12.07.2015 Views

Local Symmetry Group in the General Theory of Elastic Shells

Local Symmetry Group in the General Theory of Elastic Shells

Local Symmetry Group in the General Theory of Elastic Shells

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J <strong>Elastic</strong>ity (2006) 85: 125–152DOI 10.1007/s10659-006-9075-z<strong>Local</strong> <strong>Symmetry</strong> <strong>Group</strong> <strong>in</strong> <strong>the</strong> <strong>General</strong> <strong>Theory</strong><strong>of</strong> <strong>Elastic</strong> <strong>Shells</strong>Victor A. Eremeyev · Wojciech PietraszkiewiczReceived: 23 February 2006 / Accepted: 3 June 2006 /Published onl<strong>in</strong>e: 30 August 2006© Spr<strong>in</strong>ger Science+Bus<strong>in</strong>ess Media B.V. 2006Abstract We establish <strong>the</strong> local symmetry group <strong>of</strong> <strong>the</strong> dynamically and k<strong>in</strong>ematicallyexact <strong>the</strong>ory <strong>of</strong> elastic shells. The group consists <strong>of</strong> an ordered triple <strong>of</strong> tensorswhich make <strong>the</strong> shell stra<strong>in</strong> energy density <strong>in</strong>variant under change <strong>of</strong> <strong>the</strong> referenceplacement. Def<strong>in</strong>itions <strong>of</strong> <strong>the</strong> fluid shell, <strong>the</strong> solid shell, and <strong>the</strong> membrane shell are<strong>in</strong>troduced <strong>in</strong> terms <strong>of</strong> members <strong>of</strong> <strong>the</strong> symmetry group. With<strong>in</strong> solid shells we discuss<strong>in</strong> more detail <strong>the</strong> isotropic, hemitropic, and orthotropic shells and correspond<strong>in</strong>g<strong>in</strong>variant properties <strong>of</strong> <strong>the</strong> stra<strong>in</strong> energy density. For <strong>the</strong> physically l<strong>in</strong>ear shells,when <strong>the</strong> density becomes a quadratic function <strong>of</strong> <strong>the</strong> shell stra<strong>in</strong> and bend<strong>in</strong>gtensors, reduced representations <strong>of</strong> <strong>the</strong> density are established for orthotropic, cubicsymmetric,and isotropic shells. The reduced representations conta<strong>in</strong> much less<strong>in</strong>dependent material constants to be found from experiments.Key words shell · nonl<strong>in</strong>ear six-field <strong>the</strong>ory · elastic · constitutive equations ·material symmetry · solid shell · isotropy1. IntroductionIn <strong>the</strong> non-l<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> elastic shells it is important to formulate restrictionsput on <strong>the</strong> stra<strong>in</strong> energy density follow<strong>in</strong>g from a reasonably def<strong>in</strong>ed shell materialsymmetry. Such restrictions are necessary to considerably lower <strong>the</strong> number <strong>of</strong>V. A. EremeyevRostov State University and South Scientific Center <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong> Sciences,Zorge str., 5, 344090 Rostov on Don, Russiae-mail: eremeyev@math.rsu.ruW. Pietraszkiewicz (B)Institute <strong>of</strong> Fluid-Flow Mach<strong>in</strong>ery <strong>of</strong> <strong>the</strong> Polish Academy <strong>of</strong> Sciences,ul. Fiszera 14, 80-952 Gdańsk, Polande-mail: pietrasz@imp.gda.pl


126 J <strong>Elastic</strong>ity (2006) 85: 125–152material constants to be found from experiments. For example, <strong>in</strong> <strong>the</strong> general case<strong>of</strong> shell anisotropy <strong>the</strong> quadratic function proposed by Libai and Simmonds [24] todescribe <strong>the</strong> stra<strong>in</strong> energy density <strong>of</strong> <strong>the</strong> l<strong>in</strong>early elastic shell conta<strong>in</strong>s more than100 constants. It is practically impossible to determ<strong>in</strong>e all <strong>of</strong> <strong>the</strong>m from any k<strong>in</strong>d <strong>of</strong>experiments. Shell material symmetries can also be used to formulate and efficientlyanalyse <strong>the</strong> non-l<strong>in</strong>ear shell problem by <strong>the</strong> semi-<strong>in</strong>verse approach.The material symmetry <strong>of</strong> elastic shells was discussed <strong>in</strong> <strong>the</strong> literature primarilywith<strong>in</strong> <strong>the</strong> shell model consist<strong>in</strong>g <strong>of</strong> material surface with one deformable director.Let us mention here early results by Caroll and Naghdi [6] and Ericksen [16, 17]developed by Murdoch and Cohen [30, 31], Adeleke [1], and Cohen and Wang [9].Gurt<strong>in</strong> and Murdoch [21] formulated <strong>the</strong> mechanical isotropy group while Murdoch[29] <strong>the</strong> <strong>the</strong>rmodynamic isotropy group for <strong>the</strong> non-l<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> elastic membranes.Wang [45] discussed <strong>the</strong> symmetry group for two-layer elastic membranes,Steigmann [40] and Steigmann and Ogden [41] for <strong>the</strong> Kirchh<strong>of</strong>f–Love type elasticshells, while Murdoch and Cohen [30, 31] for <strong>the</strong> second grade elastic materialsurfaces.In <strong>the</strong> general non-l<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> shells <strong>in</strong>itiated by Reissner [36] and developedby Libai and Simmonds [23, 24], Makowski and Stumpf [26], Chróścielewski et al. [7,8], and Pietraszkiewicz et al. [35] <strong>the</strong> gross deformation <strong>of</strong> <strong>the</strong> shell cross-section isrepresented by <strong>the</strong> translation vector and work-averaged rotation tensor fields, bothdef<strong>in</strong>ed at <strong>the</strong> material base surface. The k<strong>in</strong>ematic structure <strong>of</strong> such a dynamicallyand k<strong>in</strong>ematically exact <strong>the</strong>ory <strong>of</strong> shells is identical with that <strong>of</strong> <strong>the</strong> Cosserat surfaceorig<strong>in</strong>ally proposed by Cosserat and Cosserat [10] and developed by Altenbach andZhil<strong>in</strong> [2], Zubov [48], and Eremeyev and Zubov [15]. Unfortunately, this k<strong>in</strong>ematicstructure differs from that <strong>of</strong> <strong>the</strong> material surface with one or more deformable directors<strong>of</strong>ten also called <strong>the</strong> Cosserat surface, see Ericksen and Truesdell [18], Naghdi[32], and Rub<strong>in</strong> [37]. In particular, <strong>the</strong> k<strong>in</strong>ematics used <strong>in</strong> [32, 37] leaves <strong>in</strong>def<strong>in</strong>ite<strong>the</strong> drill<strong>in</strong>g rotation about <strong>the</strong> director. Thus, <strong>the</strong> results on material symmetriesfor <strong>the</strong> shell model with one deformable director given for example by Murdochand Cohen [30, 31] cannot be used <strong>in</strong> <strong>the</strong> general <strong>the</strong>ory <strong>of</strong> shells. Altenbach andZhil<strong>in</strong> [2, 3], Altenbach et al. [4], and Zhil<strong>in</strong> [47] discussed <strong>the</strong> symmetry group and<strong>the</strong> correspond<strong>in</strong>g 2D elasticity tensors with<strong>in</strong> <strong>the</strong> reduced Timoshenko–Reissnertype shell model with transverse shears and assum<strong>in</strong>g <strong>the</strong> quadratic stra<strong>in</strong> energydensity. Four-field local symmetry group <strong>of</strong> <strong>the</strong> micropolar shell model was discussedby Eremeyev and Zubov [15] and Eremeyev [12], where alternative surface stra<strong>in</strong>measures were used, <strong>the</strong> stra<strong>in</strong> energy density was assumed to depend on <strong>the</strong>curvature <strong>of</strong> <strong>the</strong> reference base surface, and differences <strong>in</strong> transform<strong>in</strong>g <strong>the</strong> axial andpolar tensors were not accounted for.The aim <strong>of</strong> this paper is to discuss <strong>the</strong> local symmetry group for <strong>the</strong> general <strong>the</strong>ory<strong>of</strong> elastic shells developed <strong>in</strong> [8, 24, 35] and to derive several consistently simplifiedforms <strong>of</strong> <strong>the</strong> 2D stra<strong>in</strong> energy density. In Section 2 we recall some relations <strong>of</strong> <strong>the</strong>general <strong>the</strong>ory <strong>of</strong> shells. The local resultant equilibrium conditions (1) are derivedby exact through-<strong>the</strong>-thickness <strong>in</strong>tegration <strong>of</strong> equilibrium conditions <strong>of</strong> cont<strong>in</strong>uummechanics. The natural def<strong>in</strong>itions (10) <strong>of</strong> <strong>the</strong> shell stra<strong>in</strong> and bend<strong>in</strong>g tensors areuniquely established as work-conjugate dual fields <strong>in</strong> <strong>the</strong> 2D virtual work identity(3). As a result, <strong>the</strong> shell deformation is described by <strong>the</strong> translation vector androtation tensor fields. The correspond<strong>in</strong>g shell stra<strong>in</strong> energy density (16) depends on<strong>the</strong> 2D shell stra<strong>in</strong> and bend<strong>in</strong>g tensors and is also sensitive to change <strong>of</strong> <strong>the</strong> structurecurvature tensor.


J <strong>Elastic</strong>ity (2006) 85: 125–152 127Transformation properties <strong>of</strong> various tensor fields under change <strong>of</strong> <strong>the</strong> referenceplacement are discussed <strong>in</strong> Section 3. Apply<strong>in</strong>g <strong>the</strong> polar decomposition <strong>the</strong>orem (19)<strong>of</strong> <strong>the</strong> shell deformation gradient we <strong>in</strong>troduce an orthogonal tensor field and severaltangential surface fields describ<strong>in</strong>g stretch<strong>in</strong>g and bend<strong>in</strong>g parts <strong>of</strong> deformation.Properties <strong>of</strong> various shell stra<strong>in</strong> measures under <strong>the</strong> orthogonal transformation arediscussed tak<strong>in</strong>g <strong>in</strong>to account that polar tensors may change <strong>the</strong>ir signs accord<strong>in</strong>g to<strong>the</strong> rule (28). However, under change <strong>of</strong> <strong>the</strong> reference placement <strong>the</strong> elastic stra<strong>in</strong>energy <strong>of</strong> any part <strong>of</strong> <strong>the</strong> shell should rema<strong>in</strong> unchanged, (29).The local symmetry group <strong>of</strong> <strong>the</strong> elastic shell is def<strong>in</strong>ed <strong>in</strong> Section 4 as an orderedtriple <strong>of</strong> transformation tensors which leave unchanged <strong>the</strong> stra<strong>in</strong> energy density,(33). The structure <strong>of</strong> <strong>the</strong> group is analysed and its behaviour under change <strong>of</strong> <strong>the</strong>reference placement is discussed. We classify <strong>in</strong> Section 6 various shell models <strong>in</strong>terms <strong>of</strong> <strong>the</strong> triples <strong>of</strong> tensors <strong>of</strong> <strong>the</strong> local symmetry group. In this way <strong>the</strong> liquidshell, <strong>the</strong> solid shell, and <strong>the</strong> membrane shell are characterized. We <strong>the</strong>n proposedef<strong>in</strong>itions <strong>of</strong> isotropic, hemitropic, and orthotropic solid shells. For physically l<strong>in</strong>earelastic material, when <strong>the</strong> stra<strong>in</strong> energy density is a quadratic function <strong>of</strong> <strong>the</strong> shellstra<strong>in</strong> and bend<strong>in</strong>g tensors, we derive consistently reduced forms <strong>of</strong> <strong>the</strong> density for<strong>the</strong> surface isotropic, hemitropic, and orthotropic shells.2. Notation and Prelim<strong>in</strong>ary RelationsThe system <strong>of</strong> notation used here follows that <strong>of</strong> Libai and Simmonds [24], Eremeyevand Pietraszkiewicz [13], Chróścielewski et al. [8], and Pietraszkiewicz et al. [35].In <strong>the</strong> general <strong>the</strong>ory <strong>of</strong> shells developed <strong>in</strong> [8, 12, 23, 24, 35] <strong>the</strong> global, exact,resultant equilibrium conditions, formulated at <strong>the</strong> base surface M <strong>in</strong> <strong>the</strong> referenceplacements κ, are derived by direct through-<strong>the</strong>-thickness <strong>in</strong>tegration <strong>of</strong> correspond<strong>in</strong>gglobal equilibrium conditions <strong>of</strong> cont<strong>in</strong>uum mechanics. Then apply<strong>in</strong>g <strong>the</strong> surfaceCauchy postulate and <strong>the</strong> Stokes <strong>the</strong>orem we obta<strong>in</strong> <strong>the</strong> usual local, exact, resultantequilibrium equations and dynamic boundary conditions [8, 13]Div s N + f = 0, Div s M + ax ( NF T − F N T ) + c = 0 <strong>in</strong> M,Nν − n ∗ = 0, Mν − m ∗ = 0 along ∂ M f . (1)In Equation (1), N, M ∈ E ⊗ T x M are <strong>the</strong> <strong>in</strong>ternal surface stress resultant andstress couple tensors <strong>of</strong> <strong>the</strong> 1 st Piola–Kirchh<strong>of</strong>f type, f , c ∈ E are <strong>the</strong> external surfaceresultant force and couple vectors applied at any po<strong>in</strong>t y = χ(x) <strong>of</strong> <strong>the</strong> deformed basesurface N = χ(M), x ∈ M, but measured per unit area <strong>of</strong> M, while n ∗ , m ∗ ∈ E are <strong>the</strong>external boundary resultant force and couple vectors applied along <strong>the</strong> part <strong>of</strong> <strong>the</strong>deformed boundary ∂ N f , but measured per unit length <strong>of</strong> ∂ M f , respectively. Here Eis <strong>the</strong> 3D translation vector space <strong>of</strong> <strong>the</strong> physical space E, T x M is <strong>the</strong> tangent spaceto M at x ∈ M, and ⊗ is <strong>the</strong> tensor product. Additionally, ν <strong>in</strong> (1) means <strong>the</strong> unitvector externally normal to ∂ M, F = Grad s y ∈ E ⊗ T x M is <strong>the</strong> shell deformationgradient tensor, Grad s and Div s are <strong>the</strong> respective surface gradient and divergenceoperators on M def<strong>in</strong>ed <strong>in</strong>tr<strong>in</strong>sically <strong>in</strong> [21, 25, 27, 28], and ax(·) denotes <strong>the</strong> axialvector associated with <strong>the</strong> skew tensor (·).


128 J <strong>Elastic</strong>ity (2006) 85: 125–152Let v, w ∈ E be two arbitrary smooth vector fields given on M. We can set <strong>the</strong> <strong>in</strong>tegralidentity∫∫{(Divs N + f ) · v + ( Div s M + ax ( NF T − F N T ) + c ) · w } daM∫−∂ M f{(Nν − n∗ ) · v + ( Mν − m ∗) · w } ds = 0, (2)which transformed with <strong>the</strong> help <strong>of</strong> <strong>the</strong> Stokes <strong>the</strong>orem leads to∫∫M{N · (Grad s v − W F ) + M · Grad s w} da∫ ∫∫= ( f · v + c · w) da +M∫+∂ M f(n∗ · v + m ∗ · w ) ds∂ M d(Nν · v + Mν · w) ds, (3)where · means <strong>the</strong> scalar product <strong>in</strong> <strong>the</strong> vector and tensor spaces, respectively, w =axW, and ∂ M d = ∂ M\∂ M f .The vector field v may be <strong>in</strong>terpreted, <strong>in</strong> particular, as <strong>the</strong> k<strong>in</strong>ematically admissiblevirtual translation <strong>of</strong> N while <strong>the</strong> vector field w as <strong>the</strong> k<strong>in</strong>ematically admissible virtualrotation <strong>of</strong> <strong>the</strong> shell cross-section at N, such that v = w = 0 along ∂ M d . Then <strong>the</strong>last l<strong>in</strong>e <strong>in</strong>tegral identically vanishes, two <strong>in</strong>tegrals <strong>in</strong> <strong>the</strong> second row <strong>of</strong> (3) describe<strong>the</strong> external virtual work, while <strong>the</strong> first surface <strong>in</strong>tegral <strong>in</strong> (3) describes <strong>the</strong> <strong>in</strong>ternalvirtual work, and <strong>the</strong> formula (3) represents <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> virtual work for <strong>the</strong> shell.The pr<strong>in</strong>ciple (3) allows one to <strong>in</strong>terpret [8, 35] that <strong>in</strong> <strong>the</strong> reference placement κ<strong>the</strong> shell is represented by <strong>the</strong> position vector x ∈ E (relative to a po<strong>in</strong>t o ∈ E) <strong>of</strong> <strong>the</strong>base surface M plus <strong>the</strong> non-s<strong>in</strong>gular structure tensor T ∈ E ⊗ E, det T ̸= 0, attachedto any x ∈ M. The tensor T can be <strong>in</strong>troduced through three non-coplanar directorst i , i = 1, 2, 3, such that t i = Te i , with e i an orthonormal base <strong>of</strong> <strong>the</strong> 3D <strong>in</strong>ertial frame(o, e i ), so that T = t i ⊗ e i , Figure 1.In some special cases <strong>of</strong> shell geometry (skew lateral boundary surface, folded,branch<strong>in</strong>g or <strong>in</strong>tersect<strong>in</strong>g shells, for example [22]), it is convenient to use <strong>the</strong> nonorthogonalset <strong>of</strong> directors t i <strong>in</strong>deed. However, it has been shown <strong>in</strong> [8, 35] that <strong>the</strong>orthonormal triad t i entirely describes those changes <strong>of</strong> T along an arbitrary path Con M which are compatible with (3) thus allow<strong>in</strong>g to describe completely <strong>the</strong> shellgeometry <strong>in</strong> <strong>the</strong> reference placement. In this paper <strong>the</strong> directors t i are assumed to beorthonormal, so that T is <strong>the</strong> proper orthogonal tensor, T T = T −1 , det T = +1.In <strong>the</strong> deformed placement γ <strong>the</strong> shell can be represented by <strong>the</strong> relationsy = χ(x) = x + u, d i = ϕ(x) = Qt i , (4)where y ∈ N, d i are three orthonormal directors attached to y, u(x) is <strong>the</strong> translationfield <strong>of</strong> <strong>the</strong> base surface, and Q(x) is <strong>the</strong> work-averaged rotation field <strong>of</strong> <strong>the</strong> shellcross-sections, Q ∈ Orth + , Figure 1.


J <strong>Elastic</strong>ity (2006) 85: 125–152 129Figure 1 Shell k<strong>in</strong>ematics.Let C be <strong>the</strong> smooth curve on M given by x = x(s), where s is <strong>the</strong> arc lengthparameter. Then x = x(s) and T = T(s) along C and <strong>the</strong>ir differentials are [35]dx = x ′ ds = (Grad s x)dx, dx ∈ E,dT = T ′ ds = (Grad s T )dx, dx ∈ T x M,Grad s x = I ∈ E ⊗ T x M, Grad s T ∈ E ⊗ E ⊗ T x M, (5)where I is <strong>the</strong> <strong>in</strong>clusion operator at x ∈ M, see Gurt<strong>in</strong> and Murdoch [21].S<strong>in</strong>ce d ( TT −1) = 0, <strong>the</strong> skew tensor dTT −1 can be represented by its axial vectordepend<strong>in</strong>g l<strong>in</strong>early on dx, so thatax ( dTT −1) = Bdx, B ∈ E ⊗ T x M, (6)where B is <strong>the</strong> structure curvature tensor <strong>in</strong> κ. The two tensors I, B are <strong>the</strong> basicmeasures <strong>of</strong> local geometry <strong>of</strong> <strong>the</strong> shell base surface M with <strong>the</strong> attached structuretensor T.In <strong>the</strong> deformed placement γ <strong>the</strong> shell is represented by <strong>the</strong> position vector y ∈ E(relative to <strong>the</strong> same o ∈ E) <strong>of</strong> <strong>the</strong> base surface N = χ(M) and by <strong>the</strong> structure tensorD = QT = d i ⊗ e i . Differentials <strong>of</strong> y(s) and D(s) along D = χ(C) are given byd y = y ′ ds = (grad s y)dy = (Grad s y)dx,d D = D ′ ds = (grad s D)dy = (Grad s D)dx,grad s y = J ∈ E ⊗ T y N, grad s D ∈ E ⊗ E ⊗ T y N, (7)where grad s is <strong>the</strong> surface gradient operator and J <strong>the</strong> <strong>in</strong>clusion operator at N.Aga<strong>in</strong>, <strong>the</strong> skew tensor d DD −1 can be represented by its axial vector depend<strong>in</strong>gl<strong>in</strong>early on dy, so thatwhere C is <strong>the</strong> structure curvature tensor <strong>in</strong> γ .ax ( d DD −1) = Cdy, C ∈ E ⊗ T y N, (8)


130 J <strong>Elastic</strong>ity (2006) 85: 125–152S<strong>in</strong>ce dy = Fdx, where F ∈ T y N ⊗ T x M, det F > 0, is <strong>the</strong> tangential surface deformationgradient, F = JF, from (5) to (8) we obta<strong>in</strong>whered y − Qdx = ( JF − QI)dx,Cdy − QBdx = (CF − QB)dx, (9)E = JF − QI, K = CF − QB (10)are <strong>the</strong> natural stra<strong>in</strong> and bend<strong>in</strong>g tensors <strong>in</strong> <strong>the</strong> spatial representation describ<strong>in</strong>g <strong>the</strong>local deformation <strong>of</strong> <strong>the</strong> shell base surface with <strong>the</strong> attached structure tensor.It has been proved <strong>in</strong> [8, 35] that <strong>the</strong> co-rotational variations <strong>of</strong> E and K aregiven byδ c E = Q [ δ ( Q T E )] = Grad s v − W F,δ c K = Q [ δ ( Q T K )] = Grad s w, (11)where v ≡ δu is <strong>the</strong> virtual translation and w ≡ ax ( δ QQ T ) <strong>the</strong> virtual rotationvectors appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> virtual work (3). Therefore, it follows from (3)that <strong>the</strong> <strong>in</strong>ternal virtual power is given bywhereσ = N · δ c E + M · δ c K = N · δE + M · δK, (12)N = Q T N, M = Q T M,E = Q T E = Q T JF − I, K = Q T K = Q T CF − B (13)are <strong>the</strong> resultant shell stress measures and <strong>the</strong> correspond<strong>in</strong>g shell stra<strong>in</strong> measures<strong>in</strong> <strong>the</strong> material representation, respectively. The measures N, M and E, K are moreconvenient <strong>in</strong> <strong>the</strong> discussion <strong>of</strong> <strong>the</strong> constitutive equations given below.In what follows it is convenient to use also <strong>the</strong> relative stra<strong>in</strong> U and bend<strong>in</strong>g Vmeasures <strong>in</strong> <strong>the</strong> material representation def<strong>in</strong>ed byU = Q T JF = E + I, V = Q T CF = K + B. (14)For <strong>the</strong> elastic shells <strong>the</strong>re exists <strong>the</strong> stra<strong>in</strong> energy density W κ (E, K) such that σ =δW κ and <strong>the</strong> constitutive equations take <strong>the</strong> formN = ∂W κ∂E ,M = ∂W κ∂K . (15)The stra<strong>in</strong> energy density W κ is written here relative to <strong>the</strong> reference placement κ, sothat W κ depends also on <strong>the</strong> local geometry <strong>of</strong> κ, that is on I and B. The dependence<strong>of</strong> W κ on I is trivial and does not require any fur<strong>the</strong>r discussion. However, <strong>the</strong>dependence <strong>of</strong> W κ on B may have a considerable <strong>in</strong>fluence on <strong>the</strong> form <strong>of</strong> <strong>the</strong>constitutive equations discussed below. Therefore, we explicitly <strong>in</strong>dicate this fact bywrit<strong>in</strong>gW κ ≡ W = W(E, K; B). (16)


J <strong>Elastic</strong>ity (2006) 85: 125–152 1313. Change <strong>of</strong> <strong>the</strong> Reference PlacementLet us <strong>in</strong>troduce ano<strong>the</strong>r reference placement κ ⋆ consist<strong>in</strong>g <strong>of</strong> <strong>the</strong> base surface M ⋆described by <strong>the</strong> position vector x ⋆ relative to <strong>the</strong> same o ∈ E and three orthonormaldirectors t ⋆i attached to any x ⋆ ∈ M ⋆ (Figure 2). Let P ∈ T x⋆ M ⋆ ⊗ T x M, det P ̸= 0, be<strong>the</strong> tangential surface deformation gradient transform<strong>in</strong>g dx <strong>in</strong>to dx ⋆ , and R ∈ Orth +be <strong>the</strong> rotation tensor transform<strong>in</strong>g t i <strong>in</strong>to t ⋆i , so thatIt is apparent that P satisfies <strong>the</strong> relationsdx ⋆ = Pdx, t ⋆i = Rt i . (17)PI T n = n ⋆ I ⋆ P = 0, (18)where n and n ⋆ are <strong>the</strong> unit normals orient<strong>in</strong>g M and M ⋆ , respectively.In what follows all fields associated with deformation relative to <strong>the</strong> referenceplacement κ ⋆ will be marked by <strong>in</strong>dex ⋆.Let us analyse how changes <strong>the</strong> unit normal vector n under change <strong>of</strong> <strong>the</strong> referenceplacement κ → κ ⋆ . By <strong>the</strong> polar decomposition <strong>of</strong> <strong>the</strong> 3D nons<strong>in</strong>gular tensor P +n ⋆ ⊗ n we obta<strong>in</strong>P + n ⋆ ⊗ n = H(Y + n ⊗ n), (19)where H is <strong>the</strong> orthogonal tensor, H ∈ Orth, and Y is <strong>the</strong> tangential surface stretchtensor, Y ∈ T x M ⊗ T x M, symmetric and positive def<strong>in</strong>ite, which satisfies <strong>the</strong> relationsYI T n = nI Y = 0. (20)The tensor Y can be calculated by <strong>the</strong> formula Y = √ P T P .Figure 2 Change <strong>of</strong> reference placement.


132 J <strong>Elastic</strong>ity (2006) 85: 125–152From <strong>the</strong> polar decomposition (19) it immediately follows thatn ⋆ = Hn. (21)Let us choose an arbitrary po<strong>in</strong>t x ◦ ∈ M and discuss all such transformations <strong>of</strong> <strong>the</strong>reference placement under which <strong>the</strong> normal direction to M at <strong>the</strong> po<strong>in</strong>t x ◦ does notchange, i.e. we haven ⋆ (x ◦ ) = ±n (x ◦ ) , or ± n (x ◦ ) = H (x ◦ ) n (x ◦ ) , (22)when x ◦ ∈ M and x ◦ ∈ M ⋆ . Therefore, we analyse <strong>the</strong> set <strong>of</strong> all reference placementswhich have <strong>the</strong> same common tangent space T x◦ M at <strong>the</strong> po<strong>in</strong>t x ◦ ∈ M, Figure 3.It is easy to see that <strong>in</strong> this case <strong>the</strong> tensor P ∈ T x◦ M ⊗ T x◦ M, and n (x ◦ ) I (x ◦ )P (x ◦ ) = P (x ◦ ) I (x ◦ ) T n (x ◦ ) = 0. Indeed, <strong>the</strong> second <strong>of</strong> <strong>the</strong> equations follows fromdef<strong>in</strong>ition <strong>of</strong> <strong>the</strong> surface gradient while <strong>the</strong> first one results from nIP = 0, whichfollows from (20) and (22).From (17) and dy = Fdx = F ⋆ dx ⋆ immediately follow <strong>the</strong> relations between <strong>the</strong>tangential surface deformation gradients F and F ⋆ and <strong>the</strong> rotation tensors Q ≡ d i ⊗t i and Q ⋆ ≡ d i ⊗ t ⋆iF = F ⋆ P, Q = Q ⋆ R. (23)Figure 3 Two base surfaces with <strong>the</strong> same tangent space.


134 J <strong>Elastic</strong>ity (2006) 85: 125–152<strong>the</strong> left-hand one. The concept <strong>of</strong> pseudoscalars, pseudovectors and pseudotensorsis widely used <strong>in</strong> modern physics [5], and <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> electromagnetism <strong>in</strong>particular. In shell <strong>the</strong>ory it was used first by Zhil<strong>in</strong> [47], see also Altenbach andZhil<strong>in</strong> [2, 3].The simple example <strong>of</strong> psedovector is <strong>the</strong> vector product a × b <strong>of</strong> two usual (polar)vectors a and b. In this case we have <strong>the</strong> formula (Ra) × (Rb) = (det R)R(a × b),because <strong>the</strong> vector product changes its sign if R = −1. An example <strong>of</strong> pseudotensoris <strong>the</strong> tensor ax −1 (ω), that is <strong>the</strong> skew tensor which axial vector is ω. Ano<strong>the</strong>r example<strong>of</strong> pseudotensor is <strong>the</strong> Levi–Civita pseudotensor used <strong>in</strong> [5].These remarks allow us to generalize <strong>the</strong> transformation properties (25), (26) and(27) us<strong>in</strong>g <strong>the</strong> orthogonal tensors R ∈ Orth as follows:V ⋆ = (det R)RVP −1 , B ⋆ = (det R)RBP −1 − L, (28)K ⋆ = (det R)RKP −1 + L, L = (det R)RGP −1 .The use <strong>of</strong> orthogonal tensors R <strong>in</strong> (28) will allow us to reduce fur<strong>the</strong>r <strong>the</strong> number<strong>of</strong> <strong>in</strong>dependent material constants <strong>in</strong> <strong>the</strong> constitutive equations.The form <strong>of</strong> 2D elastic stra<strong>in</strong> energy density <strong>of</strong> <strong>the</strong> shell depends upon <strong>the</strong> choice<strong>of</strong> <strong>the</strong> reference placement, <strong>in</strong> general. Particularly important are sets <strong>of</strong> referenceplacements which leave unchanged <strong>the</strong> form <strong>of</strong> <strong>the</strong> density. Transformations <strong>of</strong> <strong>the</strong>reference placement under which <strong>the</strong> density rema<strong>in</strong>s unchanged are called here<strong>in</strong>variant transformations. Know<strong>in</strong>g all such <strong>in</strong>variant transformations allows oneto precisely def<strong>in</strong>e <strong>the</strong> fluid shell, <strong>the</strong> solid shell, or <strong>the</strong> membrane shell as wellas to <strong>in</strong>troduce notions <strong>of</strong> isotropic, hemitropic, or orthotropic solid shell. Similarapproach is used <strong>in</strong> cont<strong>in</strong>uum mechanics [42, 44] and <strong>the</strong>ory <strong>of</strong> elasticity [46].The elastic stra<strong>in</strong> energy density W ⋆ relative to <strong>the</strong> changed reference placementκ ⋆ depends <strong>in</strong> each po<strong>in</strong>t x ◦ ∈ M ⋆ on <strong>the</strong> stra<strong>in</strong> tensor E ⋆ , <strong>the</strong> bend<strong>in</strong>g tensor K ⋆ , andalso upon <strong>the</strong> structure curvature tensor B ⋆ . This dependence may, <strong>in</strong> general, bedifferent than that <strong>of</strong> W(E, K; B). However, <strong>the</strong> elastic stra<strong>in</strong> energy <strong>of</strong> any part <strong>of</strong><strong>the</strong> shell should be conserved, so that∫∫M ′ ∫∫W da = W ⋆ da ⋆ (29)for any part <strong>of</strong> <strong>the</strong> base surface M ′ ⊂ M correspond<strong>in</strong>g to M ′ ⋆ ⊂ M ⋆, because <strong>the</strong>functions W and W ⋆ describe <strong>the</strong> stra<strong>in</strong> energy density <strong>of</strong> <strong>the</strong> same deformed state <strong>of</strong>N = χ(M).From (29) it follows that W ⋆ and W are related byM ′ ⋆J(P)W ⋆ (E ⋆ , K ⋆ ; B ⋆ ) = W(E, K; B),where J(P) describes <strong>the</strong> change <strong>of</strong> elementary surface element da ⋆ = J(P)da, andJ is given by√1J = | det P| =2[tr 2 ( P T P ) − tr ( P T P ) 2 ] . (30)


J <strong>Elastic</strong>ity (2006) 85: 125–152 1354. The <strong>Local</strong> <strong>Symmetry</strong> <strong>Group</strong>First, let us give some physical statements which should be accounted for whendiscuss<strong>in</strong>g <strong>in</strong>variant transformations <strong>of</strong> <strong>the</strong> reference placement. Let us <strong>in</strong>troduce <strong>the</strong>follow<strong>in</strong>g hypo<strong>the</strong>sis:Invariant transformations <strong>of</strong> <strong>the</strong> reference placement should preserve <strong>the</strong> elementarysurface element <strong>of</strong> M.Indeed, it is difficult to imag<strong>in</strong>e that <strong>the</strong> constitutive equations may not ‘feel’<strong>the</strong> change <strong>of</strong> surface area. If we would allow transformations which change <strong>the</strong>elementary surface element <strong>the</strong>n, without chang<strong>in</strong>g <strong>the</strong> stra<strong>in</strong> energy, <strong>the</strong> surface areacould be changed virtually to zero. In this sense, preserv<strong>in</strong>g <strong>the</strong> elementary surfacearea corresponds to <strong>the</strong> analogous requirement <strong>of</strong> unimodular transformations whichconstitute <strong>the</strong> local symmetry group <strong>of</strong> <strong>the</strong> 3D simple material [42–44, 46].The requirement that <strong>the</strong> elementary surface element should rema<strong>in</strong> constantunder <strong>the</strong> change <strong>of</strong> <strong>the</strong> reference placement can be expressed byJ(P) = 1, (31)where J(P) is given by (30).The assumption that <strong>the</strong> constitutive relation is <strong>in</strong>sensitive to <strong>the</strong> change <strong>of</strong> κ <strong>in</strong>toκ ⋆ means that <strong>the</strong> stra<strong>in</strong> energy densities W and W ⋆ should co<strong>in</strong>cide, that isW(E, K; B) = W (E ⋆ , K ⋆ ; B ⋆ ) .Therefore, us<strong>in</strong>g (24) and (28) we obta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>variance requirement forW under change <strong>of</strong> <strong>the</strong> reference placement:W(E, K; B)= W [ REP −1 + RIP −1 − I(det R)RKP −1 + L;(det R)RBP −1 − L ] . (32)The relation (32) holds locally, i.e. it should be satisfied at any particular po<strong>in</strong>tx ◦ ∈ M, and <strong>the</strong> tensors R and L are <strong>in</strong>dependent here. As a result, <strong>the</strong> local <strong>in</strong>variance<strong>of</strong> W under change <strong>of</strong> <strong>the</strong> reference placement is described by three tensors P,R, and L, where P ∈ T x M ⊗ T x M, R ∈ Orth, and L ∈ E ⊗ T x M. In what follows wedo not explicitly <strong>in</strong>dicate that all <strong>the</strong> tensors depend also on <strong>the</strong> po<strong>in</strong>t x ◦ ∈ M.We will use <strong>the</strong> follow<strong>in</strong>g nomenclature:Orth = {O : O −1 = O T } – group <strong>of</strong> orthogonal tensors;Orth + = {O : O ∈ Orth, det O = 1} – group <strong>of</strong> rotation tensors;Orth n = {O : O ∈ Orth, On = ±n} – group <strong>of</strong> rotations about n andreflections relative to <strong>the</strong> tangent plane;Orth + n = {O : O ∈ Orth+ , On = n} – group <strong>of</strong> rotations about n;Unim n = {P : nIP = PI T n = 0, J(P) = 1} – two-dimensional analogue <strong>of</strong><strong>the</strong> unimodular group;L<strong>in</strong> n = {L : LI T n = 0}.Here Unim n – group with regard to multiplication, and L<strong>in</strong> n – group with regardto addition.


136 J <strong>Elastic</strong>ity (2006) 85: 125–152Now we are able to <strong>in</strong>troduce <strong>the</strong> follow<strong>in</strong>g def<strong>in</strong>ition:DEFINITION 1. We call <strong>the</strong> local symmetry group G κ <strong>of</strong> <strong>the</strong> elastic shell all sets <strong>of</strong>ordered triples <strong>of</strong> tensorssatisfy<strong>in</strong>g <strong>the</strong> relationW(E, K; B)X = (P ∈ Unim n , R ∈ Orth, L ∈ L<strong>in</strong> n ) ,= W [ REP −1 + RIP −1 − I, (det R)RKP −1 + L;(det R)RBP −1 − L ] (33)for any tensors E, K, B <strong>in</strong> <strong>the</strong> doma<strong>in</strong> <strong>of</strong> def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> function W.The set G κ is <strong>the</strong> group relative to <strong>the</strong> group operation ◦ def<strong>in</strong>ed by(P 1 , R 1 , L 1 ) ◦ (P 2 , R 2 , L 2 ) = [ P 1 P 2 , R 1 R 2 , L 1 + (det R 1 ) R 1 L 2 P −1 ]1 .We will show that this def<strong>in</strong>ition allows us to establish an analogue <strong>of</strong> <strong>the</strong> Noll rule.Let us check that if X 1 ≡ (P 1 , R 1 , L 1 ) ∈ G κ and X 2 ≡ (P 2 , R 2 , L 2 ) ∈ G κ , <strong>the</strong>n alsoX 1 ◦ X 2 ∈ G κ . Indeed, s<strong>in</strong>ce X 1 ∈ G κ and X 2 ∈ G κ <strong>the</strong>nW(E, K; B)= W [ R 1 EP −1 1 + R 1 IP −11− I, (12 det R 1 ) R 1 KP −1 1 + L 1 ;(det R 1 ) R 1 BP −1 ]1− L 1= W [ R 2 EP 2 −1 + R 2 IP −12− I, (det R 2 ) R 2 KP 2 −1 + L 2 ;(det R 2 ) R 2 BP −12− L 2].Tak<strong>in</strong>g <strong>the</strong>se relations <strong>in</strong>to account we haveW [ R 1 R 2 EP 2 −1 P 1 −1 + R 1 R 2 IP 2 −1 P 1 −1 − I,(det R 1 ) (det R 2 ) R 1 R 2 KP 2 −1 P 1 −1 + L 1 + (det R 1 ) R 1 L 2 P −1(det R 1 ) (det R 2 ) R 1 R 2 BP 2 −1 P 1 −1 − L 1 − (det R 1 ) R 1 L 2 P −11= W { R 1(R2 EP −12+ R 2 IP −12− I ) P −11+ R 1 IP −11− I,[(det R 1 ) R 1 (det R2 ) R 2 KP −1 ]2 + L 2 P−11+ L 1 ;[(det R 1 ) R 1 (det R2 ) R 2 BP −1 ] }2 − L 2 P−11− L 1= W [ R 2 EP −1 2 + R 2 IP −12− I ,(det R 2 ) R 2 KP −1 2 + L 2 ; (det R 2 ) R 2 BP −1 ]2− L 2= W (E, K; B) ,which proves that X 1 ◦ X 2 belongs to <strong>the</strong> symmetry group G κ <strong>in</strong>deed.1 ;]


J <strong>Elastic</strong>ity (2006) 85: 125–152 137The unit element <strong>of</strong> G κ is I = (A, 1, 0). The <strong>in</strong>verse element to X ∈ G κ is given byIndeed,X −1 ≡ (P, R, L) −1 = [ P −1 , R T , −(det R)R T LP ] .X ◦ X −1 ≡ (P, R, L) ◦ (P, R, L) −1= [ PP −1 , RR T , L − (det R) 2 RR T LPP −1] = (A, 1, 0).The group operation ◦ used here is analogous to but not identical with <strong>the</strong> one<strong>in</strong>troduced by Murdoch and Cohen [30] for <strong>the</strong> material surface with one deformabledirector. Our symmetry group also differs from <strong>the</strong> one <strong>of</strong> 3D micropolar elasticmaterial <strong>in</strong>troduced by Er<strong>in</strong>gen and Kafadar [19], because we take <strong>in</strong>to account thatsome arguments <strong>of</strong> W are pseudotensors and our group consists <strong>of</strong> more narrowsubgroups as compared with <strong>the</strong> 3D case. The property (28) was not taken <strong>in</strong>toaccount <strong>in</strong> [15, 12], where <strong>the</strong> symmetry group for <strong>the</strong> micropolar <strong>the</strong>ory <strong>of</strong> elasticshells was proposed assum<strong>in</strong>g that <strong>the</strong> stra<strong>in</strong> energy density may depend on curvature<strong>of</strong> <strong>the</strong> reference base surface.The local symmetry group depends not only on <strong>the</strong> po<strong>in</strong>t x ◦ ∈ M but also upon<strong>the</strong> choice <strong>of</strong> <strong>the</strong> reference placement. Let us analyse how <strong>the</strong> symmetry groups <strong>of</strong>different reference placements are related. Let κ 1 and κ 2 be two different referenceplacements hav<strong>in</strong>g <strong>the</strong> common tangent plane at <strong>the</strong> po<strong>in</strong>t x ◦ ∈ M where <strong>the</strong> symmetrygroup is discussed, and G 1 and G 2 be <strong>the</strong> symmetry groups correspond<strong>in</strong>g to <strong>the</strong>reference placements κ 1 and κ 2 , respectively. In what follows quantities described <strong>in</strong><strong>the</strong> placements κ 1 and κ 2 are marked by <strong>in</strong>dices 1 and 2, respectively.Let P be <strong>the</strong> tangential deformation gradient and R be <strong>the</strong> rotation tensor associatedwith deformation M 1 → M 2 , as well as P −1 and R T be <strong>the</strong> <strong>in</strong>verse deformationgradient and <strong>the</strong> <strong>in</strong>verse rotation tensor associated with <strong>the</strong> <strong>in</strong>verse deformation,respectively. Then, by analogy to (24), (28), we can relate <strong>the</strong> shell stra<strong>in</strong> measuresE 1 and E 2 , K 1 and K 2 , as well as <strong>the</strong> structure curvature tensors B 1 and B 2 def<strong>in</strong>edrelative to different reference placementsE 2 = RE 1 P −1 + RI 1 P −1 − I 2 , K 2 = (det R)RK 1 P −1 + L. (34)B 2 = (det R)RB 1 P −1 − L, L = (det R)RGP −1 , (35)where I 1 and I 2 are <strong>the</strong> <strong>in</strong>clusion operators for κ 1 and κ 2 , respectively.Let W 1 and W 2 be <strong>the</strong> stra<strong>in</strong> energy densities def<strong>in</strong>ed relative to <strong>the</strong> two referenceplacements. From (29) it follows that W 2 and W 1 are related byJ(P)W 2 (E 2 , K 2 ; B 2 ) = W 1 (E 1 , K 1 ; B 1 ).Tak<strong>in</strong>g <strong>in</strong>to account (34) and (35) we haveJ(P)W 2[RE1 P −1 + RI 1 P −1 − I 2 , (det R)RK 1 P −1 + L;(det R)RB 1 P −1 − L ]= W 1 (E 1 , K 1 ; B 1 ). (36)


138 J <strong>Elastic</strong>ity (2006) 85: 125–152Let <strong>the</strong> element X 1 ≡ (P 1 , R 1 , L 1 ) ∈ G 1 . Then us<strong>in</strong>g (36) we obta<strong>in</strong>J(P)W 2 (E 2 , K 2 ; B 2 )= W 1 (E 1 , K 1 ; B 1 )= W 1[R1 E 1 P −11+ R 1 I 1 P −11− I 1 ,(det R 1 )R 1 K 1 P −11+ L 1 ;(det R 1 )R 1 B 1 P −1 ]1− L 1= J(P)W 2[RR1 E 1 P −11 P−1 + RR 1 I 1 P −11 P−1 − I 2 ,(det R)(det R 1 )RR 1 K 1 P −11 P−1+ (det R)RL 1 P −1 + L;(det R)(det R 1 )RR 1 B 1 P −11 P−1−(det R)RL 1 P −1 − L ]= J(P)W 2[RR1 R T E 2 PP −11 P−1 + RR 1 R T I 2 PP −11 P−1 − I 2 ,(det R 1 )RR 1 R T K 2 PP −11 P−1− (det R 1 )RR 1 R T LPP −11 P−1+ (det R 1 )RL 1 P −1 + L;(det R 1 )RR 1 R T B 2 PP −11 P−1+ (det R 1 )RR 1 R T LPP −11 P−1−(det R 1 )RL 1 P −1 − L ] . (37)From (37) it follows that <strong>the</strong> element X 2 ≡ (P 2 , R 2 , L 2 ) ∈ G 2 , whereR 2 = RR 1 R T , P 2 = PP 1 P −1 ,L 2 = L + (det R 1 )RL 1 P −1 − (det R 1 )RR 1 R T LPP −11 P−1 .It is easy to show that X 2 = P ◦ X 1 ◦ P −1 , where P ≡ (R, P, L). Indeed,P ◦ X 1 ≡ (P, R, L) ◦ (P 1 R 1 , L 1 )= [ PP 1 , RR 1 , L + (det R)R T LP ] .Tak<strong>in</strong>g <strong>in</strong>to account that P −1 = [ P −1 , R T , −(det R)R T LP ] , we obta<strong>in</strong>P ◦ X 1 ◦ P −1 = [ PP 1 P −1 , RR 1 R T , L + (det R) 2 (det R 1 )RL 1 P −1−(det R) 2 (det R 1 )RR 1 R T LPP −11 P−1] ,from which follows <strong>the</strong> sought result.Then, <strong>the</strong> local symmetry group under change <strong>of</strong> <strong>the</strong> reference placement transformsaccord<strong>in</strong>g toG 2 = P ◦ G 1 ◦ P −1 . (38)The transformation (38) is a counterpart <strong>in</strong> <strong>the</strong> general <strong>the</strong>ory <strong>of</strong> shells <strong>of</strong> <strong>the</strong> wellknown Noll rule [38, 42, 44, 46] for symmetry groups <strong>of</strong> simple materials <strong>in</strong> cont<strong>in</strong>uummechanics.


J <strong>Elastic</strong>ity (2006) 85: 125–152 1395. Shell Stra<strong>in</strong> Energy DensityThe structure <strong>of</strong> <strong>the</strong> local symmetry group G κ puts some constra<strong>in</strong>ts on <strong>the</strong> form <strong>of</strong> Wwhich allows one to considerably simplify this form. In what follows we discuss somesimplifications <strong>of</strong> W follow<strong>in</strong>g from <strong>the</strong> structure <strong>of</strong> G κ .The group G κ allows one to analyse properties <strong>of</strong> W only at <strong>the</strong> chosen po<strong>in</strong>t x ◦ ∈M. Therefore, statements that <strong>the</strong> symmetry group corresponds to a solid or fluidmembrane, for example, are valid only at <strong>the</strong> chosen po<strong>in</strong>t. At ano<strong>the</strong>r po<strong>in</strong>t <strong>of</strong> <strong>the</strong>shell <strong>the</strong> symmetry group may be different, <strong>in</strong> general.Let us discuss <strong>the</strong> trivial symmetry group G κ = {A, ±I, 0}. From def<strong>in</strong>ition <strong>of</strong> G κ itfollows that W should be an even function <strong>of</strong> K and B, that isW(E, K; B) = W(E, −K; −B). (39)From (39) it follows, <strong>in</strong> particular, that W(E, K; B) cannot have terms l<strong>in</strong>ear <strong>in</strong> Kalone. Only when W is assumed to explicitly depend also on <strong>the</strong> structure curvaturetensor B <strong>the</strong> terms l<strong>in</strong>ear <strong>in</strong> K <strong>of</strong> <strong>the</strong> type tr (BK T ) are possible.If <strong>the</strong> elements <strong>of</strong> G κ consist <strong>of</strong> tensor triples conta<strong>in</strong><strong>in</strong>g an arbitrary tensor L ∈L<strong>in</strong> n , <strong>the</strong>n <strong>the</strong> number <strong>of</strong> arguments <strong>in</strong> W can be decreased.Indeed, let X = (A, I, L) ∈ G κ . ThenW(E, K; B) = W(E, K + L; B − L) , ∀ L ∈ L<strong>in</strong> n . (40)Introduc<strong>in</strong>g a one-parameter family <strong>of</strong> transformationsW(E, K; B) = W(E, K + t L; B − t L) , ∀ L ∈ L<strong>in</strong> n , ∀ t ∈ R,we can differentiate it relative to t and f<strong>in</strong>d thatfrom which we obta<strong>in</strong>0 = ∂W∂K · L − ∂W∂ B · L , ∀ L ∈ L<strong>in</strong> n,∂W∂K = ∂W∂ B .This equation is satisfied when W = W(E, K + B) = W(E, V).Alternatively, s<strong>in</strong>ce (40) is satisfied by any L let us take L equal to B. Then fromEquation (40) it follows thatW(E, K; B) = W(E, K + B; 0) = W(E, V).If <strong>the</strong> stra<strong>in</strong> energy density is reduced to W(E, K), i.e. when we neglect its explicitdependence on B, <strong>the</strong>n from <strong>the</strong> Equation (40) we obta<strong>in</strong> that W = W(E). This formcorresponds to <strong>the</strong> constitutive equations <strong>of</strong> <strong>the</strong> Cosserat membrane. Indeed, <strong>in</strong> thiscase we haveW(E, K) = W(E, K + t L) , ∀ L ∈ L<strong>in</strong> n , ∀ t ∈ R,and by <strong>the</strong> same way as above we obta<strong>in</strong> that ∂W∂K = 0.In <strong>the</strong> elastic Cosserat membrane <strong>the</strong> stress couple tensor M vanishes while<strong>the</strong> stress resultant tensor N still rema<strong>in</strong>s non-symmetric, <strong>in</strong> general. The coupleequilibrium equation (1) 2 is non-trivial here and can be used to derive <strong>the</strong> field <strong>of</strong>rotation Q. However, it is <strong>the</strong>n not possible to assume <strong>the</strong> rotation Q or <strong>the</strong> stresscouple M at <strong>the</strong> base surface boundary ∂ M.


140 J <strong>Elastic</strong>ity (2006) 85: 125–152If <strong>the</strong> local symmetry group <strong>of</strong> <strong>the</strong> membrane takes <strong>the</strong> formG κ = {P, R ∈ Orth + , L ∈ L<strong>in</strong> n },i.e. when G κ consists <strong>of</strong> an arbitrary proper orthogonal tensor R ∈ Orth + and anarbitrary tensor L ∈ E ⊗ T x M, <strong>the</strong>n <strong>the</strong> constitutive equations describe <strong>the</strong>√usualmembrane for which <strong>the</strong> stra<strong>in</strong> energy density is given by W = W(Y), Y = F T F,i.e. W depends here on <strong>the</strong> symmetric tangential stretch tensor Y alone.Indeed, let us <strong>in</strong>troduce <strong>in</strong>to <strong>the</strong> formulaW(E) = W(REP −1 + RIP −1 − I) = W(RQ T FP −1 − I)<strong>the</strong> relation P = A and R = H T Q, where H is <strong>the</strong> proper orthogonal tensor follow<strong>in</strong>gfrom <strong>the</strong> polar decompositionF + m ⊗ n = H(Y + n ⊗ n),<strong>in</strong> analogy to (19), where m is <strong>the</strong> unit normal to N. Then it follows that F = H IYandW(E) = W ( H T QQ T HIYA − I ) = W(IY − I) = W × (Y).Then <strong>the</strong> stress resultant tensor N becomes symmetric, N = N T , and <strong>the</strong> coupleequilibrium equation (1) 2 is identically satisfied for <strong>the</strong> vanish<strong>in</strong>g resultant surfacecouple vector c. The symmetry groups and representations <strong>of</strong> constitutive equationsfor membranes were discussed <strong>in</strong> [21, 45].More detailed classification <strong>of</strong> <strong>the</strong> constitutive equations for membranes can beobta<strong>in</strong>ed by <strong>the</strong> symmetry group conta<strong>in</strong><strong>in</strong>g <strong>the</strong> tensor P.Let us recall here <strong>the</strong> follow<strong>in</strong>g results [21, 45]:1. G κ = {P ∈ Unim n , R ∈ Orth + , L ∈ L<strong>in</strong> n }: The liquid membrane, W = W(det Y).2. G κ = {P ∈ S n A, R ∈ S n , L ∈ L<strong>in</strong> n }, where S n is a subgroup <strong>of</strong> Orth + : The solidmembrane.3. G κ = {P = OIA, R ∈ Orth + , L ∈ L<strong>in</strong> n }, where O ∈ Orth + : The isotropic membrane,W = W(tr Y, det Y).6. Liquid <strong>Shells</strong>To def<strong>in</strong>e <strong>the</strong> liquid shell we apply, similarly as <strong>in</strong> 3D bodies, <strong>the</strong> requirement that <strong>the</strong>constitutive equations should be <strong>in</strong>sensitive to change <strong>of</strong> <strong>the</strong> reference placement, i.e.<strong>the</strong> Equation (32) should be satisfied by any triple <strong>of</strong> tensors P ∈ Unim n , R ∈ Orth,L ∈ L<strong>in</strong> n .DEFINITION 2. The shell is called liquid if <strong>the</strong>re exists a reference placement κ,called undistorted, such that <strong>the</strong> follow<strong>in</strong>g relation holds:W(E, K; B)= W [ REP −1 + RIP −1 − I, (det R)RKP −1 + L;(det R)RBP −1 − L ] ,∀ P ∈ Unim n , ∀ R ∈ Orth, ∀ L ∈ L<strong>in</strong> n . (41)


J <strong>Elastic</strong>ity (2006) 85: 125–152 141From <strong>the</strong> Noll rule (38) it is easy to f<strong>in</strong>d that for <strong>the</strong> liquid shell any referenceplacement becomes undistorted, similarly as it is for simple 3D bodies, because <strong>the</strong>symmetry group becomes here to be maximal.The requirement (41) is satisfied for any n, i.e. Equation (41) is true for any 2Dunimodular group Unim n and for any group with regard to addition L<strong>in</strong> n .From (41) it immediately follows, as it was proved before, that <strong>the</strong> stra<strong>in</strong> energydensity takes <strong>the</strong> form W = W(E, V).If we use <strong>the</strong> polar decomposition F = HIY, where Y is <strong>the</strong> tangential symmetricstretch tensor and H is <strong>the</strong> macrorotation tensor, and <strong>in</strong>troduce <strong>in</strong>to Equation (41)that P = Y det −1 F, R = H T Q, <strong>the</strong>n we obta<strong>in</strong>W = W(E, V) = W × (det F, C), (42)where C is <strong>the</strong> structure curvature tensor <strong>of</strong> <strong>the</strong> deformed placement def<strong>in</strong>ed <strong>in</strong> (8).Indeed,W(E, V) = W [ Q T F − I, Q T CF ]= W [ RQ T FP −1 − I, (det R)RQ T CFP −1]= W [ (det F − 1)I, H T CI T H(det F) ] = W × (det F, C).With <strong>the</strong> use <strong>of</strong> <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> material frame <strong>in</strong>difference <strong>the</strong> function W ×satisfies <strong>the</strong> condition W × (det F, C) = W × (det F, O T CI T O), ∀ O ∈ Orth n , i.e. it is asurface isotropic function with regard to C. This allows us to apply <strong>the</strong> <strong>the</strong>orem given<strong>in</strong> <strong>the</strong> Appendix B.The stra<strong>in</strong> energy density (42) describes <strong>the</strong> material surface which energy is<strong>in</strong>sensitive to arbitrary deformations preserv<strong>in</strong>g <strong>the</strong> elementary surface element <strong>of</strong><strong>the</strong> base surface called also <strong>in</strong>extensional deformations. However, it is sensitive to<strong>the</strong> change <strong>of</strong> orientation <strong>of</strong> <strong>the</strong> shell particles.If <strong>the</strong> density (42) is compared with <strong>the</strong> 3D stra<strong>in</strong> energy density <strong>of</strong> <strong>the</strong> micropolarfluid [14] one can easily note that <strong>the</strong>y co<strong>in</strong>cide up to notation. This allows one toregard <strong>the</strong> shell described by <strong>the</strong> stra<strong>in</strong> energy density (42) to be a 2D analogue <strong>of</strong><strong>the</strong> micropolar fluid.Correct derivation <strong>of</strong> models <strong>of</strong> liquid shells is stimulated by <strong>the</strong>ir possible applicationsto describe th<strong>in</strong> films which show some effects <strong>of</strong> oriented elasticity similarto that <strong>of</strong> viscoelastic micropolar fluids and <strong>of</strong> liquid crystals. Similar constitutiveequations also appear when modell<strong>in</strong>g th<strong>in</strong> films made <strong>of</strong> low-symmetric smectics(see for example [11]).7. Solid <strong>Shells</strong>Let us discuss <strong>the</strong> local symmetry group for solid shells consist<strong>in</strong>g <strong>of</strong> three <strong>in</strong>dependenttransformations. For 3D solids <strong>the</strong> symmetry group is constructed with <strong>the</strong> help<strong>of</strong> orthogonal transformations describ<strong>in</strong>g rotations and reflections <strong>of</strong> <strong>the</strong> referenceplacement [42, 46]. In <strong>the</strong> case <strong>of</strong> solid shells it would be difficult to accept that<strong>the</strong> constitutive equations might be <strong>in</strong>sensitive to <strong>in</strong>dependent rotations <strong>of</strong> <strong>the</strong> basesurface about its normal as well as to rotations <strong>of</strong> <strong>the</strong> directors. It is also difficult to


142 J <strong>Elastic</strong>ity (2006) 85: 125–152allow <strong>in</strong>variance with regard to arbitrary changes <strong>of</strong> <strong>the</strong> structure curvature tensor B.For solid shells an additional hypo<strong>the</strong>sis seems to be physically justified:The local symmetry group <strong>of</strong> <strong>the</strong> solid shell consists <strong>of</strong> all transformations <strong>of</strong> <strong>the</strong>reference placements performed by <strong>the</strong> same rotations <strong>of</strong> shell cross-sections and <strong>of</strong>shell directors.Tak<strong>in</strong>g <strong>in</strong>to account that P ∈ T x M ⊗ T x M, R ∈ E ⊗ E, this hypo<strong>the</strong>sis restrictsvalues <strong>of</strong> <strong>the</strong> orthogonal tensor R to <strong>the</strong> subgroup Orth n , and values <strong>of</strong> <strong>the</strong> tangentialdeformation gradient tensor P to 2D orthogonal tensors follow<strong>in</strong>g from <strong>the</strong> projection<strong>of</strong> Orth n on <strong>the</strong> tangent plane T x M.Accept<strong>in</strong>g <strong>the</strong> hypo<strong>the</strong>sis we can propose <strong>the</strong> follow<strong>in</strong>gDEFINITION 3. The shell is called solid if <strong>the</strong>re exists a reference placement, calledundistorted, such that <strong>the</strong> local symmetry group is given byG κ = {(P = OIA, O, 0); O ∈ S n ⊂ Orth n } .The group G κ is described by <strong>the</strong> subgroup S n <strong>of</strong> rotations about n and reflectionswith regard to <strong>the</strong> tangent plane Orth n . It is easy to see that for an arbitrarytensor X ∈ L<strong>in</strong> n and any O ∈ Orth n we have <strong>the</strong> identity X I T OIA = X I T OI, whichsimplifies <strong>the</strong> description <strong>of</strong> transformations <strong>of</strong> W. The <strong>in</strong>variance requirement <strong>of</strong>W leads here to f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> subgroup S n <strong>of</strong> <strong>the</strong> full orthogonal group, i.e. suchO ∈ S n ⊂ Orth n thatW (E, K; B) = W [ OEI T O T , (det O)OKI T O T ; (det O)OBI T O T] .8. Liquid Crystal <strong>Shells</strong>In general, <strong>the</strong> stra<strong>in</strong> energy density <strong>of</strong> an elastic shell may also admit o<strong>the</strong>r localsymmetry groups. For example, it is possible to construct <strong>the</strong> local symmetry groups<strong>of</strong> W <strong>in</strong> analogy to <strong>the</strong> symmetry groups <strong>of</strong> liquid crystals <strong>in</strong> cont<strong>in</strong>uum mechanics <strong>of</strong>simple materials [42–44, 46]. In cont<strong>in</strong>uum mechanics such materials are called liquidcrystals or subfluids, but <strong>the</strong>ir mechanical properties do not correspond to <strong>the</strong> ones <strong>of</strong>real liquid crystals like nematics, smectics and o<strong>the</strong>rs. Such a density W would <strong>the</strong>ndescribe <strong>the</strong> material shell which is nei<strong>the</strong>r isotropic nor solid.In shell <strong>the</strong>ory <strong>the</strong> number <strong>of</strong> local symmetry groups correspond<strong>in</strong>g to <strong>the</strong> socalledliquid crystals would be much larger than <strong>in</strong> <strong>the</strong> case <strong>of</strong> 3D simple materialsbecause <strong>the</strong> structure <strong>of</strong> G κ is more complex for shells. We leave discussion <strong>of</strong>symmetry groups for liquid crystal shells for future research.9. Some <strong>Local</strong> <strong>Symmetry</strong> <strong>Group</strong>s for Solid <strong>Shells</strong>Let us discuss simplified forms <strong>of</strong> W for some particular cases <strong>of</strong> anisotropy.The most narrow case <strong>in</strong>cludes <strong>the</strong> isotropic shells which material is <strong>in</strong>sensitive torotation <strong>of</strong> shell elements by an arbitrary angle about <strong>the</strong> normal as well as to an<strong>in</strong>version transformation <strong>of</strong> <strong>the</strong> space.


J <strong>Elastic</strong>ity (2006) 85: 125–152 143DEFINITION 4. The solid shell is called isotropic if <strong>the</strong>re exists a referenceplacement, called undistorted, such that <strong>the</strong> stra<strong>in</strong> energy density satisfies <strong>the</strong> relationW (E, K; B) = W [ OEI T O T , (det O)OKI T O T ; (det O)OBI T O T] ,∀ O ∈ Orth n . (43)If <strong>in</strong> <strong>the</strong> case above we use only proper orthogonal tensors <strong>the</strong>n <strong>the</strong> result<strong>in</strong>gconstitutive equations correspond to <strong>the</strong> hemitropic shell.DEFINITION 5. The solid shell is called hemitropic if <strong>the</strong>re exists a referenceplacement, called undistorted, such that <strong>the</strong> stra<strong>in</strong> energy density satisfies <strong>the</strong> relationW (E, K; B) = W ( OEI T O T , OKI T O T ; OBI T O T ) , ∀ O ∈ Orth + n . (44)DEFINITION 6. The solid shell is called orthotropic if <strong>the</strong> stra<strong>in</strong> energy density forsome reference placement satisfies <strong>the</strong> relationW (E, K; B) = W ( OEI T O T , OKI T O T , OBI T O T ) , O = 2n ⊗ n − 1, (45)where O is <strong>the</strong> orthogonal tensor perform<strong>in</strong>g <strong>the</strong> rotation <strong>of</strong> 180 ◦ about <strong>the</strong> normalto <strong>the</strong> base surface.By this transformation <strong>the</strong> tangential surface tensors do not change. Independentpolynomial <strong>in</strong>variants <strong>of</strong> <strong>the</strong> tensor X ∈ L<strong>in</strong> n are components <strong>of</strong> X ‖ and j 4 (X), j 5 (X)(see Appendix B). Then <strong>the</strong> stra<strong>in</strong> energy density <strong>of</strong> <strong>the</strong> orthotropic shell can be given<strong>in</strong> <strong>the</strong> formW = W(E ‖ , K ‖ , E T n, K T n; B ‖ , B T n),where W is <strong>the</strong> even function <strong>of</strong> its vector arguments W(·, ·, a, b, ·, z) = W(·, ·, −a, −b, ·, −z).The stra<strong>in</strong> energy densities follow<strong>in</strong>g from def<strong>in</strong>itions <strong>of</strong> isotropic (43) and orthotropic(45) shells are different from those <strong>of</strong> isotropic and orthotropic materialsused <strong>in</strong> 3D non-l<strong>in</strong>ear micropolar elasticity [14, 19, 20, 33]. Here we discuss morenarrow symmetry groups conta<strong>in</strong><strong>in</strong>g only rotations about normals to <strong>the</strong> referencebase surface. For example, <strong>the</strong> isotropy requirement <strong>of</strong> 3D micropolar body co<strong>in</strong>cideswith Equation (43) if we ignore dependence on B and O take to be an orthogonaltensor. Therefore, <strong>the</strong> relations (43) and (45) are less restrictive than <strong>in</strong> <strong>the</strong> 3D case,which results <strong>in</strong> necessity to use here more material constants. For example, <strong>the</strong>constitutive equations <strong>of</strong> <strong>the</strong> isotropic physically l<strong>in</strong>ear 3D Cosserat body conta<strong>in</strong>sonly six elastic constants [20, 33], but <strong>the</strong> constitutive equations <strong>of</strong> <strong>the</strong> isotropicphysically l<strong>in</strong>ear shell with<strong>in</strong> <strong>the</strong> model discussed here conta<strong>in</strong>s eight such constants.But def<strong>in</strong>itions used here entirely co<strong>in</strong>cide with physical concepts concern<strong>in</strong>g <strong>the</strong>surface anisotropy.


144 J <strong>Elastic</strong>ity (2006) 85: 125–15210. Physically L<strong>in</strong>ear MaterialAs an example <strong>of</strong> W satisfy<strong>in</strong>g Equation (43) we rem<strong>in</strong>d <strong>the</strong> physically l<strong>in</strong>ear isotropicshell which <strong>the</strong> stra<strong>in</strong> energy density is assumed as <strong>the</strong> quadratic form2W = α 1 tr 2 E ‖ + α 2 tr E 2 ‖ + α 3tr ( E T ‖ E ‖)+ α4 nEE T n+β 1 tr 2 K ‖ + β 2 tr K 2 ‖ + β 3tr ( K T ‖ K ‖)+ β4 nKK T n,E ‖ = E − nE, K ‖ = K − nK, A = 1 − n ⊗ n.The bil<strong>in</strong>ear terms <strong>of</strong> E and K are not present <strong>in</strong> (46) because K is <strong>the</strong> pseudotensorand changes its sign under <strong>the</strong> <strong>in</strong>version transformation.In <strong>the</strong> expression (46) we have eight factors α k , β k (k = 1, 2, 3, 4) which can dependon B, <strong>in</strong> general.The function (46) generates <strong>the</strong> follow<strong>in</strong>g constitutive equations:N = α 1 A tr E ‖ + α 2 E T ‖ + α 3E ‖ + α 4 n ⊗ EI T n,M = β 1 A tr K ‖ + β 2 K T ‖ + β 3K ‖ + β 4 n ⊗ KI T n. (47)In books [8, 34] <strong>the</strong> follow<strong>in</strong>g stra<strong>in</strong> energy density was used:2W = C [ νtr 2 E ‖ + (1 − ν)tr (E T ‖ E ‖) ] + α s C(1 − ν)nEE T n+ D [ νtr 2 K ‖ + (1 − ν)tr (K T ‖ K ‖) ] + α t D(1 − ν)nKK T n,which is a particular case <strong>of</strong> (46), where now C, D, α s , α t , and ν are <strong>in</strong>dependentmaterial constants.In a similar way we can describe o<strong>the</strong>r types <strong>of</strong> anisotropic solid shells as well.In <strong>the</strong> analysis below we limit ourselves to represent<strong>in</strong>g <strong>the</strong> stra<strong>in</strong> energy densityby quadratic functions <strong>of</strong> E and K modell<strong>in</strong>g <strong>the</strong> physically l<strong>in</strong>ear elastic material.Let us rem<strong>in</strong>d that W is <strong>the</strong> even function with respect to K and B: W(E, K; B) =W(E, −K; −B).For simplicity <strong>of</strong> discussion let us first assume that W does not depend on B.This means that <strong>the</strong> quadratic relation W(E, K), which <strong>in</strong> general has 78 <strong>in</strong>dependentconstants (see Equation (49) below), cannot have mixed terms conta<strong>in</strong><strong>in</strong>g both E andK. Therefore, it can be given as <strong>the</strong> sum <strong>of</strong> two separate quadratic functions <strong>of</strong> E andK: W = f 1 (E) + f 2 (K). This representation requires much less <strong>in</strong>dependent materialconstants than <strong>in</strong> <strong>the</strong> general case.To make <strong>the</strong> presentation concise let us discuss first <strong>the</strong> quadratic function <strong>of</strong> onetensor variable f (X), X ∈ L<strong>in</strong> n . Us<strong>in</strong>g <strong>the</strong> relations X = X ‖ + n ⊗ x, x = nX, X ‖ =X αβ g α ⊗ g β , x = x α g α , (g α · n = 0) (see Appendix B) we obta<strong>in</strong>f = C αβγ ε X αβ X γ ε + D αβγ X αβ x γ + G αβ x α x β= C 1111 X 2 11 + 2C 1112 X 11 X 12 + 2C 1121 X 11 X 21 + 2C 1122 X 11 X 22+C 1212 X 2 12 + 2C 1221 X 12 X 21 + 2C 1222 X 12 X 22+C 2121 X 2 21 + 2C 2122 X 21 X 22 + C 2222 X 2 22+D 111 X 11 x 1 + D 112 X 11 x 2 + D 121 X 12 x 1 + D 122 X 12 x 2+D 211 X 21 x 1 + D 212 X 21 x 2 + D 221 X 22 x 1 + D 222 X 22 x 2+G 11 x 2 1 + G 12x 1 x 2 + G 22 x 2 2 ,


J <strong>Elastic</strong>ity (2006) 85: 125–152 145where C αβγ ε , D αβγ , G αβ are material constants. The number <strong>of</strong> all <strong>in</strong>dependentconstants is 21 here, for <strong>the</strong> scalar variables X αβ and x α are all <strong>in</strong>dependent.In <strong>the</strong> case <strong>of</strong> orthotropy <strong>the</strong> quadratic function f (X) should be even with regardto <strong>the</strong> vector x. This results <strong>in</strong> that D αβγ = 0 and only 13 material constants rema<strong>in</strong><strong>in</strong>dependent. The function f takes <strong>the</strong> formf = C αβγ ε X αβ X γ ε + G αβ E α E β= C 1111 X 2 11 + 2C 1112 X 11 X 12 + 2C 1121 X 11 X 21 + 2C 1122 X 11 X 22+C 1212 X 2 12 + 2C 1221 X 12 X 21 + 2C 1222 X 12 X 22+C 2121 X 2 21 + 2C 2122 X 21 X 22 + C 2222 X 2 22+G 11 x 2 1 + G 12x 1 x 2 + G 22 x 2 2 ,Let us discuss <strong>the</strong> case <strong>of</strong> cubic symmetry. This means that <strong>the</strong> group S n consists <strong>of</strong>rotations <strong>of</strong> 90 ◦ described by <strong>the</strong> rotation tensorsO = (1 − n ⊗ n) cos ϕ + n ⊗ n − n × 1 s<strong>in</strong> ϕ, ϕ = 0, ± π 2 , π.Then <strong>the</strong> follow<strong>in</strong>g relations should be satisfied:f (X 11 , X 12 , X 21 , X 22 , x 1 , x 2 )= f (X 22 , −X 21 , −X 12 , X 11 , x 2 , −x 1 )= f (X 11 , X 12 , X 21 , X 22 , −x 1 , −x 2 )= f (X 22 , −X 21 , −X 12 , X 11 , −x 2 , x 1 ). (48)Under such symmetries <strong>the</strong> quadratic function can be reduced t<strong>of</strong> = 2C 1111(X211 + X 2 22)+ 2C1212(X212 + X 2 21)+ 2C1221 X 12 X 21+2G 11 (x 2 1 + x2 2 ),and conta<strong>in</strong>s only four <strong>in</strong>dependent material constants. It is easy to see that for <strong>the</strong>quadratic function f <strong>the</strong> cubic symmetry is equivalent to <strong>the</strong> condition <strong>of</strong> isotropy.Representations <strong>of</strong> quadratic functions W <strong>of</strong> two tensors E, K can be found <strong>in</strong> <strong>the</strong>same way. Us<strong>in</strong>g <strong>the</strong> relations E = E ‖ + n ⊗ e, e = nE, E ‖ = E αβ g α ⊗ g β , e = E α g α ,K = K ‖ + n ⊗ k, k = nK, K ‖ = K αβ g α ⊗ g β , k = K α g α , (g α · n = 0) we obta<strong>in</strong>W = C E αβγ ε E αβ E γ ε + D E αβγ E αβ E γ + G E αβ E α E β+C K αβγ ε K αβ K γ ε + D K αβγ K αβ K γ + G K αβ K α K β+C EKαβγ ε E αβ K γ ε + D EKαβγ E αβ K γ + D KEαβγ K αβ E γ + G EKαβ E α K β , (49)where Cαβγ E ε , CK αβγ ε , CEK αβγ ε , DE αβγ , DK αβγ , DEK αβγ , DKE αβγ , GE αβ , GK αβ , GEK αβ are materialconstants. In <strong>the</strong> general case <strong>of</strong> anisotropy <strong>the</strong> function W <strong>in</strong> (49) conta<strong>in</strong>s 78<strong>in</strong>dependent material constants.


146 J <strong>Elastic</strong>ity (2006) 85: 125–152If we take <strong>in</strong>to account that W(E, K) = W(E, −K) <strong>the</strong>n we immediately obta<strong>in</strong>that Cαβγ EKε = 0, DEK αβγ = 0, DKE αβγ = 0, GEK αβ = 0. Then W should be <strong>the</strong> sum <strong>of</strong> twoseparate quadratic functions <strong>of</strong> E and K: W = f 1 (E) + f 2 (K). In <strong>the</strong> general case thissum conta<strong>in</strong>s 42 <strong>in</strong>dependent material constants and is given byW = C E αβγ ε E αβ E γ ε + D E αβγ E αβ E γ + G E αβ E α E β+C K αβγ ε K αβ K γ ε + D K αβγ K αβ K γ + G K αβ K α K β .The orthotropic physically l<strong>in</strong>ear shell model has <strong>the</strong> stra<strong>in</strong> energy density with26 <strong>in</strong>dependent material constants. It becomes <strong>the</strong> sum <strong>of</strong> two separate quadraticfunctions <strong>of</strong> E and K: W = f 1 (E) + f 2 (K).The cubic symmetry <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear shell model leads to W with only eight <strong>in</strong>dependentmaterial constants, and can be decomposed <strong>in</strong>to <strong>the</strong> sum W = f 1 (E) + f 2 (K),where both f 1 (E) and f 2 (K) are surface isotropic functions. The stra<strong>in</strong> energy densityis thus given byW = 2C1111E (E211 + E222 ) (+ 2CE1212 E212 + E212 )+ 2CE1221 E 12 E 21+2G11 E (E 1 2 + E2 2 )+2C1111K (K211 + K222 ) (+ 2CK1212 K212 + K212 )+ 2CK1221 K 12 K 21+2G K 11 (K 2 1 + K 2 2 ).The analysis <strong>of</strong> quadratic functions <strong>of</strong> E, K which explicitly depend also on Bis more complex and leads to a greater number <strong>of</strong> <strong>in</strong>dependent material constants.Additionally, representations <strong>of</strong> such functions become very complex and somehypo<strong>the</strong>ses are needed on how <strong>the</strong> function W depends upon <strong>the</strong> structure curvaturetensor B.Let us discuss <strong>the</strong> quadratic representation for W given <strong>in</strong> (49) with additionalterms l<strong>in</strong>ear <strong>in</strong> E and K. Let us also assume that W depends on B only through <strong>the</strong>material tensors. ThenW = L E αβ E αβ + L K αβ K αβ + l E α E α + l K α K α ++C E αβγ ε E αβ E γ ε + D E αβγ E αβ E γ + G E αβ E α E β+C K αβγ ε K αβ K γ ε + D K αβγ K αβ K γ + G K αβ K α K β+C EKαβγ ε E αβ K γ ε + D EKαβγ E αβ K γ + D KEαβγ K αβ E γ + G EKαβ E α K β , (50)where Lαβ E , LK αβ , l α E, l α K, CE αβγ ε , CK αβγ ε , CEK αβγ ε , DE αβγ , DK αβγ , DEK αβγ , DKE αβγ , GE αβ , GK αβ , GEK αβare now functions <strong>of</strong> B.The l<strong>in</strong>ear terms <strong>of</strong> (50) model <strong>the</strong> existence <strong>of</strong> <strong>in</strong>itial stress resultants and stresscouples <strong>in</strong> <strong>the</strong> shell. The <strong>in</strong>itial fields are given byN ◦ = ∂W∂E ∣ ,E=0,K=0M ◦ = ∂W∂K ∣ . (51)E=0,K=0Such <strong>in</strong>itial stress and couple stress states can be associated, for example, withimperfections <strong>in</strong>troduced by realization process <strong>of</strong> <strong>the</strong> shell structure.


J <strong>Elastic</strong>ity (2006) 85: 125–152 147Us<strong>in</strong>g <strong>the</strong> relation W(E, K; B) = W(E, −K; −B) one can show that Lαβ E , l α E, CE αβγ ε ,Dαβγ E , GE αβ , CK αβγ ε , DK αβγ , GK αβ are even functions <strong>of</strong> B and LK αβ , l α K, CEK αβγ ε , DEK αβγ , DKE αβγ ,are odd functions <strong>of</strong> B. Then we can expand <strong>the</strong>se material functions <strong>in</strong>to TaylorG EKαβseries <strong>in</strong> <strong>the</strong> neighborhood <strong>of</strong> B = 0 and take <strong>in</strong>to account up to quadratic terms <strong>of</strong><strong>the</strong> series, for exampleC E αβγ ε (B) =(0) C E αβγ ε +(1) C E αβγ ε (B) +(2) C E αβγ ε (B),where (0) Cαβγ E ε are constant, (1) Cαβγ E ε (B) are l<strong>in</strong>ear functions <strong>of</strong> B, and (2) Cαβγ E ε (B) arequadratic functions <strong>of</strong> B. Then <strong>the</strong> follow<strong>in</strong>g material functions should disappear <strong>in</strong><strong>the</strong> expression (50):(1) L E αβ (B), (1) l E α (B), (0) L K αβ , (2) L K αβ (B), (0) l K α , (2) l K α (B), (1) C E αβγ ε (B),(1) C K αβγ ε (B), (0) C EKαβγ ε , (2) C EKαβγ ε (B), (1) D E αβγ (B), (1) D K αβγ (B), (0) D EKαβγ ,(2) D EKαβγ (B), (0) D KEαβγ , (2) D KEαβγ (B), (1) G E αβ (B), (1) G K αβ (B), (0) G EKαβ ,(2) G EKαβ (B).Even with this important reduction <strong>of</strong> <strong>the</strong> number <strong>of</strong> material constants, <strong>the</strong>reis still a tremendous number <strong>of</strong> material constants left <strong>in</strong> Equation (50). Note that<strong>the</strong>re are still <strong>in</strong> (50) l<strong>in</strong>ear expressions <strong>of</strong> E and K <strong>of</strong> <strong>the</strong> form L E αβ E αβ + l E α E α + (1)L K αβ (B)K αβ + (1) l K α (B)K α. Thus, <strong>the</strong> <strong>in</strong>itial couple stress resultants can only be taken<strong>in</strong>to account if W is supposed to depend on B.F<strong>in</strong>ally, if we assume that W depends explicitly on B, <strong>the</strong>n <strong>the</strong> representation (46)can be generalized to <strong>the</strong> form2W = α 0 tr E + α 00 nBI T EB T n+ β 0 tr Btr K + β 01 tr (BI T K) + β 10 tr (B T K) + β 00 nBI T KB T n+ α 1 tr 2 E ‖ + α 2 tr E 2 ‖ + α 3tr ( E T ‖ E ‖)+ α4 nEE T n+ α 5 tr 2 (BE ‖ ) + α 6 tr 2 ( B T IE ‖)+ α7 nEI T BE T n+ β 1 tr 2 K ‖ + β 2 tr K 2 ‖ + β 3tr ( K T ‖ K ‖)+ β4 nKK T n+ β 5 tr 2 (BK ‖ ) + β 6 tr 2 ( B T IK ‖)+ β7 nKI T BK T n+ γ 1 tr (B)tr (EK) + γ 2 tr (B)tr (E T K) + γ 3 tr (BI T EI T K). (52)In (52) <strong>the</strong> constitutive factors α 5 , α 6 , α 7 , α 00 , β 00 are odd while o<strong>the</strong>r ones are evensurface isotropic functions <strong>of</strong> B up to <strong>the</strong> second degree, for which <strong>the</strong> representationgiven <strong>in</strong> Appendix B can be used. Note that <strong>in</strong> (52) <strong>the</strong>re are bil<strong>in</strong>ear terms <strong>in</strong> E andK which have not been present <strong>in</strong> (46). These terms allow one to model deformation<strong>of</strong> <strong>the</strong> shell with B ̸= 0 for which N ̸= 0 when E = 0 and/or M ̸= 0 when K = 0.It is not possible to reduce fur<strong>the</strong>r <strong>the</strong> form (52) for an isotropic shell us<strong>in</strong>g only <strong>the</strong>symmetry considerations. For this purpose one may try to apply o<strong>the</strong>r requirementslike, for example, some additional 2D <strong>in</strong>equalities analogous to <strong>in</strong>equalities <strong>in</strong>nonl<strong>in</strong>ear elasticity [44].The form (52) is one <strong>of</strong> many possible representations for <strong>the</strong> isotropic quadraticfunction <strong>of</strong> three nonsymmetric tensors, not <strong>the</strong> most general one. The problemis that <strong>the</strong> number <strong>of</strong> polynomial <strong>in</strong>variants <strong>of</strong> several tensors is greater than <strong>the</strong>


148 J <strong>Elastic</strong>ity (2006) 85: 125–152number <strong>of</strong> <strong>the</strong>ir components. This means that from components <strong>of</strong> two or threetensors one can obta<strong>in</strong> more comb<strong>in</strong>ations which are <strong>in</strong>variant under orthogonaltransformations than <strong>the</strong> numbers <strong>of</strong> <strong>the</strong> components <strong>the</strong>mselves.11. ConclusionsWe have def<strong>in</strong>ed <strong>the</strong> local symmetry group for <strong>the</strong> general dynamically and k<strong>in</strong>ematicallyexact <strong>the</strong>ory <strong>of</strong> elastic shells. The group consists <strong>of</strong> an ordered triple <strong>of</strong> tensorsunder which <strong>the</strong> shell stra<strong>in</strong> energy density becomes <strong>in</strong>variant. It has been proved that<strong>the</strong> group satisfies <strong>the</strong> Noll rule known for <strong>the</strong> local symmetry group <strong>of</strong> cont<strong>in</strong>uummechanics.The local symmetry group <strong>of</strong> <strong>the</strong> shell has allowed us to describe precisely<strong>in</strong>variant properties <strong>of</strong> <strong>the</strong> stra<strong>in</strong> energy density <strong>of</strong> liquid and solid shells. With<strong>in</strong><strong>the</strong> solid shells we have described more precisely <strong>the</strong> surface orthotropic, hemitropic,and isotropic shells. Special attention has been paid to def<strong>in</strong>e membranes and solidshells made <strong>of</strong> physically l<strong>in</strong>ear elastic material. In <strong>the</strong> later case W becomes <strong>the</strong>quadratic function <strong>of</strong> <strong>the</strong> stra<strong>in</strong>s and bend<strong>in</strong>gs. This has allowed us to propose severalconstitutive equations <strong>in</strong>volv<strong>in</strong>g reduced numbers <strong>of</strong> constants to be established fromexperiments.The case <strong>of</strong> surface isotropic function <strong>of</strong> several arguments is more complex andis not discussed here. Additionally, as is shown <strong>in</strong> [39] <strong>in</strong> this case it can happen that<strong>the</strong> number <strong>of</strong> <strong>in</strong>dependent <strong>in</strong>variants is greater than <strong>the</strong> number <strong>of</strong> components <strong>of</strong>components <strong>of</strong> tensorial arguments <strong>of</strong> <strong>the</strong> function.Acknowledgments The first author was partially supported by <strong>the</strong> Russian Foundation <strong>of</strong> BasicResearch and <strong>the</strong> Russian Science Support Foundation, while <strong>the</strong> second author by <strong>the</strong> PolishCommittee for Scientific Research under grant No 5 TO7A 008 25.Appendix A. Table with constitutive equations and correspond<strong>in</strong>g local symmetrygroupsThe local symmetry groups and <strong>the</strong> correspond<strong>in</strong>g stra<strong>in</strong> energy densities <strong>of</strong> <strong>the</strong>hyperelastic shells are collected <strong>in</strong> Table 1.Appendix B. Representation <strong>of</strong> <strong>the</strong> surface isotropic function <strong>of</strong> one tensorargumentIn order to derive explicitly particular forms <strong>of</strong> <strong>the</strong> constitutive equations for anelastic material we need <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem:THEOREM 1. Let <strong>the</strong> scalar-valued function f : L<strong>in</strong> n → R be <strong>the</strong> isotropic functionat <strong>the</strong> surface, that isf (X) = f (OXO T ), ∀ X ∈ L<strong>in</strong> n , ∀ O ∈ Orth n .


J <strong>Elastic</strong>ity (2006) 85: 125–152 149Table 1 <strong>Local</strong> symmetry groups and correspond<strong>in</strong>g stra<strong>in</strong> energy densitiesElements <strong>of</strong> <strong>the</strong> symmetry group Shell description Stra<strong>in</strong> energy densityP ∈ Unim n Liquid shell W = W(det F, C)R ∈ Orth n= W[det F, (det O)OCI T O T]L ∈ L<strong>in</strong> n∀ O ∈ Orth nP = OIA Solid shell W = W(E, K; B)O ∈ S n ⊂ Orth nR = OL = 0= W[OEI T O T , (det O)OKI T O T ;(det O)OBI T O T]∀ O ∈ S n ⊂ Orth nP = OIA Orthotropic shell W = W(E, K; B)O ∈ S n = {1, −1, 2n ⊗ n − 1}R = O= W[OEI T O T , (det O)OKI T O T ;(det O)OBI T O T]L = 0 ∀ O ∈ S n = {1, −1, 2n ⊗ n − 1}P = OIA Hemitropic shell W = W(E, K; B)O ∈ Orth + nR = OL = 0= W∀ O ∈ Orth + n[OEI T O T , OKI T O T ;OBI T O T]P = OIA Isotropic shell W = W(E, K; B)O ∈ Orth nR = OL = 0= W∀ O ∈ Orth n[OEI T O T , (det O)OKI T O T ;(det O)OBI T O T]Then f is <strong>the</strong> function <strong>of</strong> only five <strong>in</strong>dependent <strong>in</strong>variantsf (X) = f [ j k (X) ] ,j 1 (X) = tr X, j 2 (X) = tr X 2 ‖ , j 3(X) = tr (X T ‖ X ‖),j 4 (X) = nXX T n, j 5 (X) = nX 2 X T n,where X ‖ ≡ X − nX ∈ T x M ⊗ T x M.Pro<strong>of</strong>. The tensor X can be decomposed <strong>in</strong>to X = X ‖ + n ⊗ x, x = nX, x ∈ T x M(n · x = 0), and X ‖ can be represented by its symmetric and skew-symmetric parts:X ‖ = X s ‖ + Xa ‖ , Xs ‖ = Xs T ‖, X a ‖ = −Xa T ‖.Let g α (α = 1, 2), n · g α = 0 be and arbitrary orthonormal surface base. Then X s ‖ =Xαβ s g α ⊗ g β (Xαβ s = Xs βα ), Xa ‖ = Xa (g 1 ⊗ g 2 − g 2 ⊗ g 1 ). Therefore, <strong>the</strong> function fcan be expressed through <strong>the</strong> surface symmetric tensor X s ‖, <strong>the</strong> vector x, and <strong>the</strong>scalar X a :f = f × (X s ‖ , x, Xa ).From def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> surface isotropic function it follows that f × is <strong>the</strong> isotropicfunction <strong>of</strong> its arguments, i.e. <strong>the</strong> function with <strong>the</strong> symmetry group SO(2). Therefore,it is <strong>the</strong> function <strong>of</strong> <strong>in</strong>variants [39] <strong>of</strong> X s ‖ and x: tr Xs ‖ , tr Xs ‖2 , xX s ‖x, x · x, as


150 J <strong>Elastic</strong>ity (2006) 85: 125–152well as <strong>of</strong> X a . Tak<strong>in</strong>g <strong>in</strong>to account that tr X s ‖ = tr X, xXs ‖ x = x Xx, tr Xs ‖2 = tr X ‖ 2 +2X a2 = tr (X T ‖ X ‖) − 2X a2 , <strong>the</strong> function f depends on <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>variants:tr X, tr X 2 ‖ , tr (XT ‖ X ‖), x Xx, x · x,and dependence on X α is taken here implicitly <strong>in</strong> <strong>the</strong> <strong>in</strong>variant tr (X T ‖ X ‖).This completes <strong>the</strong> pro<strong>of</strong>.Let us note that for this pro<strong>of</strong> based on results by Spencer [39] it is enough if weuse <strong>the</strong> group Orth + n .From <strong>the</strong> pro<strong>of</strong> above it is seen that <strong>in</strong> <strong>the</strong> expression for <strong>in</strong>variants we can use X<strong>in</strong> place <strong>of</strong> X ‖ as well.From <strong>the</strong> <strong>the</strong>orem it followsCOROLLARY 1. The surface isotropic l<strong>in</strong>ear function f : L<strong>in</strong> n → R is given by <strong>the</strong>formula f (X) = α ◦ tr X.COROLLARY 2. The surface isotropic quadratic function f : L<strong>in</strong> n → R is given by<strong>the</strong> formula2 f (X) = α 1 tr 2 X + α 2 tr X 2 ‖ + α 3tr (X T ‖ X ‖) + α 4 nXX T n.References1. Adeleke, S.A.: On possible symmetry <strong>of</strong> shells. In: Dafermos, C.M., Joseph D.D., Leslie, F.M.(eds.) The Breadth and Depth <strong>of</strong> Cont<strong>in</strong>uum Mechanics. A Collection <strong>of</strong> Papers Dedicated toJ.L. Ericksen on his 60th Birthday, pp. 745–757. Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg New York (1986)2. Altenbach, H., Zhil<strong>in</strong>, P.A.: The <strong>the</strong>ory <strong>of</strong> elastic th<strong>in</strong> shells (<strong>in</strong> Russian). Adv. Mech. 11, 107–148(1988)3. Altenbach, H., Zhil<strong>in</strong>, P.A.: The <strong>the</strong>ory <strong>of</strong> simple elastic shells. In: Kienzler, R., Altenbach, H.,Ott, I. (eds.) Theories <strong>of</strong> Plates and <strong>Shells</strong>: Critical Review and New Applications, pp. 1–12.Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg New York (2004)4. Altenbach, H., Naumenko, K., Zhil<strong>in</strong>, P.A.: A direct approach to <strong>the</strong> formulation <strong>of</strong> constitutiveequations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures:<strong>Theory</strong> and Applications, pp. 87–90. Taylor & Francis, London (2005)5. Arfken G.B., Weber, H.J.: Ma<strong>the</strong>matical Methods for Physicists. Spr<strong>in</strong>ger, Berl<strong>in</strong> HeidelbergNew York (2000)6. Carrol, M.M., Naghdi, P.M.: The <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> reference geometry on <strong>the</strong> response <strong>of</strong> elasticshells. Arch. Ration. Mech. Anal. 48, 302–318 (1972)7. Chróścielewski, J., Makowski, J., Stumpf, H.: Genu<strong>in</strong>ely Resultant Shell F<strong>in</strong>ite Elements Account<strong>in</strong>gFor Geometric And Material Non-L<strong>in</strong>earity. Int. J. Numer. Methods Eng. 35 (1992)63–948. Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics <strong>of</strong> Multifold <strong>Shells</strong>:Nonl<strong>in</strong>ear <strong>Theory</strong> and F<strong>in</strong>ite Element Method (<strong>in</strong> Polish). Wydawnictwo IPPT PAN, Warszawa(2004)9. Cohen, H., Wang, C.-C.: A ma<strong>the</strong>matical analysis <strong>of</strong> <strong>the</strong> simplest direct models for rods and shells.Arch. Rational Mech. Anal. 108, 35–81 (1989)10. Cosserat, E., Cosserat, F.: Théorie des corps deformables. Herman et Flis, Paris (1909); Englishtranslation: NASA TT F-11, 561, NASA, Wash<strong>in</strong>gton, District <strong>of</strong> Columbia (1968)11. de Gennes, P.G.: The Physics <strong>of</strong> Liquid Crystals. Clarendon, Oxford (1974)12. Eremeyev, V.A.: Nonl<strong>in</strong>ear micropolar shells: <strong>Theory</strong> and applications. In: Pietraszkiewicz, W.,Szymczak, C. (eds.) Shell Structures: <strong>Theory</strong> and Applications, pp. 11–18. Taylor & Francis,London (2005)13. Eremeyev, V.A., Pietraszkiewicz, W.: The nonl<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> elastic shells with phase transitions.J. <strong>Elastic</strong>ity 74, 67–86 (2004)


J <strong>Elastic</strong>ity (2006) 85: 125–152 15114. Eremeyev, V.A., Zubov, L.M.: The <strong>the</strong>ory <strong>of</strong> elastic and viscoelastic micropolar liquids. J. Appl.Math. Mech. 63, 755–767 (1999)15. Eremeyev, V.A., Zubov, L.M.: The general nonl<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> elastic micropolar shells (<strong>in</strong>Russian). Izvestiya VUZov, Sev.-Kakavk. Region, Estestv. Nauki, Special issue: Nonl<strong>in</strong>ear Problems<strong>of</strong> Cont<strong>in</strong>uum Mechanics, pp. 124–169 (2003)16. Ericksen, J.L.: <strong>Symmetry</strong> transformations for th<strong>in</strong> elastic shells. Arch. Ration. Mech. Anal. 47,1–14 (1972)17. Ericksen, J.L.: Apparent symmetry <strong>of</strong> certa<strong>in</strong> th<strong>in</strong> elastic shells. J. Meć. 12, 12–18 (1973)18. Ericksen, J.L., Truesdell, C.: Exact <strong>the</strong>ory <strong>of</strong> stress and stra<strong>in</strong> <strong>in</strong> rods and shells. Arch. Ration.Mech. Anal. 1, 295–323 (1957)19. Er<strong>in</strong>gen, A.C., Kafadar, C.B.: Polar field <strong>the</strong>ories. In. Er<strong>in</strong>gen A.C. (ed.) Cont<strong>in</strong>uum Physics, vol.4, pp. 1–75. Academic, New York (1976)20. Er<strong>in</strong>gen, A.C.: Microcont<strong>in</strong>uum Field <strong>Theory</strong>. I. Foundations and Solids. Spr<strong>in</strong>ger, Berl<strong>in</strong>Heidelberg New York (1999)21. Gurt<strong>in</strong>, M.E., Murdoch, A.I.: A cont<strong>in</strong>uum <strong>the</strong>ory <strong>of</strong> elastic material surfaces. Arch. Ration.Mech. Anal. 57, 291–323 (1975)22. Konopińska, V., Pietraszkiewicz, W.: Exact resultant equilibrium conditions <strong>in</strong> <strong>the</strong> non-l<strong>in</strong>ear<strong>the</strong>ory <strong>of</strong> branch<strong>in</strong>g and self-<strong>in</strong>tersect<strong>in</strong>g shells. Int. J. Solids Struct. (2006) (<strong>in</strong> press). Availableonl<strong>in</strong>e 29 April 2006. DOI: 10.1016/j.ijsolstr.2006.04.03023. Libai, A., Simmonds, J.G.: Nonl<strong>in</strong>ear elastic shell <strong>the</strong>ory. Adv. Appl. Mech. 23, 271–371 (1983)24. Libai, A., Simmonds, J.G.: The Nonl<strong>in</strong>ear <strong>Theory</strong> <strong>of</strong> <strong>Elastic</strong> <strong>Shells</strong>, 2nd ed. Cambridge, UK(1998)25. Makowski, J., Pietraszkiewicz, W., Stumpf, H.: Jump conditions <strong>in</strong> <strong>the</strong> nonl<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> th<strong>in</strong>irregular shells. J. Elast. 54, 1–26 (1999)26. Makowski, J., Stumpf, H.: Buckl<strong>in</strong>g equations for elastic shells with rotational degrees <strong>of</strong> freedomundergo<strong>in</strong>g f<strong>in</strong>ite stra<strong>in</strong> deformation. Int. J. Solids Struct. 26, 353–368 (1990)27. Man, C.-S., Cohen, H.: A coord<strong>in</strong>ate-free approach to <strong>the</strong> k<strong>in</strong>ematics <strong>of</strong> membranes. J. Elast. 16,97–104 (1986)28. Murdoch, A.I.: A coord<strong>in</strong>ate free approach to surface k<strong>in</strong>ematics. Glasg. Mat. J. 32, 299–307(1990)29. Murdoch, A.I.: A <strong>the</strong>rmodynamical <strong>the</strong>ory <strong>of</strong> elastic material <strong>in</strong>terfaces. Q. J. Mech. Appl. Math.XXIX, 245–274 (1976)30. Murdoch, A.I., Cohen, H.: <strong>Symmetry</strong> considerations for material surfaces. Arch. Ration. Mech.Anal. 72, 61–98 (1979)31. Murdoch, A.I., Cohen, H.: <strong>Symmetry</strong> considerations for material surfaces. Addendum. Arch.Ration. Mech. Anal. 76, 393–400 (1981)32. Naghdi, P.M.: The <strong>the</strong>ory <strong>of</strong> plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol.VIa/2, pp. 425–640. Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg New York (1972)33. Nowacki, W.: <strong>Theory</strong> <strong>of</strong> Asymmetric <strong>Elastic</strong>ity. Pergamon, Oxford (1986)34. Pietraszkiewicz, W.: Nonl<strong>in</strong>ear <strong>the</strong>ories <strong>of</strong> shells (<strong>in</strong> Polish). In: Woźniak, C. (ed.) Mechanics<strong>of</strong> <strong>Elastic</strong> Plates and <strong>Shells</strong> (<strong>in</strong> Polish), pp. 424–497. Wydawnictwo Naukowe PWN, Warszawa(2001)35. Pietraszkiewicz, W., Chróścielewski, J., Makowski, J.: On dynamically and k<strong>in</strong>ematically exact<strong>the</strong>ory <strong>of</strong> shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: <strong>Theory</strong> and Applications,pp. 163–167. Taylor & Francis, London (2005)36. Reissner, E.: L<strong>in</strong>ear and nonl<strong>in</strong>ear <strong>the</strong>ory <strong>of</strong> shells. In: Fung, Y.C., Sechler, E.E. (eds.) Th<strong>in</strong> ShellStructures, pp. 29–44. Prentice-Hall, Englewood Cliffs, NJ (1974)37. Rub<strong>in</strong>, M.B.: Cosserat Theories: <strong>Shells</strong>, Rods and Po<strong>in</strong>ts. Kluwer, Dordrecht (2000)38. Šilhavý, M.: The Mechanics and Thermodynamics <strong>of</strong> Cont<strong>in</strong>uous Media. Spr<strong>in</strong>ger, Berl<strong>in</strong>Heidelberg New York (1997)39. Spencer, A.J.M.: <strong>Theory</strong> <strong>of</strong> Invariants. In: Er<strong>in</strong>gen A.C. (ed.) Cont<strong>in</strong>uum Physics, vol. 1,pp. 292–307. Academic, New York (1971)40. Steigmann, D.J.: Elements <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> elastic surfaces. In: Fu, I.B., Ogden, R.W. (eds.)Nonl<strong>in</strong>ear <strong>Elastic</strong>ity: <strong>Theory</strong> and Applications, pp. 268–304. Cambridge University Press, UK(2001)41. Steigmann, D.J., Ogden, R.W.: <strong>Elastic</strong> surface-substrate <strong>in</strong>teraction. Proc. R. Soc. Lond. A 455,437–474 (1999)42. Truesdell, C., Noll, W.: The nonl<strong>in</strong>ear field <strong>the</strong>ories <strong>of</strong> mechanics. In: Flügge, S. (ed.) Handbuchder Physik, vol. III/3, pp. 1–602. Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg New York (1965)43. Truesdell, C.: Rational Thermodynamics. Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg New York (1984)


152 J <strong>Elastic</strong>ity (2006) 85: 125–15244. Truesdell, C.: A First Course <strong>in</strong> Rational Cont<strong>in</strong>uum Mechanics. Academic, New York (1977)45. Wang, C.-C.: On <strong>the</strong> response functions <strong>of</strong> isotropic elastic shells. Arch. Ration. Mech. Anal. 50,81–98 (1973)46. Wang C.-C., Truesdell, C.: Introduction to Rational <strong>Elastic</strong>ity. Noordh<strong>of</strong>f, Leyden (1973)47. Zhil<strong>in</strong>, P.A.: Basic equations <strong>of</strong> <strong>the</strong> non-classical shell <strong>the</strong>ory (<strong>in</strong> Russian). Tr. LPI 386, 29–46(1982)48. Zubov, L.M.: Nonl<strong>in</strong>ear <strong>Theory</strong> <strong>of</strong> Dislocations and Discl<strong>in</strong>ations <strong>in</strong> <strong>Elastic</strong> Bodies. Spr<strong>in</strong>ger,Berl<strong>in</strong> Heidelberg New York (1997)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!