 , y 2 ∈ Ω <strong>of</strong>m<strong>in</strong>imum distance from x to Ω, that is,|x − y 1 | = |x − y 2 | = u Ω (x) .We def<strong>in</strong>e a function R(s) : [0, L] → [0, ∞] that measures the distance from ∂Ωto the cutlocus Cut; <strong>in</strong> turn, we can parameterize Cut asCut = {ψ(R(s), s) | s ∈ [0, L], R(s) < ∞} ;R(s) is locally Lipschitz where it is f<strong>in</strong>ite (by results <strong>in</strong> Itoh <strong>and</strong> Tanaka [25], Li<strong>and</strong> Nirenberg [32]). The “polar” change <strong>of</strong> coord<strong>in</strong>ates ψ (def<strong>in</strong>ed <strong>in</strong> (6.3)) is adiffeomorphism between the sets{(ρ, s) s ∈ [0, L], 0 < ρ < R(s)} ↔ lR 2 \ (Ω ∪ Cut) .See fig. 9.The pullback metric for deformations <strong>of</strong> the contour ∂Ω is∫ [ ∫ ]R(s)〈h, k〉 =(ϕ ′ (ρ)) 2 (1 + ρκ(s)) dρ α(s)β(s) ds∂Ω06.3.8 ConclusionIn this case we have found (a posteriori) a Riemannian metric <strong>of</strong> closed embeddedplanar <strong>curves</strong>, <strong>and</strong> we know the structure <strong>of</strong> the completion, <strong>and</strong> the completionadmits m<strong>in</strong>imal geodesics. On the down side, the completion is not really “asmooth Riemannian manifold”. For example, it is difficult to study the m<strong>in</strong>imalgeodesics, <strong>and</strong> to prove any property about them. Anyway, the fact that N c islocally compact <strong>and</strong> the regularity property 6.18 <strong>of</strong> L p spaces suggest that itmay be possible to “shoot geodesics” (<strong>in</strong> some weak form). Unfortunately thetopology has too few open sets to be used for <strong>shape</strong> <strong>optimization</strong>: many simpleenergy functionals are not cont<strong>in</strong>uous.50


7 F<strong>in</strong>sler geometries <strong>of</strong> <strong>curves</strong>We present two examples <strong>of</strong> F<strong>in</strong>sler geometries <strong>of</strong> <strong>curves</strong> that have been used(sometimes covertly) <strong>in</strong> the literature.7.1 Tangent <strong>and</strong> normalLet v, T ∈ lR N , letN = T ⊥ = {w ∈ lR N : w · T = 0}be the space orthogonal to T . Usually T will be the tangent to a curve c. 10Def<strong>in</strong>ition 7.1 We def<strong>in</strong>e the projection onto the normal space N = T ⊥<strong>and</strong> the projection on the tangent Tπ N : lR N → lR N , π N v = v − 〈v, T 〉Tπ T : lR N → lR N , π T v = 〈v, T 〉Tso π N v + π T v = v <strong>and</strong> |π N v| 2 + |π T v| 2 = |v| 2 .7.2 L ∞ metric <strong>and</strong> Fréchet distanceIf we wish to def<strong>in</strong>e a norm on T c M that is modeled on the norm <strong>of</strong> the Banachspace L ∞ (S 1 → lR N ), we def<strong>in</strong>eF ∞ (c, h) := ‖π N h‖ L ∞= sup |π N h(θ)|θwhere N = (D s c) ⊥ . This metric weights the maximum normal motion <strong>of</strong> thecurve. (The rôle <strong>of</strong> π N will be properly expla<strong>in</strong>ed <strong>in</strong> §11.10). This F<strong>in</strong>sler metricis geometric. The length <strong>of</strong> a homotopy isLen ∞ (C) :=∫ 1Def<strong>in</strong>ition 7.2 (Fréchet distance)0d f (c 0 , c 1 ) := <strong>in</strong>fφsup |π N ∂ t C(t, θ)| dt .θ∈S 1sup |c 1 (φ(u)) − c 0 (u)|uwhere u ∈ S 1 <strong>and</strong> φ is chosen <strong>in</strong> the class <strong>of</strong> diffeomorphisms <strong>of</strong> S 1 .This distance is <strong>in</strong>duced by the F<strong>in</strong>sler metric F ∞ (c, h).Theorem 7.3 d f (c 0 , c 1 ) co<strong>in</strong>cides with the <strong>in</strong>fimum <strong>of</strong> the length Len ∞ (C) forC connect<strong>in</strong>g c 0 to (a reparameterization <strong>of</strong>) c 1 .For the pro<strong>of</strong>, see theorem 15 <strong>in</strong> [35].10 There is a slight abuse <strong>of</strong> notation here, s<strong>in</strong>ce <strong>in</strong> the def<strong>in</strong>ition N = T ⊥ given for planar<strong>curves</strong> <strong>in</strong> 1.12, we def<strong>in</strong>ed N to be a “vector” <strong>and</strong> not the “vector space orthogonal to T ”.51


7.3 L 1 metric <strong>and</strong> Plateau problemIf we wish to def<strong>in</strong>e a geometric norm on T c M that is modeled on the norm <strong>of</strong>the Banach space L 1 (S 1 → lR N ), we may def<strong>in</strong>e the metric∫F 1 (c, h) = ‖π N h‖ L 1 = |π N h(θ)||c ′ (θ)|dθ ;the length <strong>of</strong> a homotopy is then∫∫Len(C) = |π N ∂ t C(t, θ)||C ′ (t, θ)| dt dθwhich co<strong>in</strong>cides with∫∫Len(C) =|∂ t C(t, θ) × ∂ θ C(t, θ)| dθ dtThis last is easily recognizable as the surface area <strong>of</strong> the homotopy (up tomultiplicity); the problem <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g a m<strong>in</strong>imal geodesic connect<strong>in</strong>g c 0 <strong>and</strong> c 1 <strong>in</strong>the F 1 metric may be reconducted to the Plateau problem <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g a surfacewhich is an immersion <strong>of</strong> I = S 1 × [0, 1] <strong>and</strong> which has fixed borders to the<strong>curves</strong> c 0 <strong>and</strong> c 1 . The Plateau problem is a wide <strong>and</strong> well studied subject uponwhich Fomenko expounds <strong>in</strong> the monograph [20].8 Riemannian metrics <strong>of</strong> <strong>curves</strong> up to poseA particular approach to the study <strong>of</strong> <strong>shape</strong>s is to def<strong>in</strong>e a <strong>shape</strong> to be a curve upto reparameterization, rotation, translation, scal<strong>in</strong>g; to abbreviate, we call thisthe <strong>shape</strong> space <strong>of</strong> <strong>curves</strong> up to pose. We present two examples <strong>of</strong> Riemannianmetrics.8.1 Shape Representation us<strong>in</strong>g direction functionsKlassen, Mio, Srivastava et al <strong>in</strong> [28, 41] represent a planar curve c by a pair <strong>of</strong>velocity-angle functions (φ, α) through the identityc ′ (u) = exp(φ(u) + iα(u))(identify<strong>in</strong>g lR 2 = IC), <strong>and</strong> then def<strong>in</strong><strong>in</strong>g a metric on the velocity-angle functionspace. They propose models <strong>of</strong> spaces <strong>of</strong> <strong>curves</strong> where the metrics <strong>in</strong>volve higherorder derivatives <strong>in</strong> [28].We review here the simplest such model, where φ = 0. We consider <strong>in</strong> thefollow<strong>in</strong>g planar <strong>curves</strong> ξ : S 1 → lR 2 <strong>of</strong> length 2π <strong>and</strong> parameterized by arclength. (Note that such <strong>curves</strong> are automatically Lipschitz cont<strong>in</strong>uous).Proposition 8.1 (Cont<strong>in</strong>uous lift<strong>in</strong>g, w<strong>in</strong>d<strong>in</strong>g number) If ξ ∈ C 1 <strong>and</strong> parameterizedby arc parameter, then ξ ′ is cont<strong>in</strong>uous <strong>and</strong> |ξ ′ | = 1, so there existsa cont<strong>in</strong>uous function α : lR → lR satisfy<strong>in</strong>gξ ′ (s) = ( cos(α(s)), s<strong>in</strong>(α(s)) ) (8.1)52


130−2Figure 10: Examples <strong>of</strong> <strong>curves</strong> <strong>of</strong> different w<strong>in</strong>d<strong>in</strong>g number.<strong>and</strong> α(s) is unique, up to add<strong>in</strong>g the constant k2π with k ∈ Z.Moreover α(s + 2π) − α(s) = 2πI, where I is an <strong>in</strong>teger, known as w<strong>in</strong>d<strong>in</strong>gnumber, or rotation <strong>in</strong>dex <strong>of</strong> ξ. This number is unaltered if ξ is homotopicallydeformed <strong>in</strong> a smooth way.See the examples <strong>in</strong> Fig. 10.The addition <strong>of</strong> a real constant to α(s) is equivalent to a rotation <strong>of</strong> ξ. Wethen underst<strong>and</strong> that we may represent arc parameterized <strong>curves</strong> ξ(s), up totranslation, scal<strong>in</strong>g, <strong>and</strong> rotations, by consider<strong>in</strong>g a suitable class <strong>of</strong> lift<strong>in</strong>gs α(s)for s ∈ [0, 2π].Two spaces are def<strong>in</strong>ed <strong>in</strong> Klassen et al. [28]; we present the case <strong>of</strong> “ShapeRepresentation us<strong>in</strong>g Direction Functions”;Def<strong>in</strong>ition 8.2 let L 2 := L 2 ([0, 2π] → lR); Φ : L 2 → lR 3 is def<strong>in</strong>ed byΦ 1 (α) :=∫ 2π0α(s) ds , Φ 2 (α) :=∫ 2π0cos α(s) ds , Φ 3 (α) :=∫ 2π<strong>and</strong> the space <strong>of</strong> (pre)-<strong>shape</strong>s is def<strong>in</strong>ed as the closed subset S <strong>of</strong> L 2 ,S := { α ∈ L 2 | Φ(α) = (2π 2 , 0, 0) } ;0s<strong>in</strong> α(s) ds .the condition Φ 1 (α) = 2π 2 forces a choice <strong>of</strong> rotation, while Φ 2 = 0, Φ 3 = 0ensure that α represents a closed curve.For any α ∈ S, it is possible to reconstruct the curve by <strong>in</strong>tegrat<strong>in</strong>gξ(s) =∫ s0(cos(α(t)), s<strong>in</strong>(α(t)))dt (8.2)This means that α identifies an unique curve (<strong>of</strong> length 2π, <strong>and</strong> arc parameterized)up to rotations <strong>and</strong> translations, <strong>and</strong> to the choice <strong>of</strong> the base po<strong>in</strong>t ξ(0); forthis last reason, S is called <strong>in</strong> [28] a pre<strong>shape</strong> space.Inside the family <strong>of</strong> arc parameterized <strong>curves</strong>, the reparameterization 11 <strong>of</strong> ξis restricted to the transformation ˆξ(u) = ξ(u − s 0 ), that is a different choice <strong>of</strong>base po<strong>in</strong>t for the parameterization along the curve. Inside the pre<strong>shape</strong> spaceS, the same operation is encoded by the relation ˆα(s) = α(s − s 0 ).To obta<strong>in</strong> a model <strong>of</strong> immersed <strong>curves</strong> up to reparameterization, rotation,translation, scal<strong>in</strong>g we need to quotient S by the relation α ∼ ˆα, for all possibles 0 ∈ lR. We do not discuss this quotient here.We now prove that S \ Z is a smooth manifold. We first def<strong>in</strong>e Z.11 We are consider<strong>in</strong>g only reparameterizations <strong>in</strong> Diff + (S 1 ).53


Def<strong>in</strong>ition 8.3 (Flat <strong>curves</strong>) Let Z be the set <strong>of</strong> all α ∈ L 2 ([0, 2π]) such thatα(s) = a + k(s)π where k(s) ∈ Z <strong>and</strong> k is measurable, a = 2π − ∫ k ∈ lR, <strong>and</strong>|{k(s) = 0 mod 2}| = |{k(s) = 1 mod 2}| = π• Z is closed (by thm. 4.9 <strong>in</strong> Brezis [4]).• S \ Z conta<strong>in</strong>s the (representation α by cont<strong>in</strong>uous lift<strong>in</strong>g <strong>of</strong>) all smoothimmersed <strong>curves</strong>.• Z conta<strong>in</strong>s the (representations α <strong>of</strong>) flat <strong>curves</strong> ξ, that is, <strong>curves</strong> ξ whoseimage is conta<strong>in</strong>ed <strong>in</strong> a l<strong>in</strong>e.Example 8.4 An example <strong>of</strong> a flat curve is{s/ √ {2 s ∈ [0, π]ξ 1 (s) = ξ 2 (s) =(2π − s)/ √ 2 s ∈ (π, 2π] , α = π/2 s ∈ [0, π]3π/2 s ∈ (π, 2π]Proposition 8.5 S \ Z is a smooth immersed submanifold <strong>of</strong> codimension 3 <strong>in</strong>L 2 .Pro<strong>of</strong>. By the implicit function theorem. Indeed, suppose by contradictionthat ∇Φ 1 , ∇Φ 2 , ∇Φ 3 are l<strong>in</strong>early dependant at α ∈ S, that is, there existsa ∈ lR 3 , a ≠ 0 s.t.a 1 cos(α(s)) + a 2 s<strong>in</strong>(α(s)) + a 3 = 0for almost all s; then, by <strong>in</strong>tegrat<strong>in</strong>g, a 3 = 0, therefore a 1 cos(α(s))+a 2 s<strong>in</strong>(α(s)) =0 that means that α ∈ Z.The manifold S \ Z <strong>in</strong>herits a Riemannian structure, <strong>in</strong>duced by the scalarproduct <strong>of</strong> L 2 ; (critical) geodesics may be prolonged smoothly as long as theydo not meet Z.Even if S may not be a manifold at Z, we may def<strong>in</strong>e the geodesic distanced g (x, y) <strong>in</strong> S as the <strong>in</strong>fimum <strong>of</strong> the length <strong>of</strong> Lipschitz paths γ : [0, 1] → L 2 go<strong>in</strong>gfrom x to y <strong>and</strong> whose image is conta<strong>in</strong>ed <strong>in</strong> S; 12 s<strong>in</strong>ce d g (x, y) ≥ ‖x − y‖ L 2,<strong>and</strong> S is closed <strong>in</strong> L 2 , then the metric space (S, d g ) is metrically complete.We don’t know if (S, d g ) admits m<strong>in</strong>imal geodesics, or if it falls <strong>in</strong> the samecategory as the Atk<strong>in</strong> example 3.34.8.1.1 Multiple measurable representationsWe may represent any Lipschitz closed arc parameterized curve ξ us<strong>in</strong>g a measurableα ∈ S.Def<strong>in</strong>ition 8.6 A measurable lift<strong>in</strong>g is a measurable function α : lR → lRsatisfy<strong>in</strong>g (8.1). Consequently, a measurable representation is a measurablelift<strong>in</strong>g α satisfy<strong>in</strong>g conditions Φ(α) = (2π 2 , 0, 0) (from Def<strong>in</strong>ition 8.2).12 It seems that S is Lipschitz-arc-connected, so d g (x, y) < ∞; but we did not carry on adetailed pro<strong>of</strong>54


We remark that• a measurable representation always exists; for example, letbe the <strong>in</strong>verse <strong>of</strong>arc : S 1 → [0, 2π)α ↦→ (cos(α), s<strong>in</strong>(α))when α ∈ [0, 2π). arc() is a Borel function; then ((arc ◦ ξ ′ )(s) + a) ∈ S, fora choice <strong>of</strong> a ∈ lR.• The measurable representation is never unique: for example, given anymeasurable A, B ⊂ [0, 2π] with |A| = |B|,will as well represent ξ.α(s) + 2π1 A (s) − 2π1 B (s)This implies that the family A ξ <strong>of</strong> measurable α ∈ S that represent the samecurve ξ is <strong>in</strong>f<strong>in</strong>ite. It may be then advisable to def<strong>in</strong>e a quotient distance ˆdas follows:ˆd(ξ 1 , ξ 2 ) := <strong>in</strong>f d(α 1 , α 2 ) (8.3)α 1∈A ξ1 ,α 2∈A ξ2where d(α 1 , α 2 ) = ‖α 1 − α 2 ‖ L 2, or alternatively d = d g is the geodesic distanceon S.8.1.2 Cont<strong>in</strong>uous vs measurable lift<strong>in</strong>g — no w<strong>in</strong>d<strong>in</strong>gIf ξ ∈ C 1 , we have an unique 13 cont<strong>in</strong>uous representation α ∈ S; but notethat, even if ξ 1 , ξ 2 ∈ C 1 , the <strong>in</strong>fimum (8.3) may not be given by the cont<strong>in</strong>uousrepresentations α 1 , α 2 <strong>of</strong> ξ 1 , ξ 2 . Moreover there are rectifiable <strong>curves</strong> ξ that donot admit a cont<strong>in</strong>uous representation α, as for example the polygons.A problem similar to the above is expressed by this proposition.Proposition 8.7 For any h ∈ Z, the set <strong>of</strong> closed smooth <strong>curves</strong> ξ with rotation<strong>in</strong>dex h, when represented <strong>in</strong> S us<strong>in</strong>g the cont<strong>in</strong>uous lift<strong>in</strong>g, is dense <strong>in</strong> S \ Z.It implies that we cannot properly extend the concept <strong>of</strong> rotation <strong>in</strong>dex to S.The pro<strong>of</strong> is based on this lemma.Lemma 8.8 Suppose that ξ is not flat, let τ be one <strong>of</strong> the measurable lift<strong>in</strong>gs <strong>of</strong>ξ. There exists a smooth projection π : V → S def<strong>in</strong>ed <strong>in</strong> a neighborhood V ⊂ L 2<strong>of</strong> τ such that, if f ∈ L 2 ∩ C ∞ then π(f) is <strong>in</strong> L 2 ∩ C ∞ .This is the pro<strong>of</strong> <strong>of</strong> both the lemma <strong>and</strong> the proposition.13 Indeed, the cont<strong>in</strong>uous lift<strong>in</strong>g is unique up to addition <strong>of</strong> a constant to α(s), which isequivalent to a rotation <strong>of</strong> ξ; <strong>and</strong> the constant is decided by Φ 1 (α) = 2π 255


Pro<strong>of</strong>. Fix α 0 ∈ S \ Z. Let T = T α0 S be the tangent at α 0 . T is the vectorspace orthogonal to ∇φ i (α 0 ) for i = 1, 2, 3. Let e i = e i (s) ∈ L 2 ∩ Cc∞ be near∇φ i (α 0 ) <strong>in</strong> L 2 , so that the map (x, y) : T × lR 3 → L 2(x, y) ↦→ α = α 0 + x +3∑e i y i (8.4)is an isomorphism. Let S ′ be S <strong>in</strong> these coord<strong>in</strong>ates; by the Implicit FunctionTheorem (5.9 <strong>in</strong> Lang [30]), there exists an open set U ′ ⊂ T , 0 ∈ U ′ , an openV ′ ⊂ lR 3 , 0 ∈ V ′ , <strong>and</strong> a smooth function F : U → lR 3 such that the local partS ′ ∩ (U ′ × V ′ ) <strong>of</strong> the manifold S ′ is the graph <strong>of</strong> y = F (x).We immediately def<strong>in</strong>e a smooth projection π : U ′ × V ′ → S ′ by sett<strong>in</strong>gπ ′ (x, y) = (x, F (x)); this may be expressed <strong>in</strong> the orig<strong>in</strong>al L 2 space; let(x(α), y(α)) be the <strong>in</strong>verse <strong>of</strong> (8.4) <strong>and</strong> U = x −1 (U ′ ); we def<strong>in</strong>e the projectionπ : U → S by sett<strong>in</strong>gThenπ(α)(s) − α(s) =π(α) = α 0 + x +i=13∑e i F i (x(α))i=13∑e i (s)a i , a i := (F i (x(α)) − y i (α)) ∈ lR (8.5)i=1so if α(s) is smooth, then π(α)(s) is smooth.Let α n be smooth functions such that α n → α <strong>in</strong> L 2 , then π(α n ) → α 0 ; ifwe choose them to satisfy α n (2π) − α n (0) = 2πh, then, by the formula (8.5),π(α)(2π) − π(α)(0) = 2πh so that π(α n ) ∈ S <strong>and</strong> it represents a smooth curvewith the assigned rotation <strong>in</strong>dex h.8.2 A metric with explicit geodesicsA similar method has been proposed recently <strong>in</strong> Michor et al. [39], based onan idea orig<strong>in</strong>ally <strong>in</strong> [68]. We consider immersed planar <strong>curves</strong> <strong>and</strong> aga<strong>in</strong> weidentify lR 2 = IC.Proposition 8.9 (Cont<strong>in</strong>uous lift<strong>in</strong>g <strong>of</strong> square root) If ξ : [0, 2π] → IC isan immersed planar curve, then ξ ′ is cont<strong>in</strong>uous <strong>and</strong> ξ ′ ≠ 0, so there exists acont<strong>in</strong>uous function α :→ IC satisfy<strong>in</strong>gξ ′ (θ) = α(θ) 2 (8.6)<strong>and</strong> α is uniquely identified up to multiply<strong>in</strong>g by ±1.If the rotation <strong>in</strong>dex <strong>of</strong> ξ is even then α(0) = α(2π), whereas if the rotation<strong>in</strong>dex <strong>of</strong> ξ is odd then α(0) = −α(2π).56


We will use this lift<strong>in</strong>g to obta<strong>in</strong>, as a first step, a representation <strong>of</strong> <strong>curves</strong> upto rotation, translation, scal<strong>in</strong>g. To this end, let ξ be an immersed planar closedcurve <strong>of</strong> len(ξ) = 2 (not necessarily parameterized by arc parameter); let α bethe square root lift<strong>in</strong>g <strong>of</strong> the derivative ξ ′ . Let e, f be the real <strong>and</strong> imag<strong>in</strong>arypart <strong>of</strong> α, that is, α = e + if. The condition that ξ is a closed curve translates<strong>in</strong>to ∫ 2π0 (e + if)2 dθ = 0 (where equality is <strong>in</strong> IC), hence we have two equalities(for real <strong>and</strong> imag<strong>in</strong>ary part)∫ 2π0e 2 − f 2 dθ = 0,∫ 2πwhile the condition that len(ξ) = 2 translates <strong>in</strong>to∫ 2π0|ξ ′ | dθ =∫ 2π0|e + if| 2 dθ =0∫ 2π0ef dθ = 0(e 2 + f 2 ) dθ = 2 .With some algebra we obta<strong>in</strong> that the above conditions are equivalent to∫ 2π0e 2 dθ = 1,∫ 2π0f 2 dθ = 1,∫ 2π0ef dθ = 0.Let L 2 = L 2 ([0, 2π] → lR); let S ⊂ L 2 × L 2 be def<strong>in</strong>ed byS :={(e, f) |∫ 2π0e 2 dθ = 1 =∫ 2π0f 2 dθ,∫ 2π0}ef dθ = 0.S is the Stiefel manifold <strong>of</strong> orthonormal pairs <strong>in</strong> L 2 . S is a smooth manifold,<strong>and</strong> <strong>in</strong>herits the (flat) metric <strong>of</strong> L 2 × L 2 . What is most surpris<strong>in</strong>g is thatTheorem 8.10 (2.2 <strong>in</strong> [39]) Let δξ be a small deformation <strong>of</strong> ξ, <strong>and</strong> δe, δfbe the correspond<strong>in</strong>g small deformation <strong>of</strong> the representation e, f. Then∫∫ 2π|D s δξ| 2 ds = (δe) 2 + (δf) 2 dθξ0that is, the (geometric) Riemannian metric <strong>in</strong> M is mapped <strong>in</strong>to the (flat <strong>and</strong>parametric) metric <strong>in</strong> S.It is then natural to “embed” closed planar <strong>curves</strong> (up to translation <strong>and</strong>scal<strong>in</strong>g) <strong>in</strong>to S.8.2.1 Curves up to rotation represented as a GrassmanianWe note that rotation <strong>of</strong> ξ by an angle τ is equivalent to rotation <strong>of</strong> the frame(e, f) by an angle τ/2. So the orbit <strong>of</strong> all rotations <strong>of</strong> ξ is associated to the planegenerated by (e, f) <strong>in</strong> L 2 : the space <strong>of</strong> <strong>curves</strong> up to rotation/translation/scal<strong>in</strong>gis represented by the Grassmanian manifold <strong>of</strong> 2-planes <strong>in</strong> L 2 . A theoremby Neret<strong>in</strong> then applies, that provides a closed form formula for critical <strong>and</strong>m<strong>in</strong>imal geodesics. See section 4 <strong>in</strong> [39].57


8.2.2 RepresentationThe Stiefel manifold is a complete smooth Riemannian manifold; it conta<strong>in</strong>s the(representation <strong>of</strong>) all closed rectifiable parametric planar <strong>curves</strong>, up to scal<strong>in</strong>g<strong>and</strong> translation. So with this choice <strong>of</strong> metric <strong>and</strong> representation, we obta<strong>in</strong>that the completion <strong>of</strong> the Fréchet manifold <strong>of</strong> smooth <strong>curves</strong> is a Riemanniansmooth manifold. There are two problems left.• The quotient w.r.to reparameterization. This is studied <strong>in</strong> [39], where itis proven that unfortunately geodesics <strong>in</strong> the quotient space may develops<strong>in</strong>gularities <strong>in</strong> the reparameterizations at the end times <strong>of</strong> the geodesic.• But there is also the quotient w.r.to representation.8.2.3 Quotient w.r.to representationAs <strong>in</strong> the previous section, we may def<strong>in</strong>e a measurable square root lift<strong>in</strong>g; thislift<strong>in</strong>g will not be unique. Indeed, let (e, f) be the square root representation <strong>of</strong>ξ, that is ξ ′ = (e + if) 2 ; choose any function a : S 1 → {−1, 1} arbitrarily (butmeasurable); then (ae, af) represents the same curve. So aga<strong>in</strong> we may def<strong>in</strong>e aquotient metric ˆd(ξ 1 , ξ 2 ) as we did <strong>in</strong> eqn. (8.3); similar comments to those atthe end <strong>of</strong> Section 8.1.2 hold.9 Riemannian metrics <strong>of</strong> immersed <strong>curves</strong><strong>Metrics</strong> <strong>of</strong> “geometric” <strong>curves</strong> have been studied by Michor <strong>and</strong> Mumford [37, 36,38] <strong>and</strong> Yezzi <strong>and</strong> Mennucci [65, 66, 67]; more recently, Yezzi-M.-Sundaramoorthi[53–58, 35] have studied Sobolev-like metrics <strong>of</strong> <strong>curves</strong> <strong>and</strong> shown many goodproperties for applications to <strong>shape</strong> <strong>optimization</strong>; similar results have also beenshown <strong>in</strong>dependently by Charpiat et al. [9, 10, 11].We now discuss some Riemannian metrics on immersed <strong>curves</strong>.• The H 0 metric∫〈h 1 , h 2 〉 H 0 = 〈h 1 (s), h 2 (s)〉 ds .• Michor <strong>and</strong> Mumford [37]’s metric∫〈h 1 , h 2 〉 H A = (1 + A|κ c | 2 )〈h 1 , h 2 〉 ds .• Yezzi <strong>and</strong> Mennucci [67] conformal metric• Charpiat et al. [10] rigidified normscc∫〈h 1 , h 2 〉 H 0 = φ(c) 〈hφ1 , h 2 〉 ds .c58


• Sundaramoorthi et al. [53] Sobolev type metrics∫∫〈h 1 , h 2 〉 H n = 〈h 1 , h 2 〉 ds + len(c) 2n 〈∂s n h 1 , ∂s n h 2 〉 ds〈h 1 , h 2 〉 ˜Hn=c〈 ∫ h 1 ds,c∫cc〉 ∫h 2 ds + len(c) 2n 〈∂s n h 1 , ∂s n h 2 〉 ds .cWe will now present a quick overview <strong>of</strong> all metrics (but for the latter, thatis discussed <strong>in</strong> the next section).9.1 H 0The H 0 <strong>in</strong>ner product was def<strong>in</strong>ed <strong>in</strong> eqn. (2.4) as∫〈 〉h1 , h 2 := hH 0 1 (s) · h 2 (s) ds ; (9.1)cit is possibly the simplest geometric <strong>in</strong>ner product that we may imag<strong>in</strong>e toapply to <strong>curves</strong>. We already noted that the m<strong>in</strong>imiz<strong>in</strong>g flows implemented <strong>in</strong>traditional active contour methods are “gradient flows” only if we use this H 0<strong>in</strong>ner product.We will show <strong>in</strong> Sec. 11.3 that the H 0 -<strong>in</strong>duced distance is identically zero. In[67] there is a result that shows that the distance is non degenerate, <strong>and</strong> m<strong>in</strong>imalgeodesics exists, when the <strong>shape</strong> space is restricted to <strong>curves</strong> with uniformlybounded curvature.9.2 H AMichor <strong>and</strong> Mumford [37] propose the metric H A〈h 1 , h 2 〉 H A =|c∫ L0(1 + A|κ c | 2 )〈h 1 , h 2 〉 dswhere κ c is the curvature <strong>of</strong> c, <strong>and</strong> A > 0 is fixed.Properties 9.1• The <strong>in</strong>duced distance is non degenerate.• The completion M (<strong>in</strong>tended <strong>in</strong> the metric sense) isBV 2 ⊂ M ⊂ Lipwhere BV 2 are the <strong>curves</strong> that admit curvature as a measure <strong>and</strong> Lip arethe rectifiable <strong>curves</strong>.• There are compactness bounds.59


9.3 Conformal metricsYezzi <strong>and</strong> Mennucci [67] proposed to change the metric, from H 0 to a conformalmetric∫〈h 1 , h 2 〉 H 0 = ψ(c) 〈hψ1 , h 2 〉 dscwhere ψ(c) associates to each curve c a positive number. Then the gradientdescent flow <strong>of</strong> an energy E def<strong>in</strong>ed on <strong>curves</strong> C(t, ·) is∂C∂t = −∇ψ E(C) = − 1ψ(C) ∇E(C)where ∇E(C) is the gradient for the H 0 metric. This is equivalent to a change<strong>of</strong> time variable t <strong>in</strong> the gradient descent flow. So all properties <strong>of</strong> the flows areunaffected if we switch from a H 0 to a conformal-H 0 metric.Properties 9.2 Consider a conformal metric where ψ(c) depends (monotonically)on the length len(c) <strong>of</strong> the curve.• If ψ(c) ≥ len(c), the <strong>in</strong>duced metric is non degenerate;• unfortunately, accord<strong>in</strong>g to a result by Shah [50], when ψ(c) ≡ L(c) veryfew (m<strong>in</strong>imal) geodesics do exist (only “grassfire” geodesics, mov<strong>in</strong>g byconstant normal speed).9.4 “Rigidified” normsCharpiat et al.[10] consider norms that favor pre-specified rigid motions. Theydecompose a motion h us<strong>in</strong>g the H 0 projection ash = h rigid+ h restwhere h rigidconta<strong>in</strong>s the rigid part <strong>of</strong> the motion; then they choose λ large, <strong>and</strong>construct the norm‖h‖ 2 rigid = λ‖h rigid ‖2 H 0 + ‖h rest ‖2 H 0.Note that these norms are equivalent to the H 0 -type norm; as a result the<strong>in</strong>duced distance is (aga<strong>in</strong>) degenerate.10 Sobolev type Riemannian metricsIn this part we discuss the Sobolev norms, with applications <strong>and</strong> experiments.What follows summarizes [55, 57, 58, 35].60


10.1 Sobolev-type metricsRecently <strong>in</strong> [53–58, 35] Yezzi–M.–Sundaramoorthi studied a family <strong>of</strong> Sobolevtypemetrics. Let D s := 1|c ′ | ∂ θ be the derivative with respect to arc parameter.Let j ≥ 1 be an <strong>in</strong>teger 14 <strong>and</strong>∫〈h 1 , h 2 〉 Hj := 〈Dsh j 1 , Dsh j 2 〉 ds (10.1)0cwhere ∫ · · · ds was def<strong>in</strong>ed <strong>in</strong> 1.9. Let λ > 0 a fixed constant; we def<strong>in</strong>e thecSobolev-type metrics∫〈h 1 , h 2 〉 H j := 〈h 1 , h 2 〉 ds + λL 2j 〈h 1 , h 2 〉 Hj(10.2)〈h 1 , h 2 〉 ˜Hj:=c〈 ∫ h 1 ds,c∫c〉h 2 ds + λL 2j 〈h 1 , h 2 〉 Hj0where L = len(c). Notice that these metrics are geometric:0(10.3)• they are easily seen to be <strong>in</strong>variant w.r.to rotations <strong>and</strong> translations, (<strong>in</strong> astronger sense than <strong>in</strong> page 39, <strong>in</strong>deed <strong>in</strong> this case〈h 1 , h 2 〉 Ac = 〈h 1 , h 2 〉 c , 〈Rh 1 , Rh 2 〉 c = 〈h 1 , h 2 〉 cfor any Euclidean transformation A <strong>and</strong> rotation R);• they are reparameterization <strong>in</strong>variant due to the usage <strong>of</strong> the arc parameter<strong>in</strong> derivatives <strong>and</strong> <strong>in</strong>tegrals;• they are scale <strong>in</strong>variant, s<strong>in</strong>ce the normaliz<strong>in</strong>g factors L 2j make them0-homogeneous w.r.to rescal<strong>in</strong>g <strong>of</strong> the curve.For this last reason, we redef<strong>in</strong>e the H 0 metric to be∫〈h 1 , h 2〉H := h 1 · h 2 ds (10.4)0so that it is aga<strong>in</strong> 0-homogeneous.This is a conformal version <strong>of</strong> the H 0 metricdef<strong>in</strong>ed <strong>in</strong> eqn. (2.4), so a gradient descent flow is a time reparameterization <strong>of</strong>the flow for the orig<strong>in</strong>al H 0 metric; <strong>and</strong> the <strong>in</strong>duced distance is aga<strong>in</strong> degenerate.When we will present a <strong>shape</strong> <strong>optimization</strong> energy E <strong>and</strong> we will m<strong>in</strong>imizeE us<strong>in</strong>g a gradient descent flow driven by the H j or ˜H j gradient <strong>of</strong> E, we willcall the result<strong>in</strong>g algorithm a Sobolev active contour method (abbreviatedas SAC <strong>in</strong> the follow<strong>in</strong>g).14 It is though possible to def<strong>in</strong>e Sobolev metrics for any j ∈ lR, j > 0; see Prop. 3.1 <strong>in</strong> [57].c61


10.1.1 Related worksA family <strong>of</strong> metrics similar to H j above (but for the length dependent scalefactors 15 ) was studied (<strong>in</strong>dependently) <strong>in</strong> Michor <strong>and</strong> Mumford [36]: the Sobolevtypeweak Riemannian metric on Imm(S 1 , R 2 )∫〈h, k〉 Gjc=j∑〈Dsh, i Dsk〉 i ds ;c i=0<strong>in</strong> that paper the geodesic equation, horizontality, conserved momenta, lower <strong>and</strong>upper bounds on the <strong>in</strong>duced distance, <strong>and</strong> scalar curvatures are computed. Notethat this metric is locally equivalent to the above metrics def<strong>in</strong>ed <strong>in</strong> equation(10.2), (10.3).Charpiat et al <strong>in</strong> [10, 11] studied (aga<strong>in</strong> <strong>in</strong>dependently) some generalizedmetrics <strong>and</strong> relative gradient flows; <strong>in</strong> particular they def<strong>in</strong>ed the Sobolev-typemetric∫〈h 1 , h 2 〉 + 〈D s h 1 , D s h 2 〉 ds .10.1.2 Properties <strong>of</strong> H j metricscThis is a list <strong>of</strong> important properties that will be discussed <strong>in</strong> the follow<strong>in</strong>gsections.• Flow regularization: Sobolev gradient flows are smoother than H 0 flows.• PDE order reduc<strong>in</strong>g property: Sobolev gradient flows are lower order thanH 0 flows.• SAC does not require derivatives <strong>of</strong> the curve to be def<strong>in</strong>ed for manycommonly used region-based <strong>and</strong> edge-based energies.• Coarse-to-f<strong>in</strong>e deformation property: a SAC automatically favors coarsescaledeformations before mov<strong>in</strong>g to f<strong>in</strong>e-scale deformations; this is idealfor visual track<strong>in</strong>g.• Sobolev-type norms <strong>in</strong>duce a well-def<strong>in</strong>ed distance on space <strong>of</strong> <strong>curves</strong>;• moreover the structure <strong>of</strong> the completion <strong>of</strong> the space <strong>of</strong> immersed <strong>curves</strong>w.r.to H 1 <strong>and</strong> H 2 norm is fairly well understood. So they <strong>of</strong>fer a consistenttheory <strong>of</strong> <strong>shape</strong> <strong>optimization</strong> <strong>and</strong> <strong>shape</strong> <strong>analysis</strong>.10.2 Mathematical propertiesWe start summariz<strong>in</strong>g the ma<strong>in</strong> mathematical properties, that were presented <strong>in</strong>[35] mostly. We first <strong>of</strong> all cite this lemma.15 Though, a scale-<strong>in</strong>variant Sobolev metric is proposed <strong>in</strong> [36] <strong>in</strong> §4.8 as a sensible generalization.62


Lemma 10.1 (Po<strong>in</strong>caré <strong>in</strong>equality) Pick h : [0, l] → lR n , weakly differentiable,with h(0) = h(l) (so h is periodically extensible); let ĥ = ∫ 1 llh(x) dx;0thensup |h(u) − ĥ| ≤ 1u2∫ l0|h ′ (x)| dx . (10.5)This is proved as Lemma 18 <strong>in</strong> [35]; it is one <strong>of</strong> the ma<strong>in</strong> <strong>in</strong>gredients for thefollow<strong>in</strong>g propositions, whose full pro<strong>of</strong>s are <strong>in</strong> [35].Proposition 10.2 The H j <strong>and</strong> ˜H j distances are equivalent:√1 + (2π)d ˜Hj≤ d H j ≤2j λ(2π) 2j λd ˜Hjwhereas d H j ≤ d H k for j < k.Proposition 10.3 The H j <strong>and</strong> ˜H j distances are lower bounded (with appropriateconstants depend<strong>in</strong>g on λ) by the Fréchet distance (def<strong>in</strong>ed <strong>in</strong> 7.2).Proposition 10.4 c ↦→ len(c) is Lipschitz <strong>in</strong> M with H j metric, that is,| len(c 0 ) − len(c 1 )| ≤ d H j (c 0 , c 1 )Theorem 10.5 (Completion <strong>of</strong> B i w.r.to H 1 ) let d H 1 be the distance <strong>in</strong>ducedby H 1 ; the metric completion <strong>of</strong> the space <strong>of</strong> <strong>curves</strong> is equal to the space<strong>of</strong> all rectifiable <strong>curves</strong>.Theorem 10.6 (Completion <strong>of</strong> B i w.r.to H 2 ) Let E(c) := ∫ |D 2 sc| 2 ds bedef<strong>in</strong>ed on non-constant smooth <strong>curves</strong>; then E is locally Lipschitz <strong>in</strong> w.r.to d H 2.Moreover the completion <strong>of</strong> C ∞ (S 1 ) accord<strong>in</strong>g to the metric H 2 is the space <strong>of</strong><strong>curves</strong> that admit curvature D 2 sc ∈ L 2 (S 1 ).The hopeful consequence <strong>of</strong> the above theorem would be a possible solution tothe problem 4.12; it implies that the space <strong>of</strong> geometric <strong>curves</strong> B with the H 2Riemannian metric completes onto the usual Hilbert space H 2 . 16 This result<strong>in</strong> turn would ease a (possible) pro<strong>of</strong> <strong>of</strong> existence geodesics.Conclud<strong>in</strong>g, it seems that, to have a complete Riemannian manifold <strong>of</strong>geometric (freely) immersed <strong>curves</strong>, a metric should penalize derivatives <strong>of</strong> 2ndorder (at least).10.3 Sobolev metrics <strong>in</strong> <strong>shape</strong> <strong>optimization</strong>We first present a def<strong>in</strong>ition.16 The detailed pro<strong>of</strong> has not yet been written...63


Def<strong>in</strong>ition 10.7 (Convolution) A arc-parameterized convolutional kernel Kalong the curve c <strong>of</strong> length L is a L-periodic function K : lR → lR. Given avector field f : S 1 → lR n <strong>and</strong> a kernel K, we def<strong>in</strong>e the convolution by arcparameter 17 formally as∫(f ⋆ K)(s) := K(s − ŝ)f(ŝ) dŝ . (10.6)By def<strong>in</strong><strong>in</strong>g the run-length function l : lR → lRl(τ) :=c∫ τ0|c ′ (x)| dxwe can rewrite the above eqn. (10.6) explicitly <strong>in</strong> θ parameter as(f ⋆ K)(θ) :=∫ 2π0K ( l(θ) − l(τ) ) f(τ)|c ′ (τ)| dτ . (10.7)Recall the def<strong>in</strong>ition 3.37 <strong>of</strong> gradient ∇E by means <strong>of</strong> the identity〈∇E, h〉 c = DE(c; h) ∀h ∈ T c M .Let f = ∇ H 0E, g = ∇ H 1E be the gradients w.r.to the <strong>in</strong>ner products H 0 <strong>and</strong>H 1 ; by the def<strong>in</strong>ition <strong>of</strong> gradient, we obta<strong>in</strong> that〈f, h〉 H0 ,c = 〈g, h〉 H1 ,c∀h ∈ T c Mthat is 18 ∫∫h · f ds = h · g + λL 2 (D s h · D s g) dsccby <strong>in</strong>tegrat<strong>in</strong>g by parts this becomes∫h · (f − g + λL 2 Dsg) 2 ds = 0 ∀hthen we conclude thatc∀h∇ H 0E = ∇ H 1E − λL 2 D 2 s(∇ H 1E) . (10.8)With similar computation, for ˜H 1 we obta<strong>in</strong> that∫∇ H 0E = ∇˜H1E ds − λL 2 D s(∇˜H1E) 2 . (10.9)cGiven ∇ H 0E, both equations can be solved for ∇ H 1E <strong>and</strong> ∇˜H1E, by means<strong>of</strong> suitable convolution kernels ˜K λ , K λ , that is, we have the formulas∇ H 1E = ∇ H 0E ⋆ K λ , ∇˜H1E = ∇ H 0E ⋆ ˜K λ ;17 Note this def<strong>in</strong>ition is different from the eqn. (13) <strong>in</strong> [55].18 We use the def<strong>in</strong>ition (10.4) <strong>of</strong> H 0 .64


65λ=0.01λ=0.04λ=0.08108λ=0.01λ=0.04λ=0.0846432201−20−0.5 0 0.5−4−0.5 0 0.5Figure 11: Plots <strong>of</strong> K λ (left) <strong>and</strong> ˜K λ (right) for various λ with L = 1. The plotsshow the kernels over one period.The kernels ˜K λ , K λ are known <strong>in</strong> closed form:˜K λ (s) = 1 L( ) s− L√ 2λLcoshK λ (s) =2L √ (λ s<strong>in</strong>h(12 √ λ1 + (s/L)2 − (s/L) + 1/62λ), for s ∈ [0, L], (10.10)<strong>and</strong> K λ , ˜K λ are periodically extended to all <strong>of</strong> lR. See Fig. 11.), s ∈ [0, L]. (10.11)The above idea extends to any j: it is possible to obta<strong>in</strong> ∇ H j E <strong>and</strong> ∇˜HjEfrom ∇ H 0E, by convolution. But there is also a way to compute ∇˜HjE withoutresolv<strong>in</strong>g to convolutions, see Prop. 10.10.The bad news is that, when <strong>shape</strong> <strong>optimization</strong> is implemented us<strong>in</strong>g a levelset method (as is usually the case), the curve must be traced out to computegradients. 19 This <strong>in</strong> particular leads to some problems when a curve undergoesa topological change, s<strong>in</strong>ce the Sobolev gradient depends on the global <strong>shape</strong> <strong>of</strong>the curve; but those problems are easily bypassed when the <strong>optimization</strong> energyis cont<strong>in</strong>uous across topological changes <strong>of</strong> the <strong>curves</strong>: see Sec. 5.1 <strong>in</strong> [55].10.3.1 Smooth<strong>in</strong>g <strong>of</strong> gradients, coarse-to-f<strong>in</strong>e flow<strong>in</strong>gIn Sundaramoorthi et al. [57] it was noted that the regulariz<strong>in</strong>g properties maybe expla<strong>in</strong>ed <strong>in</strong> the Fourier doma<strong>in</strong>: <strong>in</strong>deed, if we calculate Sobolev gradients∇ H j E <strong>of</strong> an arbitrary energy E <strong>in</strong> the frequency doma<strong>in</strong>, then̂∇ H j E(l) =̂∇ H 0E(l)1 + λ(2πl) 2j for l ∈ Z (10.12)19 Though, an alternate method that does not need the trac<strong>in</strong>g <strong>of</strong> the curve is described <strong>in</strong>Sec. 5.3 <strong>in</strong> [55] – but it was not successively used, s<strong>in</strong>ce it depends on some difficult-to-tuneparameters.65


<strong>and</strong>̂∇˜HjE(0) = ̂∇ H 0E(0),̂∇˜HjE(l) = ̂∇ H 0E(l)λ(2πl) 2j for l ∈ Z\{0}, (10.13)It is clear from the previous expressions that high frequency components <strong>of</strong>∇ H 0E(c) are <strong>in</strong>creas<strong>in</strong>gly less pronounced <strong>in</strong> the various forms <strong>of</strong> the H j gradients.So H j <strong>and</strong> ˜H j gradients are much smoother than H 0 gradients. Note that us<strong>in</strong>ga SAC method smooths the gradients, so it <strong>in</strong>duces smoother m<strong>in</strong>imization flows,but it does not smooth the <strong>curves</strong> themselves.The above phenomenon may be also expla<strong>in</strong>ed by the follow<strong>in</strong>g argument.The gradient satisfies the follow<strong>in</strong>g property.Proposition 10.8 If DE(c) ≠ 0, the gradient ∇E(c) is the vector v <strong>in</strong> T c Mthat provides the maximum <strong>in</strong>DE(c)(v)|DE(c)(h)|= sup. (10.14)‖v‖ c h∈T cM\{0} ‖h‖ cThus, the gradient is the most efficient perturbation, i.e., it maximizeschange <strong>in</strong> energy by mov<strong>in</strong>g <strong>in</strong> direction hcost <strong>of</strong> mov<strong>in</strong>g <strong>in</strong> direction hBy construct<strong>in</strong>g ‖ · ‖ c to penalize “unfavorable” directions, we have controlover the path taken to m<strong>in</strong>imize E without chang<strong>in</strong>g the energy E. 20S<strong>in</strong>ce higher frequencies are more penalized <strong>in</strong> H 1 than <strong>in</strong> H 0 , this expla<strong>in</strong>swhy a SAC prefers to move the <strong>curves</strong> <strong>in</strong> a coarser scale w.r.to a traditionalactive contour method.10.3.2 Flow regularizationIt is also possible to show mathematically that the Sobolev–type gradientsregularize the flows <strong>of</strong> well known energies, by reduc<strong>in</strong>g the degree <strong>of</strong> the P.D.E.,as shown <strong>in</strong> this example.Example 10.9 (Elastica) In the case <strong>of</strong> the elastic energy∫ ∫E(c) = κ 2 ds = |Dsc| 2 2 ds ,ccthe H 0 gradient is 21 ∇ H 0E = LD s (2D 3 sc + 3|D 2 sc| 2 D s c)20 In a sense, the focus <strong>of</strong> research <strong>in</strong> active contours has been mostly on the numerator <strong>in</strong>eqn. (10.14) — whereas we now focus on the denom<strong>in</strong>ator.21 We use the def<strong>in</strong>ition (10.4) <strong>of</strong> H 0 ; the directional derivative was computed <strong>in</strong> 4.666


that <strong>in</strong>cludes fourth order derivatives; whereas the ˜H 1 -gradient is− 2λL D2 sc + 3L(|D 2 sc| 2 D s c) ⋆ (D s ˜Kλ ) (10.15)that is an <strong>in</strong>tegro-differential second order P.D.E.A practical positive outcome <strong>of</strong> this phenomenon will be shown <strong>in</strong> Section 10.9.1.10.4 ˜Hj is faster than H jWe will now show that the metric ˜H 1 (that is metrically equivalent to H 1 , byProp. 10.2) leads to a simpler calculus for gradients; with benefits <strong>in</strong> numericalapplications as well.∫We recall that avg c (f) := 1len(c)f(s) ds.cLet E(c) be an energy <strong>of</strong> <strong>curves</strong>. Gradients are implicitly def<strong>in</strong>ed by thefollow<strong>in</strong>g relationsDE(c; h) = 〈h, ∇ H 0E〉 H 0 = 〈h, ∇ H 1E〉 H 1 = 〈h, ∇˜H1E〉 ˜H1∀h .As we saw <strong>in</strong> equations (10.8) <strong>and</strong> (10.9), the above leads to the ODEsNormODEH 1 ∇ H 0E = ∇ H 1E − λL 2 D 2 s(∇ H 1E)˜H 1 ∇ H 0E = avg c (∇˜H1E) − λL 2 D 2 s(∇˜H1E)The second ODE is much easier to solve.Proposition 10.10 Let f = ∇ H 0E, g = ∇˜H1E, then g is derived from f by thefollow<strong>in</strong>g closed form formulasg(s) = g(0) + sg ′ (0) − 1 ∫ sλL 2 (s − ŝ)(f(ŝ) − avg c (f)) dŝg ′ (0) = − 1 ∫ LλL 3 s(f(s) − avg c (f)) dsg(0) =∫ L00f(s) ˜K λ (s) ds .where ˜K λ was def<strong>in</strong>ed <strong>in</strong> (10.11).Pro<strong>of</strong>. The ODEf = avg c (g) − λL 2 D 2 sgimmediately tells that avg c (f) = avg c (g); so we rewrite it asλL 2 D 2 sg = −f + avg c (f)067


<strong>and</strong> we simply <strong>in</strong>tegrate twice! Moreover, exploit<strong>in</strong>g the identity∫ s(∫ t) ∫ sh(r) dr dt = (s − r) h(r) dr ,00<strong>and</strong> with some extra computations, we obta<strong>in</strong> the result.In the end we obta<strong>in</strong> that the ˜H 1 gradient need not be computed as a convolution;so the ˜H 1 gradient enjoys nearly the same computational speed as the H 0gradient; moreover the result<strong>in</strong>g gradient flow is more stable, so it works f<strong>in</strong>e <strong>in</strong>numerical implementations for a larger choice <strong>of</strong> time step discretization. Forthese reasons, ˜H1 Sobolev active contours are very fast.10.5 Analysis <strong>and</strong> calculus <strong>of</strong> ˜H 1 gradientsWe write h ∈ T c M as h = avg c (h) + ˜h; this decomposes0T c M = lR n ⊕ D c M (10.16)withD c M :={}h : S 1 → lR n | avg c (h) = 0 .If we assign to lR n its usual Euclidean norm, <strong>and</strong> to D c M the H j 0 norm22 ,then‖h‖ 2˜Hj = |avg c (h)| 2 lR + n λL2j ‖˜h‖ 2 .H j 0This means that the two spaces lR n <strong>and</strong> D c M are orthogonal w.r.to ˜H j .A remark on this decomposition is due.Remark 10.12 In the above, lR n is ak<strong>in</strong> to be the space <strong>of</strong> translations <strong>and</strong>D c M the space <strong>of</strong> non-translat<strong>in</strong>g deformations.That label<strong>in</strong>g is not rigorous, though! s<strong>in</strong>ce the subspace <strong>of</strong> T c M <strong>of</strong> deformationsthat do not move the center <strong>of</strong> mass avg c (c) is not D c M, but rather{ ∫h : h + ( c − avg c (c) ) }〈D s h · T 〉 ds = 0 ,as is easily deduced from equation (2.8).cThe decomposition (10.16) is quite useful <strong>in</strong> the calculus when analyticallycomput<strong>in</strong>g ˜H 1 gradients <strong>and</strong> prov<strong>in</strong>g existence <strong>of</strong> flows. Indeed, let f = ∇ H 0E,g = ∇˜H1E; decomposeTo solvewe have to solve two equations:f = avg c (f) + ˜f , g = avg c (g) + ˜g .f = avg c (g) − λL 2 D 2 sg22 H j 0 was def<strong>in</strong>ed <strong>in</strong> (10.1). Note that Hj 0 is a sem<strong>in</strong>orm on TcM, s<strong>in</strong>ce its value is zero onconstant fields; but H j 0 is a norm on DcM, by Po<strong>in</strong>caré <strong>in</strong>equality (10.5).68


avg c (g) = avg c (f) λL 2 Ds 2 ˜g = − ˜flR n ⊕ D c M .We will now show how to properly solve these coupled equations.We will need to def<strong>in</strong>e some useful objects.Def<strong>in</strong>ition 10.13 We def<strong>in</strong>e the projection operatorΠ c : T c M → D c Mh ↦→ h − ∫ c h ds (10.17)Def<strong>in</strong>ition 10.14 When we consider the derivation with respect to the arcparameter as a l<strong>in</strong>ear operatorD c : D c M → D c Mh ↦→ D s hthen it admits the <strong>in</strong>verse, that is the primitive operator(10.18)P c : D c M → D c M (10.19)Pro<strong>of</strong>. The pro<strong>of</strong> is just based on not<strong>in</strong>g that, for any smooth h ∈ T c M, h ∈ D c Miff there is a smooth k ∈ T c M with h = D s k. Vice versa, two primitives differby a constant, hence when h ∈ D c M there is exactly one primitive k <strong>in</strong> D c Msuch that h = D s k.Example 10.15 The tangent vector field D s c is <strong>in</strong> D c M, <strong>and</strong> its primitive isP c D s c = c − avg c (c) .Proposition 10.16 Fix a curve c, let L = len(c). We can extend the primitiveoperator by compos<strong>in</strong>g it with the projection; the result<strong>in</strong>g composite operatorcan be expressed <strong>in</strong> convolutional form asfor any cont<strong>in</strong>uous h ∈ T c M; where the kernel K P cP c Π c h = K P c ⋆ h (10.20)isK P c (s) := − s L + 1 2for s ∈ [0, L) (10.21)<strong>and</strong> K P c (s) is extended periodically to s ∈ lR (note that K P c (s) jumps at allpo<strong>in</strong>ts <strong>of</strong> the form s = nL, n ∈ Z).The above properties lead to this theorem, that can be used to shed a newlight to what was expressed <strong>in</strong> 10.10 <strong>in</strong> the previous section.Theorem 10.17 Let f = ∇ H 0E, g = ∇˜H1E; the solution <strong>of</strong>can be expressed asf = avg c (g) − λL 2 D 2 sgg = avg c (f) − 1λL 2 P cP c Π c f = avg c (f) − 1λL 2 KP c ⋆ K P c ⋆ f .69


Corollary 10.18 In particular, the kernels def<strong>in</strong>ed <strong>in</strong> eqn. (10.10), (10.21) arerelated by˜K λ = 1 L − 1λL 2 KP c ⋆ KcPBy deriv<strong>in</strong>g,D s KcP = δ 0 − 1 Lwhere δ 0 is the Dirac’s delta; so we obta<strong>in</strong> the relationsWe also recall this Lemma.D s ˜Kλ = − 1λL 2 KP cD ss ˜Kλ = − 1λL 2 δ 0 + 1λL 3 .(10.23)Lemma 10.19 (De la Vallée-Pouss<strong>in</strong>) Suppose that f : S 1 → lR n is <strong>in</strong>tegrable<strong>and</strong> satisfies∫k · f ds = 0cfor all k ∈ D c M smooth; then f is almost everywhere equal to a constant.For the pro<strong>of</strong>, see Chapter 13 <strong>in</strong> [1], or Lemma VIII.1 <strong>in</strong> [4].We now compute the gradient <strong>of</strong> the centroid energy (2.9).Proposition 10.20 (Gradient <strong>of</strong> the centroid-based energy) Let <strong>in</strong> thefollow<strong>in</strong>g aga<strong>in</strong>, for simplicity <strong>of</strong> notation, c = avg c (c) be the center <strong>of</strong> mass <strong>of</strong>the curve. LetE(c) = 1 2 |c − v|2 .The ˜H 1 gradient <strong>of</strong> E is∇˜H1E(c) = c − v + 1λL 2 P cΠ c(Ds c〈(c − v), (c − c)〉 ) . (10.24)Pro<strong>of</strong>. We already computed the Gâteaux differential <strong>of</strong> E; but this time weprefer to use the first form <strong>of</strong> eqn. (2.10), so as to write∫DE(c; h) = (c − v) · h + 〈c − v, c − c〉(D s h, D s c) ds .Let f = ∇˜H1E(c) be the ˜H 1 gradient <strong>of</strong> E. The equalitycDE(c; h) = 〈h, f〉 ˜H1∀hbecomes〈c − v − f, h〉 +∫cD s h · (〈c− v, c − c〉D s c − λL 2 D s f ) ds = 0, ∀h .70


S<strong>in</strong>ce h is arbitrary, us<strong>in</strong>g de la Vallée-Pouss<strong>in</strong> Lemma, we obta<strong>in</strong> thatf = c − v , λL 2 D s f = D s c〈(c − v), (c − c)〉 + α , (10.25)where the constant α is the unique α ∈ lR n such that the rightmost term is <strong>in</strong>D c M. In conclusion we obta<strong>in</strong> (10.24).We similarly compute the gradient <strong>of</strong> the active contour energy.Proposition 10.21 (Gradient <strong>of</strong> geodesic active contour model) We consideronce aga<strong>in</strong> the geodesic active contour model [7, 27] (that was presented<strong>in</strong> Section 2.2) where the energy is∫E(c) = φ(c(s)) dscwith φ : lR 2 → lR + appropriately designed. The gradient with respect to ˜H 1 is∇˜H1E(c) = Lavg c (∇φ(c)) − 1λL P cP c Π c(∇φ(c))+1λL P cΠ c(φ(c)Ds c ) . (10.26)Pro<strong>of</strong>. Let us note 23 (recall<strong>in</strong>g eqn. (2.3)) that∇ H 0E = L∇φ(c) − LD s (φ(c)D s c) , (10.27)so the above equation (10.26) can be obta<strong>in</strong>ed by the relation <strong>in</strong> Theorem10.17.Alternatively, we know that∫DE(c; h) = L ∇φ(c) · h + φ(c)(D s h · D s c) ds ;let f = ∇˜H1E(c) be the ˜H 1 gradient <strong>of</strong> E; the equalitycDE(c; h) = 〈h, f〉 ˜H1∀hbecomes ∫(L∇φ(c) − avg c (f)) · h + D s h · (Lφ(c)D s c − λL 2 D s f) ds = 0cimitat<strong>in</strong>g the pro<strong>of</strong> <strong>of</strong> the previous proposition, we obta<strong>in</strong> (10.26).We remark a few th<strong>in</strong>gs.• Note that the first term <strong>in</strong> the formula (10.26) is <strong>in</strong> lR n while the othertwo are <strong>in</strong> D c M.• Us<strong>in</strong>g the kernel ˜Kλ that was def<strong>in</strong>ed <strong>in</strong> (10.10), we can rewrite∇˜H1E(c) = L ˜K λ ⋆ (∇φ(c)) + 1λL P cΠ c(φ(c)Ds c ) (10.28)• The formula for the gradient does not require that the curve be twicedifferentiable: we will use this fact to prove an existence result for thegradient flow, <strong>in</strong> Theorem 10.31.23 We use the def<strong>in</strong>ition (10.4) <strong>of</strong> H 0 .71


10.6 Existence <strong>of</strong> gradient flowsWe recall this def<strong>in</strong>ition (that was already presented <strong>in</strong>formally <strong>in</strong> the <strong>in</strong>troduction).Def<strong>in</strong>ition 10.22 (Gradient descent flow) Given a differentiable energy E :M → lR, <strong>and</strong> a metric 〈, 〉 c , let ∇E(c) be the gradient. Let us fix moreoverc 0 : S 1 → lR n , c 0 ∈ M. The gradient descent flow <strong>of</strong> E is the solutionC = C(t, θ) <strong>of</strong> the <strong>in</strong>itial value P.D.E.{∂t C = −∇E(C)C(0, θ) = c 0 (θ)We present an example computation for the geodesic active contour modelon a radially symmetric “image”.Example 10.23 LetC(t, θ) = r(t) (cos θ, s<strong>in</strong> θ) ,φ(x) = d(|x|)with r, d : lR → lR + ; the energy takes the form∫E(C) = φ(C(t, s)) ds = 2π r(t) d(r(t))Then C is the ˜H 1 gradient descent iffCr ′ (t) = − 1 (d(r(t)) + r(t) d ′ (r(t)) ) .λ2πwhereas C is the H 0 gradient descent iffr ′ (t) = −2π ( d(r(t)) + r(t)d ′ (r(t)) ) ,where we use the def<strong>in</strong>ition (10.4) <strong>of</strong> H 0 .Note also thatPro<strong>of</strong>. Indeed,∂ t E(C) = r ′ (t) ( d(r(t)) + r(t)d ′ (r(t)) ) .ds = r(t) dθD s =1r(t) D θlen(C) = 2πr(t)φ(C) = d(r(t))∇φ(x) = x|x| d′ (|x|) for x ≠ 0∇φ(C) = d ′ (r(t))(cos θ, s<strong>in</strong> θ)avg c (∇φ(C)) = 072


P c Π C ∇φ(C) = P c ∇φ(C) = r(t) d ′ (r(t)) (s<strong>in</strong> θ, − cos θ)P c P c Π C ∇φ(C) = −r(t) 2 d ′ (r(t)) (cos θ, s<strong>in</strong> θ)φ(C)D s C = d(r(t))(− s<strong>in</strong> θ, cos θ)P c (φ(C)D s C) = r(t)d(r(t)) (cos θ, s<strong>in</strong> θ)∇˜H1E(C) = Lavg c (∇φ(C)) − 1λL P ( ) 1CP C Π C ∇φ(C) +λL P (CΠ C φ(C)Ds C ) ==1 (d(r(t)) + r(t) d ′ (r(t)) ) (cos θ, s<strong>in</strong> θ) ;λ2πwhereas for the ˜H 0 gradient descent we use the formula (10.27)∇ H 0E = L∇φ(C) − LD s (φ(C)D s C) == 2π ( r(t)d ′ (r(t)) + d(r(t)) ) (cos θ, s<strong>in</strong> θ)We will show <strong>in</strong> the follow<strong>in</strong>g theorems how to prove that ˜H 1 gradient flows<strong>of</strong> common energies are well def<strong>in</strong>ed; to this end, we will provide a detailed pro<strong>of</strong>for the centroid energy E (2.9) discussed <strong>in</strong> the previous section, <strong>and</strong> for thegeodesic active contour model [7, 27] (that was presented <strong>in</strong> Section 2.2); thosepro<strong>of</strong>s illustrates methods that may be used for many other energies.10.6.1 Lemmas <strong>and</strong> <strong>in</strong>equalitiesLet us also prepare the pro<strong>of</strong> by present<strong>in</strong>g some useful <strong>in</strong>equalities <strong>in</strong> threeLemma.Def<strong>in</strong>ition 10.24 We recall from 3.11 that C 0 = C 0 (S 1 → lR n ) is the space <strong>of</strong>cont<strong>in</strong>uous functions, that is a Banach space with norm‖c‖ 0 :=sup |c(θ)| .θ∈[0,2π]Similarly, C 1 = C 1 (S 1 → lR n ) is the space <strong>of</strong> cont<strong>in</strong>uously differentiable functions,that is a Banach space with norm‖c‖ 1 := ‖c‖ 0 + ‖c ′ ‖ 0where c ′ (θ) = ∂c∂θ(θ) is the usual parametric derivative <strong>of</strong> c.Lemma 10.25 • We will use repeatedly the two follow<strong>in</strong>g <strong>in</strong>equalities. Ifa 1 , a 2 , b 1 , b 2 ∈ lR then|a 1 b 1 − a 2 b 2 | ≤ |b1|+|b2|2|a 1 − a 2 | + |a1|+|a2|2|b 1 − b 2 || a1b 1− a2b 2| ≤ |b1|+|b2|2|b |a 1b 2| 1 − a 2 | + |a1|+|a2|2|b 1b 2||b 1 − b 2 |(i)73


• The length functional (from C 1 to lR) is Lipschitz, s<strong>in</strong>celen(c 1 ) − len(c 2 ) ≤ 2π‖c ′ 1 − c ′ 2‖ 0 ;(ii)• if h 1 , h 2 : S 1 → lR n are cont<strong>in</strong>uous fields, by (i)|∫h 1 (s) ds −c 1∫h 2 (s) ds|c 2≤ π(‖h 1 ‖ 0 + ‖h 2 ‖ 0 )‖c ′ 1 − c ′ 2‖ 0 ++ π(‖c ′ 1‖ 0 + ‖c ′ 2‖ 0 )‖h 1 − h 2 ‖ 0 ; (iii)• similarly|∫h 1 (s) ds −c 1∫h 2 (s) ds| ≤ A‖c ′ 1 − c ′ 2‖ 0 + ‖h 1 − h 2 ‖ 0c 2(iv)whereA := 2π2 (‖h 1 ‖ 0 + ‖h 2 ‖ 0 )(‖c ′ 1‖ 0 + ‖c ′ 2‖ 0 )len(c 0 ) len(c 1 ). (v)• Let then Π c be the projection operator (as <strong>in</strong> def<strong>in</strong>ition (10.17)); note that(Π c h) ′ = h ′ ; from all above <strong>in</strong>equalities we obta<strong>in</strong> that‖Π c1 h 1 − Π c2 h 2 ‖ 0 ≤ A‖c ′ 1 − c ′ 2‖ 0 + 2‖h 1 − h 2 ‖ 0‖Π c1 h 1 − Π c2 h 2 ‖ 1 = ‖Π c1 h 1 − Π c2 h 2 ‖ 0 + ‖(Π c1 h 1 ) ′ − (Π c2 h 2 ) ′ ‖ 0 ≤≤ A‖c ′ 1 − c ′ 2‖ 0 + 2‖h 1 − h 2 ‖ 0 + ‖h ′ 1 − h ′ 2‖ 0≤ A‖c 1 − c 2 ‖ 1 + 2‖h 1 − h 2 ‖ 1 . (vi)We will now prove the local Lipschitz regularity <strong>of</strong> the operators P c (h), D c (h)(that were def<strong>in</strong>ed <strong>in</strong> 10.14) <strong>in</strong> both the two variables h <strong>and</strong> c. Unfortunatelyto prove the theorem 10.29 we will need to also compare the action <strong>of</strong> P c fordifferent values <strong>of</strong> c; s<strong>in</strong>ce P c h is properly def<strong>in</strong>ed only when h ∈ D c M (<strong>and</strong> <strong>in</strong>general D c1 M ≠ D c2 M), we will actually need to study the composite operatorP c Π c h.Lemma 10.26 Let Π c the projector from T c M to D c M (that we def<strong>in</strong>ed <strong>in</strong>eqn. (10.17)). Let c, c 1 , c 2 be C 1 immersed <strong>curves</strong>, <strong>and</strong> h, h 1 , h 2 be cont<strong>in</strong>uousfields; then‖P c Π c h‖ 1 ≤ (2π + 2)‖c ′ ‖ 0 ‖h‖ 0 (10.29)<strong>and</strong>‖P c1 Π c1 h 1 − P c2 Π c2 h 2 ‖ 1 ≤ P ‖c ′ 1 − c ′ 2‖ 0 + (10.30)+ Q ‖h 2 − h 0 ‖ 0whereQ := (1/2 + π)(‖c ′ 2‖ 0 + ‖c ′ 1‖ 0 ) .74


<strong>and</strong> similarly P is the evaluation<strong>of</strong> the polynomialP = p ( ‖h 1 ‖ 0 , ‖h 2 ‖ 0 , ‖c ′ 1‖ 0 , ‖c ′ 2‖ 0 , 1/(len(c 1 ) len(c 2 )) )p(x 1 , x 2 , x 3 , x 4 , x 5 ) = (π +1/2)(x 1 +x 2 )+2π 3 (x 1 x 3 +x 2 x 4 )(x 3 +x 4 )x 5 (10.31)(that has constant positive coefficients).Pro<strong>of</strong>. Fix c i immersed, <strong>and</strong> h i ∈ T ci M for i = 1, 2; let L i = len(c i ); letk i := P ci Π ci h i (s)for simplicity. We rewrite this <strong>in</strong> the convolutional form∫k i (s) := K i (s − ŝ)h i (ŝ) dŝ (10.32)c iwhen <strong>in</strong>tegrals are performed <strong>in</strong> arc parameter, <strong>and</strong> the kernel (follow<strong>in</strong>g (10.21))isK i (s) := − s + 1 for s ∈ [0, L i ]L i 2<strong>and</strong> K i is extended periodically. By substitut<strong>in</strong>g <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>g on only oneperiod <strong>of</strong> K i ,∫ s( 1k i (s) =s−L i2 − s − ŝ )h i (ŝ) dŝ .L iWe can then prove easily (10.29): <strong>in</strong>deed by the convolutional representation(10.32)∫ len(c)|(P c Π c h)(t)| ≤ ‖h‖ 0 ∣ − slen(c) + 1 2∣ ds ≤ len(c)‖h‖ 0<strong>and</strong> <strong>in</strong>stead, deriv<strong>in</strong>g <strong>and</strong> apply<strong>in</strong>g (iv) from lemma 10.25,0|(P c Π c h) ′ (θ)| = |Π c h(θ)| |c ′ (θ)| ≤ 2‖h‖ 0 ‖c ′ ‖ 0 .To prove (10.30), we write (10.32) <strong>in</strong> θ parameter, as was done <strong>in</strong> theDef<strong>in</strong>ition 10.7; we need the run-length functions l i : lR → lRl i (τ) :=∫ τ0|c ′ i(x)| dxso that, sett<strong>in</strong>g s = l i (τ) <strong>and</strong> ŝ = l i (θ) we can writek i (τ) =∫ ττ−2π( 12 − l i(τ) − l i (θ))h i (θ)|c ′Li(θ)| dθi75


We can eventually estimate the difference |k 1 (τ) − k 2 (τ)| by us<strong>in</strong>g e.g. the<strong>in</strong>equality|A 2 B 2 C 2 − A 1 B 1 C 1 | ≤ |A 1 B 1 | |C 2 − C 1 | + |A 1 C 2 | |B 2 − B 1 | + |B 2 C 2 | |A 2 − A 1 |on the difference <strong>of</strong> the <strong>in</strong>tegr<strong>and</strong>s( 12 − l 2(τ) − l 2 (θ))h 2 (θ) |c ′L} {{ 2 } {{ } }2(θ)|{{ }}B 2 C 2A 2( 1−2 − l 1(τ) − l 1 (θ))L 1} {{ }A 1to obta<strong>in</strong> that the above term is less or equal than‖h 1 ‖ 0 ‖c ′ 2 − c ′ 1‖ 0 + ‖c ′ 2‖ 0 ‖h 2 − h 0 ‖ 0 + ‖h 2 ‖ 0 ‖c ′ 2‖ 0∣ ∣∣∣ l 2 (θ) − l 2 (τ)L 2h 1 (θ) |c ′} {{ } }1(θ)|{{ }B 1 C 1− l ∣1(θ) − l 1 (τ) ∣∣∣L 1s<strong>in</strong>ce |A i | ≤ 1/2. In turn (s<strong>in</strong>ce the formulas def<strong>in</strong><strong>in</strong>g k 1 (τ), k 2 (τ) the parametersare bound by τ − 2π ≤ θ ≤ τ) then|A 2 − A 1 | =l 2 (τ) − l 2 (θ)∣− l ∣ 1(τ) − l 1 (θ) ∣∣∣ ∫ τ∫ τ∣ θ=|c′ 2(x)| dxθ−|c′ 1(x)| dx ∣∣∣∣≤L 2L 1 ∣ L 2L 1≤ π L 1 + L 2‖c ′ 1 − c ′L 1 L2‖ 0 + π ‖c′ 1‖ 0 + ‖c ′ 2‖ 0|L 1 − L 2 | ≤2 L 1 L 2≤ 4π 2 ‖c′ 1‖ 0 + ‖c ′ 2‖ 0L 1 L 2‖c ′ 1 − c ′ 2‖ 0(by equations (ii) <strong>and</strong> (i) <strong>in</strong> lemma 10.25). Summariz<strong>in</strong>g(|k 1 (τ) − k 2 (τ)| ≤ 2π ‖h 1 ‖ 0 + ‖h 2 ‖ 0 ‖c ′ 2‖ 0 4π 2 ‖c′ 1‖ 0 + ‖c ′ )2‖ 0‖c ′ 1 − c ′L 1 L2‖ 0 +2+ 2π‖c ′ 2‖ 0 ‖h 2 − h 0 ‖ 0 .If we derive, k i ′(θ) = h i(θ)|c ′ i (θ)|, so|k ′ 2(θ)−k ′ 2(θ)| ≤ |h 2(θ)| + |h 1 (θ)|2Symmetriz<strong>in</strong>g we prove (10.30).|c ′ 2(θ)−c ′ 1(θ)| + |c′ 2(θ)| + |c ′ 1(θ)||h ′22(θ)−h ′ 1(θ)| .Lemma 10.27 Conversely, let c 1 , c 2 be two C 1 immersed <strong>curves</strong>, <strong>and</strong> h 1 , h 2be two differentiable fields; then (by us<strong>in</strong>g once aga<strong>in</strong> eqn. (i) from the lemma10.25)‖D c1 h 1 −D c2 h 2 ‖ 0 ≤ ‖c 1‖ 1 + ‖c 2 ‖ 12ε 2 ‖h 1 −h 2 ‖ 1 + ‖h 1‖ 1 + ‖h 2 ‖ 12ε 2 ‖c 1 −c 2 ‖ 1 (10.35)where ε = m<strong>in</strong>(<strong>in</strong>f S 1 |c ′ 1|, <strong>in</strong>f S 1 |c ′ 2|).76


10.6.2 Existence <strong>of</strong> flow for the centroid energy (2.9)Theorem 10.29 Let us fix v ∈ lR n , let E(c) = 1 2 |avg c(c) − v| 2 ; let the <strong>in</strong>itialcurve c 0 ∈ C 1 , then the ˜H 1 gradient descent flow <strong>of</strong> E has an unique solutionC = C(t, θ), for all t ∈ lR, <strong>and</strong> C(t, ·) ∈ C 1 .Results <strong>of</strong> a numerical simulation <strong>of</strong> the above gradient descent flow areshown <strong>in</strong> figure 12 on the follow<strong>in</strong>g page.Before prov<strong>in</strong>g the theorem, let us comment on an <strong>in</strong>terest<strong>in</strong>g property <strong>of</strong>the above gradient flow.Remark 10.30 The length <strong>of</strong> the <strong>curves</strong> len(C(t, ·)) is constant dur<strong>in</strong>g theevolution <strong>in</strong> t.Pro<strong>of</strong>. Indeed it is easy to prove that ∂ t len(C(t, ·)) = 0: the Gâteaux differential<strong>of</strong> the length <strong>of</strong> a curve c is∫D len(c; h) = (D s c · D s h) ds ;substitut<strong>in</strong>g the value <strong>of</strong> D s C(t, ·)) from eqn. (10.25),c∂ t len(C(t, ·)) = D(len(C))(∂ t C)∫1 〈=λL 2 D s C, ( D s C〈(avg c (C) − v), (C − avg c (C))〉 + α )〉 ds =〈∫〉 ∫1=λL 2 (avg c (C) − v), (C − avg c (C)) ds + (D s C · α) ds = 0 .We now present the pro<strong>of</strong> <strong>of</strong> the theorem 10.29.Pro<strong>of</strong>. We will first <strong>of</strong> all prove existence <strong>and</strong> uniqueness <strong>of</strong> the gradient flow forsmall time, us<strong>in</strong>g the Cauchy–Lipschitz theorem 25 <strong>in</strong> the space M <strong>of</strong> immersed<strong>curves</strong>, seen as an open subset <strong>of</strong> the C 1 Banach space (see Def<strong>in</strong>ition 10.24).To this end we will prove that c ↦→ ∇˜H1E(c) is a locally Lipschitz functionalfrom C 1 <strong>in</strong>to itself. Afterward, we will directly prove that the solution exists forall times.So, let us fix c 1 , c 2 ∈ C 1 ∩ M that are two <strong>curves</strong> near c 0 . Let us fix ε > 0 byε := <strong>in</strong>fθ |c′ 0(θ)|/2 .By “near” we mean that, <strong>in</strong> all <strong>of</strong> the follow<strong>in</strong>g, we will require that ‖c i −c 0 ‖ 1 < ε,for i = 1, 2. We will need the follow<strong>in</strong>g (easy to prove) facts. (In the follow<strong>in</strong>g,the <strong>in</strong>dex i will represent both 1, 2).• <strong>in</strong>f θ |c ′ i (θ)| ≥ ε, so all <strong>curves</strong> <strong>in</strong> the neighborhood are immersed.25 A.k.a. as the Picard–L<strong>in</strong>delöf theorem77


7.552.5-10 -7.5 -5 -2.5 2.5 5 7.5 10-2.5-5-7.5-10321-4 -3 -2 -1 1 2 3 4-1-2-3-47.552.5-10 -7.5 -5 -2.5 2.5 5 7.5 10-2.5-5-7.5-10321-4 -3 -2 -1 1 2 3 4-1-2-3-47.552.5-10 -7.5 -5 -2.5 2.5 5 7.5 10-2.5-5-7.5-10321-4 -3 -2 -1 1 2 3 4-1-2-3-47.552.5-10 -7.5 -5 -2.5 2.5 5 7.5 10-2.5-5-7.5-10321-4 -3 -2 -1 1 2 3 4-1-2-3-47.552.5-10 -7.5 -5 -2.5 2.5 5 7.5 10-2.5-5-7.5-10321-4 -3 -2 -1 1 2 3 4-1-2-3-47.552.5-10 -7.5 -5 -2.5 2.5 5 7.5 10-2.5-5-7.5-10321-4 -3 -2 -1 1 2 3 4-1-2-3-4321-4 -3 -2 -1 1 2 3 4-1-2-3-4321-4 -3 -2 -1 1 2 3 4-1-2-3-4321-4 -3 -2 -1 1 2 3 4-1-2-3-4321-4 -3 -2 -1 1 2 3 4-1-2-3-4C(0, θ) = c 0 (θ) = ( cos(θ), s<strong>in</strong>(θ)(1 + 2 cos(θ) 4 ) )t=-1.210t=-0.810t=-0.410t=04t=0.54t=1.4t=1.54t=2.4C(0, θ) = c 0 (θ) = ( cos(θ), 2 s<strong>in</strong>(θ) )t=-1.210t=-0.810t=-0.410t=04t=0.54t=1.4t=1.54t=2.4Two numerical simulation <strong>of</strong> the ˜H 1 gradient descent flow <strong>of</strong> the centroid energyE(c) = 1 |avg 2 c(c) − v| 2 , for two different <strong>in</strong>itial <strong>curves</strong> c 0. The constants were set toλ = 1/(4π 2 ), v = (2, 2). Steps for numerical discretization were set to ∆t = 1/30,∆θ = π/64 (on [0, 2π]). Note that plots for t < 0 are shown <strong>in</strong> a smaller scale.Figure 12: ˜H1 gradient descent flow <strong>of</strong> the centroid energy. See 10.20 <strong>and</strong> 10.29.78


• Sett<strong>in</strong>g a 0 := ‖c 0 ‖ 1 + ε, we have ‖c i ‖ 1 ≤ a 0 .• By equation (ii) <strong>in</strong> lemma 10.25,len(c 0 ) − 2π‖c 0 − c i ‖ 1 ≤ len(c i ) ≤ len(c 0 ) + 2π‖c 0 − c i ‖ 1<strong>and</strong> <strong>in</strong> particular2πε ≤ len(c i ) ≤ len(c 0 ) + 2πε .Let f i = ∇˜H1E(c i ) be the gradient, whose formula was expressed <strong>in</strong> (10.24).We decompose f i us<strong>in</strong>g the relation T c M = lR n ⊕ D c M, as done previously:<strong>and</strong> obta<strong>in</strong>f i = avg ci(f i ) ∈ lR n , ˜fi = f − avg ci(f i ) ∈ D ci Mf i = avg ci(c i ) − v1˜f i = P ci Π ci h i , whereλL 2 ih i := D s c i 〈(avg ci(c i ) − v), (c i − avg ci(c i ))〉 , (10.36)by rewrit<strong>in</strong>g (10.25) <strong>in</strong> the notation <strong>of</strong> this pro<strong>of</strong>.We will then exploit all the <strong>in</strong>equalities <strong>in</strong> the lemmas to prove that|f 1 − f 2 | ≤ a 1 ‖c 1 − c 2 ‖ 1 , ‖ ˜f 1 − ˜f 2 ‖ 1 ≤ a 2 ‖c 1 − c 2 ‖ 1for two constants a 1 , a 2 > 0 <strong>and</strong> all c 1 , c 2 near c 0 ; this effectively proves that|f 1 − f 2 | ≤ (a 1 + a 2 )‖c 1 − c 2 ‖ 1that is, ∇˜H1E(c) is a locally Lipschitz functional.The first term is dealt with equation (iv) <strong>in</strong> lemma 10.25, whence we obta<strong>in</strong>∫∫|f 1 − f 2 | = | c 1 (s) ds − c 2 (s) ds| ≤ a 1 ‖c 1 − c 2 ‖ 1 with a 1 := 2a2 0c 1 c 2ε 2 .By repeated applications <strong>of</strong> the <strong>in</strong>equalities listed <strong>in</strong> lemma 10.25, we provethat, <strong>in</strong> the designed neighborhood, the follow<strong>in</strong>g <strong>in</strong>equalities hold‖h 2 − h 1 ‖ 0 ≤ a 3 ‖c 2 − c 1 ‖ 1‖h i ‖ ≤ a 4for two constants a 3 , a 4 > 0. So we can choose constants P, Q > 0 such that the<strong>in</strong>equality (10.30) holds uniformly <strong>in</strong> the neighborhood, <strong>and</strong> then‖P c1 Π c1 h 1 − P c2 Π c2 h 2 ‖ 1 ≤ P ‖c ′ 1 − c ′ 2‖ 0 + Q ‖h 2 − h 1 ‖ 0 ≤≤ (P + Qa 3 )‖c 1 − c 2 ‖ 179


By us<strong>in</strong>g (i) <strong>and</strong> (ii) from lemma 10.25 once aga<strong>in</strong>, we can conclude that‖ ˜f 1 − ˜f 2 ‖ 1 ≤ a 2 ‖c 1 − c 2 ‖ 1for a constant a 2 > 0. The Cauchy–Lipschitz theorem is now <strong>in</strong>voked to guaranteethat the gradient descent flow does exist <strong>and</strong> is unique for small times. Let thenC(t, θ) be the solution, that will exist for t ∈ (t − , t + ), the maximal <strong>in</strong>terval.In the follow<strong>in</strong>g, given any g = g(t, θ) we will simply write ‖g‖ 0 <strong>in</strong>stead <strong>of</strong><strong>and</strong> similarly‖g(t, ·)‖ 0 = sup |g(t, θ)|θ‖g‖ 1 = ‖g‖ 0 + ‖∂ θ g‖ 0 = sup(|g(t, θ)| + |∂ θ g(t, θ)|) ;θwe will also write len(C) = len(C(t, ·)) for the length <strong>of</strong> the curve at time t.We want to prove that the maximal <strong>in</strong>terval is actually lR, that is, t + =−t − = ∞. The base <strong>and</strong> rough idea <strong>of</strong> the pro<strong>of</strong> is assum<strong>in</strong>g that t + or t − aref<strong>in</strong>ite, <strong>and</strong> derive a contradiction by show<strong>in</strong>g that ∇E(C) does not blow up whent ↘ t − or t ↗ t + .More precisely, we will show that, if t − > −∞ thenlim sup ‖∇E(C)‖ 1 < ∞ (∗∗)t↘t −this implies that the flow C(t, ·) admits a limit (<strong>in</strong>side the Banach space C 1 ) ast → t − , <strong>and</strong> then it may cont<strong>in</strong>ued (contradict<strong>in</strong>g the fact that t − is the lowesttime limit <strong>of</strong> existence <strong>of</strong> the flow). A similar result may be derived when t ↗ t +(but we will omit the pro<strong>of</strong>, that is actually simpler).One key step <strong>in</strong> show<strong>in</strong>g that (∗∗) holds is to consider the two fundamentalquantitiesI(t) := <strong>in</strong>fθ |∂ θC(t, θ)| , N(t) := ‖C‖ 1<strong>and</strong> prove thatlim <strong>in</strong>f I(t) > 0 , lim sup N(t) < ∞when t − > −∞ <strong>and</strong> t ↘ t − . 26 . We proceed <strong>in</strong> steps.• By remark 10.30, we know that len(C) is constant (for as long as the flowis def<strong>in</strong>ed), <strong>and</strong> then equal to len(c 0 ).• At any fixed time, by (10.5),|C − C| ≤ len(C)/2 = len(c 0 )/2 (10.37)where C is the center <strong>of</strong> mass <strong>of</strong> C(t, ·); <strong>and</strong> then|C| ≤ |C − C| + |v − C| + |v| ≤ len(c 0 )/2 + √ 2E(C) + |v| (10.38)26 Actually, by track<strong>in</strong>g the first part <strong>of</strong> the pro<strong>of</strong> <strong>in</strong> detail, it possible to prove that all otherconstants a 1 , a 2 , a 3 , a 4 , P, Q may be bounded <strong>in</strong> terms <strong>of</strong> these two quantities I(t), N(t)80


• Dur<strong>in</strong>g the flow, the value <strong>of</strong> the energy changes with rate∂ t E(C) = −‖∇˜H1E(C)‖ 2˜H1 =us<strong>in</strong>g (10.37), we can bound= −|C − v| 2 1−λ len(C)∫C2 〈C − v, C − C〉 2 ds|∂ t E(C)| ≤ E(C)(2 + 1/λ)so from Gronwall <strong>in</strong>equality we obta<strong>in</strong> that E(C) does not blow up; consequentlyby (10.38), ‖C‖ 0 does not blow up as well.• LetH := D s C〈(C − v), (C − C)〉 ,from the above we obta<strong>in</strong> that H does not blow up as well, s<strong>in</strong>ce‖H(t, ·)‖ 0 ≤ len(c 0 ) √ 2E(C) (10.39)• The parameterization <strong>of</strong> the <strong>curves</strong> changes accord<strong>in</strong>g to the lawsothis proves that<strong>and</strong>∂ t log(|∂ θ C| 2 ) = 2〈D s ∂ t C, D s C〉 = 2H · D sCλ len(c 0 ) 2|∂ t log(|∂ θ C| 2 )| ≤ 2√ 2E(C)λ len(c 0 )lim supt↘t −lim <strong>in</strong>ft↘t − I(t) > 0sup |∂ θ C(t, θ)| < ∞ .θ(As a consequence, ∂ θ C(t, θ) ≠ 0 at all times: <strong>curves</strong> will always beimmersed)• So by (10.29)does not blow up as well.‖P C Π C H‖ 1 ≤ (2π + 2)‖C ′ ‖ 0 ‖H‖ 0• S<strong>in</strong>ce both ‖C‖ 0 <strong>and</strong> ‖∂ θ C‖ 0 do not blow up, then ‖C‖ 1 does not blow up.• Decompos<strong>in</strong>g F = −∂ t C = ∇˜H1E(C) (as was done <strong>in</strong> (10.36)) we write‖ ˜F ‖ 1 =1λ len(c 0 ) 2 ‖P CΠ C H‖ 1<strong>and</strong> from all above ‖ ˜F ‖ 1 does not blow up; but also|F | = |avg C (C) − v| ≤ √ 2E(C)as well; but then ‖∇˜H1E(C)‖ 1 itself does not blow up, as we wanted toprove.81


10.6.3 Existence <strong>of</strong> flow for geodesic active contourTheorem 10.31 Let once aga<strong>in</strong>∫E(c) = φ(c(s)) dscbe the geodesic active contour energy. Suppose that φ ∈ C 1,1loc(that is, φ ∈ C1<strong>and</strong> its derivative is Lipschitz on compact subsets <strong>of</strong> lR n ), let the <strong>in</strong>itial curve bec 0 ∈ C 1 ; then the gradient flowdc= −∇dt˜H1E(c)exists <strong>and</strong> is unique <strong>in</strong> C 1 for small times.Pro<strong>of</strong>. We rapidly sketch the pro<strong>of</strong>, that is quite similar to the pro<strong>of</strong> <strong>of</strong> theprevious theorem. We show that ∇˜H1E(c) is locally Lipschitz <strong>in</strong> the C 1 Banachspace (see Def<strong>in</strong>ition 10.24). Indeed, s<strong>in</strong>ce φ ∈ C 1,1loc, the mapsc ↦→ ∇φ(c)c ↦→ φ(c)D s care locally Lipschitz as maps from C 1 to C 0 , so (us<strong>in</strong>g Lemmas 10.25 <strong>and</strong> 10.26)we obta<strong>in</strong> thatc ↦→ avg c (∇φ(c))is loc.Lip. from C 1 to lR n , <strong>and</strong>c ↦→ P c P c Π c(∇φ(c))c ↦→ P c Π c(φ(c)Ds c )are locally Lipschitz as maps from C 1 to C 1 ; comb<strong>in</strong><strong>in</strong>g all together (<strong>and</strong> us<strong>in</strong>gthe Lemma 10.25 aga<strong>in</strong>)∇˜H1E(c) = Lavg c (∇φ(c)) − 1λL P cP c Π c(∇φ(c))+1λL P cΠ c(φ(c)Ds c )is locally Lipschitz as maps from C 1 to C 1 ; so by the Cauchy–Lipschitz theoremwe know that the gradient flow exists for small times.Remark 10.32 (Gradient descent <strong>of</strong> curve length) Of particular <strong>in</strong>terestis the case when φ = 1, that is E = L, the length <strong>of</strong> the curve. In this case, wealready know that the H 0 flow is the geometric heat flow. By 10.15, the ˜H 1gradient <strong>in</strong>stead reduces to∇ ˜H1L = c − avg c(c)λL. (10.40)So the ˜H 1 gradient flow constitutes a simple rescal<strong>in</strong>g <strong>of</strong> the curve about itscentroid (!).82


It is <strong>in</strong>terest<strong>in</strong>g to notice that the H 1 <strong>and</strong> ˜H 1 gradient flows are well-posedfor both ascent <strong>and</strong> descent while the H 0 gradient flow is only well-posed fordescent. This is related to the fact that the H 0 gradient descent flow smoothsthe curve, whereas the ˜H 1 gradient descent (or ascent) has neither a beneficialnor a detrimental effect on the regularity <strong>of</strong> the curve.10.7 Regularization <strong>of</strong> energy vs regularization <strong>of</strong> flow/metricImag<strong>in</strong>e an energy E m<strong>in</strong>imized on <strong>curves</strong> (numerically sampled to p po<strong>in</strong>ts).Suppose it is not satisfactory <strong>in</strong> applications (it may be ill posed, or not robustto noise). We have two solutions available.• Add a regularization term R(c) <strong>and</strong> m<strong>in</strong>imize E(c)+εR(c) by H 0 gradientdescent. The numerical complexity <strong>of</strong> comput<strong>in</strong>g ∇ H 0R is <strong>of</strong> order O(p).• M<strong>in</strong>imize E(c) by ˜H 1 gradient descent. The numerical complexity <strong>of</strong>comput<strong>in</strong>g ∇˜H1E us<strong>in</strong>g the equations <strong>in</strong> Prop. 10.10 is <strong>of</strong> order O(p).The numerical complexity <strong>of</strong> the two approaches is similar; but <strong>in</strong> the secondcase we are m<strong>in</strong>imiz<strong>in</strong>g the orig<strong>in</strong>al energy. This can br<strong>in</strong>g evident benefits, asshown <strong>in</strong> the follow<strong>in</strong>g example (orig<strong>in</strong>ally presented <strong>in</strong> the 2006 IMA conferenceon <strong>shape</strong> spaces).Example 10.33 We consider a region-based segmentation <strong>of</strong> a synthetic noisyimage, where the energy is the Chan-Vese energyE(c) =∫(I − u) 2 dA +c <strong>in</strong>∫(I − v) 2 dAc outplus the regularization terms α len(c) for H 0 flows.When flow<strong>in</strong>g accord<strong>in</strong>g to −∇ H 0E + ακN <strong>and</strong> a small value <strong>of</strong> α > 0, weobta<strong>in</strong> the follow<strong>in</strong>g evolution <strong>of</strong> the curve, where the curve gets trapped <strong>in</strong> alocal m<strong>in</strong>ima due to noise.For a larger value <strong>of</strong> α, the regularization term forces the curve away fromthe square <strong>shape</strong>.When evolv<strong>in</strong>g us<strong>in</strong>g −∇˜H1E, the curve captures the correct <strong>shape</strong> on coarsescale, <strong>and</strong> then segments the noisy boundary <strong>of</strong> the square further.83


10.7.1 Robustness w.r.to local m<strong>in</strong>ima due to noiseThe concept <strong>of</strong> local depends on the norm.Def<strong>in</strong>ition 10.34 A curve c 0 is a local m<strong>in</strong>imum <strong>of</strong> an energy E iff ∃ɛ > 0such that if ‖h‖ c0 < ɛ then E(c 0 ) ≤ E(c 0 + h).Note that Sobolev-type norms dom<strong>in</strong>ate H 0 -type norm:‖h‖ H 0 ≤ ‖h‖ Sobolev,<strong>and</strong> the norms are not equivalent. As a result the neighborhood <strong>of</strong> critical po<strong>in</strong>ts<strong>in</strong> Sobolev-type space is different than <strong>in</strong> H 0 space.We present an experimental demonstration <strong>of</strong> what “local” means (orig<strong>in</strong>allypresented <strong>in</strong> [57]).Example 10.351. We <strong>in</strong>itialize a contour <strong>in</strong> a noisy image.2. We run the H 0 gradient flow on energyE(c) = E cv (c) + α len(c),where E cv is the Chan-Vese energy. Let’s call the convergedcontour c 0 ; it is shown <strong>in</strong> the picture on the right.3. We adjust c 0 at one sample po<strong>in</strong>t by one pixel, <strong>and</strong> call the modificationĉ 0 . Note: ĉ 0 is an H 0 (but also “rigidified”) local perturbation <strong>of</strong> c 0 .4. We run <strong>and</strong> compare H 0 , “rigidified,” <strong>and</strong> Sobolev gradient flows <strong>in</strong>itializedwith ĉ 0 .The results are <strong>in</strong> Figure 13 on the next page. As we can see, the SACevolution can escape from the local m<strong>in</strong>imum that is <strong>in</strong>duced by noise. Surpris<strong>in</strong>gly,<strong>in</strong> the numerical experiments, the same result holds for SAC even withoutperturb<strong>in</strong>g the local m<strong>in</strong>imum: this is due to the effect <strong>of</strong> numerical noise.Many other examples, on synthetic <strong>and</strong> on real images, are present <strong>in</strong> [55,57, 58].84


H 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time → . . . . . . . . . . . . . . . . . . . . . . . . . . . . .“Rigidified”(Translationfavored). . . . . . . . . . . . . . . . . . . . . . . . . . . . . time → . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . time → . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SobolevActiveContoursFigure 13: Comparison <strong>of</strong> m<strong>in</strong>imization flows when <strong>in</strong>itialized near a localm<strong>in</strong>imum; see Example 10.35. (From [57] c○ 2008 IEEE. Reproduced with permission).10.8 New <strong>shape</strong> <strong>optimization</strong> energiesMost <strong>of</strong> what follows was orig<strong>in</strong>ally presented <strong>in</strong> [56, 58].There are many useful active contour energies that cannot be optimized us<strong>in</strong>gH 0 gradient flow. There are ma<strong>in</strong>ly two reasons why this happens.• Some energies result <strong>in</strong> ill-posed H 0 flows.• Some energies result <strong>in</strong> high-order PDE <strong>and</strong> are difficult to implementnumerically.In many cases, we can optimize these energies us<strong>in</strong>g Sobolev active contours<strong>and</strong> avoid ill-posed problems <strong>and</strong> reduce order <strong>of</strong> PDE.We remark that other gradients (e.g. the “rigidified” active contours <strong>of</strong>Charpiat et al. [10]) cannot be used <strong>in</strong> the examples we will present: them<strong>in</strong>imization flows still are ill posed or high order. Similarly global methods(e.g. graph cuts) cannot deal with these types <strong>of</strong> energies.10.8.1 Average weighted lengthA simple example that falls <strong>in</strong> the first category is the average weightedlength energy that we presented <strong>in</strong> equation (2.6) <strong>in</strong> the <strong>in</strong>troduction:∫E 1 (c) = φ(c(s)) ds = avg c (φ) ;cthis energy was <strong>in</strong>troduced s<strong>in</strong>ce it does not present the short length bias (thatwas discussed <strong>in</strong> §2.4.2).Let L φ = ∫ c φ ds <strong>and</strong> L = len(c) so that E 1(c) = L φ /L, then the gradient is∇E 1 = 1 L ∇L φ − L φL 2 ∇L .85


We already presented all the calculus needed to compute the H 0 <strong>and</strong> ˜H 1gradients <strong>of</strong> E 1 (see Section 2.4.4 <strong>and</strong> Example 10.21); let us summarize all theresults.• In the case <strong>of</strong> H 0 gradient descent flow, the second term is ill posed , s<strong>in</strong>ceL φ /L 2 > 0 <strong>and</strong> ∇ H 0L is the driv<strong>in</strong>g term <strong>in</strong> the geometric heat flow.This is also clear from the explicit formula∇ H 0E 1 (c) = [∇φ · N − κ(φ − avg c (φ))]N (10.41)s<strong>in</strong>ce avg c (φ) is the average value <strong>of</strong> φ, therefore φ − avg c (φ) is negativeon roughly half <strong>of</strong> the curve; so the second term tries to <strong>in</strong>crease length onhalf <strong>of</strong> curve us<strong>in</strong>g a geometric heat flow (<strong>and</strong> this is ill posed); whereasthe first term ∇φ does not stabilize the flow.• In the case <strong>of</strong> the Sobolev gradient, we saw <strong>in</strong> the pro<strong>of</strong> <strong>of</strong> Theorem 10.31that the gradients ∇˜H1L φ <strong>and</strong> ∇˜H1L are locally Lipschitz <strong>in</strong> C 1 , so, by us<strong>in</strong>gLemma 10.25 we conclude that the gradient ∇˜H1E 1 is locally Lipschitz aswell, hence the gradient flow is well def<strong>in</strong>ed.10.8.2 New edge-based active contour modelsThe average weighted length idea can be used to build new energies with <strong>in</strong>terest<strong>in</strong>gapplications <strong>in</strong> track<strong>in</strong>g.Let us call∫E old (c) = φ(c(s)) dsthe traditional edge-based active contour energy.When us<strong>in</strong>g a Sobolev–type norm, we can consider non-shr<strong>in</strong>k<strong>in</strong>g edge-basedmodels, as <strong>in</strong> the follow<strong>in</strong>g examples.Example 10.36 Let us consider the energy∫E new (c) = φ(c(s)) ( L −1 + αLκ 2 (s) ) dswherecc• the first term is edge-detection without shr<strong>in</strong>k<strong>in</strong>g bias (nor regularity),• <strong>and</strong> the second term is a k<strong>in</strong>d <strong>of</strong> elastic regularization (that will bediscussed also <strong>in</strong> the next section) that is moreover relaxed near edges;the length terms render the whole energy scale <strong>in</strong>variant.The frames <strong>in</strong> Figure 14 on the follow<strong>in</strong>g page show <strong>in</strong>itialization <strong>and</strong> f<strong>in</strong>alresults obta<strong>in</strong>ed with different norms <strong>and</strong> energies.86


Example 10.37 Let us consider a length <strong>in</strong>creas<strong>in</strong>g edge-based model. Inthis case, we maximize the energy∫∫E <strong>in</strong>c (c) = φ(c(s)) ds − α κ 2 (s) dscwhere φ > 0 is high near edges. We compare numerical results with a typicaledge-based balloon model∫∫E bal (c) = φ(c(s)) ds − α φ(x) dxcRwhere R is the area enclosed by c. See figure 15.cInitial E old , H 0 E old , Sobolev E new , SobolevFigure 14: Comparison <strong>of</strong> segmentations obta<strong>in</strong>ed with different energies, asexpla<strong>in</strong>ed <strong>in</strong> Example 10.36. (From [58] c○ 2008 IEEE. Reproduced with permission).Figure 15: Left to right we see the <strong>in</strong>itial contour, the m<strong>in</strong>ima <strong>of</strong> E bal forα = 0.2, 0.25, 0.4 us<strong>in</strong>g H 0 ; the maximum for E <strong>in</strong>c with α = 0.1 us<strong>in</strong>g ˜H 1flow<strong>in</strong>g. See Example 10.37. (From [58] c○ 2008 IEEE. Reproduced with permission).87


10.9 New regularization methodsTypically, <strong>in</strong> active contour energies a length penalty is added to obta<strong>in</strong> regularity<strong>of</strong> the evolv<strong>in</strong>g contour:E(c) = E data (c) + α len(c) .It is important to note that this length penalty will regularize the curve onlyif the curve evolution is derived as a H 0 gradient descent flow. If another curvemetric is used to derive the gradient descent flow, then a priori the length penaltymay have no regulariz<strong>in</strong>g effect on the curve regularity (cf. 10.32).10.9.1 Elastic regularizationWe can now consider an alternative approach for regularity <strong>of</strong> curve:∫E(c) = E data (c) + α len(c) κ 2 (s) dswhere α > 0 is a fixed constant. This energy favors regularity <strong>of</strong> curve, but thisregularization does not rely on properties <strong>of</strong> the metric; <strong>and</strong> the regularizationis scale <strong>in</strong>variant. Note that the H 0 gradient flow <strong>of</strong> this energy is ill posed.The numerical results (orig<strong>in</strong>ally presented <strong>in</strong> [56]) are <strong>in</strong> Fig. 16. In allframes, the f<strong>in</strong>al limit <strong>of</strong> the gradient descent flow is shown; between differentframes, the value <strong>of</strong> α is <strong>in</strong>creased.c. . . . . . . . . . . .m<strong>in</strong>ima for α <strong>in</strong>creas<strong>in</strong>g → . . . . . . . . . . . .E data (c) + α len(c)(H 0 gradient descent)E data (c) +α len(c) ∫ c κ2 (s) ds(Sobolev gradient descent)Figure 16: Elastic regularization. (From [58] c○ 2008 IEEE. Reproduced with permission).88


11 Mathematical properties <strong>of</strong> the Riemannianspace <strong>of</strong> <strong>curves</strong>In this section we study some mathematical properties, <strong>and</strong> add some f<strong>in</strong>alremarks, regard<strong>in</strong>g the Riemannian manifold <strong>of</strong> geometric <strong>curves</strong>, when this isendowed with the metrics that were presented previously.11.1 ChartsLet aga<strong>in</strong>M = M i,f = Imm f (S 1 , lR n )be the space <strong>of</strong> all smooth freely-immersed <strong>curves</strong>.We already remarked <strong>in</strong> Remark 4.4 that, if the topology on M is strongenough then the immersed <strong>curves</strong> are an open subset <strong>of</strong> all functions. Wemoreover represent both <strong>curves</strong> c ∈ M <strong>and</strong> deformations h ∈ T c M as functionsS 1 → lR n ; this is a special structure that is not usually present <strong>in</strong> abstractmanifolds: so we can easily def<strong>in</strong>e “charts” for M.Proposition 11.1 (Charts <strong>in</strong> M i,f ) Given a curve c, there is a neighborhoodU c <strong>of</strong> 0 ∈ T c M such that for h ∈ U c , the curve c + h is still immersed; then thismap h ↦→ c + h is the simplest natural c<strong>and</strong>idate to be a chart <strong>of</strong> Φ c : U c → M.Indeed, if we pick another curve ˜c ∈ M <strong>and</strong> the correspond<strong>in</strong>g U˜c such thatU˜c ∩ U c ≠ ∅, then the equality Φ c (h) = c + h = ˜c + ˜h = Φ˜c (˜h) can be solved for hto obta<strong>in</strong> h = (˜c − c) + ˜h.The ma<strong>in</strong> goal <strong>of</strong> this section is to study the manifoldB = B i,f := M/Diff(S 1 )<strong>of</strong> geometric <strong>curves</strong>. S<strong>in</strong>ce B is an abstract object, we will actually work withM <strong>in</strong> everyday calculus. To recomb<strong>in</strong>e the two needs, we will identify an uniquefamily <strong>of</strong> “small deformations” <strong>in</strong>side M, that has a specific mean<strong>in</strong>g <strong>in</strong> B. Acommon choice is to restrict the family <strong>of</strong> <strong>in</strong>f<strong>in</strong>itesimal motions h to those suchthat h(θ) is orthogonal to the curve, that is, to c ′ (θ).Proposition 11.2 (Charts <strong>in</strong> B i,f ) Let Π be the projection from M to thequotient B. Let [c] ∈ B: we pick a curve c such that Π(c) = [c]. We represent thetangent space T [c] B as the space <strong>of</strong> all k : S 1 → lR n such that k(s) is orthogonalto c ′ (s).We choose U [c] ⊂ T [c] B a neighborhood <strong>of</strong> 0; then the chart is def<strong>in</strong>ed byΨ [c] : U [c] → B , Ψ [c] (k) := Π(c(·) + k(·))that is, it moves c(u) <strong>in</strong> direction k(u).If U [c] is small enough, then this chart is a smooth diffeomorphism; <strong>and</strong>, ifwe pick another curve ˜c ∈ M <strong>and</strong> the correspond<strong>in</strong>g U [˜c] such that U [˜c] ∩ U [c] ≠ ∅,then the equalityΨ [c] (k) = Ψ [˜c] (˜k)89


can be solved for k (this is not so easy to prove: see Michor <strong>and</strong> Mumford [37],or 4.4.7 <strong>and</strong> 4.6.6 <strong>in</strong> Hamilton [24]).11.2 Reparameterization to normal motionIn the preced<strong>in</strong>g proposition we decided to use “orthogonal motion” as dist<strong>in</strong>guishedchart for the manifold B. This choice leads also to a “lift<strong>in</strong>g”.Lemma 11.3 Given any smooth homotopy C <strong>of</strong> immersed <strong>curves</strong>, there existsa reparameterization given by a parameterized family <strong>of</strong> diffeomorphisms Φ :[0, 1] × S 1 → S 1 , so that sett<strong>in</strong>g˜C(t, θ) := C(t, Φ(t, θ)) ;we have that ∂ t ˜C is orthogonal to ∂θ ˜C at all po<strong>in</strong>ts; more precisely,π ˜T∂ t ˜C = 0 , πÑ∂ t ˜C = πN ∂ t C(where the last equality is up to the reparameterization Φ).For the pro<strong>of</strong>, see Thm. 3.10 <strong>in</strong> [67] or §2.5 <strong>in</strong> [37].This expla<strong>in</strong>s what is commonly done <strong>in</strong> the level set method, where thetangent part <strong>of</strong> the flow is discarded.It is unclear that this choice is actually the best possible choice for computervision application. Consider the follow<strong>in</strong>g example.Example 11.4 Suppose that c(θ) = (cos(θ), s<strong>in</strong>(θ)) is a planar circle. LetC(t, θ) = c(θ) + vt be an uniform translation <strong>of</strong> c. Let ˜C be as <strong>in</strong> the previousproposition; the Figure 17 shows the two motions. The two motions C <strong>and</strong>˜C co<strong>in</strong>cide <strong>in</strong> B but are represented differently <strong>in</strong> M. Which one is best? Both“translation” <strong>and</strong> “orthogonal motions” seem a natural idea at first glance.C C ~The dotted l<strong>in</strong>e represents the trajectory <strong>of</strong> a po<strong>in</strong>t on the curve.Figure 17: Translation <strong>of</strong> a circle as a normal-only motion, by Prop. 11.3.90


11.3 The H 0 distance is degenerateIn §C <strong>in</strong> [67], or §3.10 <strong>in</strong> [37], the follow<strong>in</strong>g theorem is proved.Theorem 11.5 The H 0 -<strong>in</strong>duced distance is degenerate: the distance betweenany two <strong>curves</strong> is 0.This results is generalized <strong>in</strong> [38] to L 2 -type metrics <strong>of</strong> submanifolds <strong>of</strong> anycodimension.Here we will sketch the ma<strong>in</strong> idea <strong>of</strong> the pro<strong>of</strong> for a very simple case: it ispossible to connect two segmentsc 0 (u) = (u, 0) , c 1 (u) = (u, 1)with a family <strong>of</strong> “zigzag” homotopies C k (t, θ) so that the H 0 action is <strong>in</strong>f<strong>in</strong>itesimalwhen k → ∞. A snapshot <strong>of</strong> the <strong>curves</strong> along the homotopy, for t = 0, 1/8 . . . 1<strong>and</strong> k = 5, is <strong>in</strong> Fig. 18.t = 1/2t = 1/4t = 1/8t = 0t = 1t = 7/8t = 3/4t = 1/2case t ∈ [0, 1/2] 1/k∂C∂θα∂C∂vcase t ∈ [1/2, 1]Figure 18: Zig-zag homotopyIn the follow<strong>in</strong>g, let C = C k for k large. We recall that the H 0 action isE(C) =<strong>and</strong> we also def<strong>in</strong>eE ⊥ (C) =∫ 10∫∫ 10C∫C|∂ t C| 2 ds dt =|π N ∂ t C| 2 ds dt =∫ 1 ∫ 100∫ 1 ∫ 100|∂ t C| 2 |∂ θ C| dθ dt ;|π N ∂ t C| 2 |∂ θ C| dθ dt (11.1)(this “action” will be expla<strong>in</strong>ed <strong>in</strong> Sec. 11.10). The argument goes as follows.1. The angle α is (the absolute value <strong>of</strong>) the angle between ∂ θ C <strong>and</strong> thevertical direction (that is also the direction <strong>of</strong> ∂ t C). Note that• α = α(k, t), <strong>and</strong>91


2. Now• at t = 1/2 it achieves the maximum α(k, 1/2) = arctan(1/(2k)), <strong>and</strong>also• |∂ θ C| = 1/ s<strong>in</strong>(α).|π N ∂ t C| 2 |∂ θ C| = |∂ t C| 2 |∂ θ C| s<strong>in</strong> 2 (α) ∼ s<strong>in</strong>(α)so if k is large, then the angle α is small <strong>and</strong> then E ⊥ (C) < ε ∼ 1/k.3. We now smooth C just a bit to obta<strong>in</strong> Ĉ, so that E⊥(Ĉ) < 2ε.4. We then apply Prop. 11.3 to Ĉ to f<strong>in</strong>ally obta<strong>in</strong> ˜C, that moves only <strong>in</strong> thenormal direction, soas we wanted to show.E ⊥ (Ĉ) = E ⊥( ˜C) = E( ˜C) < 2ε11.4 Existence <strong>of</strong> critical geodesics for H jIn contrast, it is possible to show that a Sobolev-type metric does admit criticalgeodesics.Theorem 11.6 (4.3 <strong>in</strong> Michor <strong>and</strong> Mumford [36]) Consider the Sobolevtype metric∫〈h, k〉 G n c= 〈h, k〉 + 〈Ds n h, Ds n k〉 dscwith n ≥ 1. Let k ≥ 2n + 1; suppose c, h are <strong>in</strong> the (usual <strong>and</strong> parametric) H kSobolev space (that is, c, h admit k-th (weak)derivative, that is square <strong>in</strong>tegrable).Then it is possible to shoot the geodesic, start<strong>in</strong>g from c <strong>and</strong> <strong>in</strong> direction h, forshort time.In §4.8 <strong>in</strong> [36] it is suggested that the theorem may similarly hold for Sobolevmetrics with length-dependent scale factors.11.5 Parameterization <strong>in</strong>varianceLet M be the manifold <strong>of</strong> (freely)immersed <strong>curves</strong>. Let 〈h 1 , h 2 〉 c be a Riemannianmetric, for h 1 , h 2 ∈ T c M; let ‖h‖ c = √ 〈h, h〉 c be its associated norm. LetE(γ) := ∫ 10 ‖ ˙γ(v)‖2 γ(v)dv be the action.Let C : [0, 1] × S 1 → S 1 be a smooth homotopy. We recall the def<strong>in</strong>ition thatwe saw <strong>in</strong> Section 4.6, <strong>and</strong> add a second stronger version.Def<strong>in</strong>ition 11.7 A Riemannian metric is• curve-wise parameterization <strong>in</strong>variant when the metric does not dependon the parameterization <strong>of</strong> the curve, that is ‖˜h‖˜c = ‖h‖ c when˜c(t) = c(ϕ(t)) <strong>and</strong> ˜h(t) = h(ϕ(t));92


• homotopy-wise parameterization <strong>in</strong>variant if, for any ϕ : [0, 1] ×S 1 → S 1 smooth, ϕ(t, ·) a diffeomorphism <strong>of</strong> S 1 for all fixed t, let ˜C(t, θ) =C(t, ϕ(t, θ)), then E( ˜C) = E(C).It is not difficult to prove that the second condition implies the first. Thereis an important remark to note: a homotopy-wise-parameterization-<strong>in</strong>variantRiemannian metric cannot be a proper metric.Proposition 11.8 Suppose that a Riemannian metric is homotopy-wise parameterization<strong>in</strong>variant; if h 1 , h 2 ∈ T c M <strong>and</strong> h 1 is tangent to c at all po<strong>in</strong>ts, then〈h 1 , h 2 〉 c = 0. So the Riemannian metric <strong>in</strong> this case is actually a semimetric(<strong>and</strong> ‖ · ‖ c is not a norm, but rather a sem<strong>in</strong>orm <strong>in</strong> T c M).Pro<strong>of</strong>. Let C(t, u) = c(ϕ(t, u)) with ϕ(t, ·) be a time-vary<strong>in</strong>g family <strong>of</strong> diffeomorphisms<strong>of</strong> S 1 . So E(C) = E(c) = 0, that is∫ 10‖c ′ ∂ t φ‖ 2 c dt = 0so ‖c ′ ∂ t φ‖ c = 0; but note that, by choos<strong>in</strong>g appropriately φ, we may representany h ∈ T c M that is tangent to c as h = c ′ ∂ t φ. By polarization, we obta<strong>in</strong> thethesis.11.6 St<strong>and</strong>ard <strong>and</strong> geometric distanceThe st<strong>and</strong>ard distance d(c 0 , c 1 ) <strong>in</strong> M is the <strong>in</strong>fimum <strong>of</strong> Len(γ) where γ is anyhomotopy that connects c 0 , c 1 ∈ M (cf. Def<strong>in</strong>ition 3.25).We are though <strong>in</strong>terested <strong>in</strong> study<strong>in</strong>g metrics <strong>and</strong> distances <strong>in</strong> the quotientspace B := M/Diff(S 1 ).We suppose that the metric G is “curve-wise parameterization <strong>in</strong>variant”;then G may be projected to B := M/Diff(S 1 ). So <strong>in</strong> the follow<strong>in</strong>g we will use adifferent def<strong>in</strong>ition <strong>of</strong> “geometric distance”.Def<strong>in</strong>ition 11.9 (geometric distance) d G (c 0 , c 1 ) is the <strong>in</strong>fimum <strong>of</strong> the lengthLen(C) <strong>in</strong> the class <strong>of</strong> all homotopies C connect<strong>in</strong>g the curve c 0 to any reparameterizationc 1 ◦ φ <strong>of</strong> c 1 .This implements the quotient<strong>in</strong>g formula that we saw <strong>in</strong> Def<strong>in</strong>ition 3.6 (<strong>in</strong>this case, the group is G = Diff(S 1 )): so we will use d G as a distance on B.At the same time, note that <strong>in</strong> writ<strong>in</strong>g d G (c 0 , c 1 ) we are abus<strong>in</strong>g notation:d G is not a distance <strong>in</strong> the space M, but rather it is a semidistance, s<strong>in</strong>ce thedistance between c <strong>and</strong> a reparameterization c ◦ φ is zero.11.7 Horizontal <strong>and</strong> vertical spaceConsider a metric G (curve-wise parameterization <strong>in</strong>variant) on M. Let Πonce aga<strong>in</strong> be projection from M := Imm f (S 1 ) to the quotient B = B i,f =M/Diff(S 1 ).We present a list <strong>of</strong> def<strong>in</strong>itions (see also the figure 19 on the next page).93


Def<strong>in</strong>ition 11.10 • The orbit is O c = [c] = {c ◦ φ | φ} = Π −1 ({c}).• The vertical space V c is the tangent to O c :V c := T c O c ⊂ T c Mthat can be explicitly written asV c := {h = b(s)c ′ (s) | b : S 1 → lR}i.e. all the vector fields h where h(s) is tangent to c.• The horizontal space W c is the orthogonal complement <strong>in</strong>side T c MW c := V ⊥c .Note that W c depends on G, but V c does not.MO cWccVcFigure 19: The action <strong>of</strong> Diff(S 1 ) on M. The orbits O c are dotted, the spacesW c <strong>and</strong> V c are dashed.The figure 20 may also help <strong>in</strong> underst<strong>and</strong><strong>in</strong>g. The whole orbit O c is projectedto [c]. The vertical space V c is the kernel <strong>of</strong> DΠ c , so it is projected to 0.11.8 From curve-wise parameterization <strong>in</strong>variant to homotopywiseparameterization <strong>in</strong>variantIn the follow<strong>in</strong>g sections, we just aim to give an overview <strong>of</strong> the theory; we willnot dwelve <strong>in</strong> depict<strong>in</strong>g the most general hypotheses such that all presented resultsdo hold for a generic metric G; we will though, case by case, present referencesto how the results can be proven for the metrics discussed <strong>in</strong> this paper, <strong>and</strong> <strong>in</strong>particular the Sobolev-type metrics.We suppose that this theorem holds.Theorem 11.11 Given any h ∈ T c M, there is an unique m<strong>in</strong>imum po<strong>in</strong>t form<strong>in</strong>x∈W c‖x − h‖ G<strong>and</strong> the m<strong>in</strong>imum is called the horizontal projection <strong>of</strong> h.94


MO cW ccBVcΠ[c]Figure 20: The vertical <strong>and</strong> horizontal spaces, <strong>and</strong> the projection Π from M toB.This theorem is verified when G is a Sobolev-type metrics, see §4.5 <strong>in</strong> [36]; <strong>and</strong>it is trivially verified by H 0 .Def<strong>in</strong>ition 11.12 The horizontally projected metric G ⊥ is def<strong>in</strong>ed bywhere ˜h, ˜k are the projections <strong>of</strong> h, k to W c .〈h, k〉 G ⊥ ,c := 〈˜h, ˜k〉 G,c (11.2)Proposition 11.13 Equivalently the norm ‖h‖ G ⊥can be def<strong>in</strong>ed by‖h‖ G ⊥where the <strong>in</strong>fimum is <strong>in</strong> the class <strong>of</strong> smooth b : S 1 → lR.Pro<strong>of</strong>. Indeed by the projection theorem,= <strong>in</strong>fb ‖h + bc′ ‖ G (11.3)<strong>in</strong>f ‖h +bbc′ ‖ G = ‖˜h‖ Gwhere ˜h is the projections <strong>of</strong> h to W c . By polarization we obta<strong>in</strong> (11.2).It is easy to prove that G ⊥ is curve-wise parameterization <strong>in</strong>variant, but moreoverProposition 11.14 G ⊥ is homotopy-wise parameterization <strong>in</strong>variant.Pro<strong>of</strong>. Let ˜C(t, θ) = C(t, ϕ(t, θ)), then∂ t ˜C = ∂t C + C ′ ϕ ′so at any given time t‖∂ t ˜C(t, ·)‖G ⊥ = ‖∂ t C + C ′ ϕ ′ ‖ G ⊥ = ‖∂ t C‖ G ⊥95


y eqn. (11.3), where the terms RHS are evaluated at (t, ϕ(t, ·)); s<strong>in</strong>ce G ⊥ iscurve-wise parameterization <strong>in</strong>variant, then‖∂ t ˜C(t, ·)‖G ⊥ = ‖∂ t C(t, ·)‖ G ⊥ .Consequently,Corollary 11.15 G is homotopy-wise parameterization <strong>in</strong>variant if <strong>and</strong> only iffor all b.‖h‖ G = ‖h + bc ′ ‖ GSummariz<strong>in</strong>g all above theory, we obta<strong>in</strong> a method to underst<strong>and</strong>/study/designthe metric G on B, follow<strong>in</strong>g these steps:1. choose a metric G on M that is curve-wise parameterization <strong>in</strong>variant2. G generates the horizontal space W = V ⊥3. project G on W to def<strong>in</strong>e G ⊥ that is homotopy-wise parameterization<strong>in</strong>variant.11.8.1 Horizontal G ⊥ as length m<strong>in</strong>imizerAs we def<strong>in</strong>ed <strong>in</strong> 11.9, to def<strong>in</strong>e the distance we m<strong>in</strong>imize the length <strong>of</strong> the pathsγ : [0, 1] → M that connect a curve c 0 to a reparameterization c 1 ◦ φ <strong>of</strong> the curvec 1 . Consider the follow<strong>in</strong>g sketchy example.Example 11.16 Consider two paths γ 1 <strong>and</strong> γ 2 connect<strong>in</strong>gc 0 to reparameterizations <strong>of</strong> c 1 . Recall that the spaceW c is orthogonal to the orbits, the space V c is tangent tothe orbits. The path γ 1 (that moves <strong>in</strong> some tracts alongthe orbits, with ˙γ 1 ∈ V γ ) is longer than the path γ 2 .The above example expla<strong>in</strong>s the follow<strong>in</strong>g lemma.W cc 0cVcγγ12Lemma 11.17 Let us choose G to be a curve-wise parameterization <strong>in</strong>variantmetric (so, by Prop. 11.8, it cannot be homotopy-wise parameterization<strong>in</strong>variant).1. Let ˜C(t, θ) = C(t, ϕ(t, θ)) where ϕ(t, ·) is a diffeomorphism for all fixed t.M<strong>in</strong>imizem<strong>in</strong> E G ( ˜C)ϕThen at the m<strong>in</strong>imum ˜C ∗ , ∂ t ˜C∗ is horizontal at every po<strong>in</strong>t, <strong>and</strong>E G ( ˜C ∗ ) = E G ⊥( ˜C ∗ ) .O ccc 11 o φo φ’96


2. So the distance can be equivalently computed as the <strong>in</strong>fimum <strong>of</strong> Len G ⊥ or<strong>of</strong> Len G ; <strong>and</strong> distances are equal, d G ⊥ = d G .In practice, when comput<strong>in</strong>g m<strong>in</strong>imal geodesic (possibly by numerical methods),it is usually best to m<strong>in</strong>imize E G , s<strong>in</strong>ce it also penalizes the vertical part <strong>of</strong> themotion, <strong>and</strong> hence the m<strong>in</strong>imization will produce a “smoother” geodesic.The pro<strong>of</strong> <strong>of</strong> the above lemma is based on the validity <strong>of</strong> “the lift<strong>in</strong>g Lemma”:Lemma 11.18 (lift<strong>in</strong>g Lemma) Given any smooth homotopy C <strong>of</strong> immersed<strong>curves</strong>, there exists a reparameterization given by a parameterized family <strong>of</strong>diffeomorphisms Φ : [0, 1] × S 1 → S 1 , so that sett<strong>in</strong>g˜C(t, θ) := C(t, Φ(t, θ))we have that ∂ t ˜C is <strong>in</strong> the horizontal space WC at all times t.For the metric H 0 , this reduces to lemma 11.3 <strong>in</strong> this paper; for Sobolev-typemetrics, the pro<strong>of</strong> is <strong>in</strong> §4.6 <strong>in</strong> [36].11.9 A geometric gradient flow is horizontalProposition 11.19 If E is a geometric energy <strong>of</strong> <strong>curves</strong>, <strong>in</strong> the sense that Eis <strong>in</strong>variant w.r.to reparameterizations φ ∈ Diff + (S 1 ); then ∇E is horizontal.Pro<strong>of</strong>. Let c be a smooth curve; suppose for simplicity (<strong>and</strong> with no loss <strong>of</strong>generality) that it has len(c) = 2π <strong>and</strong> that it is parameterized by arc parameter,so that |c ′ | ≡ 1 <strong>and</strong> c ′ = D s c. Let b : S 1 → lR be smooth, <strong>and</strong> def<strong>in</strong>e φ :lR × S 1 → S 1 by solv<strong>in</strong>g the b flow, that is the ODE∂ t φ(t, θ) = b(φ(t, θ))with <strong>in</strong>itial data φ(0, θ) = θ. Note that, for all t, φ(t, ·) ∈ Diff + (S 1 ). LetC(t, θ) = c(φ(t, θ)), note that∂ t C(t, θ) = b(φ(t, θ))c ′ (φ(t, θ))then E(C) = E(c), so that (deriv<strong>in</strong>g <strong>and</strong> sett<strong>in</strong>g t = 0)<strong>and</strong> we conclude by arbitrar<strong>in</strong>ess <strong>of</strong> b.∂ t E(C) = 0 = 〈∇E(c), bc ′ 〉11.10 Horizontality accord<strong>in</strong>g to H 0Proposition 11.20 The horizontal space W c w.r.to H 0 isW c := {h : h(s) ⊥ c ′ (s)∀s}that is the space <strong>of</strong> vector fields orthogonal to the curve.97


So Prop. 11.19 guarantees that the H 0 gradients <strong>of</strong> geometric energies haveonly a normal component w.r.to the curve — <strong>and</strong> this couples well with level setmethods.The horizontal version <strong>of</strong> H 0 is〈h 1 , h 2〉H 0,⊥ := ∫cπ N h 1 · π N h 2 ds (11.4)where π N h 1 (s) is the component <strong>of</strong> h 1 (s) that is orthogonal to c ′ (as was def<strong>in</strong>ed<strong>in</strong> Section 7.1); note that the action <strong>of</strong> this (semi)metric was already presented<strong>in</strong> eqn. (11.1).So a good paradigm is to th<strong>in</strong>k at the metric H 0 as∫∫ c h 1 · h 2 ds on M,c π Nh 1 · π N h 2 ds on B.Remark 11.21 The horizontal space W c is isometric (thru DΠ c ) with thetangent space T [c] B: this implies that we may decide to use W c <strong>and</strong> Π c as a“local chart” for B. If the metric is G = H 0 , this br<strong>in</strong>gs us back the chart 11.2;with other metrics, this process <strong>in</strong>stead def<strong>in</strong>es a novel choice <strong>of</strong> chart.The same reason<strong>in</strong>g above holds for the H A metric (from Sec. 9.2), <strong>and</strong> forthe F<strong>in</strong>sler metrics F 1 <strong>and</strong> F ∞ (from Section 7); <strong>in</strong> this latter case, we alreadypresented the horizontally projected version <strong>of</strong> the metrics.For all above reasons, it is common th<strong>in</strong>k<strong>in</strong>g that “a good movement <strong>of</strong> acurve is a movement that is orthogonal to the curve”. But, when us<strong>in</strong>g a differentmetric (as for example, the Sobolev-type metrics) the above is not true anymore.11.11 Horizontality accord<strong>in</strong>g to H jHorizontality accord<strong>in</strong>g to H j is a complex matter. To study the horizontallyprojected metric, we need to express the solution <strong>of</strong><strong>in</strong>f ‖h +bbc′ ‖ H j<strong>in</strong> closed form, <strong>and</strong> this needs (pseudo)differential operators: see [36] for details.We just remark that <strong>in</strong> this case, “a good movement <strong>of</strong> a curve is not necessarilya movement that is orthogonal to the curve.”11.12 Horizontality is for any group actionIn the above we studied the horizontality properties <strong>of</strong> the quotient B =M/Diff(S 1 ). But the theory works <strong>in</strong> general for any other quotient. So we mayapply the same study <strong>and</strong> ideas to further quotients (such as B/E(n)).98


11.13 MomentaWhat follows comes from §2.5 <strong>in</strong> Michor <strong>and</strong> Mumford [36].Consider aga<strong>in</strong> the action <strong>of</strong> a group G on a Riemannian manifold M (asdef<strong>in</strong>ed <strong>in</strong> Sect. 3.8). Most groups that act on <strong>curves</strong> are smooth differentiablemanifolds themselves, <strong>and</strong> the group operations are smooth: so they are Liegroups. In our cases <strong>of</strong> <strong>in</strong>terest, the actions are smooth as well.We want to study some differentiable properties <strong>of</strong> the action g · m; us<strong>in</strong>g therule (3.5), we see that we can restrict to study<strong>in</strong>g the case e · m, where e ∈ G isthe identity element.11.13.1 Conservation <strong>of</strong> momentaGiven a curve c ∈ M, <strong>and</strong> a tangent vector ξ ∈ T e G (where T e G is the Liealgebra <strong>of</strong> G), we derive the action, for fixed c <strong>and</strong> e “mov<strong>in</strong>g” <strong>in</strong> direction ξ;the result <strong>of</strong> this derivative is a ζ = ζ ξ,c ∈ T c M (depend<strong>in</strong>g l<strong>in</strong>early on ξ). Thisdirection ζ is <strong>in</strong>tuitively “the <strong>in</strong>f<strong>in</strong>itesimal motion <strong>of</strong> c, when we <strong>in</strong>f<strong>in</strong>itesimallyact <strong>in</strong> direction ξ on c”.To exemplify the above process, we provide a simple toy example.Example 11.22 (Rotation action on the plane) The group <strong>of</strong> 2D rotationsG = lR/(2π) (the real l<strong>in</strong>e modulus 2π, with the + operation) acts on the plane,as followsG × lR 2 → lR 2g, m ↦→ g · m = R g mwith( )cos g − s<strong>in</strong> gR g :=.s<strong>in</strong> g cos gS<strong>in</strong>ce T e G = lR, there is only one direction <strong>in</strong> the tangent to G, hence thederivative <strong>in</strong> direction ξ = 1 is just the st<strong>and</strong>ard derivative d/dg; similarlyT lR 2 = lR 2 ; by deriv<strong>in</strong>g the action <strong>in</strong> po<strong>in</strong>t g = e = 0 (the identity element), weobta<strong>in</strong> thatζ 1,m = JmwithJ :=( 0 −11 0Note that Jm is the vector (normal to m) obta<strong>in</strong>ed by rotat<strong>in</strong>g m <strong>of</strong> an angle π/2counterclockwise. The physical <strong>in</strong>terpretation is that, when rotat<strong>in</strong>g the plane <strong>in</strong>counterclockwise direction with speed ξ = 1, each po<strong>in</strong>t m will move with velocityζ = Jm.In the above toy example, the result ζ is vector; but <strong>in</strong> the case <strong>of</strong> immersed<strong>curves</strong> M, s<strong>in</strong>ce ζ ∈ T c M, then ζ = ζ(θ) : S 1 → lR n is a vector field.).We then recall a very <strong>in</strong>terest<strong>in</strong>g condition by Emmy Noether99


Theorem 11.23 Suppose that the Riemannian metric 〈·, ·〉 c on M is <strong>in</strong>variantw.r.to the action <strong>of</strong> G: this is equivalent to say<strong>in</strong>g that the action is an isometry.Let γ(t) be a critical geodesic: then〈 〉ζ ξ,γ(t) , ˙γ(t)(11.5)γ(t)is constant <strong>in</strong> t (for any choice <strong>of</strong> ξ ∈ T e G).The quantity (11.5) is called “the momentum <strong>of</strong> the action”.As an alternative <strong>in</strong>terpretation, note that the vectors ζ that are obta<strong>in</strong>edby deriv<strong>in</strong>g the action are exactly all the vectors <strong>in</strong> the vertical spaces V c <strong>of</strong>the correspond<strong>in</strong>g action G (s<strong>in</strong>ce ζ are <strong>in</strong>f<strong>in</strong>itesimal motions <strong>in</strong>side the orbit).Recall that h ∈ T c M is horizontal (that is, h ∈ W c ) iff it is orthogonal to V c〈ζ, h ′ 〉 = 0 for all ζ ∈ V c . So, as corollary <strong>of</strong> Emmy Noether’s theorem, we obta<strong>in</strong>thatCorollary 11.24 if a geodesic is shot <strong>in</strong> a horizontal direction ˙γ(0), then thegeodesic will be horizontal for all subsequent times.The follow<strong>in</strong>g are examples <strong>of</strong> momenta that are related to the actions on<strong>curves</strong> (that we saw <strong>in</strong> Example 4.8).Example 11.25 • The rescal<strong>in</strong>g group is represented by lR + , that is onedimensional, so there is only one tangent direction ξ = 1 <strong>in</strong> lR + . Theaction is l, c ↦→ lc, so there is only one direction, that is ζ = c.• The translation group is represented by lR n , that is a vector space, so thetangent directions are ξ ∈ lR n ; the action is ξ, c ↦→ ξ + c; then ζ = ξ (<strong>and</strong>note that this is constant <strong>in</strong> θ).• The rotation group is represented by orthogonal matrixes, so we set G =O(n); the group identity e is the identity matrix; the action is matrixvectormultiplication A, c(θ) ↦→ Ac(θ); the tangent T e G is the set <strong>of</strong> theantisymmetric matrixes B ∈ lR n×n ; then ζ = Bc.• The reparameterization group is G = Diff(S 1 ); a tangent vector is a scalarfield ξ : S 1 → lR; the action is the composition φ, c ↦→ c ◦ φ; we <strong>in</strong> the endhave thatζ(θ) = ξ(θ)c ′ (θ)(where c ′ = D θ c) that is, ζ is a generic vector field parallel to the curve.For the ˜H 1 metric, this implies the follow<strong>in</strong>g properties <strong>of</strong> a geodesic path γ(t).Proposition 11.26 • Scal<strong>in</strong>g momentum:∫〈γ, ˙γ〉 ˜H1= avg c (γ) · avg c ( ˙γ) + λL 2D s γ · D s ˙γ ds = constant.100


• L<strong>in</strong>ear momentum: avg c ( ˙γ) is constant, s<strong>in</strong>ce, for all ξ ∈ lR n ,〈ξ, ˙γ〉 ˜H1= ξ · avg c ( ˙γ) = constant;s<strong>in</strong>ce ξ is arbitrary, this means that avg c ( ˙γ) is constant <strong>in</strong> t.• Angular momentum: for any antisymmetric matrix B ∈ lR n×n ,∫〈Bγ, ˙γ〉 ˜H1= (Bavg c (γ)) · avg c ( ˙γ) + λL 2 (BD s γ) · (D s ˙γ) ds = constant.• Reparameterization momentum: for any scalar field ξ : S 1 → lR, sett<strong>in</strong>gζ(θ, t) = ξ(θ)γ ′ (θ, t)we get∫〈ζ, ˙γ〉 ˜H1= avg c (ξγ ′ ) · avg c ( ˙γ) + λL 2D s (ξγ ′ ) · D s ˙γ = constant;<strong>in</strong>tegrat<strong>in</strong>g by parts,avg c (ξγ ′ ) · avg c ( ˙γ) − λL 2 ∫(ξγ ′ ) · D ss ˙γ = constant;s<strong>in</strong>ce ξ is arbitrary, this means thatis constant <strong>in</strong> t, for any θ ∈ S 1 .Contentsγ ′ · avg c ( ˙γ) − λL 2 γ ′ · D ss ˙γ1 Shapes & <strong>curves</strong> 21.1 Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Geometric <strong>curves</strong> <strong>and</strong> functionals . . . . . . . . . . . . . . . . . 41.4 Curve–related quantities . . . . . . . . . . . . . . . . . . . . . . . 51.4.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Shapes <strong>in</strong> applications 72.1 Shape <strong>analysis</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.1 Shape distances . . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 Shape averages . . . . . . . . . . . . . . . . . . . . . . . . 92.1.3 Pr<strong>in</strong>cipal component <strong>analysis</strong> (PCA) . . . . . . . . . . . . 92.2 Shape <strong>optimization</strong> & active contours . . . . . . . . . . . . . . . 112.2.1 A short history <strong>of</strong> active contours . . . . . . . . . . . . . . 112.2.2 Energies <strong>in</strong> computer vision . . . . . . . . . . . . . . . . . 12101


2.2.3 Examples <strong>of</strong> geometric energy functionals for segmentation 122.3 Geodesic active contour method . . . . . . . . . . . . . . . . . . . 132.3.1 The “geodesic active contour” paradigm . . . . . . . . . . 132.3.2 Example: geodesic active contour edge model . . . . . . . 132.3.3 Implicit assumption <strong>of</strong> H 0 <strong>in</strong>ner product . . . . . . . . . . 142.4 Problems & goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.4.1 Example: geometric heat flow . . . . . . . . . . . . . . . . 152.4.2 Short length bias . . . . . . . . . . . . . . . . . . . . . . . 152.4.3 Average weighted length . . . . . . . . . . . . . . . . . . . 162.4.4 Flow computations . . . . . . . . . . . . . . . . . . . . . . 162.4.5 Centroid energy . . . . . . . . . . . . . . . . . . . . . . . 172.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Basic mathematical notions 203.1 Distance <strong>and</strong> metric space . . . . . . . . . . . . . . . . . . . . . . 203.1.1 Metric space . . . . . . . . . . . . . . . . . . . . . . . . . 213.2 Banach, Hilbert <strong>and</strong> Fréchet spaces . . . . . . . . . . . . . . . . . 213.2.1 Examples <strong>of</strong> spaces <strong>of</strong> functions . . . . . . . . . . . . . . . 223.2.2 Fréchet space . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3 More examples <strong>of</strong> spaces <strong>of</strong> functions . . . . . . . . . . . . 233.2.4 Dual spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.5 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.6 Troubles <strong>in</strong> calculus . . . . . . . . . . . . . . . . . . . . . 253.3 Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3.1 Submanifold . . . . . . . . . . . . . . . . . . . . . . . . . 263.4 Tangent space <strong>and</strong> tangent bundle . . . . . . . . . . . . . . . . . 263.5 Fréchet Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.6 Riemann & F<strong>in</strong>sler geometry . . . . . . . . . . . . . . . . . . . . 273.6.1 Riemann metric, length . . . . . . . . . . . . . . . . . . . 283.6.2 F<strong>in</strong>sler metric, length . . . . . . . . . . . . . . . . . . . . 283.6.3 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.6.4 M<strong>in</strong>imal geodesics . . . . . . . . . . . . . . . . . . . . . . 293.6.5 Exponential map . . . . . . . . . . . . . . . . . . . . . . . 293.6.6 Hopf–R<strong>in</strong>ow theorem . . . . . . . . . . . . . . . . . . . . . 303.6.7 Drawbacks <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimensions . . . . . . . . . . . . . . 303.7 Gradient <strong>in</strong> abstract differentiable manifold . . . . . . . . . . . . 313.8 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.8.1 Distances <strong>and</strong> groups . . . . . . . . . . . . . . . . . . . . 334 Spaces <strong>and</strong> metrics <strong>of</strong> <strong>curves</strong> 334.1 Classes <strong>of</strong> <strong>curves</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.2 Gâteaux differentials <strong>in</strong> the space <strong>of</strong> immersed <strong>curves</strong> . . . . . . . 354.3 Group actions on <strong>curves</strong> . . . . . . . . . . . . . . . . . . . . . . . 374.4 Two categories <strong>of</strong> <strong>shape</strong> spaces . . . . . . . . . . . . . . . . . . . 374.5 Geometric <strong>curves</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.5.1 Research path . . . . . . . . . . . . . . . . . . . . . . . . . 38102


4.6 Goals (revisited) . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.6.1 Well posedness . . . . . . . . . . . . . . . . . . . . . . . . 394.6.2 Are the goal properties consistent? . . . . . . . . . . . . . 395 Representation/embedd<strong>in</strong>g/quotient <strong>in</strong> the current literature 405.1 The representation/embedd<strong>in</strong>g/quotient paradigm . . . . . . . . 405.2 Current literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 <strong>Metrics</strong> <strong>of</strong> sets 416.1 Some more math on distance <strong>and</strong> geodesics . . . . . . . . . . . . 416.1.1 Length <strong>in</strong>duced by a distance . . . . . . . . . . . . . . . . 426.1.2 M<strong>in</strong>imal geodesics . . . . . . . . . . . . . . . . . . . . . . 426.1.3 Existence <strong>of</strong> geodesics <strong>and</strong> <strong>of</strong> average . . . . . . . . . . . . 426.1.4 Geodesic rays . . . . . . . . . . . . . . . . . . . . . . . . . 436.1.5 Hopf–R<strong>in</strong>ow , Cohn-Vossen Theorem . . . . . . . . . . . . 436.2 Hausdorff metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 436.2.1 An alternative def<strong>in</strong>ition . . . . . . . . . . . . . . . . . . . 446.2.2 Uncountable many geodesics . . . . . . . . . . . . . . . . 456.2.3 Curves <strong>and</strong> connected sets . . . . . . . . . . . . . . . . . . 456.2.4 Applications <strong>in</strong> computer vision . . . . . . . . . . . . . . . 466.3 A Hausdorff-like distance <strong>of</strong> compact sets . . . . . . . . . . . . . 466.3.1 Analogy with the Hausdorff metric, L p vs L ∞ . . . . . . 466.3.2 Cont<strong>in</strong>gent cone . . . . . . . . . . . . . . . . . . . . . . . 476.3.3 Riemannian metric . . . . . . . . . . . . . . . . . . . . . . 486.3.4 Polar coord<strong>in</strong>ates <strong>of</strong> smooth convex sets . . . . . . . . . . 486.3.5 Smooth deformations <strong>of</strong> a convex set . . . . . . . . . . . . 496.3.6 Pullback <strong>of</strong> the metric on convex boundaries . . . . . . . 496.3.7 Pullback <strong>of</strong> the metric on smooth contours . . . . . . . . 506.3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 507 F<strong>in</strong>sler geometries <strong>of</strong> <strong>curves</strong> 517.1 Tangent <strong>and</strong> normal . . . . . . . . . . . . . . . . . . . . . . . . . 517.2 L ∞ metric <strong>and</strong> Fréchet distance . . . . . . . . . . . . . . . . . . . 517.3 L 1 metric <strong>and</strong> Plateau problem . . . . . . . . . . . . . . . . . . . 528 Riemannian metrics <strong>of</strong> <strong>curves</strong> up to pose 528.1 Shape Representation us<strong>in</strong>g direction functions . . . . . . . . . . 528.1.1 Multiple measurable representations . . . . . . . . . . . . 548.1.2 Cont<strong>in</strong>uous vs measurable lift<strong>in</strong>g — no w<strong>in</strong>d<strong>in</strong>g . . . . . . 558.2 A metric with explicit geodesics . . . . . . . . . . . . . . . . . . . 568.2.1 Curves up to rotation ↔ Grassmanian . . . . . . . . . . . 578.2.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . 588.2.3 Quotient w.r.to representation . . . . . . . . . . . . . . . 58103


9 Riemannian metrics <strong>of</strong> immersed <strong>curves</strong> 589.1 H 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599.2 H A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599.3 Conformal metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 609.4 “Rigidified” norms . . . . . . . . . . . . . . . . . . . . . . . . . . 6010 Sobolev type Riemannian metrics 6010.1 Sobolev-type metrics . . . . . . . . . . . . . . . . . . . . . . . . . 6110.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 6210.1.2 Properties <strong>of</strong> H j metrics . . . . . . . . . . . . . . . . . . . 6210.2 Mathematical properties . . . . . . . . . . . . . . . . . . . . . . 6210.3 Sobolev metrics <strong>in</strong> <strong>shape</strong> <strong>optimization</strong> . . . . . . . . . . . . . . . 6310.3.1 Smooth<strong>in</strong>g <strong>of</strong> gradients, coarse-to-f<strong>in</strong>e flow<strong>in</strong>g . . . . . . . 6510.3.2 Flow regularization . . . . . . . . . . . . . . . . . . . . . . 6610.4 ˜H j is faster than H j . . . . . . . . . . . . . . . . . . . . . . . . . 6710.5 Analysis <strong>and</strong> calculus <strong>of</strong> ˜H 1 gradients . . . . . . . . . . . . . . . 6810.6 Existence <strong>of</strong> gradient flows . . . . . . . . . . . . . . . . . . . . . . 7210.6.1 Lemmas <strong>and</strong> <strong>in</strong>equalities . . . . . . . . . . . . . . . . . . . 7310.6.2 Existence <strong>of</strong> flow for the centroid energy (2.9) . . . . . . . 7710.6.3 Existence <strong>of</strong> flow for geodesic active contour . . . . . . . . 8210.7 Regularization <strong>of</strong> energy vs regularization <strong>of</strong> flow/metric . . . . . 8310.7.1 Robustness w.r.to local m<strong>in</strong>ima due to noise . . . . . . . 8410.8 New <strong>shape</strong> <strong>optimization</strong> energies . . . . . . . . . . . . . . . . . . 8510.8.1 Average weighted length . . . . . . . . . . . . . . . . . . . 8510.8.2 New edge-based active contour models . . . . . . . . . . . 8610.9 New regularization methods . . . . . . . . . . . . . . . . . . . . . 8810.9.1 Elastic regularization . . . . . . . . . . . . . . . . . . . . . 8811 Mathematical properties <strong>of</strong> the Riemannian space <strong>of</strong> <strong>curves</strong> 8911.1 Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8911.2 Reparameterization to normal motion . . . . . . . . . . . . . . . 9011.3 The H 0 distance is degenerate . . . . . . . . . . . . . . . . . . . 9111.4 Existence <strong>of</strong> critical geodesics for H j . . . . . . . . . . . . . . . . 9211.5 Parameterization <strong>in</strong>variance . . . . . . . . . . . . . . . . . . . . . 9211.6 St<strong>and</strong>ard <strong>and</strong> geometric distance . . . . . . . . . . . . . . . . . . 9311.7 Horizontal <strong>and</strong> vertical space . . . . . . . . . . . . . . . . . . . . 9311.8 From curve-wise parameterization to homotopy-wise . . . . . . . . 9411.8.1 Horizontal G ⊥ as length m<strong>in</strong>imizer . . . . . . . . . . . . . 9611.9 A geometric gradient flow is horizontal . . . . . . . . . . . . . . . 9711.10Horizontality accord<strong>in</strong>g to H 0 . . . . . . . . . . . . . . . . . . . . 9711.11Horizontality accord<strong>in</strong>g to H j . . . . . . . . . . . . . . . . . . . . 9811.12Horizontality is for any group action . . . . . . . . . . . . . . . . 9811.13Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9911.13.1 Conservation <strong>of</strong> momenta . . . . . . . . . . . . . . . . . . 99104


IndexC 0 , 73, 78, 82C 1 , 24, 73, 78, 82C 1 curve, 3C 1 functional between Fréchet spaces,24C 2 regular <strong>curves</strong>, 6C ∞ (I → lR n ), 24C j (I → lR n ), 23C 1,1loc , 82D s , 5, 61H 0 , 14–19, 58–61, 88, 91alternative def<strong>in</strong>ition, 61, 62, 64,66–68, 83–86, 88Hψ 0, 60H j , 61H j (I → lR n ), 23L ∞ metric, 51M/Diff(S 1 ), 4, 5, 41, 89, 93, 98O c , 94S 1 , 3, 33δ 0 , 32, 70˙γ(v) := ∂ v γ(v), 28∂ s , 5Diff(S 1 ), 4, 27, 37, 38, 41, 89, 93Emb(S 1 , lR n ), 34, 34Imm(S 1 , lR n ), 34, 34, 38, 62, 89Imm f (S 1 , lR n ), 34, 34, 38˜H j , 61b A , 8c ′ (θ) := ∂ θ c(θ), 3, 5d g (x, y), 54i-th mode <strong>of</strong> pr<strong>in</strong>cipal variation, 10u A , 8G acts on M, 32abstract differentiablemanifold, 25action, 4, 28, 91<strong>of</strong> a group on a distance, 33<strong>of</strong> a group on a space, 32<strong>of</strong> a group on the space <strong>of</strong> <strong>curves</strong>,37<strong>of</strong> a group on the space <strong>of</strong> <strong>curves</strong>,<strong>and</strong> momenta, 100<strong>of</strong> path <strong>in</strong> a metric, 29active contour, 11–15, 18, 19, 59, 66,73, 82, 85, 86, 88, 90arc parameter, 5arc-parameterized convolutional kernel,64arithmetic mean, 9asymmetric, 22asymmetric distance, 20atlas, 25, 39average <strong>in</strong>tegral, 6average <strong>shape</strong>, 9, 42average weighted length, 16, 85, 86avg, 6B, see M/Diff(S 1 )balloon model, 87Banach space, 22, 23, 78C 0 , C 1 , 73, 78, 82boundary based energies, 12Cartan, 31Cauchy–Lipschitz theorem, 78, 82center <strong>of</strong> mass, 17, 68, 70, 80centroid, 17, 68, 80centroid energy, 17, 70, 73, 76, 77Chan-Vese, 12, 18, 83, 84change <strong>of</strong> coord<strong>in</strong>atespolar, 48chart, 26charts, 25classes <strong>of</strong> <strong>curves</strong>, 34(simplified def<strong>in</strong>itions), 3closed <strong>curves</strong>, 3Cohn-Vossen, 43Comparison pr<strong>in</strong>ciple, 15complete, 21, 23computer vision, 2, 5, 12, 37, 46, 90conformal metric, 58, 60consistent, 62cont<strong>in</strong>gent cone , 47105


contour cont<strong>in</strong>uation, 11convolution by arc parameter, 64convolutional kernel, 64cotangent space T ∗ c M, 31critical geodesic, 29, 30curvature, 6, 59<strong>in</strong> BV, 59Gâteaux differential <strong>of</strong> —, 36<strong>in</strong> L 2 , 63mean —, 6sectional —, 31signed scalar —, 6, 48, 59curve, 34classes <strong>of</strong>, 34embedded, 34freely immersed, 34image <strong>of</strong> a —, 3, 8, 34, 45immersed, 3, 34manifold <strong>of</strong> —, 3planar —, 3curve-wise parameterization <strong>in</strong>variant,92, 95, 96<strong>curves</strong>up to pose, 52cutlocus, 50de la Vallée-Pouss<strong>in</strong>, 70, 71degenerate, 91derivation with respect to the arc parameter,5, 61, 69diffeomorphism, 4, 26differentiable manifoldabstract, 25submanifold, 26dimension, 25Dirac’s delta, 32, 70directional derivative, 13, 17, 26, 31distance, 20, 28distance function, 8, 43, 46distance-based average, 9, 42distribution, 24, 32doubly traversed circle, 34dual space, 24edge detection, 11edge-based, 11, 12, 15, 86, 87Eells, 30elastic regularization, 86elastica energy, 36, 66, 86, 88Elworthy, 30embedded <strong>curves</strong>, 34embedd<strong>in</strong>g theorems, 26Emmy Noether, 99empirical pr<strong>in</strong>cipal component <strong>analysis</strong>,10energy, 5, 28<strong>of</strong> a path, 28equivalence classes, 4equivalence relation, 32Euclide<strong>and</strong>istance, 21<strong>in</strong>variance, 39, 61Euclidean group, 37, 100Euclidean norm, 5evaluation functional, 32exponential map, 10, 29external skeleton, 50fattened set, 44F<strong>in</strong>sler metric, 28Fréchet mean, 9, 42Fréchet distance, 51, 63Fréchet manifolds, 27Fréchet space, 23, 24freely immersed curve, 34Gâteaux differentiable, 24, 31Gâteaux differential, 13, 15, 16, 24, 35,70<strong>of</strong> the curvature, 36<strong>of</strong> the elastica energy, 36<strong>of</strong> the length, 78Gaussian, 13geodesic active contour, 12, 71–73, 82geodesic distance, 54geodesic ray, 43geometric, 4, 61geometric active contour, 19geometric <strong>curves</strong>, 4, 38geometric distance, 93geometric energy, 97geometric evolution, 11106


geometric functional, 4, 5geometric heat flow, 15, 16, 86geometric oriented <strong>curves</strong>, 4gradient ∇E(c), 31gradient descentfor curve length, 15gradient descent flow, 11, 13, 72Grassmanian manifold, 57group action, 32, 99on <strong>curves</strong>, 37group operation, 4Hadamard, 31Hausdorff, 23Hausdorff distance, 8, 44heat equation, 15Hilbert space, 22homeomorphism, 20, 25homotopy, 3homotopy-wise parameterization <strong>in</strong>variant,93, 95Hopf, 30, 43, 44horizontal projection, 94horizontal space, 94, 97horizontality, 92horizontally projected metric, 95ill-posed, 16, 17, 19, 85, 86, 88imageblack <strong>and</strong> white —, 12<strong>of</strong> a curve, 3, 8, 34, 45segmentation, 11smooth <strong>and</strong> featureless, 15synthetic noisy, 83immersed curve, 3immersed <strong>curves</strong>, 34implicit function theorem, 26<strong>in</strong>duced geodesic distance, 42<strong>in</strong>flationary term, 15<strong>in</strong>tegral length, 28, 42<strong>in</strong>tegration by arc parameter, 6, 12<strong>in</strong>varianceEuclidean, 39, 61parameterization, see “reparameterization<strong>in</strong>variant”rescal<strong>in</strong>g, 39, 61rotation, 39, 61translation, 39, 61<strong>in</strong>variant w.r.to the action <strong>of</strong> the group,33Karcher mean, 9, 42Karhunen-Loève theorem, 10kernel, 64l.c.t.v.s., 22, 24–26l<strong>and</strong>mark, 9Lebesgue measure, 22length, 5, 28, 42length <strong>in</strong>creas<strong>in</strong>g, 87length shr<strong>in</strong>k<strong>in</strong>g effect, 15level set, 46level set averag<strong>in</strong>g, 9level set method, 11, 12, 15, 19, 65, 90,98Lie algebra, 99Lie groups, 99lif<strong>in</strong>g lemma, 97for H 0 , 90locally compact, 43locally-convex topological vector space,22M, 3manifold <strong>of</strong> (parametric) <strong>curves</strong>, 3matrix, 37, 48antisymmetric, 100, 101orthogonal, 37, 100mean curvature, 6measurable lift<strong>in</strong>g, 54measurable representation, 54metric space, 21metrizable, 23m<strong>in</strong>imal geodesic, 29, 42momentum, 100angular, 101l<strong>in</strong>ear, 101motion by mean curvature, 15neighborhood, 30, 55, 78, 84, 89Noether, Emmy, 99norm, 21, 28107


normal vector, 6objective function, 5open sets, 20operator, 35orbit, 32, 94orthogonaldecomposition <strong>of</strong> deformation, 68parameterization<strong>in</strong>variance, see “reparameterization<strong>in</strong>variant”curve-wise, 92, 93homotopy-wise, 93parametric or l<strong>and</strong>mark averag<strong>in</strong>g, 9path-metric, 42, 43pathological, 18, 91paths, 3PCA, 9Picard–L<strong>in</strong>delöf theorem, 78planar <strong>curves</strong>, 3polar change <strong>of</strong> coord<strong>in</strong>ates, 48pose, 52pre<strong>shape</strong> space, 38, 53primitive operator, 69pr<strong>in</strong>cipal component <strong>analysis</strong>, 9, 30pr<strong>in</strong>cipal variation, 10prior <strong>in</strong>formation, 18probability measure, 7, 32projection, 32projection operator, 69, 74quotient, 32quotient distance ˆd, 55quotient space, 4r<strong>and</strong>om processes, 10r<strong>and</strong>om vector, 9region based energies, 12region-based, 11, 12, 83remov<strong>in</strong>g, 47reparameterization, 4, 100reparameterization <strong>in</strong>variant, 4, 6, 36,37, 39, 61, 92, 95–97rescal<strong>in</strong>g, 37, 82, 86, 100<strong>in</strong>variance, 39, 61Riemannian metric, 28rigidified norm, 60rigidified norms, 58R<strong>in</strong>ow, 30, 43, 44rotation, 37, 100<strong>in</strong>variance, 39, 61rotation <strong>in</strong>dex, 53run-length function, 64, 75SAC, 61scalar product, 5, 28scale <strong>in</strong>variant, 61, 86, 88segmentation, 83semidistance, 20, 93semimetric, 93sem<strong>in</strong>orm, 22, 93set symmetric difference, 8set symmetric distance, 8<strong>shape</strong>, 18<strong>shape</strong> <strong>analysis</strong>, 3, 7, 62<strong>shape</strong> <strong>optimization</strong>, 2, 19, 62<strong>shape</strong> space, 2, 37, 40, 41, 46<strong>of</strong> <strong>curves</strong> up to pose, 52categories <strong>of</strong> —, 37shoot<strong>in</strong>g geodesics, 29short length bias, 15, 85signed distance function, 8signed distance level set averag<strong>in</strong>g, 9signed scalar curvature, 6smooth functions, 24Sobolev active contour, 61Sobolev space, 23, 92Sobolev-type metrics, 61space <strong>of</strong> non-translat<strong>in</strong>g deformations,68space <strong>of</strong> translations, 68special rotation, 37square root lift<strong>in</strong>g, 57st<strong>and</strong>ard distance, 93Stiefel manifold, 57stochastic processes, 10submanifold, 26supess, 22tangent bundle, 26tangent space, 3, 26108


tangent vector, 5topological hyperspace, 43topological space, 20topology, 20total variation length, 42translation, 37, 100<strong>in</strong>variance, 39, 61up to pose, 52vertical space, 94visual track<strong>in</strong>g, 62, 86w<strong>in</strong>d<strong>in</strong>g number, 53109


References[1] Luigi Ambrosio, Giuseppe Da Prato, <strong>and</strong> <strong>Andrea</strong> Mennucci. An <strong>in</strong>troductionto measure theory <strong>and</strong> probability. Scuola Normale Superiore, 2007. URLhttp//dida.sns.it/dida2/cl/07-08/folde2/pdf0.[2] T. M. Apostol. Mathematical Analysis. Addison - Wesley, 1974.[3] C. J. Atk<strong>in</strong>. The Hopf-R<strong>in</strong>ow theorem is false <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimensions. Bull.London Math. Soc., 7(3):261–266, 1975.[4] H. Brezis. Analisi Funzionale. Liguori Editore, Napoli, 1986. (italiantranslation <strong>of</strong> Analyse fonctionelle, Masson, 1983, Paris).[5] J Canny. A computational approach to edge detection. IEEE Trans. PatternAnal. Mach. Intell., 8(6):679–698, 1986. ISSN 0162-8828.[6] V. Caselles, F. Catte, T. Coll, <strong>and</strong> F. Dibos. A geometric model for edgedetection. Num. Mathematik, 66:1–31, 1993.[7] V. Caselles, R. Kimmel, <strong>and</strong> G. Sapiro. Geodesic active contours. InProceed<strong>in</strong>gs <strong>of</strong> the IEEE Int. Conf. on Computer Vision, pages 694–699,Cambridge, MA, USA, June 1995.[8] T. Chan <strong>and</strong> L. Vese. Active contours without edges. IEEE Transactionson Image Process<strong>in</strong>g, 10(2):266–277, February 2001.[9] G. Charpiat, O. Faugeras, <strong>and</strong> R. Keriven. Approximations <strong>of</strong> <strong>shape</strong> metrics<strong>and</strong> application to <strong>shape</strong> warp<strong>in</strong>g <strong>and</strong> empirical <strong>shape</strong> statistics. Foundations<strong>of</strong> Computational Mathematics, 2004. doi: 10.1007/s10208-003-0094-xgg819.INRIA report 4820 (2003).[10] G. Charpiat, R. Keriven, J.P. Pons, <strong>and</strong> O. Faugeras. Design<strong>in</strong>g spatiallycoherent m<strong>in</strong>imiz<strong>in</strong>g flows for variational problems based on active contours.In ICCV, 2005. doi: 10.1109/ICCV.2005.69.[11] G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven, <strong>and</strong> O. Faugeras. Generalizedgradients: Priors on m<strong>in</strong>imization flows. International Journal <strong>of</strong> ComputerVision, 2007. doi: 10.1007/s11263-006-9966-2.[12] Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gop<strong>in</strong>ath,R. Briggs, <strong>and</strong> E. Geiser. Us<strong>in</strong>g prior <strong>shape</strong>s <strong>in</strong> geometric active contours<strong>in</strong> a variational framework. International Journal <strong>of</strong> Computer Vision, 50(3):315–328, Dec 2002.[13] D. Cremers <strong>and</strong> S. Soatto. A pseuso distance for <strong>shape</strong> priors <strong>in</strong> level setsegmentation. In IEEE Int. Workshop on Variational, Geometric <strong>and</strong> LevelSet Methods, pages 169–176, 2003.[14] Manfredo Perdigão do Carmo. Riemannian Geometry. Birkhäuser, 1992.110


[15] Aless<strong>and</strong>ro Duci <strong>and</strong> <strong>Andrea</strong> Mennucci. Banach-like metrics <strong>and</strong> metrics <strong>of</strong>compact sets. 2007.[16] Aless<strong>and</strong>ro Duci, Anthony J. Yezzi, Sanjoy K. Mitter, <strong>and</strong> Stefano Soatto.Shape representation via harmonic embedd<strong>in</strong>g. In International Conferenceon Computer Vision (ICCV03), volume 1, pages 656 – 662, Wash<strong>in</strong>gton,DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1950-4. doi: 10.1109/ICCV.2003.1238410.[17] Aless<strong>and</strong>ro Duci, Anthony J. Yezzi, Stefano Soatto, <strong>and</strong> Kelv<strong>in</strong> Rocha.Harmonic embedd<strong>in</strong>gs for l<strong>in</strong>ear <strong>shape</strong>. J. Math Imag<strong>in</strong>g Vis, 25:341–352,2006. doi: 10.1007/s10851-006-7249-8.[18] J. Eells <strong>and</strong> K. D. Elworthy. Open embedd<strong>in</strong>gs <strong>of</strong> certa<strong>in</strong> Banach manifolds.Ann. <strong>of</strong> Math. (2), 91:465–485, 1970.[19] Ivar Ekel<strong>and</strong>. The Hopf-R<strong>in</strong>ow theorem <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimension. J. DifferentialGeom, 13(2):287–301, 1978.[20] A.T: Fomenko. The Plateau problem. Studies <strong>in</strong> the development <strong>of</strong> modernmathematics. Gordon <strong>and</strong> Breach, 1990.[21] M. Gage <strong>and</strong> R. S. Hamilton. The heat equation shr<strong>in</strong>k<strong>in</strong>g convex plane<strong>curves</strong>. Journal <strong>of</strong> Differential Geometry, (23):69–96, 1986.[22] Joan Glaunès, Ala<strong>in</strong> Trouvé, <strong>and</strong> Laurent Younes. Model<strong>in</strong>g planar <strong>shape</strong>variation via Hamiltonian flows <strong>of</strong> <strong>curves</strong>. In Anthony Yezzi <strong>and</strong> HamidKrim, editors, Analysis <strong>and</strong> Statistics <strong>of</strong> Shapes, Model<strong>in</strong>g <strong>and</strong> Simulation<strong>in</strong> Science, Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Technology, chapter 14. Birkhäuser - Spr<strong>in</strong>ger -Verlag, 2005.[23] M. Grayson. The heat equation shr<strong>in</strong>ks embedded planes <strong>curves</strong> to roundpo<strong>in</strong>ts. J. Differential Geometry, (26):285–314, 1987.[24] Richard S. Hamilton. The <strong>in</strong>verse function theorem <strong>of</strong> Nash <strong>and</strong> Moser.Bull. Amer. Math. Soc. (N.S.), 7(1):65–222, 1982. ISSN 0273-0979.[25] J. Itoh <strong>and</strong> M. Tanaka. The Lipschitz cont<strong>in</strong>uity <strong>of</strong> the distance functionto the cut locus. Trans. A.M.S., 353(1):21–40, 2000.[26] M. Kass, A. Witk<strong>in</strong>, <strong>and</strong> D. Terzopoulos. Snakes: Active contour models.International Journal <strong>of</strong> Computer Vision, 1:321–331, 1987.[27] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, <strong>and</strong> A. Yezzi.Gradient flows <strong>and</strong> geometric active contour models. In Proceed<strong>in</strong>gs <strong>of</strong> theIEEE Int. Conf. on Computer Vision, pages 810–815, 1995.[28] Eric Klassen, Anuj Srivastava, Wash<strong>in</strong>gton Mio, <strong>and</strong> Shantanu Joshi. Analysis<strong>of</strong> planar <strong>shape</strong>s us<strong>in</strong>g geodesic paths on <strong>shape</strong> spaces. 2003.[29] Wilhelm Kl<strong>in</strong>genberg. Riemannian Geometry. W. de Gruyter, Berl<strong>in</strong>, 1982.111


[30] Serge Lang. Fundamentals <strong>of</strong> differential geometry. Spr<strong>in</strong>ger–Verlag, 1999.[31] M. Leventon, E. Grimson, <strong>and</strong> O. Faugeras. Statistical <strong>shape</strong> <strong>in</strong>fluence <strong>in</strong>geodesic active contours. In IEEE Conf. on Comp. Vision <strong>and</strong> Patt. Recog.,volume 1, pages 316–323, 2000.[32] YanYan Li <strong>and</strong> Louis Nirenberg. The distance function to the boundary,F<strong>in</strong>sler geometry <strong>and</strong> the s<strong>in</strong>gular set <strong>of</strong> viscosity solutions <strong>of</strong> some Hamilton-Jacobi equations. Comm. Pure Appl. Math., LVIII, 2005. (first received as apersonal communication <strong>in</strong> June 2003).[33] R. Malladi, J. Sethian, <strong>and</strong> B. Vemuri. Shape model<strong>in</strong>g with front propagation:a level set approach. IEEE Transactions on Pattern Analysis <strong>and</strong>Mach<strong>in</strong>e Intelligence, (17):158–175, 1995.[34] A. C. G. Mennucci. On asymmetric distances. 2nd version, prepr<strong>in</strong>t, 2004.URL http://cvgmt.sns.it/papers/<strong>and</strong>04/.[35] <strong>Andrea</strong> Mennucci, Anthony Yezzi, <strong>and</strong> Ganesh Sundaramoorthi. Properties<strong>of</strong> Sobolev Active Contours. Interf. Free Bound., 10:423–445, 2008.[36] Peter W. Michor <strong>and</strong> David Mumford. An overview <strong>of</strong> the Riemannian metricson spaces <strong>of</strong> <strong>curves</strong> us<strong>in</strong>g the Hamiltonian approach. Applied <strong>and</strong> ComputationalHarmonic Analysis, 2007. doi: 10.1016/j.acha.2006.07.004. URLhttp://www.mat.univie.ac.at/~michor/<strong>curves</strong>-hamiltonian.pdf.[37] Peter W. Michor <strong>and</strong> David Mumford. Riemannian geometris <strong>of</strong> space <strong>of</strong>plane <strong>curves</strong>. J. Eur. Math. Soc. (JEMS), 8:1–48, 2006.[38] Peter W. Michor <strong>and</strong> David Mumford. Vanish<strong>in</strong>g geodesic distance onspaces <strong>of</strong> submanifolds <strong>and</strong> diffeomorphisms. Documenta Math., 10:217–245,2005. URL http://www.univie.ac.at/EMIS/journals/DMJDMV/vol-10/05.pdf.[39] Peter W. Michor, David Mumford, Jayant Shah, <strong>and</strong> Laurent Younes. Ametric on <strong>shape</strong> space with explicit geodesics. Atti Accad. Naz. L<strong>in</strong>cei Cl.Sci. Fis. Mat. Natur. Rend. L<strong>in</strong>cei, 9, 2008.[40] Wash<strong>in</strong>gton Mio <strong>and</strong> Anuj Srivastava. Elastic-str<strong>in</strong>g models for representation<strong>and</strong> <strong>analysis</strong> <strong>of</strong> planar <strong>shape</strong>s. In CVPR (2), pages 10–15, 2004.[41] Wash<strong>in</strong>gton Mio <strong>and</strong> Anuj Srivastava. Elastic-str<strong>in</strong>g models for representation<strong>and</strong> <strong>analysis</strong> <strong>of</strong> planar <strong>shape</strong>s. In Conference on Computer Vision<strong>and</strong> Pattern Recognition (CVPR), June 2004. URL http://stat.fsu.edu/~anuj/pdf/papers/CVPR_Paper_04.pdf.[42] D. Mumford <strong>and</strong> J. Shah. Boundary detection by m<strong>in</strong>imiz<strong>in</strong>g functionals.In Proc. IEEE Conf. Computer Vision Pattern Recognition, 1985.112


[43] D. Mumford <strong>and</strong> J. Shah. Optimal approximations by piecewise smoothfunctions <strong>and</strong> associated variational problems. Comm. Pure Appl. Math.,42:577–685, 1989.[44] S. Osher <strong>and</strong> J. Sethian. Fronts propagat<strong>in</strong>g with curvature-dependent speed:algorithms based on the Hamilton-Jacobi equations. J. Comp. Physics, 79:12–49, 1988.[45] T. R. Raviv, N. Kiryati, <strong>and</strong> N. Sochen. Unlevel-set: Geometry <strong>and</strong> priorbasedsegmentation. In Proc. European Conf. on Computer Vision, 2004.[46] Remi Ronfard. Region based strategies for active contour models. InternationalJournal <strong>of</strong> Computer Vision, 13(2):229–251, October 1994. URLhttp://perception.<strong>in</strong>rialpes.fr/Publications/1994/Ron94.[47] M. Rousson <strong>and</strong> N. Paragios. Shape priors for level set representations. InProc. European Conf. Computer Vision, volume 2, pages 78–93, 2002.[48] Walter Rud<strong>in</strong>. Functional <strong>analysis</strong>. McGraw–Hill, 1973.[49] Walter Rud<strong>in</strong>. Real <strong>and</strong> complex <strong>analysis</strong>. McGraw–Hill, 1987.[50] J. Shah. H 0 type Riemannian metrics on the space <strong>of</strong> planar <strong>curves</strong>.Quarterly <strong>of</strong> Applied Mathematics, 66:123–137, 2008.[51] Stefano Soatto <strong>and</strong> Anthony J. Yezzi. DEFORMOTION: Deform<strong>in</strong>g motion,<strong>shape</strong> average <strong>and</strong> the jo<strong>in</strong>t registration <strong>and</strong> segmentation <strong>of</strong> images. InECCV (3), pages 32–57, 2002.[52] Anuj Srivastava, Shantanu Joshi, Wash<strong>in</strong>gton Mio, <strong>and</strong> Xiuwen Liu. Statistical<strong>shape</strong> <strong>analysis</strong>: Cluster<strong>in</strong>g, learn<strong>in</strong>g, <strong>and</strong> test<strong>in</strong>g. 2004.[53] Ganesh Sundaramoorthi, Anthony Yezzi, <strong>and</strong> <strong>Andrea</strong> Mennucci. Sobolevactive contours. In Nikos Paragios, Olivier D. Faugeras, Tony Chan, <strong>and</strong>Christoph Schnörr, editors, VLSM, volume 3752 <strong>of</strong> Lecture Notes <strong>in</strong> ComputerScience, pages 109–120. Spr<strong>in</strong>ger, 2005. ISBN 3-540-29348-5. doi:10.1007/11567646_10.[54] Ganesh Sundaramoorthi, Jeremy D. Jackson, Anthony Yezzi, <strong>and</strong> <strong>Andrea</strong>Mennucci. Track<strong>in</strong>g with Sobolev active contours. In Conference on ComputerVision <strong>and</strong> Pattern Recognition (CVPR06). IEEE Computer Society,2006. ISBN 0-7695-2372-2. doi: 10.1109/CVPR.2006.314.[55] Ganesh Sundaramoorthi, Anthony Yezzi, <strong>and</strong> <strong>Andrea</strong> Mennucci. Sobolevactive contours. Intn. Journ. Computer Vision, 2007. doi: 10.1007/s11263-006-0635-2.[56] Ganesh Sundaramoorthi, Anthony Yezzi, <strong>Andrea</strong> Mennucci, <strong>and</strong> GuillermoSapiro. New possibilities with Sobolev active contours. In Scale SpaceVariational Methods 07, 2007. URL http://ssvm07.ciram.unibo.it/ssvm07_public/<strong>in</strong>dex.html. "Best Numerical Paper-Project Award" ; also[58].113


[57] Ganesh Sundaramoorthi, Anthony Yezzi, <strong>and</strong> <strong>Andrea</strong> Mennucci. Coarseto-f<strong>in</strong>esegmentation <strong>and</strong> track<strong>in</strong>g us<strong>in</strong>g Sobolev Active Contours. IEEETransactions on Pattern Analysis <strong>and</strong> Mach<strong>in</strong>e Intelligence (TPAMI), 2008.doi: 10.1109/TPAMI.2007.70751.[58] Ganesh Sundaramoorthi, Anthony Yezzi, <strong>Andrea</strong> Mennucci, <strong>and</strong> GuillermoSapiro. New possibilities with Sobolev active contours. Intn. Journ. ComputerVision, 2008. doi: 10.1007/s11263-008-0133-9.[59] Ala<strong>in</strong> Trouvé <strong>and</strong> Laurent Younes. Local geometry <strong>of</strong> deformable templates.SIAM J. Math. Anal., 37(1):17–59 (electronic), 2005. ISSN 0036-1410.[60] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, E. Grimson, <strong>and</strong>A. Willsky. Model-based curve evolution technique for image segmentation.In Proc. <strong>of</strong> IEEE Conf. on Computer Vision <strong>and</strong> Pattern Recognition,volume 1, pages 463–468, Dec. 2001.[61] A. Tsai, A. Yezzi, <strong>and</strong> A. S. Willsky. Curve evolution implementation <strong>of</strong> themumford-shah functional for image segmentation, denois<strong>in</strong>g, <strong>in</strong>terpolation,<strong>and</strong> magnification. IEEE Transactions on Image Process<strong>in</strong>g, 10(8):1169–1186, Aug 2001.[62] Andy Tsai, Anthony J. Yezzi, William M. Wells III, Clare Tempany, DeweyTucker, Ayres Fan, W. Eric L. Grimson, <strong>and</strong> Alan S. Willsky. Model-basedcurve evolution technique for image segmentation. In CVPR (1), pages463–468, 2001.[63] L. A. Vese <strong>and</strong> T. F. Chan. A multiphase level set framework for imagesegmentation us<strong>in</strong>g the mumford <strong>and</strong> shah model. Int. J. Computer Vision,50(3):271–293, 2002.[64] A. Yezzi, A. Tsai, <strong>and</strong> A. Willsky. A statistical approach to snakes forbimodal <strong>and</strong> trimodal imagery. In Int. Conf. on Computer Vision, pages898–903, October 1999.[65] Anthony Yezzi <strong>and</strong> <strong>Andrea</strong> Mennucci. Conformal metrics <strong>and</strong> true “gradientflows” for <strong>curves</strong>. In International Conference on Computer Vision(ICCV05), pages 913–919, 2005. doi: 10.1109/ICCV.2005.60. URLhttp://research.micros<strong>of</strong>t.com/iccv2005/.[66] Anthony Yezzi <strong>and</strong> <strong>Andrea</strong> Mennucci. Geodesic homotopies. In EU-SIPCO04, 2004. URL http://www.eurasip.org/content/Eusipco/2004/defevent/papers/cr1925.pdf.[67] Anthony Yezzi <strong>and</strong> <strong>Andrea</strong> Mennucci. <strong>Metrics</strong> <strong>in</strong> the space <strong>of</strong> <strong>curves</strong>. arXiv,2004.[68] Laurent Younes. Computable elastic distances between <strong>shape</strong>s. SIAMJournal <strong>of</strong> Applied Mathematics, 58(2):565–586, 1998.114


[69] Song Chun Zhu, Tai S<strong>in</strong>g Lee, <strong>and</strong> Alan L. Yuille. Region competition:Unify<strong>in</strong>g snakes, region grow<strong>in</strong>g, energy/bayes/MDL for multi-b<strong>and</strong> imagesegmentation. In ICCV, pages 416–, 1995. URL citeseer.ist.psu.edu/zhu95region.html.115

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!