12.07.2015 Views

Multi-component vortices in coupled NLS equations - Dmitry ...

Multi-component vortices in coupled NLS equations - Dmitry ...

Multi-component vortices in coupled NLS equations - Dmitry ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Multi</strong>-<strong>component</strong> <strong>vortices</strong> <strong>in</strong> <strong>coupled</strong><strong>NLS</strong> <strong>equations</strong><strong>Dmitry</strong> Pel<strong>in</strong>ovsky (McMaster University, Canada)Jo<strong>in</strong>t work with Anton Desyatnikov (Australian National University)and Jianke Yang (University of Vermont)Reference: Fundamentalnaya i prikladnaya matematika 12, 35–63 (2006)Conference "Symmetries <strong>in</strong> <strong>equations</strong> of mathematical physicsKiev, June 25-28, 2007


Scalar <strong>vortices</strong>Ma<strong>in</strong> model: Focus<strong>in</strong>g two-dimensional <strong>NLS</strong> equationiu t + u xx + u yy + f(|u| 2 )u = 0,where f(s) is C 1 (R + ) and f ′ (s) > 0 on s ∈ R + .Def<strong>in</strong>ition: Vortices are stationary solutions of the formu = R(r)e imθ e iωtwhere (r,θ) are polar coord<strong>in</strong>ates on R 2 , m ∈ N is the vortexcharge and R(r) is a solution of the second-order ODE:R ′′ + 1 r R′ − m2r 2 R − ωR + f(R2 )R = 0,such that R(r) → r |m| as r → 0 and R(r) → e −√ ωr / √ r as r → ∞.


ExamplesSaturable medium with f(s) = s/(1 + s)Cubic-qu<strong>in</strong>tic approximation f(s) = s − s 2Desyatnikov, Kivshar, and Torner, Optical Vortices and VortexSolitons, In: Progress <strong>in</strong> Optics 47, Ed. E. Wolf (2005)


Typical <strong>in</strong>stabilitiesVortices with charges m = 1 and m = 2 are unstable <strong>in</strong> the cubic<strong>NLS</strong> model:Skryab<strong>in</strong> and Firth, Phys. Rev. E 58, 3916 (1998)


Coupled <strong>NLS</strong> <strong>equations</strong>We consider the system of n <strong>coupled</strong> <strong>NLS</strong> <strong>equations</strong>i ˙ψ k + ∆ψ k = W ′ (E)ψ k ,k = 1, 2,...,n,where ψ k : R 2 × R ↦→ C and W : R + ↦→ R + is C 2 -function ofE = ∑ nk=1 |ψ k| 2 . The system is Hamiltonian with∫ [ n∑(( n∑)]H = |∂x ψ k | 2 + |∂ y ψ k | 2) + W |ψ k | 2 dxdyR 2 k=1k=1Vector momentum, angular momentum, and the charges∫Q k = |ψ k | 2 dxdy, k = 1,...,nR 2are basic conserved quantities of the system.


Symplectic symmetriesThe Hamiltonian function is <strong>in</strong>variant with respect to N-parametergroup of rotations <strong>in</strong> the space R 2n or C n × ¯C n , where( )2n (2n)!N = = = n(2n − 1).2 2!(2n − 2)!Let G be a l<strong>in</strong>ear transformation <strong>in</strong> x ∈ R 2n and J be the symplecticmatrix such that ẋ = Jgrad(H(x)). Then, the Hamiltonian systemis <strong>in</strong>variant under the l<strong>in</strong>ear transformation if and only ifJ = GJG TSuch transformations G are called symplectic transformations. IfG = I + g, then gJ + Jg T = 0.


Symmetries of the <strong>coupled</strong> <strong>NLS</strong>Lemma: The group of symplectic rotations <strong>in</strong> R 2n is generated bythe n 2 -parameter matrix( )A Bg = ,−B T Awhere A T = −A and B T = B. Equivalently, the group ofsymplectic rotations <strong>in</strong> C n is generated by g = A − iB.Additional conserved quantities related to the symmetries:∫Q k,m = ψ k ¯ψm dxdy, k = 1,...,n, m = k,...,n,R 2where n quantities are real-valued charges Q k = Q k,k andn(n − 1)/2 quantities Q k,m with m ≠ k are complex-valued.


where (α 1 ,α 2 ) are complex-valued parameters and (θ 1 ,θ 2 ) arereal-valued parameters.Example n = 2Symplectic rotations <strong>in</strong> C 2G 3 =(( )e iθ 10G 1 =0 1)cosθ 3 s<strong>in</strong> θ 3, G 4 =− s<strong>in</strong> θ 3 cosθ 3, G 2 =((1 00 e iθ 2))cosθ 4 i s<strong>in</strong> θ 4,i s<strong>in</strong> θ 4 cos θ 4where θ 1,2,3,4 are def<strong>in</strong>ed on [0, 2π]. If (ψ 1 ,ψ 2 ) is a solution of the<strong>coupled</strong> <strong>NLS</strong> <strong>equations</strong>, then a new solution ( ˜ψ 1 , ˜ψ 2 ) is˜ψ 1 = α 1 e iθ 1ψ 1 + α 2 e iθ 2ψ 2 ,˜ψ 2 = −ᾱ 2 e iθ 1ψ 1 + ᾱ 1 e iθ 2ψ 2 ,


Stationary solutions : classificationConsider the stationary solution <strong>in</strong> the form:ψ k = ϕ k (x)e iω kt ,k = 1,...,n,where ω k is real-valued parameter and ϕ k (x) solves∆ϕ k − ω k ϕ k = W ′ (E)ϕ kFirst Alternative:For any k ≠ m, either (I) ω k = ω m or (II) (ϕ k ,ϕ m ) = 0.Class I conta<strong>in</strong>s a variety of super-symmetric vortex congifurations.Class II conta<strong>in</strong>s a variety of <strong>coupled</strong> states between solitons and<strong>vortices</strong> of different frequencies.


Vortex solutions of class ISeparat<strong>in</strong>g the polar coord<strong>in</strong>ates (r,θ) <strong>in</strong> R 2 :ϕ k = φ k (θ)R k (r),k = 1,...,n,we obta<strong>in</strong> two ODEs:φ ′′k + m 2 kφ k = 0, R ′′k + 1 r R′ k − m2 kr 2 R k = (W ′ (E 0 ) + ω)R k ,where E 0 (r) = ∑ nk=1 R2 k (r)|φ k(θ)| 2 . By the periodicity of φ k (θ),parameter m k is <strong>in</strong>teger (vortex charge).Second Alternative:For any k ≠ m, either (i) m 2 k = m2 m, R k = R m or (ii)∫ ∞0R k (r)R m (r)dr/r = 0, φ k (θ) = e ±im kθ .


Vortex solutions of sub-class I (i)Let m 2 k = m2 and R k = R(r) ∀k, whereThen,R ′′ + 1 r R′ − m2r 2 R = (W ′ (R 2 ) + ω)R.φ k = a k e imθ + b k e −imθ ,k = 1,...,n,subject to the solvability constra<strong>in</strong>t ∑ nk=1 |φ k| 2 = 1, which isequivalent to the normalization <strong>in</strong> C n :‖a‖ 2 + ‖b‖ 2 = 1, (a,b) = 0,where a = (a 1 ,...,a n ) T and b = (b 1 ,...,b n ) T are <strong>in</strong> C n .


Examples for n = 2• If b = 0, then the solution is vortex pair of double charge:ϕ 1 = a 1 R(r)e imθ , ϕ 2 = a 2 R(r)e imθ ,which is equivalent to the scalar vortex a = (1, 0) T bysymplectic rotations• If a = 1 √2(1, 0) T and b = 1 √2(0, 1) T , then the solution is vortexpair of hidden charge:ϕ 1 = 1 √2R(r)e imθ , ϕ 2 = 1 √2R(r)e −imθ .which generates a family with a,b ≠ 0 by symplectic rotations


Examples for n = 2Cubic model(Manakov model)Cubic–quntic model


Vortex solutions of sub-class I (ii)Let φ k (θ) = e ±imkθ with m 2 k be<strong>in</strong>g dist<strong>in</strong>ct for all k. There exists an<strong>in</strong>variant manifold R k (r) ≡ 0 for any k.A hierarchy of vortex states:• Scalar vortex• Two-charge vortexϕ 1 = R(r)e imθ , ϕ k = 0, k = 2,...,n.ϕ 1 = α 1 R 1 (r)e im 1θ , ϕ 2 = α 2 R 2 (r)e im 2θ , ϕ k = 0, k = 3,...n,where R 1,2 (r) solve L m1 R 1 = 0 and L m2 R 2 = 0 withL m = d2dr 2 + 1 rddr − m2r 2 − ω + W ′ (R 2 1 + R 2 2).


Examples for n = 2Cubic (Manakov) system(a) (m 1 ,m 2 ) = (0, 1), (b) (m 1 ,m 2 ) = (0, 2), (c) (m 1 ,m 2 ) = (1, 2).Conjecture from the numerical observations:|m 1 | + n 1 = |m 2 | + n 2 ,where n k is the number of nodes of R k (r) on r > 0.


Symmetries and l<strong>in</strong>earizationStability problem for perturbation vector (u,w) ∈ C 2n is( ) ( ) ( )u I O uH = iλ,v O −I vwhereH = (−∆ + W ′ (E))(I OO I)+ W ′′ (E)(ϕ¯ϕ)· (¯ϕ T ϕ T)and E(x) = ∑ nk=1 |ϕ k(x)| 2 .Remark: The last term <strong>in</strong> H is the outer product, which is a rank-onematrix for any x ∈ R 2 . This can be used for block-diagonalizationand simplification of the stability problem.


Example: <strong>vortices</strong> of sub-class I(ii)For <strong>in</strong>stance, consider a scalar vortex:ϕ k (x) = a k R(r)e imθ , a k ∈ C :n∑k=1|a k | 2 = 1An ortho-normal basis <strong>in</strong> C n : S 1 = {a,c 1 ,c 2 ,...,c n−1 }, where{c j } n−1j=1 spans the orthogonal compliment of a. The decompositionu(x) = α + (x)a +∑n−1j=1γ + j (x)c j, v(x) = α − (x)a +∑n−1j=1γ − j (x)c jblock-diagonalizes H <strong>in</strong>to 2-by-2 <strong>coupled</strong> non-self-adjo<strong>in</strong>t problemfor (α + ,α − ) and pairs of un<strong>coupled</strong> self-adjo<strong>in</strong>t problems for{γ + j ,γ− j }n−1 j=1 .


Example: <strong>vortices</strong> of sub-class I(i)For <strong>in</strong>stance, consider a vortex pair with hidden chargesuch thatϕ k (x) = ( a k e imθ + b k e −imθ) R(r), a k ,b k ∈ C,(a,b) = 0, ‖a‖ 2 = 1 + µ2, ‖b‖ 2 = 1 − µ .2A similar decomposition over an ortho-normal basisS 2 = {a,b,c 1 ,...,c n−2 } ⊂ C n block-diagonalizes H <strong>in</strong>to 4-by-4<strong>coupled</strong> non-self-adjo<strong>in</strong>t problem and pairs of un<strong>coupled</strong>self-adjo<strong>in</strong>t problems.


Example: <strong>in</strong>stabilities of vortex pairs(a) µ = ±1 - vortex of double charge(b) µ = 0 - vortex of hidden charge


Conclusion• Analysis of symplectic rotations and conserved quantities• Classification and simplification of exact vortex solutions andtheir l<strong>in</strong>earizations <strong>in</strong> the system of <strong>coupled</strong> <strong>NLS</strong> <strong>equations</strong>• An algorithm for analysis of a particular family of solutions1. Construct the seed vortex for a given vortex solution2. Study analytically and numerically the associatedl<strong>in</strong>earization problem for the seed vortex3. Rotate the seed vortex and the eigenvectors of the l<strong>in</strong>earizedproblem with the same group of symplectic rotations toobta<strong>in</strong> relevant results for the given vortex.• Nonl<strong>in</strong>ear dynamics of solutions along the family of symplecticrotations is not yet well understood.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!