01.12.2012 Views

The Scientific Potential of EMRI observations with NGO - APC

The Scientific Potential of EMRI observations with NGO - APC

The Scientific Potential of EMRI observations with NGO - APC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Thursday, 24 May 2012<br />

<strong>The</strong> <strong>Scientific</strong> <strong>Potential</strong> <strong>of</strong><br />

<strong>EMRI</strong> <strong>observations</strong> <strong>with</strong> <strong>NGO</strong><br />

Jonathan Gair (IoA, Cambridge)<br />

LISA Symposium, Paris, May 24th 2012


Thursday, 24 May 2012<br />

Talk Outline<br />

• Brief introduction to extreme-mass-ratio inspirals (<strong>EMRI</strong>s).<br />

• Estimates <strong>of</strong> signal-to-noise ratios and event rates for <strong>EMRI</strong><br />

detections using <strong>NGO</strong> and other potential configurations.<br />

• Parameter estimation accuracies for <strong>EMRI</strong>s.<br />

• <strong>EMRI</strong> science<br />

• Astrophysics - probe <strong>of</strong> massive black hole populations.<br />

• Cosmology - measurement <strong>of</strong> the Hubble constant.<br />

• Fundamental physics - test the “no-hair” property <strong>of</strong><br />

black holes, test relativity.


Detector Configurations<br />

• Consider four different detector configurations<br />

- <strong>NGO</strong>: 1Gm arm length, 2 arms (4-link), 0.4m telescope, 2W<br />

laser power, DRS inertial sensor, 10 degree Earth-trailing orbit.<br />

- Classic LISA: 5Gm arm length, 20 degree Earth-trailing orbit.<br />

Consider both 3 arm (6-link) constellation and 2 arm (4-link)<br />

constellation.<br />

- 3-arm <strong>NGO</strong>: as <strong>NGO</strong>, but third arm restored (6 laser links).<br />

- 2Gm <strong>NGO</strong>: as <strong>NGO</strong>, but <strong>with</strong> 2Gm arm length.<br />

• Assume mission lifetime is 2 years in each case.<br />

Thursday, 24 May 2012


1/2<br />

Sh (f)<br />

Thursday, 24 May 2012<br />

1e-16<br />

1e-17<br />

1e-18<br />

1e-19<br />

<strong>NGO</strong> Sensitivity Curves<br />

Classic LISA<br />

1e-20<br />

0.0001 0.001 0.01 0.1 1<br />

f (Hz)<br />

<strong>NGO</strong><br />

2 Gm <strong>NGO</strong><br />

Classic LISA


<strong>EMRI</strong>s - SNRs<br />

• Characterise <strong>EMRI</strong> detectability<br />

in terms <strong>of</strong> the observable<br />

lifetime, tobs - the length <strong>of</strong> time<br />

during which LISA could start<br />

taking data and an event be<br />

observed <strong>with</strong> sufficient SNR.<br />

• Rate <strong>of</strong> observed events is then<br />

tobs/T, where T is the average time<br />

between plunges.<br />

• Compute observable lifetimes for<br />

<strong>EMRI</strong>s in the (e)LISA<br />

configurations using circular,<br />

equatorial Teukolsky fluxes. Take<br />

SNR detection threshold <strong>of</strong> 20.<br />

Thursday, 24 May 2012<br />

SNR accumulated<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

tlate<br />

tobs<br />

tearly<br />

0 5 10 15 20 25<br />

time remaining until plunge


Thursday, 24 May 2012<br />

<strong>EMRI</strong>s - SNRs<br />

• Contours <strong>of</strong> constant observable lifetime <strong>of</strong> 1 year, assuming all<br />

black holes are non-spinning and compact object mass m=10.<br />

z<br />

0<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2 Gm <strong>NGO</strong><br />

2-arm LISA<br />

1<br />

3-arm LISA<br />

10000 100000 1e+06 1e+07<br />

M


<strong>EMRI</strong>s - SNRs<br />

• Compute SNRs using analytic kludge waveforms to include<br />

eccentricity and as a cross-check.<br />

z<br />

Thursday, 24 May 2012<br />

0<br />

0.2<br />

0.4<br />

0.6<br />

0.8 <strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2 Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

1<br />

10000 100000 1e+06 1e+07<br />

M<br />

Showing<br />

detection<br />

horizon<br />

for ep=0.25,<br />

a=0


<strong>EMRI</strong>s <strong>EMRI</strong>s - Parameter - Event Estimation Rates<br />

Configuration<br />

Black hole spin<br />

0 0.5 0.9<br />

<strong>NGO</strong> 45 50 90<br />

3-arm <strong>NGO</strong> 110 140 190<br />

2Gm <strong>NGO</strong> 150 165 250<br />

Classic LISA (2-arm) 600 650 750<br />

Classic LISA (3-arm) 1000 1150 1250<br />

• Note intrinsic rate uncertainties are an order <strong>of</strong> magnitude or more.<br />

Thursday, 24 May 2012


<strong>EMRI</strong>s - Event Rates<br />

• BUT, have constraint on rate from total mass accreted by black<br />

holes.<br />

f<br />

Thursday, 24 May 2012<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

10000 100000 1e+06 1e+07<br />

M (solar masses)<br />

m = 5<br />

m = 10<br />

m = 15<br />

m = 20


! <strong>EMRI</strong> (Gyr -1 )<br />

Thursday, 24 May 2012<br />

1000<br />

100<br />

10<br />

1<br />

<strong>EMRI</strong>s - Event Rates<br />

f = 1<br />

f = 0.1<br />

f = 0.01<br />

0.1<br />

m = 5<br />

m = 10<br />

m = 15<br />

m = 20<br />

10000 100000 1e+06 1e+07<br />

M (solar masses)


<strong>EMRI</strong>s <strong>EMRI</strong>s - Parameter - Event Estimation Rates<br />

• Assume all massive black holes have spin a=0.9 and detection <strong>with</strong><br />

<strong>NGO</strong>.<br />

CO<br />

mass<br />

f = 0.01 f = 0.1 f = 1<br />

No. events <strong>with</strong> M > No. events <strong>with</strong> M > No. events <strong>with</strong> M ><br />

10 4 10 5 10 6 10 4 10 5 10 6 10 4 10 5 10 6<br />

5 7 7 4 20 20 5 30 25 5<br />

10 10 10 5 60 60 15 85 75 15<br />

15 15 15 10 90 90 30 160 150 30<br />

20 15 15 10 100 100 40 230 200 40<br />

Thursday, 24 May 2012


<strong>EMRI</strong>s <strong>EMRI</strong>s - Parameter - Event Estimation Rates<br />

• Consider dependence on black hole spin, assuming f = 0.1 and<br />

detection <strong>with</strong> <strong>NGO</strong>.<br />

CO<br />

mass<br />

a = 0<br />

Black Hole Spin<br />

a = 0.5 a = 0.9<br />

No. events <strong>with</strong> M > No. events <strong>with</strong> M > No. events <strong>with</strong> M ><br />

10 4 10 5 10 6 10 4 10 5 10 6 10 4 10 5 10 6<br />

5 5 5 0 10 10 < 1 20 20 5<br />

10 15 15 < 1 20 20 1 60 60 15<br />

15 15 15 < 1 30+1 30 5 90 90 30<br />

20 45 45 1 40+1 40 5 100 100 40<br />

Thursday, 24 May 2012


<strong>EMRI</strong>s <strong>EMRI</strong>s - Parameter - Event Estimation Rates<br />

• Consider dependence on detector configuration, assuming f = 0.1<br />

and compact object mass m = 10.<br />

Detector<br />

a = 0<br />

Black Hole Spin<br />

a = 0.5 a = 0.9<br />

No. events <strong>with</strong> M > No. events <strong>with</strong> M > No. events <strong>with</strong> M ><br />

10 4 10 5 10 6 10 4 10 5 10 6 10 4 10 5 10 6<br />

<strong>NGO</strong> 15 15 < 1 20 20 1 60 60 15<br />

3-arm 35+2 35 < 1 60+2 60 3 105+2 105 35<br />

2 Gm 50 45 2 60+2 60 5 140+3 140 45<br />

LISA<br />

( 2 arm)<br />

LISA<br />

( 3 arm)<br />

Thursday, 24 May 2012<br />

210 200 10 250 240 30 360 350 130<br />

340 300 20 370 340 50 490 460 160


dn/dlnM<br />

dn/dlnM<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Thursday, 24 May 2012<br />

<strong>EMRI</strong>s - Parameter - Event Properties Estimation<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

BH spin<br />

a = 0<br />

No mass 0<br />

Mass<br />

M<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

fraction<br />

constraint<br />

2.5<br />

z<br />

Redshift<br />

0<br />

10000 100000 1e+06 1e+07<br />

0<br />

10000 100000 1e+06 1e+07<br />

M<br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

BH spin<br />

a = 0.9<br />

dn/dz<br />

dn/dz<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

z<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA


dn/dlnM<br />

dn/dlnM<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

<strong>EMRI</strong>s - Parameter - Event Properties Estimation<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

BH spin<br />

a = 0<br />

0<br />

f=0.1 mass<br />

Mass<br />

M<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

fraction<br />

constraint<br />

2.5<br />

z<br />

Redshift<br />

0<br />

10000 100000 1e+06 1e+07<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Thursday, 24 May 2012<br />

0<br />

10000 100000 1e+06 1e+07<br />

M<br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

BH spin<br />

a = 0.9<br />

dn/dz<br />

dn/dz<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

z<br />

<strong>NGO</strong><br />

3-arm <strong>NGO</strong><br />

2Gm <strong>NGO</strong><br />

2-arm LISA<br />

3-arm LISA


<strong>EMRI</strong>s - Parameter Estimation<br />

• Precision <strong>of</strong> <strong>EMRI</strong> parameter estimation is affected by<br />

configuration choice only through SNR. Parameter estimation<br />

accuracies for sources observed at a fixed SNR <strong>of</strong> 30 are very similar.<br />

Thursday, 24 May 2012<br />

Configuration<br />

Parameter <strong>NGO</strong> 3-arm <strong>NGO</strong> 2Gm <strong>NGO</strong> Classic LISA<br />

ln(M) 2x10 -4 2x10 -4 2x10 -4 2x10 -4<br />

ln(m) 1x10 -4 1x10 -4 1x10 -4 1x10 -4<br />

a 3x10 -4 3x10 -4 3x10 -4 3x10 -4<br />

Sky Pos. 2 o 1 o 2 o 1 o<br />

ln(D) 0.125 0.1 0.125 0.1


• A single <strong>EMRI</strong> event <strong>with</strong> an electromagnetic counterpart (and<br />

hence a redshift measurement) will give the Hubble constant to<br />

an accuracy <strong>of</strong> ~3%. N events give an accuracy <strong>of</strong> ~ 3/ %.<br />

√ N<br />

Thursday, 24 May 2012<br />

<strong>EMRI</strong> Science - Cosmology<br />

• Even <strong>with</strong>out a counterpart, can estimate Hubble constant<br />

statistically (McLeod & Hogan 08)<br />

- Let every galaxy in the LISA error box “vote” on the Hubble constant.


<strong>EMRI</strong> Science - Cosmology<br />

• A single <strong>EMRI</strong> event <strong>with</strong> an electromagnetic counterpart (and<br />

hence a redshift measurement) will give the Hubble constant to<br />

an accuracy <strong>of</strong> ~3%. N events give an accuracy <strong>of</strong> ~ 3/ %.<br />

√ N<br />

Thursday, 24 May 2012<br />

• Even <strong>with</strong>out a counterpart, can estimate Hubble constant<br />

statistically (McLeod & Hogan 08)<br />

- Let every galaxy in the LISA error box “vote” on the Hubble constant.<br />

McLeod &<br />

Hogan (2008)


<strong>EMRI</strong> Science - Cosmology<br />

• A single <strong>EMRI</strong> event <strong>with</strong> an electromagnetic counterpart (and<br />

hence a redshift measurement) will give the Hubble constant to<br />

an accuracy <strong>of</strong> ~3%. N events give an accuracy <strong>of</strong> ~ 3/ %.<br />

√ N<br />

Thursday, 24 May 2012<br />

• Even <strong>with</strong>out a counterpart, can estimate Hubble constant<br />

statistically (McLeod & Hogan 08)<br />

- Let every galaxy in the LISA error box “vote” on the Hubble constant.<br />

McLeod &<br />

Hogan (2008)


• A single <strong>EMRI</strong> event <strong>with</strong> an electromagnetic counterpart (and<br />

hence a redshift measurement) will give the Hubble constant to<br />

an accuracy <strong>of</strong> ~3%. N events give an accuracy <strong>of</strong> ~ 3/ %.<br />

√ N<br />

Thursday, 24 May 2012<br />

<strong>EMRI</strong> Science - Cosmology<br />

• Even <strong>with</strong>out a counterpart, can estimate Hubble constant<br />

statistically (McLeod & Hogan 08)<br />

- Let every galaxy in the LISA error box “vote” on the Hubble constant.<br />

- If ~20 <strong>EMRI</strong> events are detected at z < 0.5, will determine the<br />

Hubble constant to ~1%.<br />

• Analysis assumed typical distance uncertainties for Classic<br />

LISA. Pessimistically, eLISA could have a factor 2 larger<br />

distance error; ~20 events at z < 0.5 would provide ~2% Hubble<br />

measurement, ~80 events would provide 1% precision.


• A single <strong>EMRI</strong> event <strong>with</strong> an electromagnetic counterpart (and<br />

hence a redshift measurement) will give the Hubble constant to<br />

an accuracy <strong>of</strong> ~3%. N events give an accuracy <strong>of</strong> ~ 3/ %.<br />

√ N<br />

Thursday, 24 May 2012<br />

<strong>EMRI</strong> Science - Cosmology<br />

• Even <strong>with</strong>out a counterpart, can estimate Hubble constant<br />

statistically (McLeod & Hogan 08)<br />

- Let every galaxy in the LISA error box “vote” on the Hubble constant.<br />

- If ~20 <strong>EMRI</strong> events are detected at z < 0.5, will determine the<br />

Hubble constant to ~1%.<br />

• Analysis assumed typical distance uncertainties for Classic<br />

LISA. Pessimistically, eLISA could have a factor 2 larger<br />

distance error; ~20 events at z < 0.5 would provide ~2% Hubble<br />

measurement, ~80 events would provide 1% precision.<br />

• Any LISA-like detector will place constraints on H0.


<strong>EMRI</strong> Science - Fundamental Physics<br />

• Large number <strong>of</strong> waveform cycles generated in strong field make<br />

<strong>EMRI</strong>s ideal laboratories for fundamental physics<br />

Thursday, 24 May 2012<br />

- Verify ‘no-hair’ property <strong>of</strong> massive objects in centres <strong>of</strong> galaxies and<br />

hence test hypothesis that these are Kerr black holes. Hence test<br />

assumptions <strong>of</strong> the uniqueness theorem, i.e., axisymmetry, presence <strong>of</strong><br />

a horizon, no closed-timelike-curves.<br />

- Look for signatures <strong>of</strong> astrophysical perturbations, e.g., accretion<br />

discs or other material in the black hole vicinity (Barausse et al.,<br />

2007,2008) or massive perturbers (Yunes et al. 2011) etc.<br />

- Test theory <strong>of</strong> gravity, e.g., Brans-Dicke, dynamical Chern-Simons<br />

modified gravity (Sopuerta & Yunes 2009, Canizares et al. 2012).<br />

• <strong>The</strong>se tests just rely on observing many <strong>EMRI</strong> waveform cycles.<br />

Any <strong>EMRI</strong>s detected can be used for fundamental<br />

physics tests.


Summary<br />

• Prospects for detection <strong>of</strong> <strong>EMRI</strong>s <strong>with</strong> <strong>NGO</strong> or a similar spacebased<br />

detector are good - expect tens <strong>of</strong> events at redshift z < 0.5.<br />

• <strong>EMRI</strong> parameter estimation precisions are comparable to<br />

estimates for Classic LISA for sources at a given SNR.<br />

• Strong potential for <strong>EMRI</strong> science -<br />

• Astrophysics - will obtain high precision measurements <strong>of</strong> black hole<br />

masses and spins; can beat current constraints on slope <strong>of</strong> black hole<br />

mass function <strong>with</strong> as few as ten <strong>observations</strong>.<br />

• Cosmology - measure Hubble constant to ~1-2% <strong>with</strong> ~20 events.<br />

• Fundamental physics - can use <strong>EMRI</strong> <strong>observations</strong> to test the black<br />

hole hypothesis and test relativity against alternative theories <strong>of</strong> gravity.<br />

• Descoped missions will <strong>of</strong>fer the same range <strong>of</strong> science as Classic<br />

LISA, albeit <strong>with</strong> fewer events and reduced SNR for individual<br />

sources. However, large rate uncertainties arise from astrophysics.<br />

Thursday, 24 May 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!