12.07.2015 Views

and Mass Distribution in the Earth System - GFZ

and Mass Distribution in the Earth System - GFZ

and Mass Distribution in the Earth System - GFZ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mass</strong> Transport<strong>and</strong><strong>Mass</strong> <strong>Distribution</strong><strong>in</strong> <strong>the</strong><strong>Earth</strong> <strong>System</strong>Contribution of <strong>the</strong>New Generation ofSatellite Gravity <strong>and</strong>Altimetry Missionsto GeosciencesProposal for aGerman Priority Research Program


Contact:GOCE-Projektbüro Deutschl<strong>and</strong>Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenArcisstraße 21D-80290 MünchenGermanyTelephone: +49 89 289 23190flury@bv.tum.dehttp://www.goce-projektbuero.dehttp://step.iapg.verm.tu-muenchen.de/iapg/GeoForschungsZentrum PotsdamTelegrafenbergD-14471 PotsdamGermanyTelephone: +49 331 288 1130psch@gfz-potsdam.dehttp://www.gfz-potsdam.deLayout: W. Boschpr<strong>in</strong>ted by GeoForschungsZentrum PotsdamFebruary 2004


<strong>Mass</strong> Transport <strong>and</strong><strong>Mass</strong> <strong>Distribution</strong><strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Contribution of <strong>the</strong> New Generation ofSatellite Gravity <strong>and</strong> Altimetry Missionsto GeosciencesProposal for a German Priority Research ProgramK.H. Ilk 1) , J. Flury 2) , R. Rummel 2) , P. Schw<strong>in</strong>tzer 3) , W. Bosch 4) , C. Haas 5) , J. Schröter 5) ,D. Stammer 6) , W. Zahel 6) , H. Miller 5) , R. Dietrich 7) , P. Huybrechts 5) , H. Schmel<strong>in</strong>g 8) ,D. Wolf 3) , J. Riegger 9) , A. Bardossy 9) , A. Güntner 3)1)Institut für Theoretische Geodäsie, Bonn2)Institut für Astronomische und Physikalische Geodäsie, München3)GeoForschungsZentrum, Potsdam4)Deutsches Geodätisches Forschungs<strong>in</strong>stitut, München5)Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven6)Institut für Meereskunde, Hamburg7)Institut für Planetare Geodäsie, Dresden8)Institut für Meteorologie und Geophysik, Frankfurt am Ma<strong>in</strong>9)Institut für Wasserbau, StuttgartGOCE-Projektbüro Deutschl<strong>and</strong>,Technische Universität MünchenGeoForschungsZentrum PotsdamFebruar 2004


Table of ContentsIntroduction 11 Framework of a coord<strong>in</strong>ated research program 31.1 Space research <strong>and</strong> <strong>Earth</strong> system: mass balance <strong>and</strong> mass transport 31.2 Interdiscipl<strong>in</strong>ary cooperation with<strong>in</strong> a coord<strong>in</strong>ated research program 41.3 Research topics <strong>and</strong> establishment of a national research program 82 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> systemfrom space 112.1 Gravity field mapp<strong>in</strong>g 112.2 Satellite altimetry 212.3 Integrated observations to underst<strong>and</strong> environmental <strong>and</strong> deep <strong>Earth</strong>´s processes 283 Transport processes <strong>and</strong> mass anomalies <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system 313.1 Ocean dynamics 32Physical oceanography <strong>and</strong> mar<strong>in</strong>e geodesy 32Impact of gravity field <strong>in</strong>formation on determ<strong>in</strong><strong>in</strong>g <strong>the</strong> ocean circulation 35Estimation of mass <strong>and</strong> heat transports <strong>in</strong> relevant oceanic regions 36Separat<strong>in</strong>g <strong>the</strong>rmal expansion from mass <strong>in</strong>creases <strong>in</strong> studies of global sea level rise 38Sea ice thickness observations 41Ocean modell<strong>in</strong>g <strong>and</strong> its use for gravity field determ<strong>in</strong>ation 43Towards a jo<strong>in</strong>t estimation of oceanographic <strong>and</strong> geodetic topographies 453.2 Ice mass balance <strong>and</strong> sea level 48Ice mass balance <strong>and</strong> sources for sea level rise 49Improv<strong>in</strong>g mass balance estimates with new spaceborne observations 53Integrated observations of mass balance, gravity, <strong>and</strong> sea level change 58Improvements of current knowledge 593.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantle 61Static, <strong>in</strong>stantaneous <strong>and</strong> temporally vary<strong>in</strong>g gravity field 61Solid <strong>Earth</strong> mass anomalies, transport <strong>and</strong> <strong>the</strong> <strong>in</strong>stantaneous gravity potential 63Temporal gravity field variations due to glacial isostatic <strong>and</strong> geodynamic processes 67Comb<strong>in</strong><strong>in</strong>g <strong>and</strong> validat<strong>in</strong>g satellite gravity with complementary data 71Separation of <strong>the</strong> solid <strong>Earth</strong> gravity signal from o<strong>the</strong>r signals 72Impact of <strong>the</strong> new satellite missions on solid <strong>Earth</strong> mass anomalies <strong>and</strong> movements 733.4 Cont<strong>in</strong>ental hydrology 77The hydrological cycle 77Atmospheric mass variations 81Large-scale variations of <strong>the</strong> cont<strong>in</strong>ental water storage 82Large-scale evapotranspirationLong-term trends <strong>in</strong> cont<strong>in</strong>ental water storage86864 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergies 894.1 <strong>Mass</strong> transport processes: parts of a comprehensive system 894.2 Neighbour<strong>in</strong>g fields: atmosphere, <strong>Earth</strong> core, magnetic field <strong>and</strong> <strong>Earth</strong> rotation 904.3 Synopsis of signal components <strong>and</strong> amplitudes 924.4 Common challenges for satellite data analysis 944.5 Interconnection tables for <strong>the</strong> <strong>in</strong>dividual processes 97A Annex 108A1 Gravity field tutorial 108A2 Physical oceanography 119A3 Gravity effect of ice mass changes <strong>and</strong> <strong>the</strong> sea level equation 123A4 Mantle flow <strong>and</strong> gravity potential 124A5 Glacial-isostatic adjustment 126A6 Hydrological processes <strong>and</strong> related mass transport 130A7 Satellite mission fact sheets 133i


IntroductionThe exceptional situation of gett<strong>in</strong>g simultaneous <strong>and</strong> complementary observations from amultiple of geo-scientific <strong>and</strong> environmental near-<strong>Earth</strong> orbit<strong>in</strong>g satellites opens <strong>the</strong> uniqueopportunity to contribute significantly to <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of global <strong>Earth</strong> dynamics. Thiswill enable to quantify processes <strong>in</strong> <strong>the</strong> geosphere <strong>and</strong> <strong>the</strong> <strong>in</strong>teractions with <strong>the</strong> atmosphere <strong>and</strong><strong>the</strong> hydrosphere <strong>and</strong> to predict future developments. A consequence of this research is, on <strong>the</strong>one h<strong>and</strong>, to contribute to a deeper knowledge of <strong>the</strong> <strong>Earth</strong> system, <strong>and</strong> on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong>possibility to contribute to <strong>the</strong> development of susta<strong>in</strong>able strategies to safeguard <strong>the</strong> humanhabitat for future generations.The key parameters that are provided globally are of physical <strong>and</strong> geometric nature <strong>and</strong> allow,when comb<strong>in</strong>ed, an enhanced modell<strong>in</strong>g of <strong>the</strong> mass distribution <strong>and</strong> mass transport with<strong>in</strong> <strong>the</strong><strong>Earth</strong>, at <strong>the</strong> <strong>Earth</strong>’s surface <strong>and</strong> its envelope. The knowledge of <strong>the</strong> <strong>Earth</strong>’s mass distribution<strong>and</strong> redistribution is of crucial importance for <strong>the</strong> exploration of geodynamic convective <strong>and</strong> climatologicallydriven processes with<strong>in</strong> <strong>the</strong> <strong>Earth</strong> system. The temporal scales addressed by <strong>the</strong>seprocesses range from sub-seasonal <strong>and</strong> <strong>in</strong>terannual to decadal <strong>and</strong> secular variations on a globalto regional spatial scale accord<strong>in</strong>g to <strong>the</strong> satellites’ data resolution capability.The overall goal of <strong>the</strong> multi-discipl<strong>in</strong>ary effort outl<strong>in</strong>ed <strong>in</strong> this document is a breakthrough <strong>in</strong> <strong>the</strong>underst<strong>and</strong><strong>in</strong>g <strong>and</strong> modell<strong>in</strong>g of geodynamics, ocean circulation <strong>and</strong> sea level, ice mass balance,<strong>and</strong> <strong>the</strong> global hydrologic water cycle as well as <strong>the</strong> mutual coupl<strong>in</strong>g of <strong>the</strong>se processes constitutiveto <strong>the</strong> highly dynamic <strong>Earth</strong> system. The challenges will be <strong>the</strong> identification <strong>and</strong> separationof <strong>the</strong> relevant signals <strong>in</strong> <strong>the</strong> satellite <strong>and</strong> complementary data products, signal analysis <strong>and</strong> modelassimilation, <strong>and</strong> <strong>in</strong>terdiscipl<strong>in</strong>ary model <strong>in</strong>tegration to achieve a consistent representation of <strong>the</strong>chang<strong>in</strong>g <strong>Earth</strong>.The present document emphasizes <strong>the</strong> need for a coord<strong>in</strong>ated national research program onmass transport <strong>and</strong> mass distribution <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system <strong>in</strong> view of <strong>the</strong> considerable Germanscientific <strong>and</strong> f<strong>in</strong>ancial support dur<strong>in</strong>g promotion, preparation <strong>and</strong> realization of <strong>the</strong> satellite missions.Such a program is an adequate way to fully exploit satellite missions’ products <strong>in</strong> order toharvest <strong>the</strong> scientific return <strong>and</strong> to keep <strong>the</strong> lead<strong>in</strong>g role of German scientists with<strong>in</strong> <strong>the</strong> <strong>in</strong>ternationalscientific <strong>and</strong> application community as far as k<strong>in</strong>ematical, dynamic <strong>and</strong> climatologic <strong>Earth</strong>system processes are concerned.1


Framework of a coord<strong>in</strong>ated research programFramework of a coord<strong>in</strong>atedresearch programThe goal of a coord<strong>in</strong>ated research program is a breakthrough <strong>in</strong> <strong>the</strong> underst<strong>and</strong><strong>in</strong>g<strong>and</strong> modell<strong>in</strong>g of important processes <strong>in</strong> <strong>the</strong> highly dynamic<strong>Earth</strong> system. The exceptional situation of gett<strong>in</strong>g simultaneous <strong>and</strong>complementary observations from a multiple of geo-scientific <strong>and</strong> environmentalnear-<strong>Earth</strong> orbit<strong>in</strong>g satellites opens <strong>the</strong> unique opportunity tocontribute significantly to <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of global <strong>Earth</strong> dynamics.The key quantities derived from <strong>the</strong>se satellite missions are measuredchanges of surface geometry <strong>and</strong> mass anomalies <strong>and</strong> mass transport <strong>in</strong><strong>and</strong> among <strong>the</strong> <strong>Earth</strong> components. A deep underst<strong>and</strong><strong>in</strong>g of our complex<strong>Earth</strong> system is <strong>the</strong> basis to develop susta<strong>in</strong>able strategies to protect ourplanet, its climate <strong>and</strong> environment <strong>and</strong> preserve it for future generations1.1 Space research <strong>and</strong> <strong>Earth</strong> system:mass balance <strong>and</strong> mass transportThere is grow<strong>in</strong>g public concern about <strong>the</strong> future of our planet, its climate, its environment <strong>and</strong>about an expected shortage of our natural resources, even of such an elementary one as water.Any consistent <strong>and</strong> efficient strategy of protection aga<strong>in</strong>st <strong>the</strong>se threats depends on a profoundunderst<strong>and</strong><strong>in</strong>g of <strong>the</strong> <strong>Earth</strong> system, i.e. of <strong>the</strong> dynamics <strong>and</strong> <strong>in</strong>teractions of all its physical <strong>and</strong>chemical processes. The <strong>Earth</strong> with its atmosphere, oceans, ice covers, l<strong>and</strong> surfaces <strong>and</strong> its <strong>in</strong>terioris subject to a multitude of dynamic processes. They cover a broad variety of spatial <strong>and</strong>temporal scales <strong>and</strong> are driven by large <strong>in</strong>terior <strong>and</strong> exterior forces. In modern times <strong>the</strong>se processesare <strong>in</strong>fluenced, as well, by man-made effects; to what extent is still unknown. All of <strong>the</strong>seprocesses affect our life <strong>and</strong> <strong>the</strong> life of future generations. Major decisions fac<strong>in</strong>g human societieswill depend on a much deeper underst<strong>and</strong><strong>in</strong>g of this complex system, <strong>and</strong> <strong>in</strong>ternational efforts ongovernmental <strong>and</strong> scientific levels are currently under way towards this goal. Large <strong>in</strong>ternationalscientific programs, such as <strong>the</strong> World Climate Research Programme (WCRP) or <strong>the</strong> InternationalGeosphere-Biosphere Programme (IGBP) have been set up for this purpose <strong>and</strong> considerableprogress could be made dur<strong>in</strong>g <strong>the</strong> past decade.Observations from space play a prom<strong>in</strong>ent role <strong>in</strong> this because only from space it is possible tofollow <strong>the</strong> dynamics of <strong>the</strong> various processes globally, with reasonable repetition rates <strong>and</strong> withmeasurements of homogeneous quality. Actual <strong>Earth</strong> oriented space programmes on both sides of<strong>the</strong> Atlantic <strong>and</strong> <strong>in</strong> Japan are fully acknowledg<strong>in</strong>g this trend. They are <strong>in</strong>tr<strong>in</strong>sic <strong>and</strong> <strong>in</strong>dispensablepart of a strategy to improve <strong>the</strong> measurement <strong>and</strong> modell<strong>in</strong>g capability <strong>in</strong> <strong>Earth</strong> system research.The key parameters that are provided globally from a multiple of geo-scientific <strong>and</strong> environmen-3


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>tal near-<strong>Earth</strong> orbit<strong>in</strong>g satellites are of physical <strong>and</strong> geometric nature <strong>and</strong> allow, when comb<strong>in</strong>ed,an enhanced modell<strong>in</strong>g of <strong>the</strong> mass distribution <strong>and</strong> mass transport with<strong>in</strong> <strong>the</strong> <strong>Earth</strong>, at <strong>the</strong> <strong>Earth</strong>’ssurface <strong>and</strong> its envelope. The knowledge of <strong>the</strong> <strong>Earth</strong>’s mass distribution <strong>and</strong> redistribution is ofcrucial importance for <strong>the</strong> exploration ofqqgeodynamic convective processes driv<strong>in</strong>g deformations <strong>and</strong> motions of <strong>the</strong> <strong>Earth</strong>’s surfacethrough plate tectonics, up- <strong>and</strong> down-well<strong>in</strong>g <strong>and</strong> lithospheric subduction, <strong>and</strong> volcanism<strong>and</strong> earthquakes, <strong>and</strong>climatologically driven processes with<strong>in</strong> <strong>and</strong> among <strong>the</strong> oceans, cont<strong>in</strong>ental water <strong>and</strong> snow,<strong>the</strong> Antarctic <strong>and</strong> Greenl<strong>and</strong> ice sheets, <strong>and</strong> <strong>the</strong> atmosphere.Closely <strong>in</strong>terrelated with mass transport <strong>and</strong> mass anomalies is <strong>the</strong> gravity field <strong>and</strong> its variations– measured by satellites with unprecedented accuracy. Figure 1.1 gives an overview of gravityrelated phenomena, associated with anomalous signals <strong>in</strong> <strong>the</strong> geoid, <strong>in</strong> gravity or with temporalchanges of geoid or gravity. The atmosphere, hydrosphere, ice covers, biosphere, l<strong>and</strong> surface <strong>and</strong>solid <strong>Earth</strong> <strong>in</strong>teract <strong>in</strong> various ways, rang<strong>in</strong>g from sub-seasonal <strong>and</strong> <strong>in</strong>ter-annual to decadal <strong>and</strong>secular variations on a global to regional spatial scale. This makes it difficult to develop realisticmodels that are capable to yield realistic predictions. Ra<strong>the</strong>r sophisticated partial models exist, forexample, for wea<strong>the</strong>r predictions, <strong>the</strong> coupled atmospheric <strong>and</strong> ocean circulation, of local hydrologicalscales, of glacial isostatic mass adjustment, but we are still far from comprehensive description<strong>and</strong> underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> dynamics of <strong>Earth</strong> system. An important, <strong>and</strong> so far miss<strong>in</strong>g, segmentof <strong>Earth</strong> system models is <strong>the</strong> determ<strong>in</strong>ation of mass anomalies, mass transport <strong>and</strong> mass exchangebetween <strong>Earth</strong> system components <strong>and</strong>, ultimately, <strong>the</strong> establishment of global mass balance.Figure 1.1: The <strong>in</strong>terrelation of gravity, gravity variations, mass transports <strong>and</strong> mass anomalies.1.2 Interdiscipl<strong>in</strong>ary cooperation with<strong>in</strong> acoord<strong>in</strong>ated research programThe authors of this document propose to establish a national research program to quantify massanomalies, transport <strong>and</strong> exchange by add<strong>in</strong>g novel observables, <strong>in</strong> particular gravity <strong>and</strong> gravityvariations as well as surface geometry <strong>and</strong> changes <strong>in</strong> <strong>the</strong> geometry of oceans <strong>and</strong> ice covers.These observables can be provided by dedicated satellite gravity field missions based on <strong>the</strong>4


Framework of a coord<strong>in</strong>ated research programpr<strong>in</strong>ciple of satellite-to-satellite track<strong>in</strong>g such as CHAMP <strong>and</strong> GRACE <strong>and</strong> of satellite gravitygradiometry such as GOCE. They will be comb<strong>in</strong>ed with precise track<strong>in</strong>g by <strong>the</strong> satellites of <strong>the</strong>global position<strong>in</strong>g systems GPS <strong>and</strong> <strong>in</strong> future GALILEO. A new generation of remote sens<strong>in</strong>gsatellites, <strong>the</strong> altimetric ice missions CryoSat <strong>and</strong> ICESat will allow to measure surface geometryof l<strong>and</strong> <strong>and</strong> sea ice <strong>and</strong> variations <strong>the</strong>reof with unprecedented accuracy. Ocean surfaces have been<strong>and</strong> will be measured with cm-precision by <strong>the</strong> altimetric ocean missions Jason <strong>and</strong> EnviSat <strong>and</strong><strong>the</strong>ir predecessors (Figure 1.2).This permits – <strong>in</strong> <strong>the</strong> context of <strong>Earth</strong> system sciences – <strong>the</strong> study of mass anomalies, mass transport<strong>and</strong> mass exchange. <strong>Mass</strong> anomalies are deviations of <strong>the</strong> actual mass distribution from onedescribed by a model, e.g. a model of hydrostatic equilibrium. The anomalies are associated to avariety of dynamic processes <strong>and</strong> <strong>the</strong>y reflect - <strong>in</strong> case of <strong>the</strong> solid <strong>Earth</strong> - processes on geologicaltime scales. <strong>Mass</strong> transport, such as ocean water transport or <strong>the</strong> hydrological water cycle canei<strong>the</strong>r be <strong>in</strong>ferred from <strong>the</strong> measurement of gravity changes or significantly constra<strong>in</strong>ed from preciseocean topography. Most exchange between <strong>the</strong> system components, f<strong>in</strong>ally, can be monitoredby a strict mass balance of l<strong>and</strong>, ice <strong>and</strong> oceans from gravity <strong>and</strong> geometry changes. The jo<strong>in</strong>t useFigure 1.2: Geoscientific <strong>and</strong> environmental near-<strong>Earth</strong> orbit<strong>in</strong>g satellites provid<strong>in</strong>g simultaneous <strong>and</strong>complementary observations.5


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>of geometry <strong>and</strong> gravity allows, <strong>in</strong> addition, <strong>the</strong> separation of physical causes, such as <strong>the</strong>rmalexpansion <strong>and</strong> mass sur-plus <strong>in</strong> <strong>the</strong> oceans.Prerequisite is a precise geodetic-geodynamic reference frame for all numerical analysis procedures,<strong>the</strong> application of new computation st<strong>and</strong>ards <strong>and</strong> a user oriented process<strong>in</strong>g of <strong>the</strong> missionproducts. Traditionally, geodesy is capable of measur<strong>in</strong>g1) changes <strong>in</strong> surface geometry of ocean <strong>and</strong> ice surfaces as well as horizontal <strong>and</strong> verticaldeformations of l<strong>and</strong> surface (geok<strong>in</strong>ematic component),2) changes <strong>in</strong> <strong>Earth</strong> rotation, traditionally subdivided <strong>in</strong>to nutation, polar motion <strong>and</strong> variations<strong>in</strong> sp<strong>in</strong> rate <strong>and</strong> associated with all processes of angular momentum <strong>in</strong> <strong>Earth</strong> system (<strong>Earth</strong>rotation component), <strong>and</strong>3) <strong>the</strong> spatial <strong>and</strong> temporal variations of gravity <strong>and</strong> of <strong>the</strong> geoid (gravity/geoid component).The constituents of an <strong>in</strong>tegrated geodetic-geodynamic monitor<strong>in</strong>g system are shown <strong>in</strong> Figure1.3.Figure 1.3: Constituents of an <strong>in</strong>tegrated geodetic-geodynamicmonitor<strong>in</strong>g system.The satellite configuration currently <strong>in</strong> orbitor approved to be <strong>in</strong> orbit soon each of<strong>the</strong>se four components will improve significantly<strong>in</strong> capability <strong>and</strong> precision. Wewill have a new generation of satellitesmonitor<strong>in</strong>g l<strong>and</strong> deformation, ocean <strong>and</strong> icesurfaces, determ<strong>in</strong><strong>in</strong>g <strong>the</strong> gravity field <strong>and</strong>geoid with unprecedented accuracy. If wesucceed to <strong>in</strong>tegrate this unique system ofsatellites <strong>in</strong>to one common reference systemat a precision level of one-part-per-billion(mm to cm precision) <strong>and</strong> stable <strong>and</strong>consistent <strong>in</strong> time <strong>and</strong> space <strong>the</strong>se sensorscan operate so-to-say as one <strong>Earth</strong> encompass<strong>in</strong>gglobal observatory. The comb<strong>in</strong>ationwill be achieved by means of <strong>the</strong>global geodetic space techniques VLBI,SLR, GPS <strong>and</strong> DORIS <strong>in</strong> <strong>the</strong> framework of<strong>the</strong> International <strong>Earth</strong> Rotation <strong>and</strong> Reference<strong>System</strong> Service (IERS).From <strong>the</strong> comb<strong>in</strong>ation of <strong>the</strong> four fundamentalcomponents reference frame, geok<strong>in</strong>ematics,gravity field, <strong>and</strong> <strong>Earth</strong> rotation,mass transport <strong>and</strong> mass exchange emerges.This allows <strong>the</strong> study of complex phenomena such as glacial isostatic mass adjustment, <strong>the</strong> evolutionof tectonic stress patterns, mass changes <strong>in</strong> lithosphere <strong>and</strong> upper mantle, <strong>the</strong> mass <strong>and</strong> heattransport <strong>in</strong> <strong>the</strong> oceans, deep ocean circulation, sea level rise <strong>and</strong> fall, <strong>and</strong> <strong>the</strong> global water cycle(Figure 1.4). The quantities to be delivered are small <strong>and</strong> <strong>the</strong>refore difficult to determ<strong>in</strong>e. Fur<strong>the</strong>rmore,<strong>in</strong> order to be useful for global change studies <strong>the</strong>y have to be derived free of bias <strong>and</strong>consistently <strong>in</strong> space <strong>and</strong> time. In general <strong>the</strong>y cannot be measured directly but are derived from<strong>the</strong> comb<strong>in</strong>ation of complementary sensor <strong>and</strong> observation systems. For example, dynamic oceantopography is to be derived from <strong>the</strong> accurate measurement of <strong>the</strong> ocean surface by radar altimetry<strong>in</strong> comb<strong>in</strong>ation with a geoid surface provided by gravity satellite missions. It shows that avariety of sensor systems, mission characteristic, <strong>and</strong> track<strong>in</strong>g systems have to be comb<strong>in</strong>ed withutmost precision.6


Framework of a coord<strong>in</strong>ated research programFigure 1.4: Detection of mass imbalance <strong>and</strong> mass transport by measurement of gravity <strong>and</strong> geometry <strong>and</strong>its changes with time.In <strong>the</strong> past, geophysical research concerned with <strong>the</strong> three geodetic components, geok<strong>in</strong>ematic,<strong>Earth</strong> rotation <strong>and</strong> gravity/geoid, concentrated on <strong>in</strong>dividual processes <strong>and</strong> not so much on <strong>the</strong>added-value that can be drawn from <strong>the</strong>ir <strong>in</strong>tegration. The proposed program requires a closecooperation of several discipl<strong>in</strong>es of <strong>Earth</strong> sciences. Observations come from a series of complementarysatellite missions. They are time series – along orbit tracks – related to variety ofgeometric <strong>and</strong> gravimetric quantities that will be comb<strong>in</strong>ed to provide global time series of geophysicalparameters related to mass phenomena. They represent a new generation of <strong>in</strong>put data for<strong>Earth</strong> models <strong>in</strong> <strong>the</strong> fields of oceanography, glaciology, hydrology <strong>and</strong> geophysics (Figure 1.5).S<strong>in</strong>ce each of <strong>the</strong>se <strong>Earth</strong> system components <strong>in</strong>teracts with all o<strong>the</strong>rs a thorough analysis of <strong>the</strong>ir<strong>in</strong>terfaces is required, too. A l<strong>in</strong>k has to be established between <strong>the</strong> global time series of newlyderived geodetic parameters (related to deformation processes, mass changes <strong>and</strong> exchange ofangular momentum) <strong>and</strong> all relevant geophysical models. This is a highly <strong>in</strong>terdiscipl<strong>in</strong>ary task<strong>and</strong> asks for a close cooperation of geodesists, geophysicists/geologists, glaciologists, oceanographers,hydrologists <strong>and</strong> atmospheric physicists. The ultimate goal should be <strong>the</strong> development ofcomprehensive numerical <strong>Earth</strong> models that are able to assimilate time series of global surface,mass transport <strong>and</strong> mass exchange processes. They should lead to a deeper underst<strong>and</strong><strong>in</strong>g of solid<strong>Earth</strong> processes such as glacial isostatic adjustment (GIA), tectonic motion, volcano activity or<strong>Earth</strong>quakes, of ice mass dynamics <strong>and</strong> balance <strong>and</strong> heat transport <strong>in</strong> <strong>the</strong> oceans, <strong>in</strong> <strong>the</strong> variouscomponents of sea level change as well as <strong>the</strong>ir quantification, <strong>in</strong> <strong>the</strong> global water cycle.The measured temporal variations of <strong>Earth</strong> rotation <strong>and</strong> gravity/geoid represent <strong>the</strong> total, <strong>in</strong>tegraleffect of all mass changes <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system. Thus, methods have to be conceived for <strong>the</strong>irseparation <strong>in</strong>to <strong>the</strong> <strong>in</strong>dividual contributions. This is a difficult but important task <strong>and</strong> requires <strong>the</strong>development of a sophisticated over-all strategy. The use of complementary satellite techniques,tailored sampl<strong>in</strong>g strategies, satellite formation flights, terrestrial calibration sites, permanent record<strong>in</strong>gs,dedicated campaigns <strong>and</strong> geophysical models will prove important for this. Of similarcharacter is <strong>the</strong> problem of alias<strong>in</strong>g due to <strong>the</strong> limited resolution <strong>in</strong> time <strong>and</strong> space, <strong>in</strong> general, ofsatellite missions.7


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 1.5: Interdiscipl<strong>in</strong>ary cooperation <strong>in</strong> us<strong>in</strong>g satellite based observations for gravity field research,detection of mass transport <strong>and</strong> mass anomalies.The proposed research program is certa<strong>in</strong>ly <strong>in</strong>tended not to cover all components of <strong>the</strong> <strong>Earth</strong>system, at least not <strong>in</strong> a first step; for example, <strong>the</strong> electro-magnetic constituent as well as atmosphere<strong>and</strong> ionosphere <strong>and</strong> <strong>the</strong> source structure of core as well as <strong>the</strong> various relations between<strong>the</strong>se sub-systems are not taken <strong>in</strong>to account. The same holds for exogene <strong>in</strong>fluences of <strong>the</strong> solarsystem <strong>and</strong> <strong>the</strong> translational <strong>and</strong> rotational motion of <strong>the</strong> <strong>Earth</strong> with respect to an Inertial Reference<strong>System</strong>. Even important mass transport phenomena are not <strong>in</strong>cluded as long as alternativeobservables than gravity field quantities <strong>and</strong> geometric observables are better suited to improve<strong>the</strong> respective models. For example, at present one does not expect that gravity field observationscan improve <strong>the</strong> atmospheric <strong>and</strong> climatological models. But to avoid contam<strong>in</strong>ation <strong>and</strong> alias<strong>in</strong>geffects available models have to be considered properly, as <strong>the</strong> water mass exchange between <strong>the</strong>atmosphere on <strong>the</strong> one h<strong>and</strong>, <strong>and</strong> oceans, ice <strong>and</strong> <strong>the</strong> cont<strong>in</strong>ental water cycle on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>– just to mention one important example.1.3 Research topics <strong>and</strong> establishment of anational research programA unique research opportunity emerges from <strong>the</strong> fact that a multiple of geodesy related missions,<strong>the</strong> gravity missions CHAMP, GRACE <strong>and</strong> GOCE, <strong>the</strong> altimetric ice missions CryoSat <strong>and</strong>ICESat, <strong>the</strong> ocean altimeter missions TOPEX/Poseidon <strong>and</strong> Jason <strong>and</strong> <strong>the</strong> environmental satellitemission EnviSat but also <strong>the</strong> envisaged satellite navigation system GALILEO are simultaneously<strong>in</strong> orbit. It will allow <strong>the</strong> coherent global study of mass balance <strong>and</strong> transport processes for <strong>the</strong> firsttime. Germany has <strong>in</strong>vested considerably <strong>in</strong> most of <strong>the</strong> above missions <strong>and</strong> German scientists8


Framework of a coord<strong>in</strong>ated research programplayed a lead<strong>in</strong>g role <strong>in</strong> <strong>the</strong> promotion <strong>and</strong> study of <strong>the</strong>se mission concepts. It is of <strong>in</strong>terest that <strong>the</strong>German scientific community can adequately harvest scientific return <strong>and</strong> play a significant role<strong>in</strong> this important segment of <strong>Earth</strong> system research. Precondition is a coherent priority researchprogram <strong>in</strong> this area that comb<strong>in</strong>es all necessary elements of solid <strong>Earth</strong> physics, oceanography,geodesy, glaciology, sea level research <strong>and</strong> hydrology.The jo<strong>in</strong>t research program will focus on <strong>the</strong> determ<strong>in</strong>ation of processes that are associated withmass anomalies, transport, exchange <strong>and</strong> balance. Tectonic deformations, earthquakes, volcanoeruptions, l<strong>and</strong> slides, glacial isostatic adjustment, deglaciation, sea level rise, ocean mass <strong>and</strong>heat transport, deep ocean circulation, <strong>the</strong> water cycle, atmospheric <strong>and</strong> ocean load<strong>in</strong>g <strong>and</strong> manymore are typical <strong>and</strong> well known phenomena of this k<strong>in</strong>d. <strong>Mass</strong> anomalies, <strong>the</strong> transport <strong>and</strong> exchangeof masses <strong>and</strong> mass balances are not measurable by any o<strong>the</strong>r means <strong>and</strong> add significantlyto <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of global <strong>Earth</strong> dynamics. In <strong>the</strong> follow<strong>in</strong>g, potential research topics as partof a national research program are specified (Figure 1.4).<strong>Mass</strong> transport: signal analysis <strong>and</strong> signal balanc<strong>in</strong>g - Precise simultaneous measurementof gravity field variations <strong>and</strong> surface deformation lead to <strong>the</strong> possibility to <strong>in</strong>vestigate massanomalies, mass transport <strong>and</strong> mass exchange <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system for <strong>the</strong> first time. Separation of<strong>the</strong> <strong>in</strong>dividual signal contribution <strong>and</strong> a process oriented balanc<strong>in</strong>g becomes possible by comb<strong>in</strong><strong>in</strong>gthis new generation of measured mass signals with <strong>the</strong> models <strong>and</strong> techniques of all relateddiscipl<strong>in</strong>es. Prerequisite is a precise geodetic-geodynamic reference frame for all numerical analysisprocedures, <strong>the</strong> application of new computation st<strong>and</strong>ards <strong>and</strong> a user oriented process<strong>in</strong>g of<strong>the</strong> mission products. Topics of research are: <strong>in</strong>tegration of reference systems <strong>and</strong> computationst<strong>and</strong>ards, harmonization <strong>and</strong> development of a precise consistent reference frame <strong>in</strong> space <strong>and</strong>time; development <strong>and</strong> application of solution procedures <strong>and</strong> space-time filter<strong>in</strong>g methods for<strong>the</strong> mission products with <strong>the</strong> task to separate <strong>the</strong> signal <strong>in</strong> its contributions <strong>and</strong> comb<strong>in</strong>ation withscales of geophysical models <strong>in</strong>volved; validation, separation <strong>and</strong> balanc<strong>in</strong>g of measured temporalchanges of <strong>the</strong> gravity field <strong>and</strong> <strong>the</strong> ice <strong>and</strong> ocean surfaces respectively by model results <strong>and</strong>complementary data sets.Ocean circulation <strong>and</strong> transport – The comb<strong>in</strong>ation of geoid <strong>and</strong> altimetry allows for <strong>the</strong>first time <strong>the</strong> direct determ<strong>in</strong>ation of <strong>the</strong> global dynamic ocean topography. The geostrophic balancedsurface currents can be deduced from <strong>the</strong> <strong>in</strong>cl<strong>in</strong>ations of <strong>the</strong> dynamic topography. From<strong>the</strong>se, complete profiles of <strong>the</strong> ocean circulation can be derived by comb<strong>in</strong>ation with traditionalhydrographic measurements. New <strong>in</strong>sight <strong>in</strong> global <strong>and</strong> bas<strong>in</strong> related heat <strong>and</strong> mass transport canbe expected. Temporal variations of <strong>the</strong> dynamic ocean surface are caused ma<strong>in</strong>ly by temperaturerelated volume changes where <strong>the</strong> mass column rema<strong>in</strong>s unchanged. <strong>Mass</strong> changes by fluid dynamicscauses more problems <strong>and</strong> can be detected only by changes of <strong>the</strong> gravity field as expectedby <strong>the</strong> GRACE mission. This will lead to a clear progress <strong>in</strong> <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of ocean circulation.Topics of research are: determ<strong>in</strong>ation of large-scale heat <strong>and</strong> mass transport; <strong>in</strong>vestigation ofcirculation systems as <strong>the</strong> Antarctic circum polar current, Weddell- <strong>and</strong> Ross eddies; separation ofsteric <strong>and</strong> eustatic changes of <strong>the</strong> global sea surface <strong>and</strong> of <strong>the</strong> dynamics of currents; <strong>in</strong>teractionof temporal <strong>and</strong> quasi-static circulations (eddies, fronts).Hydrological cycle – The determ<strong>in</strong>ation of <strong>the</strong> cont<strong>in</strong>ental water storage <strong>in</strong> space <strong>and</strong> time isnot possible nowadays with sufficient accuracy. The time dependent gravity field as expectedfrom <strong>the</strong> GRACE mission enables for <strong>the</strong> first time to detect cont<strong>in</strong>ental mass changes with a resolutionof 1 cm water column <strong>in</strong> monthly snapshots. This allows to close <strong>the</strong> hydrological cycle atdifferent scales <strong>in</strong> time <strong>and</strong> space. Topics of research are: global water balance <strong>and</strong> water transferbetween atmosphere, cont<strong>in</strong>ents, oceans <strong>and</strong> ice shield; large-scale variations of terrestrial waterstorage under characteristic conditions; large scale temporal variations of evapotranspiration;evaluation <strong>and</strong> development of large-scale hydrological models; water balances <strong>in</strong> difficult accessibleregions; long term trends of cont<strong>in</strong>ental water storage as a consequence of environmental9


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from space2 Thesatellite missions:observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> systemfrom spaceThere is a unique situation for <strong>the</strong> next years: Based on <strong>in</strong>novative sensortechnologies like accelerometer, satellite-to-satellite track<strong>in</strong>g, <strong>and</strong>gradiometry, <strong>the</strong> gravity field missions CHAMP, GRACE <strong>and</strong> GOCE willlead to dramatic improvements <strong>in</strong> <strong>Earth</strong> gravity field recovery. At <strong>the</strong>same time multi-mission altimetry cont<strong>in</strong>ues to observe <strong>the</strong> ocean surface<strong>and</strong> ice sheets by EnviSat, Jason-1, GFO, IceSat <strong>and</strong> CryoSat witha space-time sampl<strong>in</strong>g enabl<strong>in</strong>g to monitor <strong>the</strong> temporal variability withhigh resolution. The synergy of all <strong>the</strong>se missions will help to improve <strong>the</strong>underst<strong>and</strong><strong>in</strong>g of environmental <strong>and</strong> deep <strong>Earth</strong> processes.2.1 Gravity field mapp<strong>in</strong>gOn July 15, 2000, <strong>the</strong> German geoscientific satellite CHAMP (CHAlleng<strong>in</strong>g M<strong>in</strong>isatellite Payload)was launched <strong>in</strong>to an almost circular, near-polar orbit with an <strong>in</strong>itial altitude of 454 km,slowly decreas<strong>in</strong>g to 300 km until <strong>the</strong> predicted end of lifetime around <strong>the</strong> year 2008. TheCHAMP mission is conducted s<strong>in</strong>ce<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g under full responsibilityof GeoForschungsZentrum Potsdam(<strong>GFZ</strong>) with participation of <strong>the</strong> GermanCentre for Aerospace (DLR).Themission is funded by <strong>the</strong> German M<strong>in</strong>istryof Education <strong>and</strong> Research, <strong>GFZ</strong><strong>and</strong> DLR.For <strong>the</strong> first time a satellite <strong>in</strong> such alow altitude is equipped with a GPSreceiver. The BlackJack GPS SpaceReceiver is provided by NASA <strong>and</strong>manufactured at NASA‘s Jet PropulsionLaboratories (JPL) (Kuang et al.,2001). The purpose of this <strong>in</strong>strumentis to allow a recovery of CHAMP‘strajectory with an uncerta<strong>in</strong>ty of only afew centimetres. The receiver acquiresup to 12 GPS satellites simultaneously<strong>and</strong> measures dual-frequency carrierWorld wide web pages with fur<strong>the</strong>r <strong>in</strong>formation on <strong>the</strong> satellite missionsCHAMPGRACEGOCEICESatCryoSatEnviSatJason-1ERS-2TOPEX/PoseidonGeosat FOhttp://op.gfz-potsdam.de/champ/http://www.dlr.de/champhttp://op.gfz-potsdam.de/grace/http://www.csr.utexas.edu/grace/http://www.esa.<strong>in</strong>t/export/esaLP/goce.htmlhttp://www.goce-projektbuero.dehttp://icesat.gsfc.nasa.govhttp://www.csr.utexas.edu/glas/http://www.esa.<strong>in</strong>t/export/esaLP/cryoSat.htmlhttp://www.cryosat.dehttp://envisat.esa.<strong>in</strong>t/http://topex-www.jpl.nasa.gov/mission/jason-1.htmlhttp://earth.esa.<strong>in</strong>t/ers/http://topex-www.jpl.nasa.gov/mission/topex.htmlhttp://gfo.bmpcoe.org/Gfo/11


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 2.1: The satellite CHAMP (courtesy ASTRIUM) <strong>and</strong> high-low GPS-CHAMP satellite-to-satellitetrack<strong>in</strong>g for gravity field recovery.phases <strong>and</strong> pseudo-ranges at a rate of 10 s. Monitor<strong>in</strong>g CHAMP´s orbit by GPS allows <strong>the</strong> observationof gravity <strong>in</strong>duced orbit perturbations which <strong>the</strong>n are analysed to map <strong>the</strong> global structureof <strong>the</strong> <strong>Earth</strong>‘s gravitational field (Reigber et al., 1999) (Figure 2.1).<strong>Earth</strong> gravity field recovery from observed satellite orbit perturbations has been applied s<strong>in</strong>ce <strong>the</strong>beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> space age <strong>in</strong> <strong>the</strong> late 1950s <strong>and</strong> evolved to long-wavelength gravity field modelswhich today resolve spatial features <strong>in</strong> <strong>the</strong> gravity field with wavelengths down to several hundredkilometers at <strong>the</strong> <strong>Earth</strong>‘s surface. The models which were generated prior to <strong>the</strong> launch ofCHAMP exploited ma<strong>in</strong>ly ground-based camera, microwave <strong>and</strong> laser track<strong>in</strong>g data from sometens of satellites at different altitudes <strong>and</strong> orbit <strong>in</strong>cl<strong>in</strong>ations (Biancale et al., 2000). With CHAMPit becomes for <strong>the</strong> first time possible to derive a global gravity field model from orbit perturbationsof one satellite only (Figure 2.2). Moreover, <strong>the</strong> result<strong>in</strong>g model is more than one order ofmagnitude more accurate than what has been achieved with <strong>the</strong> earlier multi-satellite solutions<strong>and</strong> multi-year track<strong>in</strong>g records. Geodesy, Oceanography <strong>and</strong> Geophysics benefit from <strong>the</strong> advancedknowledge of <strong>the</strong> <strong>Earth</strong>‘s gravity field.The advantages of <strong>the</strong> CHAMP mission with respect to all former geodetic gravity missions are<strong>the</strong> follow<strong>in</strong>g:(1) Orbit configuration - The effect of <strong>the</strong> attenuation of <strong>the</strong> gravitational signal with altitude ism<strong>in</strong>imized due to <strong>the</strong> low orbit altitude, <strong>and</strong> <strong>the</strong>re is no restriction <strong>in</strong> ground track coveragethanks to <strong>the</strong> almost polar orbit.(2) GPS receiver – The on-board GPS receiver allows cont<strong>in</strong>uous track<strong>in</strong>g by up to 12 GPSsatellites simultaneously compared to one-dimensional ground-based track<strong>in</strong>g of only shortorbit pieces dur<strong>in</strong>g satellites passes.(3) Accelerometer – CHAMP experiences at its low altitude enhanced accelerations due to airdrag. These non-gravitational orbit perturbations have to be accounted for when us<strong>in</strong>g <strong>the</strong>GPS observed overall orbit perturbations for gravity field recovery. The on-board threeaxes accelerometer, provided by <strong>the</strong> French space agency CNES <strong>and</strong> manufactured by <strong>the</strong>French company ONERA, directly measures <strong>the</strong> vector of non-gravitational accelerations,i.e. air drag plus direct <strong>and</strong> <strong>in</strong>direct solar radiation pressure (Touboul et al., 1999). Thesemeasurements replace air density models which are of <strong>in</strong>sufficient accuracy <strong>and</strong> temporalresolution. The orientation of <strong>the</strong> accelerometer‘s axes is known from two star cameras (seealso <strong>the</strong> CHAMP mission fact sheet <strong>in</strong> Annex A7).12


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 2.4: First GRACE derived gravity anomaly map.<strong>the</strong> long-wavelength part of <strong>the</strong> gravitational spectrum (see also <strong>the</strong> GRACE mission fact sheet<strong>in</strong> Annex A7).The third satellite <strong>in</strong> <strong>the</strong> sequence of dedicated gravity satellite missions will be GOCE (Gravityfield <strong>and</strong> steady-state Ocean Circulation Explorer) (Figure 2.5). GOCE is planned to be launched<strong>in</strong> 2006 <strong>and</strong> was selected as <strong>the</strong> first Core Mission with<strong>in</strong> <strong>the</strong> Liv<strong>in</strong>g Planet <strong>Earth</strong> ObservationProgramme of <strong>the</strong> European Space Agency (ESA 1999). The payload of GOCE will consist of aGPS receiver, aga<strong>in</strong> for orbit determ<strong>in</strong>ation <strong>and</strong> resolv<strong>in</strong>g <strong>the</strong> long-wavelength gravity field, <strong>and</strong>a gravity gradiometer consist<strong>in</strong>g of six three-axes accelerometers to measure <strong>in</strong>-orbit gravity gradients<strong>in</strong> three spatial directions (Figure 2.6). For <strong>the</strong> first time gravity field recovery from spacewill not be based purely on <strong>the</strong> analysis of orbit perturbations. The sensitivity of <strong>the</strong> GOCE accelerometerswill be fur<strong>the</strong>r <strong>in</strong>creased compared to <strong>the</strong> ones onboard GRACE. The satellite willfly <strong>in</strong> a near polar, extremely low orbit (250 km altitude) which is permanently ma<strong>in</strong>ta<strong>in</strong>ed byion-thrusters compensat<strong>in</strong>g for air-drag (drag-free concept). The mission duration will only be 20months.The low orbit height <strong>and</strong> <strong>the</strong> measurement of gradients (2 nd derivatives of <strong>the</strong> gravity potential)help to counteract <strong>the</strong> attenuation of <strong>the</strong> gravity signal <strong>in</strong> space <strong>and</strong> allow GOCE to achieve avery high spatial resolution for <strong>the</strong> gravity field down to half wavelengths below 100 km. By this,<strong>the</strong> requirement of <strong>the</strong> oceanographers for a high-resolution precise geoid shall be fulfilled. Thegeoid is needed as a physical reference surface for <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> global ocean circulationpattern <strong>in</strong> comb<strong>in</strong>ation with satellite altimetry. The GOCE resolution will also open newpossibilities for modell<strong>in</strong>g of <strong>the</strong> structure of <strong>the</strong> <strong>Earth</strong>’s crust <strong>and</strong> mantle, <strong>and</strong> it will br<strong>in</strong>g a bigstep forward for regional comb<strong>in</strong>ed geoid modell<strong>in</strong>g with terrestrial gravity data, to get a globallyconsistent height reference with 1 cm accuracy for geodesy (see also <strong>the</strong> GOCE mission fact sheet<strong>in</strong> Annex A7).14


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceFigure 2.5: The GOCE satellite. The orbit will be sun-synchroneous, <strong>the</strong> same side fac<strong>in</strong>g to <strong>the</strong> sun overall <strong>the</strong> mission duration, to ensure <strong>the</strong>rmal stability <strong>and</strong> power supply.The comb<strong>in</strong>ation of GPS high-low satellite-to-satellite track<strong>in</strong>g with accelerometry, a low-low<strong>in</strong>tersatellite l<strong>in</strong>k <strong>and</strong>/or a gradiometer on low <strong>Earth</strong> orbit<strong>in</strong>g platforms provides an excellent toolfor mapp<strong>in</strong>g <strong>the</strong> <strong>Earth</strong>‘s gravity field homogeneously from space with ever <strong>in</strong>creased accuracy<strong>and</strong> resolution over <strong>the</strong> globe <strong>and</strong> <strong>in</strong> time. The three missions, although competitors <strong>in</strong> certa<strong>in</strong>respects, perfectly complement each o<strong>the</strong>r. CHAMP as <strong>the</strong> first low <strong>Earth</strong> orbiter collect<strong>in</strong>g cont<strong>in</strong>uouslyprecise orbit data already brought a new level of gravity accuracy as well as importantexperience for <strong>the</strong> succeed<strong>in</strong>g missions. GRACE will achieve an extremely high precision for <strong>the</strong>long <strong>and</strong> medium wavelengths <strong>and</strong> will thus allow to observe temporal variations, while GOCE,be<strong>in</strong>g less accurate for <strong>the</strong> lower part of <strong>the</strong> signal spectrum, will reach a very high spatial resolutionfor <strong>the</strong> static gravity field.For <strong>the</strong> new data types delivered by <strong>the</strong> three missions (cont<strong>in</strong>uous time series of observations),currently new techniques for gravity field analysis are developped <strong>and</strong> implemented. To assess<strong>the</strong> expected high quality of <strong>the</strong> results, new strategies for validation us<strong>in</strong>g <strong>in</strong>dependent data arerequired.Figure 2.6: Sensors <strong>and</strong> actuators on board of GOCE15


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>From observables to gravity field coefficientsThe signal of <strong>the</strong> <strong>Earth</strong>’s irregular gravity field at satellite’s altitude is visible <strong>in</strong> gravitational orbitperturbations (deviations from <strong>the</strong> Kepler ellipse) of a free-fly<strong>in</strong>g <strong>Earth</strong> orbit<strong>in</strong>g satellite. Superimposedto <strong>the</strong> gravitational orbit perturbations are surface force <strong>in</strong>duced non-gravitational orbitperturbations aris<strong>in</strong>g from air drag (for low fly<strong>in</strong>g satellites) <strong>and</strong> direct <strong>and</strong> <strong>in</strong>direct solar radiationpressure.Precise track<strong>in</strong>g of <strong>the</strong> satellite’s orbit is a prerequisite to allow a precise restitution of <strong>the</strong> satellite’sorbit for gett<strong>in</strong>g access to <strong>the</strong> orbit perturbations. By subtract<strong>in</strong>g <strong>the</strong> non-gravitational orbitperturbations, ei<strong>the</strong>r apply<strong>in</strong>g air density <strong>and</strong> radiation models or more accurately tak<strong>in</strong>g directly<strong>the</strong> on-board accelerometer measurements (CHAMP <strong>and</strong> GRACE), <strong>the</strong> purely gravitational orbitsignal is available for gravity field recovery. On GOCE, <strong>the</strong> non-gravitational orbit perturbationsare automatically balanced out dur<strong>in</strong>g flight by <strong>the</strong> drag-free control system that operates with<strong>in</strong><strong>the</strong> gradiometer measurement b<strong>and</strong>width.The resolution <strong>in</strong> global gravity field recovery, when apply<strong>in</strong>g orbit perturbation analysis from as<strong>in</strong>gle satellite is restricted to half wavelengths approximately correspond<strong>in</strong>g to <strong>the</strong> flight altitude.The <strong>in</strong>crease <strong>in</strong> resolution comes <strong>in</strong> case of GRACE through <strong>the</strong> additional measurement of alongtrack distance variations between <strong>the</strong> two co-orbit<strong>in</strong>g satellites, yield<strong>in</strong>g relative orbit perturbationsover a 220 km long basis, <strong>and</strong> <strong>in</strong> <strong>the</strong> case of GOCE, different from orbit perturbation analysis,through <strong>the</strong> on-board gravity gradient component measurements.The traditional approach to exploit gravitational orbit perturbations for gravity field recovery usesa numerically <strong>in</strong>tegrated orbit (arc length of e.g. 1 day) based on an <strong>in</strong>itial gravity field <strong>and</strong> o<strong>the</strong>rforce models. The difference between <strong>the</strong> track<strong>in</strong>g observations (GPS ranges) <strong>and</strong> correspond<strong>in</strong>gquantities computed with <strong>the</strong> <strong>in</strong>tegrated orbit <strong>the</strong>n are used <strong>in</strong> a least squares adjustment to solvesimultaneously for orbit (state vector) <strong>and</strong> measurement configuration dependent parameters, <strong>and</strong>after accumulation of a sufficient amount of s<strong>in</strong>gle arc normal equation systems, for <strong>the</strong> lookedforspherical harmonic coefficients (cf. Annex A1) describ<strong>in</strong>g <strong>the</strong> global gravity field model (e.g.Reigber et al., 2003).The known temporal gravity field variations have to be accounted for when <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> orbit<strong>and</strong> adjust<strong>in</strong>g <strong>the</strong> gravity field parameters <strong>in</strong> order to avoid alias<strong>in</strong>g from higher (>1rev/2months)<strong>in</strong>to lower temporal frequencies <strong>and</strong> thus degrad<strong>in</strong>g e.g. monthly gravity field solutions. Also <strong>the</strong>orbital fit between <strong>the</strong> <strong>in</strong>tegrated <strong>and</strong> observed orbit is improved. The temporal gravitational fieldvariations presently be<strong>in</strong>g considered with<strong>in</strong> <strong>the</strong> adjustment process are <strong>Earth</strong> <strong>and</strong> ocean tides,<strong>and</strong> non-tidal atmospheric <strong>and</strong> oceanic mass redistributions. A series of monthly gravity fieldmodels does <strong>the</strong>refore not <strong>in</strong>clude <strong>the</strong> effects from <strong>the</strong>se sources that are based on tidal <strong>and</strong> oceancirculation models, <strong>and</strong> global air pressure data with a resolution of six hours. Averages of <strong>the</strong>se‘de-alias<strong>in</strong>g products’ over <strong>the</strong> <strong>in</strong>dividual months have <strong>the</strong>n to be computed <strong>and</strong> added back to<strong>the</strong> monthly gravity field solutions <strong>in</strong> order to get <strong>the</strong> full ‘real’ gravity field model represent<strong>in</strong>g<strong>the</strong> average of a particular month (or any o<strong>the</strong>r time <strong>in</strong>terval). Hydrologic models <strong>and</strong> data overl<strong>and</strong> are not yet complete <strong>and</strong> reliable enough to be <strong>in</strong>cluded with<strong>in</strong> <strong>the</strong> process, i.e. <strong>the</strong> hydrologicsignal should be present <strong>in</strong> <strong>the</strong> solutions anyway.The fact, that <strong>the</strong> orbits of <strong>the</strong> new generation of satellite gravity missions are cont<strong>in</strong>uouslyobserved by multi-directional GPS track<strong>in</strong>g allows for <strong>the</strong> first time to restitute <strong>the</strong> orbit <strong>in</strong> ageometric or k<strong>in</strong>ematic approach that is completely <strong>in</strong>dependent of any gravitational <strong>and</strong> nongravitationalforce modell<strong>in</strong>g. Based on <strong>the</strong>se k<strong>in</strong>ematic orbits, new evaluation approaches becamepossible: direct determ<strong>in</strong>ation of <strong>the</strong> gravitational potential at satellite’s altitude apply<strong>in</strong>g<strong>the</strong> energy conservation law (<strong>the</strong> sum of k<strong>in</strong>etic <strong>and</strong> potential energy is constant, after hav<strong>in</strong>gsubtracted <strong>the</strong> dissipat<strong>in</strong>g non-gravitational contribution), or a spectral analysis of <strong>the</strong> k<strong>in</strong>ematic16


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceorbits (Mayer-Gürr, et al., 2004). The values of <strong>the</strong> gravitational potential along <strong>the</strong> orbit <strong>the</strong>n areconverted to <strong>the</strong> looked-for spherical harmonic gravitational coefficients <strong>in</strong> a subsequent leastsquares adjustment (e.g. Gerlach et al., 2003). O<strong>the</strong>r approaches use a localiz<strong>in</strong>g parametrization(e.g. wavelets) of <strong>the</strong> gravity field for a regional recovery of <strong>the</strong> gravity field <strong>in</strong> areas of <strong>in</strong>terest(e.g. Fengler et al., 2003).Also, <strong>the</strong> completely new type of measurements becom<strong>in</strong>g available with GOCE, <strong>the</strong> gravity gradients,will stimulate completely new methods of global <strong>and</strong> regional gravity field recovery.Status of global gravity field monitor<strong>in</strong>gThe threshold for geodetic/oceanographic/geophysical use of <strong>the</strong> static or mean gravity field as adynamic reference surface <strong>and</strong> for density studies, is on <strong>the</strong> 1 to 10 cm <strong>and</strong> 0.1 to 1 mGal level,respectively.The seasonal/<strong>in</strong>terannual gravitational temporal field variations due to mass redistribution <strong>in</strong> hydrology,ocean <strong>and</strong> polar ice are <strong>in</strong> terms of geoid heights on <strong>the</strong> level of a few millimetres atwavelengths from several 100 to 1000 km. For decadal/secular variations due to sea level changes,post-glacial rebound <strong>and</strong> polar ice melt<strong>in</strong>g/accumulations rates of change of <strong>the</strong> geoid of a fewtens of millimetres per year globally are expected <strong>and</strong> some mm/year regionally.Table 2.1 reflects <strong>in</strong> view of <strong>the</strong>se requirements <strong>the</strong> present stage <strong>in</strong> CHAMP <strong>and</strong> GRACE globalgravity field recovery for <strong>the</strong> mean field (from accumulation of data over a longer period) <strong>and</strong> <strong>the</strong>temporal field variations (time sequence of solutions) <strong>and</strong> <strong>the</strong> near-term expectations concern<strong>in</strong>gresolution <strong>and</strong> accuracy as well as <strong>the</strong> goal for <strong>the</strong> GOCE mission. The temporal field variationsup to now are only prelim<strong>in</strong>ary addressed <strong>in</strong> CHAMP <strong>and</strong> GRACE process<strong>in</strong>g. The expected improvements<strong>in</strong> CHAMP <strong>and</strong> GRACE results are due to advances <strong>in</strong> data process<strong>in</strong>g <strong>and</strong> <strong>the</strong> decreas<strong>in</strong>gorbit altitude.Figure 2.7 depicts <strong>the</strong> signal degree amplitudes (cf. Annex A1.3) of <strong>the</strong> most recent CHAMP(three years of data) <strong>and</strong> GRACE (one month of data) gravity field solutions <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>gestimated error degree amplitudes <strong>in</strong> terms of geoid heights. For comparison, <strong>the</strong> signal degreeamplitudes follow<strong>in</strong>g from Kaula’s ‚rule of thumb‘ (cf. Annex A1.3) are drawn to <strong>in</strong>dicate<strong>the</strong> general geoid’s power law. The drastically improved performance <strong>in</strong> both accuracy <strong>and</strong> resolutionwith GRACE compared to CHAMP is clearly visible. The spectrum of <strong>the</strong> predictedGRACE accuracy (basel<strong>in</strong>e mission assumption for a 500 km high orbit), not yet achieved, is alsogiven <strong>in</strong> Figure 2.7, as well as <strong>the</strong> GOCE mission basel<strong>in</strong>e assumption.Figure 2.8 gives degree-wise accumulated (degree 2 to l, cf. Annex A1.3) error degree amplitudesof <strong>the</strong> curves <strong>in</strong> Figure 2.7. The Figure reveals <strong>the</strong> overall geoid accuracy up to <strong>the</strong> selected maximumdegree l of <strong>the</strong> spherical harmonic expansion ( spatial resolution of λ= 40000 km/l).Table 2.1: Gravity Field Recovery: Accuracy <strong>and</strong> Resolution (λ/2pixel side length) per Missionmean fieldtemporal fieldvariationsCHAMP GRACE GOCEachieved expected achieved expected expected10 cm,1mGal@350km;1cm,0.02mGal@1000km1mm@4000km,3 monthlyfactor 1.5improvement1mm@4000km,3 monthly10 cm,1mGal@175km;1cm,0.02mGal@270km1mm@1000km,monthlyfactor 5improvement ;1cm@200 km1mm@500km,monthly1cm,1mGal@100kmno17


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 2.7: Signal <strong>and</strong> error degree amplitudes of achieved <strong>and</strong> predicted (basel<strong>in</strong>e) results <strong>in</strong> terms ofgeoid heightsFigure 2.8: Error amplitudes as a function of maximum degree l of achieved <strong>and</strong> predicted (basel<strong>in</strong>e) gravityfield recovery results <strong>in</strong> terms of geoid heights18


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceFigure 2.9: Error degree amplitudes of GRACE<strong>and</strong> CHAMP gravity field solutions <strong>and</strong> signal degreeamplitudes of seasonal mass redistributionsdue to hydrologic, oceanic <strong>and</strong> atmospheric models(Wahr, personal communication), <strong>and</strong> due to a 50mm constant ice height change over Antarctica, <strong>in</strong>terms of geoid heights (top left), gravity anomalies(top right) <strong>and</strong> equivalent water column (bottom).Figure 2.9 zooms out <strong>the</strong> long-wavelength part of Figure 2.7 <strong>and</strong> also translates <strong>the</strong> degree amplitudesfrom geoid heights <strong>in</strong>to gravity anomalies <strong>and</strong> equivalent water column (cf. Annex A1.3,A1.4). For comparison, <strong>the</strong> signal degree amplitudes due to seasonal mass redistributions <strong>in</strong> hydrology,atmosphere <strong>and</strong> ocean accord<strong>in</strong>g to recent models <strong>and</strong> data (adopted from Wahr, personalcommunication), <strong>and</strong> <strong>in</strong> Antarctic ice thickness (50 mm change) are depicted <strong>in</strong> Figure 2.9along with <strong>the</strong> GRACE error curves. The GOCE curve is omitted here because GOCE shall notcontribute to <strong>the</strong> recovery of temporal field variations.The signal degree amplitudes <strong>in</strong> Figure 2.9 are derived from a spherical harmonic expansion of<strong>the</strong> load distribution, i.e. <strong>the</strong>se are averages over <strong>the</strong> whole <strong>Earth</strong>’s surface. For loads that are oflimited extension (like for Antarctica <strong>in</strong> Figure 2.9), an <strong>in</strong>vestigation <strong>in</strong> <strong>the</strong> spatial doma<strong>in</strong> is moreappropriate as <strong>the</strong> gravitational signal over a specific region is of larger amplitude than <strong>the</strong> globalaverage. The reliability of <strong>the</strong> oceanic <strong>and</strong> hydrologic models is to a large extend unknown <strong>and</strong>shall be <strong>in</strong>vestigated with<strong>in</strong> <strong>the</strong> project. The spectral distribution of <strong>the</strong> predicted signals is givenhere for <strong>in</strong>dicative purposes only.19


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>ReferencesBiancale, R., G. Balm<strong>in</strong>o, J.-M. Lemo<strong>in</strong>e, J.-C. Marty, B. Moynot, F. Barlier, P. Exertier, O.Laura<strong>in</strong>, P. Gegout, P. Schw<strong>in</strong>tzer, Ch. Reigber, A. Bode, R. König, F.-H. <strong>Mass</strong>mann, J.-C.Raimondo, R. Schmidt, <strong>and</strong> S.Y. Zhu, 2000. A New global <strong>Earth</strong>‘s Gravity Field Model fromSatellite Orbit Perturbations: GRIM5-S1, Geophys. Res. Lett., 27:3611-3614.European Space Agency, 1999. Gravity Field <strong>and</strong> Steady-State Ocean Circulation Mission(GOCE), Report for mission selection, <strong>in</strong> The four c<strong>and</strong>idate <strong>Earth</strong> explorer core missions,SP-1233 (1), Noordwijk, The Ne<strong>the</strong>rl<strong>and</strong>s.Fengler, M.J., W. Freeden, V. Michel, 2003. The Kaiserlautern Multiscale Geopotential ModelSWITCH-03 from Orbit Perturbations of <strong>the</strong> Satellite CHAMP <strong>and</strong> its Comparison to<strong>the</strong> Models EGM96, UCPH2002_02_0.5, EIGEN-1S <strong>and</strong> EIGEN-2. Geophys. J. Intern.,accepted 2003.Gerlach, Ch., L. Földvary, D. Svehla, Th. Gruber, M. Wermuth, N. Sneeuw, B. Frommknecht, H.Oberndorfer, Th. Peters, M. Rothacher, R. Rummel, P. Steigenberger, 2003. A CHAMP-onlyGravity Field Model from K<strong>in</strong>ematic Orbits Us<strong>in</strong>g <strong>the</strong> Energy Integral. Geophys. Res. Lett.,30 (20), 2037, doi: 10.1029/2003GL018025, 2003.Mayer-Gürr, T., Ilk, K.H., Eicker, A., Feucht<strong>in</strong>ger, M., 2004. ITG-CHAMP01: A CHAMP GravityField Model from Short K<strong>in</strong>ematical Arcs of a One-Year Observation Period, submitted toJournal of Geodesy.Kuang, D., Y. Bar-Server, W. Bertiger, S. Desai, B. Ha<strong>in</strong>es, B. Iijima, G. Kruiz<strong>in</strong>ga, Th. Meehan,<strong>and</strong> L. Romans, 2001. Precise Orbit Determ<strong>in</strong>ation for CHAMP us<strong>in</strong>g GPS Data fromBlackJack Receiver, <strong>in</strong> 2001 ION National Technical Meet<strong>in</strong>g Proceed<strong>in</strong>gs, Session E1:Scientific Applications, Tim<strong>in</strong>g, <strong>and</strong> Frequency, Long Beach, California.Reigber, Ch., P. Schw<strong>in</strong>tzer, <strong>and</strong> H. Lühr, 1999. The CHAMP geopotential mission, Boll. Geof.Teor. Appl., 40:285-289.Reigber, Ch., P. Schw<strong>in</strong>tzer, K.-H. Neumayer, F. Bar<strong>the</strong>lmes, R. König, Ch. Förste, G. Balm<strong>in</strong>o,R. Biancale, J.-M. Lemo<strong>in</strong>e, S. Loyer, S. Bru<strong>in</strong>sma, F. Perosanz, <strong>and</strong> T. Fayard, 2003. TheCHAMP-only EIGEN-2 <strong>Earth</strong> Gravity Field Model, Adv. Space Res., 31 (8):1883-1888.Tapley, B.D., <strong>and</strong> Ch. Reigber, 2001. The GRACE mission: status <strong>and</strong> future plans, Eos TransAGU 82 (47), Fall Meet. Suppl., G41 C-02.Touboul, P., E. Willemenot, B. Foulon, <strong>and</strong> V. Jossel<strong>in</strong>, 1999. Acclerometers for CHAMP, GRACE<strong>and</strong> GOCE space missions: synergy <strong>and</strong> evolution, Boll. Geof. Teor. Appl., 40:321-327.20


250252500-25-5002.2 Satellite altimetry2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceWith<strong>in</strong> a few decades satellite altimetry has become an operational remote sens<strong>in</strong>g technique withimportant application <strong>in</strong> oceanography, geodesy <strong>and</strong> geophysics. Today, <strong>the</strong> ocean surface is byfar better known than <strong>the</strong> Figure of <strong>the</strong> <strong>Earth</strong> over large areas of <strong>the</strong> cont<strong>in</strong>ents (see Figure 2.10).Altimetry has essentially contributed to <strong>the</strong> improved knowledge of <strong>the</strong> <strong>Earth</strong> gravity field. It allowsto deduce features of <strong>the</strong> sea floor topography, to control cont<strong>in</strong>ental ice <strong>and</strong> to observe seaice <strong>and</strong> its mov<strong>in</strong>g marg<strong>in</strong>. Above all altimetry is able to monitor <strong>the</strong> sea level <strong>and</strong> its variability<strong>in</strong> a fast, global <strong>and</strong> precise way. It thus contributes essentially to a better knowledge of <strong>the</strong>ocean dynamics, <strong>the</strong> ocean mass redistribution <strong>and</strong> its impact to <strong>the</strong> <strong>Earth</strong> gravity field, <strong>the</strong> questionof sea level rise <strong>and</strong> its possible acceleration, one of <strong>the</strong> most prom<strong>in</strong>ent <strong>in</strong>dicators of globalchange.30˚ 60˚ 90˚ 120˚ 150˚ 180˚ 210˚ 240˚ 270˚ 300˚ 330˚000-2502560˚25-25-2560˚0-25-5030˚030˚-25-50-505000˚0-25-75750˚5075-30˚2525-30˚-25-25-60˚0-60˚25-50Meter-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100Figure 2.10: The CLS01 mean sea surface height model (Hern<strong>and</strong>ez <strong>and</strong> Schaeffer, 2002), computed fromharmonized altimeter data of TOPEX/Poseidon, ERS-1 <strong>and</strong> ERS-2. The high spatial resolution is based on<strong>the</strong> geodetic phase of ERS-1.Pulse-width limited altimeter systemsThe measurement pr<strong>in</strong>ciple of satellite altimetry is straightforward: With a carrier frequency atabout 13.6 GHz (Ku-b<strong>and</strong>) frequency-modulated impulses of a few nano seconds duration <strong>and</strong>a repetition rate of about 1 KHz are emitted from <strong>the</strong> altimeter antenna <strong>in</strong>to nadir direction. Thepulse-width limited radar signals propagate with a beamwidth of a few degree <strong>and</strong> are reflectedat <strong>the</strong> ocean surface with a backscatter depend<strong>in</strong>g on <strong>the</strong> w<strong>in</strong>d speed <strong>and</strong> <strong>the</strong> sea state (see Figure2.11). After <strong>the</strong> round-trip travel time of a few milliseconds <strong>the</strong> echo of <strong>the</strong> radar signals is receivedaga<strong>in</strong> by <strong>the</strong> altimeter antenna <strong>and</strong> sampled <strong>in</strong>to 64 or 128 b<strong>in</strong>s. The analysis of <strong>the</strong> sampledecho, <strong>in</strong> particular <strong>the</strong> fit of a <strong>the</strong>oretical echo model to <strong>the</strong> b<strong>in</strong> values, allows to estimatethree basic parameters, namely21


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 2.11: The measurement pr<strong>in</strong>cipleof pulse limited radar altimeter systems• <strong>the</strong> travel time of <strong>the</strong> signal,• <strong>the</strong> slope of <strong>the</strong> lead<strong>in</strong>g edge of <strong>the</strong> echo, <strong>and</strong>• <strong>the</strong> total energy of <strong>the</strong> radar echo.The travel time of <strong>the</strong> signal is converted to length <strong>and</strong>gives <strong>the</strong> <strong>in</strong>stantaneous height of <strong>the</strong> antenna above <strong>the</strong>sea surface. The slope is proportional to <strong>the</strong> significantwave height <strong>and</strong> <strong>the</strong> energy budget depends on <strong>the</strong> backscattercoefficient <strong>and</strong> allows estimates of <strong>the</strong> surfacew<strong>in</strong>d speed.In order to derive sea surface heights <strong>the</strong> altimeter rangeshave to be subtracted from <strong>the</strong> radial component of <strong>the</strong>position of <strong>the</strong> spacecraft which is obta<strong>in</strong>ed from preciseorbit determ<strong>in</strong>ation. However, to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> measurementprecision <strong>and</strong> to compare sea surface heights takenat different epochs it is essential to apply a number ofcorrections:Instrumental errors, offsets from <strong>the</strong> antenna phase centreto <strong>the</strong> satellites centre of gravity, range biases <strong>and</strong>drifts are crucial for a precise geocentric reference of<strong>the</strong> sea level.Media corrections are required because <strong>the</strong> radar signaltravels twice through <strong>the</strong> atmosphere. For <strong>the</strong> troposphere two effects are dist<strong>in</strong>guished: <strong>the</strong> delayof <strong>the</strong> radar echo caused by <strong>the</strong> presence of dry air <strong>and</strong> <strong>the</strong> wet component, related to <strong>the</strong> presenceof water vapour. Dual frequency altimeters like TOPEX/Poseidon, Jason <strong>and</strong> EnviSat allow <strong>the</strong><strong>in</strong>-situ estimation of <strong>the</strong> ionospheric delay through <strong>the</strong> dispersive nature of <strong>the</strong> ionosphere. S<strong>in</strong>glefrequency altimeters must rely on global ionospheric prediction model like Bent or IRI2001which are not able to account for <strong>the</strong> turbulent character of <strong>the</strong> ionosphere.O<strong>the</strong>r corrections have to be applied for <strong>the</strong> radar target, <strong>the</strong> sea surface: The <strong>in</strong>stantaneous waterlevel is affected by ocean <strong>and</strong> solid <strong>Earth</strong> tides, <strong>the</strong> load<strong>in</strong>g through <strong>the</strong> deformation of <strong>the</strong> solid<strong>Earth</strong> <strong>and</strong> <strong>the</strong> pole tide, a small effect due to <strong>the</strong> variation of <strong>the</strong> <strong>Earth</strong> rotation axis. The <strong>in</strong>versebarometer correction assumes that sea level is depressed by 1 cm if air pressure <strong>in</strong>creases by 1hPa. F<strong>in</strong>ally, <strong>the</strong> sea state bias is due to <strong>the</strong> fact that wave crests reflect <strong>the</strong> radar signal less thanwave troughs, caus<strong>in</strong>g <strong>the</strong> altimeter to measure too long.The first altimeter experiments on Skylab (1973) <strong>and</strong> with <strong>the</strong> Geos-3 (1975-1978) satellite canbe considered as proof-of-concept phase. In 1985 <strong>the</strong> U.S. Navy launched Geosat, an altimeterlargely based on <strong>the</strong> design of Seasat (which failed <strong>in</strong> 1978 after a few month of operation). Geosatwas first applied for a high resolution mapp<strong>in</strong>g of <strong>the</strong> mar<strong>in</strong>e geoid (<strong>the</strong> GM military missionphase with data declassified later on) <strong>and</strong> <strong>the</strong>n, from September 1986 to October 1989 manoeuvered<strong>in</strong>to a Seasat exact repeat orbit (<strong>the</strong> EM mission phase).In <strong>the</strong> past decade, satellite altimetry was characterized by <strong>the</strong> simultaneous operation of <strong>the</strong> extremelysuccessful TOPEX/Poseidon mission (Fu et al.1994) with ERS-1 <strong>and</strong> its follow-on, ERS-2.S<strong>in</strong>ce <strong>the</strong> successful launch of Jason-1 <strong>in</strong> December 2001 <strong>and</strong> EnviSat <strong>in</strong> March 2002 <strong>the</strong>re are currentlyfive altimeter systems operat<strong>in</strong>g simultaneously (see Figure 2.12). This is due to a short transitionalphase between „old” missions, still <strong>in</strong> operation (TOPEX/Poseidon <strong>and</strong> ERS-2), <strong>and</strong> <strong>the</strong>new, follow-on missions Jason-1 <strong>and</strong> EnviSat, now already validated <strong>and</strong> calibrated dur<strong>in</strong>g a fewmonth commission<strong>in</strong>g phase. In addition, Geosat Follow-On (GFO), launched <strong>in</strong> February 1998, isnow successfully operat<strong>in</strong>g. New missions with alternative missions design, dedicated for ice ap-22


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceFigure 2.12: Satellite altimeter mission history <strong>and</strong> perspectiveplication complement <strong>the</strong> mission scenario: ICESat, launched <strong>in</strong> 2003, carries a Geoscience LaserAltimeter <strong>System</strong> (GLAS) <strong>and</strong> shall provide multi-year elevation data over Greenl<strong>and</strong> <strong>and</strong> Antarctica.Cryosat is planned for a launch <strong>in</strong> 2004. More details to <strong>the</strong>se missions are given below.The present situation offers a unique chance to cross-calibrate all altimeter systems <strong>and</strong> to cont<strong>in</strong>ue<strong>the</strong> long-term monitor<strong>in</strong>g of <strong>the</strong> ocean surface <strong>and</strong> to fully exploit <strong>the</strong> synergies of missionswith different sampl<strong>in</strong>g characteristics.TOPEX/Poseidon, dedicated to <strong>the</strong> measurement of <strong>the</strong> ocean surface topography, provided highaltitude <strong>and</strong> high precision orbits, a repeat period of 9.9156 days with <strong>the</strong> ability to de-alias <strong>the</strong>major tidal constituents, <strong>and</strong> <strong>the</strong> two frequency TOPEX altimeter sensor, that allows <strong>the</strong> <strong>in</strong>-situestimation of <strong>the</strong> range delay due to ionospheric refraction. The low overall error budget ofTOPEX/Poseidon has never been achieved before <strong>and</strong> may be characterized by ± 6 cm rms forcrossover differences with short time delay (AVISO 1999). This <strong>in</strong>cludes not only radial orbit errorsbut also all errors of <strong>the</strong> environmental corrections. Jason-1 cont<strong>in</strong>ues this time series over<strong>the</strong> same ground track while TOPEX/Poseidon was shifted by half <strong>the</strong> ground track spac<strong>in</strong>g <strong>in</strong>order to double <strong>the</strong> spatial resolution as long as <strong>the</strong> satellite is still operat<strong>in</strong>g.On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, orbit <strong>and</strong> sampl<strong>in</strong>g characteristics for ESA‘s Remote Sens<strong>in</strong>g Satellites ERS-1<strong>and</strong> ERS-2 were governed by <strong>the</strong> multi-discipl<strong>in</strong>ary mission objectives. The high <strong>in</strong>cl<strong>in</strong>ation impliesa latitude coverage up to ± 81.5° such that even polar areas with cont<strong>in</strong>ental <strong>and</strong> ocean icelike Greenl<strong>and</strong> <strong>and</strong> <strong>the</strong> Ross ice shelf can be monitored. The sun-synchronous ERS-1 repeat cyclewas set to 3, 35 <strong>and</strong> 168 days <strong>in</strong> order to fulfill specific requirements for ice, ocean <strong>and</strong> geodeticapplication respectively. The follow-on ERS-2 was kept <strong>in</strong> a 35 day repeat cycle, <strong>the</strong> best compromisefor multidiscipl<strong>in</strong>ary requirements. EnviSat is now measur<strong>in</strong>g over <strong>the</strong> same subsatelliteground track. The fur<strong>the</strong>r operation of ERS-2 - after <strong>the</strong> cross-calibration with EnviSat - rema<strong>in</strong>sto be decided.Due to orbit dynamics, high spatial <strong>and</strong> high temporal resolution exclude each o<strong>the</strong>r. The 10 dayrepeat cycle of TOPEX/Poseidon <strong>and</strong> Jason-1 imply an equatorial track spac<strong>in</strong>g of about 315km. The lower temporal resolution of <strong>the</strong> 35 day repeat for ERS-1, ERS-2 <strong>and</strong> EnviSat providean improved spatial resolution with an equatorial track separation of only 80 km. The „geodetic“phase of ERS-1 put <strong>the</strong> track separation even down to 16 km! Thus, <strong>the</strong> NASA/CNES <strong>and</strong> <strong>the</strong>ESA-missions complement each o<strong>the</strong>r <strong>in</strong> an optimal way, as for example elaborated by Le Traonet al. (1999). Figure 2.13 shows <strong>the</strong> track pattern of <strong>the</strong> repeat missions <strong>and</strong> <strong>the</strong> density of measurementsachieved by <strong>the</strong> geodetic mission phases.23


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>30˚280˚285˚290˚295˚300˚30˚276˚25˚277˚278˚279˚25˚25˚25˚20˚20˚24˚24˚15˚15˚10˚280˚285˚290˚295˚300˚10˚23˚276˚277˚278˚23˚279˚Figure 2.13: Spatial resolution of <strong>the</strong> repeat missions Jason-1, EnviSat <strong>and</strong> GFO (left h<strong>and</strong>) <strong>and</strong> (righth<strong>and</strong>) <strong>the</strong> repeat tracks with additional spatial resolution achieved by <strong>the</strong> geodetic mission phases of Geosat<strong>and</strong> ERS-1. The right panel is a 2°x3° sub area of <strong>the</strong> Caribbean Sea <strong>and</strong> Gulf of Mexico region shown leftIn order to take advantage of <strong>the</strong> simultaneous operation of altimeter systems with different temporal<strong>and</strong> spatial sampl<strong>in</strong>g characteristic two general requirements are to be fulfilled, namely• <strong>the</strong> harmonization of mission data <strong>and</strong>• <strong>the</strong> (cross-) calibration of <strong>the</strong> vertical componentHarmonization of altimeter mission data is possible only to a certa<strong>in</strong> extend. Of course, tidal correctionscan be based on <strong>the</strong> same ocean tide model <strong>and</strong> orbits can be re-computed with an improvedgravity field model. But <strong>the</strong> effect of <strong>the</strong> so called „geographically correlated“ orbit errors<strong>and</strong> of different track<strong>in</strong>g systems (Laser, DORIS, PRARE, or GPS) is difficult to assess. Missionswithout a dual frequency altimeter must rely on global prediction model for <strong>the</strong> total electroncontent (like <strong>the</strong> Bent model or models for <strong>the</strong> International Reference Ionosphere, IRI). Also, amiss<strong>in</strong>g on-board radiometer degrades <strong>the</strong> error budget (as for Geosat). The sea state bias is sensorspecific <strong>and</strong> can not be harmonized at all. Because of <strong>the</strong> computational burden <strong>and</strong> miss<strong>in</strong>gresources, a re-process<strong>in</strong>g of <strong>the</strong> complete mission data can be performed – if at all – by a fewgroups only <strong>and</strong> <strong>in</strong> general does not keep track with <strong>the</strong> development of improved algorithms <strong>and</strong><strong>the</strong> availability of new models.AVISO (1996) improved <strong>the</strong> ERS-1 <strong>and</strong> ERS-2 orbits by a global m<strong>in</strong>imization of dual satellitecrossover with TOPEX/Poseidon (Le Traon et al., 1995) <strong>and</strong> provides user friendly along-trackdata <strong>in</strong> terms of corrected sea surface heights <strong>and</strong> sea level anomalies. The NASA/JPL Pathf<strong>in</strong>derProject performed a harmonization <strong>and</strong> unification of <strong>the</strong> vertical reference for TOPEX/Poseidon,ERS-1, ERS-2 <strong>and</strong> <strong>the</strong> Geosat mission.The second requirement concerns <strong>the</strong> (range) calibration <strong>and</strong> <strong>the</strong> long-term stability of altimetersystems. Concatenation of data of different missions may, for example, generate an apparent sealevel rise if <strong>the</strong> altimeter range measurements are not properly (cross-) calibrated. The same effectmay result from an undetected drift of <strong>the</strong> altimeter sensor or auxilary sensors (like <strong>the</strong> radiometer)used to correct <strong>the</strong> range measurements. EnviSat <strong>and</strong> Jason-1 are cross-calibrated with<strong>the</strong>ir predecessors by so called t<strong>and</strong>em configurations, an approach first applied for <strong>the</strong> transitionfrom ERS-1 to ERS-2: For a few month <strong>the</strong> orbit of both satellites are configured such that <strong>the</strong>yobserved <strong>the</strong> same subsatellite track with a short time delay (one day, 30 m<strong>in</strong>utes or even shorter).The relative range bias of both satellites can <strong>the</strong>n be estimated with millimetre precision from <strong>the</strong>dual observation of a repeated global ocean surface profiles.Although <strong>the</strong> cross-calibration by <strong>the</strong> t<strong>and</strong>em approach is extremely precise it is not able to detectlong-term changes of <strong>the</strong> altimeter systems. Oscillator drifts of TOPEX/Poseidon, for example,24


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spacewere detected through <strong>the</strong> relative comparison of altimetric sea level time series <strong>and</strong> record<strong>in</strong>gsof carefully selected isl<strong>and</strong> tide gauges (Mitchum, 1998). In <strong>the</strong> same way drifts of ancillary onboard sensors like <strong>the</strong> radiometer could be identified by comparison with wet tropospheric pathdelays estimated from GPS observations. The oscillator drift of ERS-1/2 is monitored <strong>in</strong>ternally<strong>and</strong> amounts to a non-neglect<strong>in</strong>g rate of about 8 mm/year. The long-term stability of altimetrycrucially depends on <strong>the</strong> knowledge about such drift rates.Cross-calibration by t<strong>and</strong>em configuration <strong>and</strong> drift estimation by relative comparison with externalobservation series are important, but cannot substitute <strong>the</strong> absolute calibration, performedby scenarios at a s<strong>in</strong>gle calibration site where a closure between <strong>the</strong> position of <strong>the</strong> satellite, <strong>the</strong>corrected altimeter range observation <strong>and</strong> <strong>the</strong> <strong>in</strong>stantaneous sea surface is established by meansof <strong>in</strong>dependent measurements. It should be emphasized that <strong>the</strong> absolute calibration is <strong>the</strong> onlyapproach that determ<strong>in</strong>es <strong>the</strong> scale of satellite altimetry. An error of only 1 cm <strong>in</strong> <strong>the</strong> range biasestimate may translate with<strong>in</strong> a decade to an apparent 1 mm/year sea level rise. The calibration ofTOPEX/Poseidon at <strong>the</strong> Harvest Platform (Christensen et al., 1994), performed quasi cont<strong>in</strong>uouslyover <strong>the</strong> whole missions lifetime, is <strong>the</strong>refore m<strong>and</strong>atory. For ERS-2 <strong>the</strong>re was no absolute calibrationat all! The scale of ERS-2 was carried over from ERS-1 by <strong>the</strong> t<strong>and</strong>em phase <strong>and</strong> ERS-1got its scale from <strong>the</strong> ra<strong>the</strong>r short calibration campaign at <strong>the</strong> Venice tower (Francis et al. 1992).The impact of <strong>the</strong> new gravity field missions (CHAMP, GRACE <strong>and</strong> GOCE) on satellite altimetryis twofold: First, <strong>the</strong> orbits of altimeter satellites can be computed more precise than today- even for low orbit<strong>in</strong>g satellites like EnviSat (<strong>the</strong> modell<strong>in</strong>g of non-gravitational surface forcesrema<strong>in</strong>s problematic). Second, <strong>the</strong> improved knowledge of <strong>the</strong> mar<strong>in</strong>e geoid will allow a moresignificant estimation of <strong>the</strong> absolute ocean dynamic topography. With known density profiles,it appears feasible to derive a three-dimensional view of <strong>the</strong> ocean currents. These synergies arediscussed below <strong>in</strong> more detail.In order to overcome <strong>the</strong> limitations of <strong>the</strong> pulse-width limited altimetry new mission concepts withalternative or modified system design are already realized, are approved or are under <strong>in</strong>vestigation.CryoSat <strong>and</strong> ICESat altimeter missionsThe CryoSat mission is <strong>the</strong> first mission of ESA´s <strong>Earth</strong> Explorer Opportunity Mission plannedfor launch <strong>in</strong> September 2004. The mission has been def<strong>in</strong>ed <strong>in</strong> order to determ<strong>in</strong>e fluctuations <strong>in</strong><strong>the</strong> mass of <strong>the</strong> <strong>Earth</strong>’s major l<strong>and</strong> <strong>and</strong> mar<strong>in</strong>e ice fields. Predict<strong>in</strong>g future climate <strong>and</strong> sea leveldepends on knowledge of <strong>the</strong>se fluctuations. Satellite observations are <strong>the</strong> unique source of <strong>the</strong>semeasurements at large space <strong>and</strong> time-scales. The goals of CryoSat are to measure variations <strong>in</strong><strong>the</strong> thickness of perennial sea <strong>and</strong> l<strong>and</strong> ice fields to <strong>the</strong> limit allowed by natural variability, onspatial scales vary<strong>in</strong>g over three orders-of-magnitude. The natural variability of sea <strong>and</strong> l<strong>and</strong> icedepends on fluctuations <strong>in</strong> <strong>the</strong> supply of mass by <strong>the</strong> atmosphere <strong>and</strong> ocean, <strong>and</strong> snow <strong>and</strong> ice density.CryoSat measurement requirements are determ<strong>in</strong>ed from estimates of <strong>the</strong>se fluctuations.The measurement requirements <strong>and</strong> averag<strong>in</strong>g areas of <strong>the</strong> CryoSat system are:• Over sea ice <strong>the</strong> averag<strong>in</strong>g area of <strong>in</strong>terest is 100,000 km 2 with a required accuracy ofresolv<strong>in</strong>g temporal changes of 1.6 cm per year.• Over ice-sheet marg<strong>in</strong>s an averag<strong>in</strong>g area of 10,000 km 2 is assumed with a measurementaccuracy of 3.3 cm of ice thickness change per year.• Over <strong>the</strong> <strong>in</strong>teriors of <strong>the</strong> ice-sheets <strong>the</strong> averag<strong>in</strong>g area is 13,800,000 km 2 (<strong>the</strong> surface area ofAntarctica) with a measurement accuracy of 0.7 cm of ice thickness change per year.CryoSat will perform measurements over three full years <strong>in</strong> order to detect <strong>the</strong> <strong>in</strong>terannual25


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 2.14: Artist view: CryoSat <strong>in</strong>operation (courtesy ESA)variability <strong>and</strong> possible trends. It will have a 92° high<strong>in</strong>cl<strong>in</strong>ation orbit to cover polar regions, i.e. extend<strong>in</strong>g observationsup to 88° latitudes, <strong>and</strong> a repeat cycle of 369days with 30day sub-cycle.With pulse-limited radar-altimeter data from ERS-1 <strong>and</strong>ERS-2 first successful case studies of <strong>the</strong> determ<strong>in</strong>ationof ice mass fluxes (W<strong>in</strong>gham et al., 1998; Shepherd etal., 2003) <strong>and</strong> sea ice thickness changes (Laxon et al.,2003) have been made. In order to extend <strong>the</strong>se resultsto regions covered by sea-ice <strong>and</strong> to <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong>ice sheets, respectively, it was necessary to improve <strong>the</strong>spatial resolution of <strong>the</strong> altimeter measurement system.CryoSat (see Figure 2.14) will thus carry a unique highspatial resolution radar altimeter, <strong>the</strong> Syn<strong>the</strong>tic ApertureInterferometric Radar Altimeter SIRAL as <strong>the</strong> primarypayload. It will operate <strong>in</strong> <strong>the</strong> Ku-b<strong>and</strong> at a frequency of13.8 GHz. The radar is capable of operat<strong>in</strong>g <strong>in</strong> a numberof different modes, optimised for measurements overdifferent surfaces. A conventional, pulse-width limited,low-resolution mode will provide <strong>the</strong> measurements over<strong>the</strong> central regions of <strong>the</strong> ice sheets, to cont<strong>in</strong>ue <strong>the</strong> ERS<strong>and</strong> EnviSat measurement series. This mode will also beused over most of <strong>the</strong> oceans. The SAR mode will enablean enhancement of <strong>the</strong> spatial resolution to 250 malong-track (Figure 2.15). This mode will be used oversea-ice to enable measurements over relatively narrowleads of open water which would be <strong>in</strong>dist<strong>in</strong>guishable <strong>in</strong>low-resolution mode. Over <strong>the</strong> topographic surfaces of<strong>the</strong> ice-sheet marg<strong>in</strong>s this SAR mode will be enhanced by<strong>in</strong>terferometric operation across-track so that <strong>the</strong> arrivalangle of <strong>the</strong> echoes can be measured.Similarly to CryoSat, NASA’s ICESat (Ice, Cloud, <strong>and</strong> l<strong>and</strong> Elevation Satellite) mission has <strong>the</strong>goal to provide three to five year elevation data over Greenl<strong>and</strong> <strong>and</strong> Antarctica needed to determ<strong>in</strong>eice sheet mass balance. Additionally it will measure cloud <strong>and</strong> aerosol heights, as well asl<strong>and</strong> topography <strong>and</strong> vegetation characteristics. Sea ice is not an explicit goal of <strong>the</strong> mission, butsome ice freeboard retrievals will also be possible. ICESat has been launched <strong>in</strong> January 2003 <strong>and</strong>extends to 86° latitudes.ICESats primary payload is GLAS, <strong>the</strong> Geoscience Laser Altimeter <strong>System</strong>. GLAS is designedto detect changes <strong>in</strong> ice sheet surface elevation as small as 1.5 cm per year over areas of 100 kmby 100 km. It is a laser altimeter operat<strong>in</strong>g at 1064 (<strong>in</strong>frared) <strong>and</strong> 532 (visible green) nanometerswavelengths. Thus, ICESat can only perform measurements of <strong>the</strong> <strong>Earth</strong> surface if <strong>the</strong>re are noclouds. This is a severe limitation for polar applications, <strong>in</strong> particular for sea ice <strong>in</strong>vestigations.The laser altimeter has a footpr<strong>in</strong>t of 70 m, <strong>and</strong> a spatial sampl<strong>in</strong>g <strong>in</strong>terval of 170 m along <strong>the</strong>ground track. Orbit <strong>and</strong> attitude will be controlled by means of GPS <strong>and</strong> star trackers.Both missions are us<strong>in</strong>g new, unique technology, <strong>and</strong> are sett<strong>in</strong>g new benchmarks <strong>in</strong> <strong>the</strong> achievedaccuracy of <strong>the</strong> measurements. However, this also requires careful validation of <strong>the</strong> height <strong>and</strong>thickness retrievals before <strong>the</strong> data can be widely <strong>and</strong> confidently used.26


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceFigure 2.15: Schematic sketches of CryoSat´s (a) SAR mode operated over sea ice, small ice caps <strong>and</strong> icesheet marg<strong>in</strong>s <strong>and</strong> (b) <strong>in</strong>terferometric SAR mode capable of retriev<strong>in</strong>g <strong>the</strong> surface slope of <strong>the</strong> ice sheetmarg<strong>in</strong>s.ReferencesAVISO, 1996. Aviso User H<strong>and</strong>book: Merged Topex/Poseidon Products. AVI-NT-02-101-CN,Edition 3.0.AVISO, 1999. Aviso CalVal yearly report: 6 years of TOPEX/Poseidon data. AVI-NT-011-316-CN, Edition 1.0.Bent R.B., K. Llewellyn, G. Nesterczuk, <strong>and</strong> P.E. Schmid, 1976. The development of a highlysuccessful worldwide empirical ionospheric model. In: Goodman J. (Ed.) Effect of <strong>the</strong>ionosphere on Space <strong>System</strong> <strong>and</strong> Communications. Natl.Tech. Inf. Serv., Spr<strong>in</strong>gfield, VA,pp.13-28.Chelton D.B. (Ed.), 2001. Report of <strong>the</strong> High-Resolution Ocean Topography Science Work<strong>in</strong>gGroup Meet<strong>in</strong>g. College of Oceanic <strong>and</strong> Atmospheric Sciences, Oregon State University,Corvallis, Oregon.Christensen E.J., B.J. Ha<strong>in</strong>es, S.J. Keihm, C.S. Morris, R.A. Norman, G.H. Purcell, B.G. Williams,B.D. Wilson, G.H. Born, M.E. Parke, S.K. Gill, C.K. Shum, B.D. Tapley, R. Kolenkiewicz,<strong>and</strong> R.S. Nerem, 1994. Calibration of TOPEX/Poseidon at Platform Harvest. J. Geophys.Res., 99 (C12), 24465-24486.Francis C.R. (Ed.), 1992. The calibration of <strong>the</strong> ERS-1 radar altimeter. ESA Report ER-RP-ESA-RA-0257, ESA/ESTEC Noordwijk, The Ne<strong>the</strong>rl<strong>and</strong>s.Francis, C.R., 2001. Cryosat, Mission <strong>and</strong> Data Description, ESA ESTEC, CS-RP-ESA-SY-0059Fu, L., E. Christensen, C. Yamarone, M. Lefebvre, Y. Menard, M. Dorrer, <strong>and</strong> P. Escudier, 1994,TOPEX/Poseidon mission overview. J. Geophys. Res., 99 (C12), 24369-24381Hern<strong>and</strong>ez F. <strong>and</strong> P. Schaeffer, 2002. The CLS01 Mean Sea Surface: A validation with <strong>the</strong>GSFC00 surface. In press, CLS, Ramonville St. Agne, FranceLaxon, S., N. Peacock, <strong>and</strong> D. Smith, 2003. High <strong>in</strong>terannual variability of sea ice thickness <strong>in</strong> <strong>the</strong>Arctic region, Nature, 425, 947-950.Le Traon,P.Y., P. Gaspar, F. Bouyssel, H. Makhmara, 1995. Us<strong>in</strong>g TOPEX/Poseidon data toenhance ERS-1 orbit. J. Atm. Ocean. Techn.,Vol.12, 161-170.Le Traon P.Y., Dibarboure G., 1999. Mesoscale Mapp<strong>in</strong>g capabilities of Multiple-SatelliteAltimeter Missions, J. Atmosphere, 16, 1208-1223.27


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Le Traon, P.Y., J.P. Dumont, J. Stum, O.Z. Zanife, J. Dor<strong>and</strong>eu, P. Gaspar, T. Engelis, C. LeProvost, F. Remy, B. Legresy <strong>and</strong> S. Barstow, 1996. Multi-mission altimeter <strong>in</strong>ter-calibrationstudy, ESA contract 11583/95/NL/CN.Mitchum, G., 1998. Monitor<strong>in</strong>g <strong>the</strong> Stability of Satellite Altimeters with Tide Gauges. J.Atmospheric <strong>and</strong> Oceanic Technology, Vol. 15, 721-730.Shepherd, A., D. W<strong>in</strong>gham, T. Payne, <strong>and</strong> P. Skvarca, 2003. Larsen Ice Shelf has progressivelyth<strong>in</strong>ned. Science, 302, 856-859.W<strong>in</strong>gham, D. J., Ridout, A. J., Scharroo, R., Ar<strong>the</strong>rn, R. J., <strong>and</strong> Shum, C. K., 1998. Antarcticelevation change from 1992 to 1996. Science 282, 456-458.2.3 Integrated observations to underst<strong>and</strong>environmental <strong>and</strong> deep <strong>Earth</strong>´s processesBesides <strong>the</strong> important application of gravity field observations for explor<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> <strong>in</strong>terior, <strong>the</strong>knowledge of <strong>the</strong> <strong>Earth</strong>‘s gravity field <strong>and</strong> its variation with time is essential for <strong>the</strong> underst<strong>and</strong><strong>in</strong>gof environmental processes.The strik<strong>in</strong>g results <strong>in</strong> global gravity field recovery immediately obta<strong>in</strong>ed from <strong>the</strong> CHAMP <strong>and</strong>GRACE mission data have brought to evidence that data from a consistent long-term observationof <strong>the</strong> <strong>Earth</strong>‘s gravity field will open, when jo<strong>in</strong>ed with satellite altimetry <strong>in</strong> multi-parameter datasets, new areas of multi-discipl<strong>in</strong>ary research <strong>and</strong> application.The multi-year data records, which will be collected with CHAMP <strong>and</strong> GRACE, <strong>and</strong> <strong>the</strong> highresolutionspatial gravity field recovery with GOCE, will demonstrate, that gravity is one of <strong>the</strong>key elements for an <strong>in</strong>tegrated geodetic-geophysical observ<strong>in</strong>g system, <strong>and</strong> that a permanentgravity mapp<strong>in</strong>g from space with advanced present-day satellite <strong>and</strong> sensor technology will becomefeasible. Such a permanent observation is urgently needed with<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g fields of<strong>Earth</strong> system, environmental <strong>and</strong> global change diagnostics <strong>and</strong> prognostics:a. ocean currents <strong>and</strong> heat fluxb. sea-level rise <strong>and</strong> Greenl<strong>and</strong>/Antarctic ice sheetsc. water cycl<strong>in</strong>g (ground water storage <strong>and</strong> snow/ice pack)d. solid <strong>Earth</strong> processes (mantel flow & plate tectonics, post glacial adjustment)Whereas <strong>the</strong> first <strong>and</strong> fourth po<strong>in</strong>t also require a high spatial resolution (down to some 10 km) of<strong>the</strong> gravity field, all po<strong>in</strong>ts address temporal field variations with periods from weeks to centuries.Although <strong>the</strong> three satellite gravity missions will not yet fulfil all str<strong>in</strong>gent requirements concern<strong>in</strong>gaccuracy <strong>and</strong> resolution, <strong>the</strong>se are to be considered as forerunners <strong>and</strong> concept missions for along-term improved gravity field recovery from space.28


2 The satellite missions: observ<strong>in</strong>g <strong>the</strong> <strong>Earth</strong> system from spaceIntegrated <strong>Earth</strong>’s observation: benefits <strong>and</strong> objectivesThe follow<strong>in</strong>g paragraphs outl<strong>in</strong>e <strong>the</strong> importance of <strong>the</strong> comb<strong>in</strong>ation of complementary data sets<strong>and</strong> its jo<strong>in</strong>t analysis to fully exploit <strong>the</strong> <strong>in</strong>formation content, to resolve ambiguities <strong>and</strong> to separatesignal sources for a precise <strong>and</strong> reliable <strong>in</strong>terpretation of <strong>the</strong> <strong>Earth</strong>‘s dynamics <strong>and</strong> <strong>the</strong> <strong>in</strong>teractionsbetween <strong>the</strong> various spheres.• Global Gravity <strong>and</strong> AltimetryOver <strong>the</strong> oceans <strong>and</strong> ice caps, satellite altimetry is employed to derive <strong>the</strong> surface geometry<strong>and</strong> its changes with time. Several European, French <strong>and</strong> American altimeter missions arepresently operat<strong>in</strong>g: TOPEX/Poseidon, GFO, Jason-1 <strong>and</strong> EnviSat. Two missions are designedfor altimetry over <strong>the</strong> mar<strong>in</strong>e <strong>and</strong> cont<strong>in</strong>ental polar ice sheets: <strong>the</strong> American IceSat (<strong>in</strong>orbit s<strong>in</strong>ce 2003) <strong>and</strong> ESA‘s Cryosat, which are to be launched <strong>in</strong> 2004, respectively.The altimetry records cover<strong>in</strong>g now cont<strong>in</strong>uously more than a decade can only be fully exploitedfor climatologic processes if comb<strong>in</strong>ed with highly precise <strong>and</strong> high resolution globalgravity data. The gravitational potential <strong>in</strong> terms of <strong>the</strong> geoid is needed as a reference surfaceto derive <strong>the</strong> major ocean currents which control <strong>the</strong> climate of <strong>the</strong> <strong>Earth</strong> by transport<strong>in</strong>g heat<strong>and</strong> CO 2. The re-evaluation of <strong>the</strong> altimeter data be<strong>in</strong>g available back to <strong>the</strong> 1980ies wouldalso largely benefit from an improved global geoid to uncover precisely <strong>the</strong> evolution ofocean currents by assimilation <strong>in</strong> a global hydrostatic ocean circulation model.Time vary<strong>in</strong>g gravity is needed to separate <strong>the</strong> mass effect due to changes <strong>in</strong> <strong>the</strong> ocean/cont<strong>in</strong>ent/atmosphere water mass balance <strong>and</strong> <strong>in</strong> <strong>the</strong> water/ice mass balance from pure <strong>the</strong>rmalwater volume changes <strong>and</strong> ice volume changes due to compaction. This applies to shortperiod (seasonal, <strong>in</strong>terannual) ocean surface currents <strong>and</strong> ice mass variations as well as to <strong>the</strong>global trend <strong>in</strong> sea level rise <strong>and</strong> ice coverage. Thus, ongo<strong>in</strong>g climate processes can only becurrently <strong>in</strong>terpreted if altimetry is comb<strong>in</strong>ed with gravity.• Global Gravity <strong>and</strong> L<strong>and</strong>-based Hydrological Data <strong>and</strong> ModelsOver l<strong>and</strong>, it shall be for <strong>the</strong> first time demonstrated with GRACE, that satellites are able toglobally probe <strong>the</strong> <strong>Earth</strong> for largely unknown soil moisture <strong>and</strong> aquifer changes on seasonal<strong>and</strong> <strong>in</strong>terannual time scales. Be<strong>in</strong>g important for <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> global water cycle,a satellite-based system shall cont<strong>in</strong>ue to trace global hydrology after <strong>the</strong> five-years lifetimeof GRACE.An assimilation of global gravity field changes <strong>in</strong>to models from l<strong>and</strong>-based measurementsof groundwater levels, snowloads <strong>and</strong> po<strong>in</strong>t measurements of soil moisture will be <strong>the</strong> toolto connect <strong>the</strong> small hydrological length scales with longer scales <strong>in</strong> order to estimate <strong>the</strong>dynamics of <strong>the</strong> water cycle <strong>and</strong> its evolution with time on cont<strong>in</strong>ent-wide <strong>and</strong> global spatialscales.• Global Gravity <strong>and</strong> SeismologyThe worldwide seismic broadb<strong>and</strong> station network enables <strong>the</strong> improvement of global modelsof <strong>the</strong> <strong>Earth</strong>‘s crust (density distribution <strong>and</strong> thickness) <strong>and</strong> of tomographic velocity modelsof <strong>the</strong> <strong>Earth</strong>‘s mantle. The observed spatial structure of <strong>the</strong> gravity field gives boundaryvalues for an isostatic model of <strong>the</strong> <strong>Earth</strong>‘s lithosphere to <strong>in</strong>vestigate its static equilibrium(medium to short-scale) <strong>and</strong>, by this, to <strong>in</strong>fer <strong>the</strong> dynamic topography due to mantle dynamicsfor <strong>the</strong> mantle‘s temperature <strong>and</strong> density distribution by forward computations <strong>and</strong> velocity-gravity<strong>in</strong>versions. For global solid <strong>Earth</strong>‘s physics studies, <strong>the</strong> knowledge of <strong>the</strong> <strong>Earth</strong>‘scrustal structure <strong>and</strong> <strong>the</strong> resolution <strong>and</strong> accuracy of tomographic models is compared to <strong>the</strong>29


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>knowledge of <strong>the</strong> gravity field, ra<strong>the</strong>r low. Therefore, for this application <strong>the</strong>re is a need forimprov<strong>in</strong>g <strong>the</strong> seismologic sound<strong>in</strong>g <strong>and</strong> modell<strong>in</strong>g ra<strong>the</strong>r than <strong>the</strong> gravity field recovery.This situation changes, when turn<strong>in</strong>g to regional tectonic modell<strong>in</strong>g, where accurate gravitydown to wavelengths of some kilometers is required, <strong>and</strong> satellite gravity field missions willprovide <strong>the</strong> longer wavelengths frame for a reliable detailed geoid <strong>and</strong> gravity field modell<strong>in</strong>gwith a data coverage densified by terrestrial <strong>and</strong> ship- <strong>and</strong> airborne measurements.Seismic tomography, dynamic topography, surface deformations, gravity <strong>and</strong> <strong>the</strong> vertical <strong>and</strong>lateral viscosity structure of <strong>the</strong> mantle are <strong>the</strong> key observables <strong>and</strong> parameters for a three <strong>and</strong>four dimensional modell<strong>in</strong>g of mantle dynamics as <strong>the</strong> eng<strong>in</strong>e for plate tectonics.• Global Gravity <strong>and</strong> Geodetic NetworksCont<strong>in</strong>ent-wide (ECGN) <strong>and</strong> global (IGGOS) geodetic networks, <strong>in</strong>clud<strong>in</strong>g absolute <strong>and</strong> super-conduct<strong>in</strong>ggravimeters <strong>and</strong> GPS (Galileo) precise po<strong>in</strong>t position<strong>in</strong>g <strong>and</strong> height determ<strong>in</strong>ation,will deliver a picture of secular crustal deformations, height <strong>and</strong> gravity changesfor <strong>Earth</strong> system science. Those networks, like <strong>the</strong> IGS <strong>and</strong> SLR networks, also provide <strong>the</strong>geometric reference frame <strong>and</strong> its evolution with time (<strong>Earth</strong> rotation, plate motions) to tietoge<strong>the</strong>r all observations <strong>and</strong> for precise satellite orbit determ<strong>in</strong>ation needed <strong>in</strong> global gravityfield recovery <strong>and</strong> altimetry.Vertical coastal crustal movements have to be analysed toge<strong>the</strong>r with sea level observationsby altimetry <strong>and</strong> tide gauges for a complete risk estimation. The observation of temporal gravitychanges on a global scale reflects <strong>the</strong> gravitational effects of post-glacial crustal uplift <strong>and</strong>subsidence <strong>and</strong> <strong>the</strong>refore is <strong>the</strong> tool, comb<strong>in</strong>ed with k<strong>in</strong>ematic <strong>and</strong> stationary gravity measurements,to <strong>in</strong>fer <strong>the</strong> elastic behaviour <strong>and</strong> properties of <strong>the</strong> solid <strong>Earth</strong>.A precise high-resolution gravity field def<strong>in</strong>es everywhere <strong>the</strong> ‚Mean Sea Level‘ which is <strong>the</strong>reference for <strong>the</strong> topographic heights. These heights are presently determ<strong>in</strong>ed by time consum<strong>in</strong>g<strong>and</strong> man-power <strong>in</strong>tensive geometric levell<strong>in</strong>g. Once <strong>the</strong> ‚Mean Sea Level‘ is knownwith a precision compatible to levell<strong>in</strong>g, <strong>the</strong> traditional survey<strong>in</strong>g method can be replacedby modern satellite-based methods, called GPS-levell<strong>in</strong>g <strong>and</strong> later on Galileo-levell<strong>in</strong>g. Theground receivers us<strong>in</strong>g <strong>the</strong> American Global Position<strong>in</strong>g <strong>System</strong> (GPS) or <strong>the</strong> European Galileonavigation satellite system <strong>the</strong>n could easily deliver heights above ‚Mean Sea Level‘, i.e.topographic heights.On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, cont<strong>in</strong>ent-wide distributed po<strong>in</strong>ts, which are observed by both GPS <strong>and</strong>geometric levell<strong>in</strong>g deliver <strong>the</strong> geoid heights def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> national height reference system.The comparison with <strong>the</strong> global geoid observed from space reveals <strong>the</strong> differences <strong>in</strong> <strong>the</strong> realizationof <strong>the</strong> national height systems, thus lead<strong>in</strong>g to a unified global height reference system.30


3 Transport processes <strong>and</strong> mass anomalies <strong>in</strong> <strong>the</strong> <strong>Earth</strong> systemTransport processes <strong>and</strong> massanomalies <strong>in</strong> <strong>the</strong> <strong>Earth</strong> systemThis chapter gives detailed <strong>in</strong>formation about <strong>the</strong> <strong>in</strong>dividual transportprocesses <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system, its present knowledge, modell<strong>in</strong>g deficits<strong>and</strong> <strong>the</strong> expected benefits from jo<strong>in</strong>t analyses of <strong>the</strong> newly available <strong>Earth</strong>observations: ocean transport processes (Chapter 3.1), ice mass balance<strong>and</strong> sea level change (Chapter 3.2), solid <strong>Earth</strong> dynamics <strong>and</strong> structure(Chapter 3.3), <strong>and</strong> <strong>the</strong> cont<strong>in</strong>ental hydrological cycle (Chapter 3.4)31


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Ocean dynamicsSatellite altimetry has revolutionized our underst<strong>and</strong><strong>in</strong>g of oceanvariability <strong>and</strong> dynamics. A decade of measurements of <strong>the</strong> sea surfaceheight has led to new <strong>in</strong>sight about processes <strong>in</strong> <strong>the</strong> ocean <strong>in</strong>terior, itsdensity structure <strong>and</strong> associated velocity field. Until now only temporalanomalies without references to a geoid model have been exploitedsuccessfully. With <strong>the</strong> predicted highly accurate absolute referencesurfaces we hope for a similarly successful advance <strong>in</strong> our underst<strong>and</strong><strong>in</strong>gof <strong>the</strong> oceans absolute structure <strong>and</strong> velocities.Physical oceanography <strong>and</strong> mar<strong>in</strong>e geodesyRecently <strong>the</strong> <strong>in</strong>terest of oceanographers <strong>in</strong> satellite altimetry <strong>and</strong> space geodesy has <strong>in</strong>creased impressively.The comb<strong>in</strong>ation of a highly accurate sea surface height with improved geoid modelsfrom GRACE <strong>and</strong> GOCE will significantly advance our skill <strong>in</strong> deriv<strong>in</strong>g estimates of <strong>the</strong> oceansea surface topography <strong>and</strong> associated surface currents. This implies that for <strong>the</strong> first time <strong>the</strong>reis <strong>the</strong> good chance for obta<strong>in</strong><strong>in</strong>g <strong>the</strong> absolute oceanic current field with a sufficient precision thatallows <strong>the</strong> treatment of long st<strong>and</strong><strong>in</strong>g oceanographic problems. The new knowledge will help todeterm<strong>in</strong>e oceanic transport with reasonable accuracy <strong>and</strong> <strong>in</strong>crease our underst<strong>and</strong><strong>in</strong>g of oce<strong>and</strong>ynamics through <strong>the</strong> <strong>in</strong>teraction of mean <strong>and</strong> time dependent flow.OCEAN DYNAMICSBENEFITS− Direct observation of <strong>the</strong> dynamic sea surface topography withcm-precision offers a new key to determ<strong>in</strong>e ocean circulation.− For <strong>the</strong> first time, oceanic mass variations become observablewith global coverage.− Measurements of sea ice thickness allow better underst<strong>and</strong><strong>in</strong>gof driv<strong>in</strong>g forces of <strong>the</strong> deep ocean circulation.CHALLENGES− Assimilation of satellite gravity <strong>and</strong> altimetry data toge<strong>the</strong>r withoceanographic <strong>in</strong>-situ data <strong>in</strong>to ocean circulation models.− Recovery of 3D ocean current fields.− Separation of contributions to sea level rise due to <strong>the</strong>rmalexpansion, ice melt<strong>in</strong>g, oceanic mass redistribution, <strong>and</strong> verticall<strong>and</strong> movements.Physical oceanography <strong>and</strong> mar<strong>in</strong>egeodesy have had a longsymbiotic history through <strong>the</strong>jo<strong>in</strong>t problem of determ<strong>in</strong><strong>in</strong>g<strong>the</strong> mar<strong>in</strong>e geoid: While for <strong>the</strong>geodesist, <strong>the</strong> geoid height is afundamental description of <strong>the</strong>shape of <strong>the</strong> <strong>Earth</strong>, to <strong>the</strong> oceanographerit is a reference surfacenecessary for comput<strong>in</strong>g<strong>the</strong> oceanic circulation <strong>and</strong> oceantransports from altimetric <strong>and</strong> <strong>in</strong>situ ocean observations. Manyo<strong>the</strong>r branches of both sciencesoverlap as well, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>study of tides, mean sea level,<strong>Earth</strong> rotation <strong>and</strong> polar motion,<strong>and</strong> global <strong>and</strong> regional sea levelrise <strong>and</strong> fall. As a result <strong>the</strong>re ex-32


3.1 Ocean dynamicsists an <strong>in</strong>timate relation between both discipl<strong>in</strong>es that br<strong>in</strong>gs <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> ocean circulation<strong>and</strong> of ocean transport of mass <strong>and</strong> heat to <strong>the</strong> forefront of study<strong>in</strong>g <strong>and</strong> underst<strong>and</strong><strong>in</strong>g<strong>the</strong> system „<strong>Earth</strong>”.S<strong>in</strong>ce Wunsch <strong>and</strong> Gaposchk<strong>in</strong> (1980) <strong>in</strong>itially laid out <strong>the</strong> framework for a comb<strong>in</strong>ed estimationof <strong>the</strong> <strong>Earth</strong>’s geoid <strong>and</strong> <strong>the</strong> ocean circulation, enormous progress has been made <strong>in</strong> observ<strong>in</strong>g<strong>the</strong> ocean us<strong>in</strong>g satellite altimetry <strong>and</strong> <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>Earth</strong>’s gravity field. To a large extent,this progress is due to <strong>the</strong> success of <strong>the</strong> TOPEX/Poseidon altimetric mission. At <strong>the</strong> same time,ocean modell<strong>in</strong>g also improved substantially, mostly through improvements <strong>in</strong> forc<strong>in</strong>g conditions<strong>and</strong> through <strong>in</strong>creased model resolution, i.e., through advances <strong>in</strong> computer technology. Lastly,uncerta<strong>in</strong>ties <strong>in</strong> mar<strong>in</strong>e geoid estimates have been reduced over <strong>the</strong> last decades to well below onemeter on <strong>the</strong> scales resolved by ocean models. This uncerta<strong>in</strong>ty will be fur<strong>the</strong>r reduced by ordersof magnitude dur<strong>in</strong>g <strong>the</strong> next few years based on GRACE <strong>and</strong> GOCE data.Despite <strong>the</strong> recent excit<strong>in</strong>g success, <strong>the</strong> elements of a modern geodetic/oceanographic symbiosisrema<strong>in</strong> <strong>the</strong> same. Because <strong>the</strong> sea surface nearly, but not quite, co<strong>in</strong>cides with <strong>the</strong> geoid, slopes of<strong>the</strong> sea surface relative to <strong>the</strong> geoid imply measurable oceanic velocities. Because <strong>the</strong> sea surfaceslopes relative to <strong>the</strong> geoid are less than one meter <strong>in</strong> thous<strong>and</strong>s of kilometres, small errors <strong>in</strong> estimatesof <strong>the</strong> slopes imply large erroneous oceanic mass <strong>and</strong> property fluxes. Thus, comparativelycrude oceanic circulation estimates can provide relatively accurate estimates of <strong>the</strong> geoid heightslopes. New approaches to comb<strong>in</strong>e altimetric <strong>and</strong> geodetic observations with <strong>in</strong> situ ocean data<strong>and</strong> with ocean models can <strong>the</strong>refore lead to significant progress <strong>in</strong> oceanography <strong>and</strong> geodesy.A measured dynamic sea surface topography is shown <strong>in</strong> Figure 3.1.1 as a comb<strong>in</strong>ation of satellitealtimetry <strong>and</strong> a geoid model from GRACE. On large scales <strong>the</strong> ocean surface is very smooth.Please notice <strong>the</strong> contour <strong>in</strong>terval of only 10 centimetres. Until today <strong>the</strong> vary<strong>in</strong>g sea ice coveragemakes it impossible to derive stable estimates of <strong>the</strong> mean topography at high latitudes. In future909060300-30-6060-140temporal mean1993-200130603040402050-13040090-14050602070-110-1010607020-100060301030-40 -30 -2020010-6010-10-500-60-30100-70-100060300-30-60-90area RMS:52.49cm11.3030 60 90 120 150 180 210 240 270 300 330 360Figure 3.1.1: Mean sea surface as <strong>the</strong> difference between <strong>the</strong> mean sea surface height from altimetry (CLS_SHOM98.2) <strong>and</strong> <strong>the</strong> geoid EIGEN_GRACE. The unprecedented accuracy of <strong>the</strong> GRACE mission allows for<strong>the</strong> first time <strong>the</strong> calculation of a realistic mean dynamic topography which is relevant for oceanography.c.i. 10 cm-9033


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong><strong>the</strong> very small footpr<strong>in</strong>t of ICESat <strong>and</strong> CryoSat (Chapter 2) will allow us to obta<strong>in</strong> measurementsfrom <strong>the</strong> small scale leads of open water with<strong>in</strong> <strong>the</strong> pack ice.Ocean models, despite be<strong>in</strong>g not perfect <strong>and</strong> error-prone <strong>in</strong> many aspects, began to show encourag<strong>in</strong>gdegree of realism <strong>in</strong> several aspects (Griffies, 2000). Ocean state estimation aims to fur<strong>the</strong>rimprove those models by br<strong>in</strong>g<strong>in</strong>g <strong>the</strong>m <strong>in</strong>to consistency with ocean data. The goal of those„ocean syn<strong>the</strong>ses“ is to obta<strong>in</strong> <strong>the</strong> best possible description of <strong>the</strong> chang<strong>in</strong>g ocean <strong>and</strong> to estimate<strong>the</strong> atmospheric forc<strong>in</strong>g fields that are <strong>in</strong> agreement with <strong>the</strong> ocean observations. At <strong>the</strong> sametime, <strong>the</strong> method identifies model components that need improvements, <strong>in</strong>clud<strong>in</strong>g ocean mix<strong>in</strong>gparameters, <strong>and</strong> produces guidel<strong>in</strong>es to improved oceanic observ<strong>in</strong>g systems (e.g., Schröter <strong>and</strong>Wunsch, 1986). See Stammer et al. (2002) for a detailed discussion.Increased attention to <strong>the</strong> problem of a simultaneous determ<strong>in</strong>ation of <strong>the</strong> mar<strong>in</strong>e geoid <strong>and</strong> <strong>the</strong>ocean circulation arose with <strong>the</strong> preparation <strong>and</strong> launch of <strong>the</strong> high accuracy geodetic missionsCHAMP, GRACE <strong>and</strong> GOCE. GRACE will provide gravity field <strong>in</strong>formation with an accumulatedaccuracy of 2 cm down to scales of approximately 150 km <strong>and</strong> on time scales from monthsto <strong>the</strong> duration of <strong>the</strong> mission (cf. Figure 2.8). The GOCE mission will resolve stationary gravityfield structures down to scales of approximately 70 km.Wunsch <strong>and</strong> Stammer (2003) provide a revised discussion of <strong>the</strong> critical requirement for improvementsof <strong>the</strong> jo<strong>in</strong>t estimation problem. A successful comb<strong>in</strong>ation of altimetric data with <strong>in</strong> situobservations <strong>and</strong> an ocean model will determ<strong>in</strong>e <strong>the</strong> oceanic flow field that is <strong>in</strong> agreement withobservations of all types <strong>and</strong> will also provide an estimate of <strong>the</strong> mar<strong>in</strong>e geoid that is similarly<strong>in</strong> agreement with geodetic observations <strong>and</strong> known ocean dynamics. The estimates of <strong>the</strong> oceanflow field conta<strong>in</strong> estimates of mass <strong>and</strong> heat transport <strong>and</strong> help to quantify <strong>in</strong>teraction betweenstationary <strong>and</strong> time-dependent currents. This for <strong>the</strong> first time opens <strong>the</strong> possibility to obta<strong>in</strong> <strong>the</strong>absolute oceanic current field with a precision, necessary to approach long st<strong>and</strong><strong>in</strong>g oceanographic<strong>and</strong> geodetic problems. Jo<strong>in</strong>tly with altimetry <strong>and</strong> ocean modell<strong>in</strong>g, <strong>the</strong> new gravity data willenable us <strong>in</strong> particular to obta<strong>in</strong> a better underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> mean circulation.The mutual connections <strong>in</strong>volved <strong>in</strong> <strong>the</strong> process of jo<strong>in</strong>tly evaluat<strong>in</strong>g geodetic <strong>and</strong> oceanographic<strong>in</strong>formation will be outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g. For that purpose, we will first discuss how improvedGRACE <strong>and</strong> GOCE estimates of <strong>the</strong> geoid will advance estimates of <strong>the</strong> ocean circulation.Special emphasis is laid on oceanic transports <strong>and</strong> fluxes <strong>and</strong> related climate problems. The necessityof us<strong>in</strong>g oceanography to de-alias satellite gravity measurements is described. We willsubsequently summarize how improved ocean estimates will feed back <strong>in</strong>to <strong>the</strong> geoid estimationprocedure. On global scale, <strong>the</strong> problem is complex <strong>and</strong> <strong>in</strong>volves various different componentsof <strong>the</strong> <strong>Earth</strong> system. As an example, global sea level rise is associated with global ocean warm<strong>in</strong>g,but also with redistribution of mass from <strong>the</strong> cryosphere, <strong>the</strong> l<strong>and</strong> or <strong>the</strong> atmosphere <strong>in</strong>to <strong>the</strong>ocean. Underst<strong>and</strong><strong>in</strong>g global sea level rise thus <strong>in</strong>volves underst<strong>and</strong><strong>in</strong>g global mass balances <strong>and</strong>glacial melt<strong>in</strong>g, among o<strong>the</strong>rs (Chapter 3.2). At <strong>the</strong> same time, all those processes as well as <strong>the</strong>ocean circulation affect <strong>Earth</strong> angular momentum changes. It is obvious, <strong>the</strong>refore, that <strong>the</strong> oce<strong>and</strong>oes play an important role as a l<strong>in</strong>k of o<strong>the</strong>rwise isolated <strong>Earth</strong> components. Ocean modell<strong>in</strong>g<strong>and</strong> data assimilation can thus help underst<strong>and</strong><strong>in</strong>g all <strong>in</strong>dividual components <strong>in</strong> a mutually consistentway.34


3.1 Ocean dynamicsImpact of gravity field <strong>in</strong>formation on determ<strong>in</strong><strong>in</strong>g<strong>the</strong> ocean circulationWith <strong>the</strong> expected unprecedented accuracy of new geoid models from GRACE <strong>and</strong> GOCE <strong>the</strong>determ<strong>in</strong>ation of global absolute ocean currents from measurements will become f<strong>in</strong>ally feasible.Then, for <strong>the</strong> first time altimetry, gravity field <strong>in</strong>formation <strong>and</strong> <strong>in</strong> situ data will yield a dynamicallybalanced description of temperature, sal<strong>in</strong>ity <strong>and</strong> tracer fields, sea level, currents <strong>and</strong>transports <strong>and</strong> <strong>the</strong>ir time evolution <strong>in</strong> all regions of <strong>the</strong> world ocean. The <strong>in</strong>creas<strong>in</strong>g knowledgeof oceanic transports will help to obta<strong>in</strong> more realistic estimates of global change <strong>in</strong> <strong>the</strong> worldoceans. A better analysis of ocean dynamics <strong>and</strong> mix<strong>in</strong>g on shelf <strong>and</strong> adjacent sea regions willbe very important to properly underst<strong>and</strong> <strong>the</strong>ir role <strong>in</strong> sett<strong>in</strong>g global balances which are not wellunderstood today.Improved geoid models from GRACE <strong>and</strong> GOCE will significantly advance our skill <strong>in</strong> estimat<strong>in</strong>gocean currents by us<strong>in</strong>g• precise geocentric sea surface elevation obta<strong>in</strong>ed from global altimetric measurements <strong>and</strong>reprocessed accord<strong>in</strong>g to a new geoid model• geoid models with <strong>the</strong> accuracy of <strong>the</strong> order of a centimetre on spatial scales down to <strong>the</strong>width of boundary currents• new <strong>in</strong>formation of precise bottom pressure change• corrections performed by powerful ocean models• additional oceanographic data sets required to constra<strong>in</strong> ocean circulation models with dataassimilation.With this improved knowledge it will become possible to efficiently study <strong>the</strong> <strong>in</strong>teraction of stationary<strong>and</strong> time-dependent components of <strong>the</strong> absolute current field. It is through mean flows, aswell as variabilities (e.g., eddies) that <strong>the</strong> ocean transports its heat, fresh water <strong>and</strong> dissolved <strong>and</strong>suspended matter. Eddies can be generated <strong>in</strong> <strong>the</strong> ocean through <strong>in</strong>stabilities <strong>in</strong> <strong>the</strong> mean flows.With a data-constra<strong>in</strong>ed mean circulation, <strong>the</strong> role of variabilities <strong>in</strong> weaken<strong>in</strong>g or stimulat<strong>in</strong>g<strong>the</strong> mean flows as a result of non-l<strong>in</strong>ear <strong>in</strong>teraction can properly be estimated <strong>and</strong> taken <strong>in</strong>to account.We can expect to fundamentally improve <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> features controll<strong>in</strong>g <strong>the</strong>dynamical processes.An example of an ocean model used for deriv<strong>in</strong>g such a data-constra<strong>in</strong>ed mean circulation isgiven below (Figure 3.1.2). Temporal altimeter anomalies as well as time vary<strong>in</strong>g sea surfacetemperatures, ice coverage <strong>and</strong> analysed atmospheric conditions are assimilated <strong>in</strong>to a generalocean circulation model. In addition, oceanographic measurements about temperature, sal<strong>in</strong>ity<strong>and</strong> currents are used to derive a fully balanced model solution which is as close to observationsas possible. Shown is <strong>the</strong> mean sea level of <strong>the</strong> model for <strong>the</strong> same period as <strong>the</strong> satellite dynamictopography depicted <strong>in</strong> Figure 3.1.1. Both surfaces have a remarkable similarity. The only majordifference is <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn Ocean where <strong>the</strong> Antarctic Circumpolar Current of <strong>the</strong> ocean modelis too weak <strong>and</strong> <strong>the</strong> associated drop <strong>in</strong> sea surface topography towards Antarctica is too small.Discrepancies of this k<strong>in</strong>d allow us to ga<strong>in</strong> more <strong>in</strong>sight by improv<strong>in</strong>g ocean modell<strong>in</strong>g as well asby estimat<strong>in</strong>g more realistic ocean transports <strong>and</strong> fluxes which cannot be obta<strong>in</strong>ed with conventionalmethods.35


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>90-70-60-50-709060temporal mean1993-2001-30-10010-90-40-5060308070602010-20300303040504040-100-30-60-9060-1205030400-120-20-100area RMS: 55.81 cm 0.00-30-10-906001020-80 -70 -60 -5030 60 90 120 150 180 210 240 270 300 330 360-40-140-100100-10-150-30-20-140-130c.i. 10 cm-30-60-90Figure 3.1.2: Mean sea level as calculated from ocean modell<strong>in</strong>g by averag<strong>in</strong>g over <strong>the</strong> period 1993 to2001. The ocean model reproduces all major topographic features that are measured. However, <strong>in</strong> <strong>the</strong> regionof <strong>the</strong> Antarctic Circumpolar Current (ACC) <strong>the</strong> sea surface of <strong>the</strong> ocean model is not low enough which<strong>in</strong>dicates underestimated velocities of <strong>the</strong> ACC. This discrepancy must be solved by data assimilation.Estimation of mass <strong>and</strong> heat transports <strong>in</strong>relevant oceanic regionsLeProvost et al. (1999) discuss <strong>the</strong> extent to which data from <strong>the</strong> GRACE <strong>and</strong> GOCE missionswill help to enhance our underst<strong>and</strong><strong>in</strong>g of oceanic transport processes. A suite of ocean modelswith <strong>and</strong> without assimilation are considered with different resolution <strong>and</strong> complexity. It is shownhow modelled sea surface height differs substantially between ocean models <strong>and</strong> approaches <strong>and</strong><strong>in</strong>dependent <strong>in</strong>formation will help resolve many relevant oceanographic problems. Schröter et al.(2002) po<strong>in</strong>t out that most of <strong>the</strong> expected improvement <strong>in</strong> our knowledge of oceanic transportwill be due to <strong>the</strong> high resolution capabilities of GOCE.Global numerical ocean modell<strong>in</strong>g will play a central role <strong>in</strong> improv<strong>in</strong>g ocean circulation estimates<strong>and</strong> geoid estimates. For <strong>the</strong> oceanic transport it is necessary to better simulate where shortspatial features <strong>in</strong>teract with <strong>the</strong> mean current systems through momentum exchanges, or throughtransport of heat <strong>and</strong> mass. To date, ocean models are not capable of properly separat<strong>in</strong>g meantransport <strong>and</strong> eddy <strong>in</strong>duced transport <strong>in</strong> a realistic manner (Griffies, 2000). Each model producesits own ‘climatological equilibrium’ depend<strong>in</strong>g on resolution, details of <strong>the</strong> forc<strong>in</strong>g fields, choiceof model grid <strong>and</strong> o<strong>the</strong>r numerical implementations i.e. representation of advective <strong>and</strong> diffusiveprocesses or vertical overturn<strong>in</strong>g. To date, only variability is exploited well from altimetric seasurface height. With <strong>the</strong> new gravimetric missions we can approach <strong>the</strong> same degree of knowl-36


3.1 Ocean dynamicsedge <strong>and</strong> underst<strong>and</strong><strong>in</strong>g also for <strong>the</strong> mean part of <strong>the</strong> circulation. Without that next step advancements<strong>in</strong> our underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> mean ocean circulation will be seriously hampered.A region of great importance <strong>in</strong> this respect is <strong>the</strong> Sou<strong>the</strong>rn Ocean where <strong>the</strong> Antarctic CircumpolarCurrent (ACC) plays a dom<strong>in</strong>at<strong>in</strong>g role <strong>in</strong> exchanges between <strong>the</strong> ocean bas<strong>in</strong>s. The same appliesto <strong>the</strong> deep ocean circulation, where <strong>the</strong> highly time-dependent formation of bottom water<strong>in</strong> <strong>the</strong> Weddell gyre represents an essential part. The ACC is characterized by sharp frontal areas,narrow jets <strong>and</strong> eddies exert<strong>in</strong>g forces on zonal flows, where <strong>the</strong>se forces vary with<strong>in</strong> small rangesof latitudes across <strong>the</strong> ACC. The importance of <strong>the</strong> <strong>in</strong>teraction of <strong>the</strong> flow field with <strong>the</strong> bottomtopography <strong>in</strong> sett<strong>in</strong>g <strong>the</strong> dynamical balances over <strong>the</strong> ACC adds even more complexity <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<strong>the</strong> correct ACC structures <strong>and</strong> transport variations.To date ocean general circulation models have failed to appropriately simulate <strong>the</strong> ACC by itself.This is mostly due to uncerta<strong>in</strong>ties <strong>in</strong> <strong>the</strong> momentum balance which turns out to be <strong>the</strong> differenceof large numbers. The ACC is accelerated by its <strong>in</strong>ternal (barocl<strong>in</strong>ic) density structure with lowdensity <strong>in</strong> front of a bottom ridge <strong>and</strong> high density beh<strong>in</strong>d it. This acceleration can be measuredwith some skill from research vessels prob<strong>in</strong>g <strong>the</strong> full water depth (Figure 3.1.3).The counteract<strong>in</strong>g force results from <strong>the</strong> gradient of <strong>the</strong> sea surface height which tends to slowdown <strong>the</strong> ACC. It can only be measured by altimetry referenced to an accurate geoid model. Untilnow <strong>the</strong> measurements were <strong>in</strong>sufficient to improve on purely oceanographic estimates. Withnovel gravity <strong>in</strong>formation it will be possible not only to better determ<strong>in</strong>e total transport <strong>and</strong> balancesbut <strong>in</strong>creas<strong>in</strong>gly <strong>the</strong> position, width <strong>and</strong> current speed of <strong>in</strong>dividual fronts.The Sou<strong>the</strong>rn Ocean <strong>and</strong> <strong>the</strong> ACC system is only <strong>the</strong> most prom<strong>in</strong>ent opportunity for improv<strong>in</strong>gour underst<strong>and</strong><strong>in</strong>g of oceanic <strong>and</strong> climatic processes.Figure 3.1.3: The structure of potential density <strong>in</strong> <strong>the</strong> ocean along a section at 60 0 South. Density structure<strong>and</strong> bottom topography are clearly connected. West of each major ridge we f<strong>in</strong>d low densities while fur<strong>the</strong>rto <strong>the</strong> east high densities are observed. This structure results <strong>in</strong> a force strongly accelerat<strong>in</strong>g <strong>the</strong> circumpolarcurrent. It is almost fully compensated by <strong>the</strong> force excited by <strong>the</strong> gradient of <strong>the</strong> sea surface.37


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Separat<strong>in</strong>g <strong>the</strong>rmal expansion from mass<strong>in</strong>creases <strong>in</strong> studies of global sea level riseGlobal sea level rise is one of <strong>the</strong> major challenges of climate change (Church at al., 2001).Whe<strong>the</strong>r <strong>the</strong> sea level will be some centimetres or a few decimetres higher than now at <strong>the</strong> end ofthis century is of immediate concern for about half of <strong>the</strong> population of <strong>the</strong> <strong>Earth</strong> <strong>and</strong> has enormouseconomic consequences. The scientific community is asked for realistic prediction of sealevel rise. Predictions vary widely, accord<strong>in</strong>g to data sets used <strong>and</strong> pr<strong>in</strong>ciples applied (Church atal., 2001). Clearly it is not sufficient to measure sea level change at tide gauges <strong>and</strong> by altimetrybut we must aim at underst<strong>and</strong><strong>in</strong>g <strong>the</strong> underly<strong>in</strong>g processes <strong>and</strong> quantify <strong>the</strong>m.Local sea level change by surface waves <strong>and</strong> tides is fairly well understood. We are primarily <strong>in</strong>terested<strong>in</strong> monthly scales <strong>and</strong> periods up to a century. The seasonal cycle of sea level rise <strong>and</strong>fall is dom<strong>in</strong>ated by redistribution of mass due to changes <strong>in</strong> ocean circulation <strong>and</strong> also by localwarm<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g. Consider<strong>in</strong>g longer term sea level change on periods of years to decadeswe f<strong>in</strong>d circulation changes average out to nearly zero. A global trend rema<strong>in</strong>s that results froman imbalance of <strong>the</strong> hydrological cycle which is thought to be ma<strong>in</strong>ly net <strong>in</strong>flow of melt water<strong>in</strong>to <strong>the</strong> sea from glaciers, ice caps <strong>and</strong> polar ice sheets (Chapter 3.2). Superimposed on a regionalbasis are strong changes <strong>in</strong> <strong>the</strong> <strong>the</strong>rmo-hal<strong>in</strong>e (temperature <strong>and</strong> sal<strong>in</strong>ity) structure of <strong>the</strong> ocean. Inpr<strong>in</strong>ciple, <strong>the</strong>se can be measured. However, <strong>the</strong> vastness of <strong>the</strong> global ocean <strong>and</strong> <strong>the</strong> remotenessof large doma<strong>in</strong>s make such a task hopeless. Even with novel techniques like thous<strong>and</strong>s of autonomousdrift<strong>in</strong>g buoys from <strong>the</strong> ARGO project perform<strong>in</strong>g vertical prob<strong>in</strong>g <strong>the</strong> ocean rema<strong>in</strong>sunder-sampled to a high degree.The magnitude of sea level rise due to ocean heat<strong>in</strong>g varies considerably. The specific volume ofsea water (volume per unit mass) <strong>in</strong>creases when <strong>the</strong> water is heated. This <strong>in</strong>crease is known as<strong>the</strong>rmosteric expansion. Its magnitude depends strongly on temperature <strong>and</strong> pressure: heat<strong>in</strong>g ofwarm water has a much bigger effect than that of water around <strong>the</strong> freez<strong>in</strong>g po<strong>in</strong>t. Also water athigh pressure <strong>in</strong> <strong>the</strong> deep ocean reacts much stronger than surface waters. The specific volume ofsea water decreases when salt is added, denoted as halosteric contraction. Its magnitude is fairlyconstant over <strong>the</strong> whole ocean. The sensitivitiesare shown <strong>in</strong> Figures 3.1.4 <strong>and</strong>3.1.5.Figure 3.1.4: Thermosteric expansion coefficient of sea wateras a function of temperature <strong>and</strong> pressure. The dependenceon sal<strong>in</strong>ity is small. Sea level rise is most sensitive toheat<strong>in</strong>g of warm waters or those at great depth (pressure).The stratification of <strong>the</strong> ocean is stable.Heat<strong>in</strong>g from above has only local <strong>in</strong>fluence<strong>and</strong> does not reach deep <strong>in</strong>to<strong>the</strong> water. Only when cool<strong>in</strong>g or sal<strong>in</strong>ity<strong>in</strong>crease result <strong>in</strong> an unstable watercolumn <strong>the</strong> deep ocean is ventilated<strong>and</strong> its properties change. Areas withvertical overturn<strong>in</strong>g called convectionare strongly l<strong>in</strong>ked to sea ice processeswhich will be discussed below. As arule of thumb it may be said that 1° C <strong>in</strong>surface warm<strong>in</strong>g is as efficient as 0.1° Cof warm<strong>in</strong>g of <strong>the</strong> underly<strong>in</strong>g waters.Locally, sea level change varies strongly<strong>and</strong> may even change sign. It is difficultto derive stable estimates fromtide gauges <strong>and</strong> even from altimetry38


3.1 Ocean dynamics(Church et al., 2001). In order to get closedbudgets <strong>and</strong> to separate different contributionsto <strong>the</strong> observed sea level changes it is possibleto assimilate <strong>the</strong> observations <strong>in</strong> a circulationmodel that conserves mass, heat, salt <strong>and</strong> momentum.Forc<strong>in</strong>g is by <strong>the</strong> atmosphere only <strong>and</strong>by <strong>in</strong>flow of fresh water from l<strong>and</strong>. Volumechange computed from <strong>the</strong> model results <strong>in</strong>dynamic topography change which must co<strong>in</strong>cidewith altimeter <strong>and</strong> tide gauge observations(Wenzel et al.,2001). When only surface dataare assimilated <strong>the</strong>re is an <strong>in</strong>f<strong>in</strong>ity of possiblesolutions. Only by us<strong>in</strong>g additional measurementsfrom <strong>the</strong> deeper ocean <strong>the</strong> problem hasa unique solution. The explanation found <strong>the</strong>nonly depends on <strong>the</strong> measurements. In FiguresFigure 3.1.5: Halosteric expansion coefficient of3.1.6 to 3.1.8 results of such an assimilation experimentare depicted. Sea surface variability Values vary on <strong>the</strong> order of 10%. The <strong>in</strong>fluence ofsea water as a function of temperature <strong>and</strong> pressure.over <strong>the</strong> period 1993 to 2001 is modelled successfully.The analysis of l<strong>in</strong>ear trends revealssal<strong>in</strong>ity is similar all over <strong>the</strong> ocean.<strong>the</strong> dom<strong>in</strong>ance of local warm<strong>in</strong>g (cf. Figure3.1.6) while changes <strong>in</strong> sal<strong>in</strong>ity have a much smaller effect as is shown <strong>in</strong> Figure 3.1.7.An <strong>in</strong>terest<strong>in</strong>g feature of ocean circulation is also found for <strong>the</strong> trend analysis performed here.Frequently, temperature <strong>and</strong> sal<strong>in</strong>ity variations are correlated <strong>in</strong> a way that leaves density unchanged.It is evident from <strong>the</strong> figures that strong temperature variations are not enough to changesea level. Associated variations <strong>in</strong> sal<strong>in</strong>ity must be considered simultaneously. The third mechanismto change <strong>the</strong> sea surface <strong>in</strong>volves a change <strong>in</strong> mass. On <strong>the</strong> time scales of a decade consideredhere almost no variability rema<strong>in</strong>s (cf. Figure 3.1.8). Net <strong>in</strong>flow due to an imbalance of <strong>the</strong>9060300-30-60OPT1993-20010.00.01.0-0.51.00.00.00.50.5-0.50.00.51.50.5SSH anomaly-0.50.00.01.00.01.0-1.0-0.50.00.50.50.00.0local l<strong>in</strong>ear trend<strong>the</strong>rmosteric1.00.50.53.01.00.01.00.00.50.50.01.01.09060300-30-60cm/year3.02.52.01.51.00.50.0-0.5-1.0-1.5-2.0-2.5-3.0-90area mean:0.38 cm/yeararea RMS:0.73 cm/year30 60 90 120 150 180 210 240 270 300 330 360Undef-90Figure 3.1.6: Trends of sea level heights (SSH) due to <strong>the</strong>rmal expansion. The effect is <strong>in</strong>tegrated over <strong>the</strong>full water column. Depicted here <strong>and</strong> <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g two figures are <strong>the</strong> results of assimilation of satellitealtimetry <strong>and</strong> traditional oceanographic data <strong>in</strong>to an ocean model. The solution is dynamically fully consistent<strong>and</strong> close to observations. Local trends exhibit a large variance due to strong <strong>in</strong>terannual variability:For slightly different periods <strong>the</strong> patterns change significantly.39


-0.2<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>9060300-30-60-90OPT0.00.5 0.00.01993-2001-0.5area mean:0.5-0.50.50.5-0.01 cm/yearSSH anomaly1.0-0.5-0.50.50.00.0-0.50.00.00.00.50.0 -0.5area RMS:-0.51.00.00.51 cm/yearlocal l<strong>in</strong>ear trendhalosteric30 60 90 120 150 180 210 240 270 300 330 3600.01.0-0.50.5-0.5-0.50.00.00.00.00.0-0.59060300-30-60Undef-90cm/year3.02.52.01.51.00.50.0-0.5-1.0-1.5-2.0-2.5-3.0Figure 3.1.7: Local sea level rise due to changes <strong>in</strong> sal<strong>in</strong>ity. In some areas <strong>the</strong> effect is as strong as that ofwarm<strong>in</strong>g, show<strong>in</strong>g <strong>the</strong> importance of sal<strong>in</strong>ity. Note that for many strong signals an anticorrelation is found:although local warm<strong>in</strong>g is observed it has little impact on sea level as associated changes <strong>in</strong> sal<strong>in</strong>ity largelycompensate <strong>the</strong>rmal expansion keep<strong>in</strong>g density fairly constant.9060300-30-60-90OPT-0.3-0.5-0.20.20.0-0.2area mean:-0.21993-2001-0.2-0.3-0.20.0-0.3-0.2-0.22 cm/year0.1-0.1-0.2SSH anomaly-0.3-0.4-0.330 60 90 120 150 180 210 240 270 300 330 360-0.2-0.2area RMS:-0.2-0.50.1Figure 3.1.8: Local sea level rise due to <strong>in</strong>creases <strong>in</strong> total mass <strong>and</strong> regional redistribution. Over most over<strong>the</strong> globe <strong>the</strong>re is practically no change. The clear sea level fall over <strong>the</strong> Sou<strong>the</strong>rn Ocean is connected to an<strong>in</strong>crease <strong>in</strong> <strong>the</strong> eastward velocity of <strong>the</strong> ACC. The mass change diagnosed here is large scale enough to be-0.40.26 cm/yearlocal l<strong>in</strong>ear trendeustatic-0.4-0.3-0.2-0.4-0.3-0.30.00.0-0.20.1-0.49060300-30-60-90cm/year0.600.500.400.300.200.100.00-0.10-0.20-0.30-0.40-0.50-0.60Undefhydrological cycle spreads approximately evenly over <strong>the</strong> whole globe. What is diagnosed <strong>in</strong> <strong>the</strong>assimilation experiment is a decrease <strong>in</strong> mass near Antarctica which is associated with an <strong>in</strong>creaseof transport of <strong>the</strong> ACC. The o<strong>the</strong>r remarkable change is a mass <strong>in</strong>crease over <strong>the</strong> Arctic Ocean.For this no <strong>in</strong>dependent evidence is available at present.40


3.1 Ocean dynamicsThe situation will change once <strong>the</strong> GRACE measurements can be fully exploited. Temporalanomalies of gravity field observations provided at periods from two months to <strong>the</strong> mission lifetime will yield <strong>in</strong>formation about <strong>the</strong> deep, time vary<strong>in</strong>g ocean mass distribution <strong>and</strong> circulationwhich o<strong>the</strong>rwise is unobservable. This <strong>in</strong>formation, which is <strong>in</strong>dependent of steric contributions,can be used to dist<strong>in</strong>guish steric from nonsteric contributions to altimeter measurements of seasurface height. Measured changes <strong>in</strong> mass distribution are useful for ocean model verification orfalsification <strong>and</strong> can, <strong>in</strong> pr<strong>in</strong>ciple, also be assimilated.The <strong>in</strong>terpretation of <strong>the</strong> measurements is important. Know<strong>in</strong>g <strong>the</strong> steric contributions wouldmake it feasible to approximate <strong>the</strong> changes <strong>in</strong> <strong>the</strong> vertically <strong>in</strong>tegrated heat <strong>and</strong> freshwater storageover scales of a few hundred kilometres <strong>and</strong> larger <strong>and</strong> would thus contribute significantly toour underst<strong>and</strong><strong>in</strong>g of global climate change <strong>in</strong> terms of buoyancy <strong>and</strong> mass variations. Regionalfluctuations <strong>in</strong> ocean mass are directly l<strong>in</strong>ked to <strong>the</strong> w<strong>in</strong>d field. Changes <strong>in</strong> mass on global scaleare a measure of changes <strong>in</strong> <strong>the</strong> <strong>Earth</strong> freshwater cycle. Knowledge of both is urgently required<strong>and</strong> will lead to a better underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> relation between local <strong>and</strong> remote forc<strong>in</strong>g <strong>in</strong> sett<strong>in</strong>g<strong>the</strong> mean <strong>and</strong> time-vary<strong>in</strong>g circulation.Sea ice thickness observationsSea ice strongly modifies <strong>the</strong> global heat <strong>and</strong> energy balance due to its high albedo <strong>and</strong> latent heat.Therefore it plays an important role <strong>in</strong> <strong>the</strong> climate system. Sea ice is one of <strong>the</strong> ma<strong>in</strong> drivers for<strong>the</strong> global <strong>the</strong>rmohal<strong>in</strong>e ocean circulation by reject<strong>in</strong>g salt upon ice formation <strong>and</strong> releas<strong>in</strong>g freshwaterwhen melt<strong>in</strong>g. Its extent <strong>and</strong> thickness are sensitive <strong>in</strong>dicators of climate change.Sea ice floats <strong>in</strong> sea water, i.e. <strong>in</strong> <strong>the</strong> melt it has been grow<strong>in</strong>g from. It forms a source or s<strong>in</strong>k offreshwater <strong>and</strong> latent heat. Sea ice related processes are <strong>the</strong>refore a major driv<strong>in</strong>g force of <strong>the</strong>ocean circulation. For <strong>in</strong>stance, it is estimated that about half of <strong>the</strong> Antarctic Circumpolar Currentis a consequence of ice formation close to <strong>the</strong> coast <strong>and</strong> melt<strong>in</strong>g of <strong>the</strong> same ice more than onethous<strong>and</strong> kilometres fur<strong>the</strong>r north. The possibility of measur<strong>in</strong>g not only <strong>the</strong> sea ice distributionbut also its thickness on a global scale is novel <strong>and</strong> excit<strong>in</strong>g for <strong>the</strong> oceanographic community.Deep water formation is strongly related to freez<strong>in</strong>g of sea water. Sea ice is less sal<strong>in</strong>e than <strong>the</strong>surround<strong>in</strong>g water. When sea water freezes salt is rejected to <strong>the</strong> water below which becomesmore sal<strong>in</strong>e <strong>and</strong> denser. If <strong>the</strong> water is dense enough it may convect down to <strong>the</strong> deep ocean tak<strong>in</strong>goxygen <strong>and</strong> o<strong>the</strong>r gasses with it. This ventilation of <strong>the</strong> deep ocean is one of <strong>the</strong> major processesthat determ<strong>in</strong>es <strong>the</strong> water mass characteristics <strong>and</strong> <strong>the</strong>ir distribution on a global scale <strong>and</strong><strong>in</strong>directly <strong>the</strong> global ocean circulation. Measurements of sea ice thickness <strong>and</strong> sea ice distributionallow <strong>the</strong> determ<strong>in</strong>ation of sea ice volume, <strong>the</strong> fresh water cycle performed by sea ice processes<strong>and</strong> <strong>the</strong> associated changes <strong>in</strong> buoyancy at <strong>the</strong> ocean surface.In recent decades passive microwave satellite data have revealed that <strong>the</strong> areal extent of sea ice <strong>in</strong><strong>the</strong> Arctic has decreased by 3% per decade, with an accelerated trend of 8% per decade <strong>in</strong> <strong>the</strong> 1990s(Comiso et al., 2002). Sporadic observations on board of military nuclear submar<strong>in</strong>es have shownthat ice thickness <strong>in</strong> <strong>the</strong> central Arctic Ocean has decreased by 43% between 1958 to 1976 <strong>and</strong>1993 to 1997. The <strong>in</strong>terpretation of <strong>the</strong>se changes is difficult due to <strong>the</strong> complex processes betweenatmosphere, ice, <strong>and</strong> ocean, <strong>in</strong> particular <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> ice edge. Sea ice thickness measurementsare particularly difficult to underst<strong>and</strong> with respect to <strong>the</strong>ir relation to climate changes, becauseice thickness shows a strong seasonal <strong>and</strong> <strong>in</strong>terannual variability (Haas <strong>and</strong> Eicken, 2001),<strong>and</strong> because <strong>the</strong> regional thickness distribution strongly depends on <strong>the</strong> ice motion field, which isa function of atmospheric <strong>and</strong> oceanographic circulation regimes. With chang<strong>in</strong>g drift patterns, icethickness might <strong>in</strong>crease <strong>in</strong> one region whereas it decreases <strong>in</strong> ano<strong>the</strong>r (Figure 3.1.9).41


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>a)b)1951Figure 3.1.9: Model simulation of Arctic ice thickness trends between 1951 <strong>and</strong> 1998, <strong>and</strong> <strong>the</strong> underly<strong>in</strong>gice drift anomaly. Thickness has <strong>in</strong>creased <strong>in</strong> <strong>the</strong> marg<strong>in</strong>al seas <strong>and</strong> decreased <strong>in</strong> <strong>the</strong> central Arctic Ocean.Ice motion has become more cyclonic, with decreas<strong>in</strong>g sea level <strong>in</strong> <strong>the</strong> centre.Observed thickness changes have to be l<strong>in</strong>ked to changes <strong>in</strong> ice motion, ocean circulation, <strong>and</strong><strong>the</strong>rmodynamics. Models <strong>in</strong>clud<strong>in</strong>g a dynamic sea surface topography <strong>and</strong> sea ice have to bedeveloped for <strong>the</strong> Arctic <strong>and</strong> Antarctic which are capable to assimilate data from CryoSat <strong>and</strong>ICESat altimetry missions referenced to <strong>the</strong> new geoid models. Only <strong>the</strong>n it will be possible tofully resolve <strong>the</strong> feedback processes between ocean circulation, sea surface height, <strong>and</strong> sea icethickness. For model validation, extensive comparisons have to be performed of <strong>the</strong> regional, seasonal,<strong>and</strong> <strong>in</strong>terannual variability.Decadal thickness changes are strongly l<strong>in</strong>ked to changes <strong>in</strong> atmosphere <strong>and</strong> ocean circulation(Figure 3.1.9). The latter are associated with regional sea level changes which forms a direct l<strong>in</strong>kbetween ice thickness changes <strong>and</strong> changes <strong>in</strong> <strong>the</strong> gravity field due to variations <strong>in</strong> ocean mass.Comb<strong>in</strong>ed ocean model <strong>and</strong> gravity mission data analyses have to be performed to fully underst<strong>and</strong><strong>the</strong> complex processes <strong>in</strong>volved <strong>in</strong> dynamically <strong>in</strong>duced thickness changes an <strong>the</strong>ir consequencesfor <strong>the</strong> <strong>Earth</strong> gravity field. Accurate CryoSat <strong>and</strong> ICESat thickness retrievals stronglydepend on <strong>the</strong> quality of <strong>the</strong> geoid for <strong>the</strong> precise reconstruction of satellite orbits <strong>and</strong> sea surfaceheight. New geoid <strong>in</strong>formation from CHAMP, GRACE <strong>and</strong> GOCE have to be <strong>in</strong>cluded <strong>in</strong>improved CryoSat <strong>and</strong> ICESat thickness reprocess<strong>in</strong>g. Vice versa, improved sea surface heightretrievals over ice covered waters will be possible with CryoSat, contribut<strong>in</strong>g to a better reconstructionof <strong>the</strong> geoid <strong>in</strong> polar regions.42


Ocean modell<strong>in</strong>g <strong>and</strong> its use for gravity fielddeterm<strong>in</strong>ation3.1 Ocean dynamicsGravity field estimates obta<strong>in</strong>ed from GRACE <strong>and</strong> GOCE are restricted <strong>in</strong> <strong>the</strong>ir space-time sampl<strong>in</strong>g<strong>and</strong> will <strong>the</strong>refore alias un-resolved high-frequency barotropic oceanic motions <strong>and</strong> diurnal <strong>and</strong> semidiurnaltides (Stammer et al., 2000). Us<strong>in</strong>g <strong>in</strong>formation about surface topography variations on dailyto monthly periods from ocean circulation <strong>and</strong> variations <strong>in</strong> tidal b<strong>and</strong>s from tide models, <strong>the</strong> recoveryof <strong>the</strong> mean gravity field can be improved significantly by correct<strong>in</strong>g <strong>the</strong>m for high-frequencyvariations <strong>in</strong> mass distribution <strong>and</strong> thus reduc<strong>in</strong>g <strong>the</strong> alias<strong>in</strong>g effect (e.g. Stammer et al., 2000).There is no a priori decision which signals should be used as corrections. In fact, this may differaccord<strong>in</strong>g to <strong>the</strong> scientific goal. In an iterative procedure it should be determ<strong>in</strong>ed which part of<strong>the</strong> oceanic mass movement is considered ‘understood’ (such as tides) imply<strong>in</strong>g <strong>the</strong> signal can bedealiased from <strong>the</strong> gravity measurements. On <strong>the</strong> o<strong>the</strong>r extreme, signals have to be considered as‘true measurement’ (e.g. <strong>in</strong>terannual variations) which will be <strong>in</strong>terpreted geophysically <strong>and</strong> canbe used for data assimilation or verification of oceanic models.GRACE data will provide <strong>in</strong>formation about bottom pressure changes on monthly <strong>and</strong> longertime scales with an accuracy of equivalent to 1 mm <strong>in</strong> sea surface height (cf. Figure 2.9). With thismeasurement precision, many traditional approximations <strong>in</strong> ocean models become questionable<strong>and</strong> secondary effects <strong>in</strong> ocean models have to be considered as well. Conventional approximations<strong>in</strong>clude <strong>the</strong> Bouss<strong>in</strong>esq-approximation treat<strong>in</strong>g <strong>the</strong> fluid as essentially <strong>in</strong>compressible, simplificationsof <strong>the</strong> equation of state of seawater <strong>and</strong> <strong>in</strong>sufficient representations of <strong>the</strong> real bottomtopography <strong>and</strong> bottom slopes <strong>in</strong> <strong>the</strong> models. Secondary effects <strong>in</strong>clude <strong>the</strong> <strong>in</strong>teraction betweenocean circulation <strong>and</strong> ocean tides, direct pressure forc<strong>in</strong>g to improve <strong>the</strong> simulation of <strong>the</strong> ocean’sresponse to atmospheric pressure load<strong>in</strong>g (e.g., Thomas et al., 2001), <strong>and</strong> <strong>the</strong> load<strong>in</strong>g <strong>and</strong> self-attractioneffect due to ocean circulation <strong>in</strong>duced mass redistributions (Condi <strong>and</strong> Wunsch, 2003).The latter effects are well known <strong>in</strong> <strong>the</strong> context of ocean tides. They are of measurable effect alsofor changes <strong>in</strong> ocean circulation (Condi <strong>and</strong> Wunsch, 2003). Mutual corrections of <strong>the</strong> gravityfield <strong>and</strong> <strong>the</strong> mass redistribution <strong>in</strong> <strong>the</strong> ocean are necessary steps for improv<strong>in</strong>g our underst<strong>and</strong><strong>in</strong>gof changes <strong>in</strong> <strong>the</strong> ocean circulation <strong>and</strong> <strong>the</strong> mar<strong>in</strong>e gravity field.It is a common practise <strong>in</strong> oceanography to produce ‘syn<strong>the</strong>tic’ geoids for assimilation ofaltimetric sea surface height. Such a syn<strong>the</strong>tic geoid is calculated as <strong>the</strong> difference of altimetry<strong>and</strong> <strong>the</strong> dynamic sea surface of an ocean model. Evidently, <strong>the</strong> syn<strong>the</strong>tic geoid varies from caseto case <strong>and</strong> assimilation of altimetry has no <strong>in</strong>fluence on <strong>the</strong> mean state of <strong>the</strong> ocean model. Infact <strong>the</strong> procedure is equivalent to <strong>the</strong> well known coll<strong>in</strong>ear analysis where a reference data setis subtracted from each measurement <strong>and</strong> only temporal anomalies are considered fur<strong>the</strong>r. O<strong>the</strong>r‘oceanographic’ geoids are hybrid <strong>and</strong> <strong>in</strong>clude geoid models as well as altimetry <strong>and</strong> <strong>the</strong> dynamicocean surface. Least squares solutions which take <strong>in</strong>to account <strong>the</strong> different error covariancestructures are calculated e.g. by Seufer et al. (2003). O<strong>the</strong>r possibilities make use of an oceanmodel <strong>in</strong>to which altimetry referenced to a geoid model has been assimilated.Study<strong>in</strong>g <strong>the</strong> agreement with measurements hav<strong>in</strong>g been assimilated with a priori error assumptionswill lead to corrections of <strong>in</strong>troduced <strong>in</strong> situ as well as of satellite data, i.e. <strong>in</strong> particular ofgravity field data. Thus, <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> characteristics of <strong>the</strong>se corrections with respect to <strong>the</strong>irphysical plausibility is part of an iterative process of simultaneously improv<strong>in</strong>g ocean models<strong>and</strong> gravity field. Test<strong>in</strong>g gravity estimates through direct observations is not a trivial matter.Ocean data assimilation offers a unique opportunity to compare estimated residuals <strong>in</strong> <strong>the</strong> meansurface topography with prior <strong>and</strong> a posteriori error statistics <strong>and</strong> thus to test <strong>the</strong> consistency ofall hypo<strong>the</strong>ses <strong>in</strong>volved, <strong>in</strong>clud<strong>in</strong>g geoid estimates <strong>and</strong> <strong>the</strong>ir error covariances. As an example,previous results have shown discrepancies <strong>in</strong> EGM96 geoid error <strong>in</strong>formation with estimated sea43


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 3.1.10: Comparison of a hybrid geoid with <strong>the</strong> <strong>in</strong>dependent EIGEN_GRACE01S model. The hybridis obta<strong>in</strong>ed as <strong>the</strong> difference between an altimetric mean surface height <strong>and</strong> <strong>the</strong> model mean sea level afterassimilation of CHAMP data. It is not surpris<strong>in</strong>g that <strong>the</strong> hybrid geoid is closer to <strong>the</strong> GRACE data than toCHAMP data. We take this as an <strong>in</strong>dication that some structures (mostly smaller scales) which were miss<strong>in</strong>g<strong>in</strong> <strong>the</strong> CHAMP solution were provided by <strong>the</strong> ocean model result<strong>in</strong>g <strong>in</strong> a geoid which is superior toCHAMP only models. The scale is <strong>in</strong> metres.surface height residuals (Stammer et al, 2003). Those discrepancies have been identified subsequentlyas <strong>in</strong>consistencies <strong>in</strong> <strong>the</strong> EGM96 error covariance based on new <strong>in</strong>formation availablefrom GRACE.This approach is also useful with modern geoid models as was shown by Kivman et al. (2004). Ageocentric altimeter mean sea surface height (SHOMCLS98.2) was referenced to an <strong>in</strong>termediateCHAMP geoid (EIGEN2E) <strong>and</strong> assimilated <strong>in</strong>to a regional model of <strong>the</strong> North Atlantic. Theresult<strong>in</strong>g dynamic sea surface topography is <strong>the</strong>n subtracted from <strong>the</strong> altimetric mean sea surface<strong>and</strong> a hybrid geoid was obta<strong>in</strong>ed. The difference between <strong>the</strong> hybrid <strong>and</strong> <strong>the</strong> CHAMP geoid canbe <strong>in</strong>terpreted as <strong>the</strong> residual topography which <strong>the</strong> ocean model was unable to expla<strong>in</strong> successfully.Alternatively one can see <strong>the</strong> difference as <strong>the</strong> small scale topography which is miss<strong>in</strong>g<strong>in</strong> <strong>the</strong> CHAMP geoid <strong>and</strong> which is corrected us<strong>in</strong>g altimetry <strong>and</strong> oceanography. To dist<strong>in</strong>guishbetween <strong>the</strong>se two possibilities <strong>the</strong> hybrid geoid was compared to <strong>the</strong> <strong>in</strong>dependent EIGEN_GRACE01S geoid.Over most of <strong>the</strong> doma<strong>in</strong> <strong>the</strong> difference is small. Many features of <strong>the</strong> residual are miss<strong>in</strong>g which<strong>in</strong>dicates that <strong>the</strong> hybrid geoid is closer to GRACE than to CHAMP data. One may conclude that<strong>the</strong> hybrid geoid is superior to a gravity only geoid. Similar hybrid geoids can be constructed <strong>in</strong>44


3.1 Ocean dynamics<strong>the</strong> future by assimilation of altimetry referenced to GRACE <strong>and</strong> GOCE geoids. Ano<strong>the</strong>r feature<strong>in</strong> Figure 3.1.10 is <strong>the</strong> <strong>in</strong>crease of <strong>the</strong> error at <strong>the</strong> coastl<strong>in</strong>es. This is due to different filter<strong>in</strong>g techniques,be<strong>in</strong>g performed <strong>in</strong> <strong>the</strong> spatial doma<strong>in</strong>s of ocean circulation models <strong>and</strong> altimetry, <strong>and</strong> <strong>in</strong><strong>the</strong> spectral doma<strong>in</strong> of <strong>the</strong> geoid models. Therefore filter<strong>in</strong>g is one of <strong>the</strong> future topics of researchto improve <strong>the</strong> <strong>in</strong>tercomparison between <strong>the</strong> different data sets.Towards a jo<strong>in</strong>t estimation of oceanographic <strong>and</strong>geodetic topographiesThe novel accuracy of geoid height fields derived from GRACE <strong>and</strong> GOCE will be comb<strong>in</strong>edwith highly accurate sea surface height from a comb<strong>in</strong>ation of altimetric satellites to obta<strong>in</strong> measurementsof <strong>the</strong> absolute dynamic height. For <strong>the</strong> first time we have <strong>the</strong> opportunity of obta<strong>in</strong><strong>in</strong>g<strong>the</strong> absolute oceanic current field with a sufficient precision that allows <strong>the</strong> treatment of longst<strong>and</strong><strong>in</strong>g oceanographic problems. The new knowledge will significantly advance our skill <strong>in</strong> determ<strong>in</strong><strong>in</strong>goceanic transport with good accuracy <strong>and</strong> <strong>in</strong>crease our underst<strong>and</strong><strong>in</strong>g of ocean dynamicsthrough <strong>the</strong> <strong>in</strong>teraction of mean <strong>and</strong> time dependent flow.Most processes that <strong>in</strong>fluence <strong>the</strong> mass distribution on <strong>the</strong> globe can be dist<strong>in</strong>guished by <strong>the</strong>irtime <strong>and</strong> space scales. Fast motions <strong>in</strong> atmosphere <strong>and</strong> ocean are associated with strong signals <strong>in</strong><strong>the</strong> GRACE <strong>and</strong> GOCE measurements. However, <strong>the</strong> alias<strong>in</strong>g associated with <strong>the</strong>se mass changesshall be successfully corrected us<strong>in</strong>g atmosphere <strong>and</strong> ocean models <strong>in</strong> conjunction with data assimilation.On timescales of months <strong>and</strong> beyond variations <strong>in</strong> gravity <strong>and</strong> thus mass changes areadequately resolved by <strong>the</strong> sampl<strong>in</strong>g scheme of GRACE. Those observations will provide new<strong>in</strong>formation about mass changes <strong>in</strong> <strong>the</strong> atmosphere, <strong>the</strong> l<strong>and</strong> system <strong>and</strong> cryosphere or <strong>the</strong> ocean<strong>and</strong> need to be <strong>in</strong>vestigated <strong>in</strong> adjo<strong>in</strong>t analyses to attribute <strong>the</strong> measured changes to different geophysicalprocesses.A guid<strong>in</strong>g pr<strong>in</strong>ciple here can be that ocean contributions should be corrected as best as possiblefrom GRACE <strong>and</strong> GOCE results to allow study<strong>in</strong>g <strong>the</strong> change <strong>in</strong> cont<strong>in</strong>ental water storage, or <strong>the</strong>redistribution of mass <strong>in</strong> <strong>the</strong> solid <strong>Earth</strong> <strong>in</strong> more isolation (Chapters 3.2-3.4). On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,<strong>in</strong>formation on <strong>the</strong> cont<strong>in</strong>ental runoff <strong>and</strong> its variations are important climate <strong>in</strong>formation that willbe required to properly simulate changes of <strong>the</strong> ocean over several years <strong>and</strong> longer.Ultimately we must work on a jo<strong>in</strong>t analysis that takes <strong>in</strong>to account all contributions from differentprocesses simultaneously. However, first <strong>the</strong> measurements must be <strong>in</strong>terpreted separatelyto assure maximum progress <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>dividual components of <strong>the</strong> <strong>Earth</strong> system. Acomplicat<strong>in</strong>g aspect can be that underly<strong>in</strong>g trends on longer time scales than <strong>the</strong> mission durationmay be important. They cannot be understood from <strong>the</strong> new data sources <strong>and</strong> must be estimatedfrom different measurements <strong>and</strong> models.The jo<strong>in</strong>t study of ocean circulation <strong>and</strong> global mass distribution is closely l<strong>in</strong>ked to <strong>the</strong> problemof sea level rise, ice melt<strong>in</strong>g <strong>and</strong> variations <strong>in</strong> <strong>the</strong> <strong>Earth</strong> angular momentum. Sea level rise thus <strong>in</strong>volvesmany discipl<strong>in</strong>es of <strong>the</strong> geosystems community, <strong>and</strong> need to address effects like glacial rebound(Chapter 3.2 <strong>and</strong> 3.3), changes <strong>in</strong> global water cycles, storage of water <strong>in</strong> man-made lakes(Chapter 3.4), as well as glacial melt<strong>in</strong>g (Chapter 3.2), <strong>and</strong> ocean warm<strong>in</strong>g. See also <strong>the</strong> recentIPCC reports (Church, 2001) for a detailed discussion of those effects.Clearly, many aspects of sea level change have to be considered which requires a more extensivesatellite data base than just altimetry <strong>and</strong> gravimetry. In particular <strong>the</strong> close l<strong>in</strong>k of sea level riseto polar ice melt<strong>in</strong>g requires data from <strong>the</strong> up-com<strong>in</strong>g CryoSat mission <strong>and</strong> ICESat to be part of<strong>the</strong> analysis (Chapter 3.2). All those data sets will help to dist<strong>in</strong>guish between local mass change<strong>and</strong> volume change <strong>in</strong> <strong>the</strong> ocean, or heat <strong>and</strong> freshwater/salt changes. Essentially <strong>the</strong> ocean esti-45


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>mation effort is <strong>the</strong> glue between those elements that would o<strong>the</strong>rwise coexist as <strong>in</strong>dividual <strong>and</strong>somewhat isolated components. Estimates of <strong>the</strong> ocean circulation have to be <strong>in</strong> agreement willall <strong>in</strong>dividual contributions that <strong>in</strong>volve heat or salt changes <strong>and</strong> thus mass changes.After analys<strong>in</strong>g all contribut<strong>in</strong>g signals <strong>in</strong>dividually it is possible to use ocean state estimationas a tool for comb<strong>in</strong><strong>in</strong>g <strong>the</strong> dynamics of ocean circulation models with measured data. The goalof such an ‘ocean syn<strong>the</strong>ses’ is to obta<strong>in</strong> <strong>the</strong> best possible description of <strong>the</strong> chang<strong>in</strong>g ocean <strong>and</strong>to estimate <strong>the</strong> atmospheric forc<strong>in</strong>g fields that are consistent with <strong>the</strong> ocean observations. As aby-product model components are identified which need improvements <strong>and</strong> we obta<strong>in</strong> guidel<strong>in</strong>eswhere to improve oceanic <strong>and</strong> remote sens<strong>in</strong>g observ<strong>in</strong>g systems.ReferencesComiso, J.C., 2002. A rapidly decl<strong>in</strong><strong>in</strong>g perennial sea ice cover <strong>in</strong> <strong>the</strong> Arctic. Geophys. Res.Letters, 29 (20), 17 (1-4), doi 10.1029/2002GL015650.Church, J.A., J.M. Gregory, Ph. Huybrechts, M. Kuhn, C. Lambeck, M.T.Nhuan, D. Q<strong>in</strong>, P.L.Woodworth, 2001. Changes <strong>in</strong> sea level. <strong>in</strong>: J.T Houghton, Y. D<strong>in</strong>g, D.J. Griggs, M. Noguer,P.J. Van der L<strong>in</strong>den, X. Dai, K. Maskell, <strong>and</strong> C.A. Johnson (eds.): Climate Change 2001: TheScientific Basis: Contribution of Work<strong>in</strong>g Group I to <strong>the</strong> Third Assessment Report of <strong>the</strong>Intergovernmental Panel on Climate Change, Cambridge University Press (Cambridge, NewYork), 639-694.Condi, F. <strong>and</strong> C. Wunsch, 2003. Measur<strong>in</strong>g gravity field variability, <strong>the</strong> geoid, ocean bottom fieldvariations, <strong>and</strong> <strong>the</strong>ir dynamical implications, J. Geophys. Res., <strong>in</strong> press.Greatbach, R.J. , 1994. A note on <strong>the</strong> representation of steric sea level <strong>in</strong> models that conservevolume ra<strong>the</strong>r than mass, J. Geophys. Res., 99 (C6), 12,767-12,771.Griffies, S. M., C. Bön<strong>in</strong>g, F. O. Bryan, E. P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A. M.Tréguier, <strong>and</strong> D. Webb, 2000. Developments <strong>in</strong> ocean climate modell<strong>in</strong>g. Ocean Modell<strong>in</strong>g,2, 123-192.Haas, C. <strong>and</strong> Eicken, H., 2001. Interannual variability of summer sea ice thickness <strong>in</strong> <strong>the</strong> Siberian<strong>and</strong> Central Arctic under different atmospheric circulation regimes. Journal of GeophysicalResearch, 106 (C3), 4449-4462.Kivman, G., S. Danilov, B. Fritzsch, S. Harig, C. Reick, J. Schröter, V. Seufer, D. Sidorenko,J. Staneva <strong>and</strong> M. Wenzel, 2004. Improved estimates of <strong>the</strong> oceanic circulation us<strong>in</strong>g <strong>the</strong>CHAMP geoid, In: Reigber, Ch., Schw<strong>in</strong>tzer, P. (eds) CHAMP Mission results for Gravity,Magnetic <strong>and</strong> Atmospheric Studies. Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg New York.LeProvost, C., E. Dombrowsky, P. LeGr<strong>and</strong>, P.-Y. LeTraon, M. Losch, F. Ponchaut, J. Schröter,B. Sloyan <strong>and</strong> N. Sneeuw, 1999. Impact of <strong>the</strong> GOCE mission for ocean circulation study,ESTEC 131 75/98/NL/GD.Schröter, J., <strong>and</strong> C. Wunsch, 1986. Solution of Nonl<strong>in</strong>ear F<strong>in</strong>ite Difference Ocean Models byOptimization Methods with Sensitivity <strong>and</strong> Observational Strategy Analysis, Journal ofPhysical Oceanography, 16, 1855-1874.Schröter, J., M. Losch <strong>and</strong> B. Sloyan, 2002. Impact of <strong>the</strong> Gravity Field <strong>and</strong> Steady-State OceanCirculation Explorer (GOCE) mission on ocean circulation estimates : Volume <strong>and</strong> heattransports across hydrographic sections of unequally spaced stations. Journal of GeophysicalResearch, 107 (C2), 4-1--4-20.Seufer, V., J. Schröter, M. Wenzel <strong>and</strong> W. Keller, 2003. Assimilation of Altimeter <strong>and</strong> Geoid Data<strong>in</strong>to a Global Ocean Model., In: Reigber, Ch., Luhr, H., Schw<strong>in</strong>tzer, P. (eds) First CHAMPMission results for Gravity, Magnetic <strong>and</strong> Atmospheric Studies. Spr<strong>in</strong>ger, Berl<strong>in</strong> Heidelberg46


3.1 Ocean dynamicsNew York.Stammer, D., C. Wunsch, R. Gier<strong>in</strong>g, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C.N.Hill, <strong>and</strong> J. Marshall, 2002. The global ocean circulation dur<strong>in</strong>g 1992-1997, estimatedfrom ocean observations <strong>and</strong> a general circulation model. J. Geophys. Res., DOI: 101029/2001JC000888.Stammer, D., C. Wunsch <strong>and</strong> R. Ponte, 2000. De-Alias<strong>in</strong>g of Global High Frequency BarotropicMotions <strong>in</strong> Altimeter Observations. Geophys. Res. Letters, 27, 1175-1178.Stammer, D., C. Wunsch, R. Gier<strong>in</strong>g, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C.N.Hill, <strong>and</strong> J. Marshall, 2003. Volume, Heat <strong>and</strong> Freshwater Transports of <strong>the</strong> Global OceanCirculation 1993 --2000, Estimated from a General Circulation Model Constra<strong>in</strong>ed by WOCEData. J. Geophys. Res., VOL. 108(C1), 3007, doi:10.1029/2001JC001115.Thomas, M., J. Sündermann <strong>and</strong> E. Maier-Reimer, 2001. Consideration of ocean tides <strong>in</strong> anOGCM <strong>and</strong> impacts on subseasonal to decadal polar motion excitation, Geophys. Res. Lett.,28, 12, 2457-2460.Wenzel, M., J. Schröter <strong>and</strong> D. Olbers, 2001. The annual cycle of <strong>the</strong> global ocean circulation asdeterm<strong>in</strong>ed by 4D VAR data assimilation. Prog. <strong>in</strong> Oceanog., 48, 73-119.Wunsch, C. <strong>and</strong> E.M. Gaposchk<strong>in</strong>, 1980. On us<strong>in</strong>g satellite altimetry to determ<strong>in</strong>e <strong>the</strong> generalcirculation of <strong>the</strong> oceans with application to geoid improvement, Revs. Geophys. <strong>and</strong> spacePhys., 18, 725-745, 1980.Wunsch, C., <strong>and</strong> D. Stammer, 2003. Global Ocean Data Assimilation <strong>and</strong> Geoid Measurements,Space Science Reviews, 00:1-16; Kluwer Academic Publisher.47


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Ice mass balance <strong>and</strong> sea levelChanges <strong>in</strong> Antarctic <strong>and</strong> Greenl<strong>and</strong> ice sheet mass balance have importantconsequences for global sea level. We still do not know whe<strong>the</strong>r <strong>the</strong>ice sheets are loos<strong>in</strong>g or ga<strong>in</strong><strong>in</strong>g mass. Before mass balance <strong>and</strong> sea levelchange can be better predicted <strong>in</strong> scenarios of global climate change,our current underst<strong>and</strong><strong>in</strong>g <strong>and</strong> observational basis has to be fur<strong>the</strong>r improved.The new altimetry <strong>and</strong> gravity missions will considerably contributeto reduc<strong>in</strong>g uncerta<strong>in</strong>ties <strong>in</strong> mass balance estimates <strong>and</strong> to improveour modell<strong>in</strong>g <strong>and</strong> prediction capabilities of future sea level rise.Sea level change is an important consequence of climate change, both for societies <strong>and</strong> for <strong>the</strong>environment. The level of <strong>the</strong> sea changes as a result of changes <strong>in</strong> water density <strong>and</strong>/or of <strong>the</strong>total mass of <strong>the</strong> ocean. Density is affected by <strong>the</strong> water’s temperature <strong>and</strong> is reduced by <strong>the</strong>rmalexpansion as <strong>the</strong> ocean warms. Changes <strong>in</strong> <strong>the</strong> total mass of <strong>the</strong> ocean are primarily driven by exchangeswith water stored on l<strong>and</strong>. By far <strong>the</strong> most important l<strong>and</strong> storage is frozen <strong>in</strong> cont<strong>in</strong>entalice masses, which conta<strong>in</strong> more than 90% of <strong>the</strong> <strong>Earth</strong>’s fresh water resources. It is estimated thattotal melt<strong>in</strong>g of <strong>the</strong> Antarctic ice sheet, <strong>the</strong> Greenl<strong>and</strong> ice sheet, <strong>and</strong> all o<strong>the</strong>r mounta<strong>in</strong> glaciers<strong>and</strong> small ice caps would raise global sea level by 60 m, 7 m, <strong>and</strong> 0.5 m respectively. Although itis very unlikely that this will happen any time soon, it is clear that even small fractional changes<strong>in</strong> ice volume would have large consequences. O<strong>the</strong>r storages of cont<strong>in</strong>ental water <strong>in</strong>clude surfacelakes, wetl<strong>and</strong>s, ground water reservoirs <strong>and</strong> permafrost, but water exchanges between <strong>the</strong>se reservoirs<strong>and</strong> <strong>the</strong> ocean are not sufficiently quantifiable yet (cf. Chapter 3.4).ICE MASS BALANCE AND SEA LEVELBENEFITS− For <strong>the</strong> first time, complete <strong>and</strong> reliable estimates for <strong>the</strong> icemass balance of <strong>the</strong> complete Antarctica <strong>and</strong> Greenl<strong>and</strong> icesheets will become possible.− This will allow important conclusions on present climate state<strong>and</strong> sea level change.CHALLENGES− Separation of gravity <strong>and</strong> surface height signals due to ice massvariations, bedrock isostatic uplift, <strong>and</strong> firn density changes.− Satellite data must be supported <strong>and</strong> validated by a sufficientnumber of glaciological <strong>in</strong>-situ data, GPS vertical l<strong>and</strong> movementobservations <strong>and</strong> <strong>in</strong>terferometric SAR data of ice flow velocities.The level of <strong>the</strong> sea varies as aresult of processes operat<strong>in</strong>g on avariety of time scales. The globalocean <strong>the</strong>rmohal<strong>in</strong>e circulationhas a memory of centuries. Theice sheets react to climate changeon <strong>the</strong> time scale of millennia, <strong>and</strong>could be ga<strong>in</strong><strong>in</strong>g or los<strong>in</strong>g massas a result of climatic variationsextend<strong>in</strong>g back to <strong>the</strong> last glacialperiod. Ano<strong>the</strong>r long time scale isadded by isostatic adjustment of<strong>the</strong> <strong>Earth</strong>’s crust to changes <strong>in</strong> <strong>the</strong>ice load<strong>in</strong>g <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>gmass transfer to <strong>the</strong> ocean (Chapter3.3). Postglacial rebound frommelt<strong>in</strong>g of <strong>the</strong> ice from <strong>the</strong> Last Ice48


3.2 Ice mass balance <strong>and</strong> sea levelAge is still occurr<strong>in</strong>g <strong>and</strong> can have magnitudes comparable to observed sea level changes at <strong>the</strong>coast or to ice thickness changes on <strong>the</strong> residual ice sheets. Glaciers <strong>and</strong> small ice caps are moresensitive to climate change than ice sheets, <strong>and</strong> are capable to adjust more rapidly to changes <strong>in</strong>snow accumulation <strong>and</strong> ice melt<strong>in</strong>g, <strong>and</strong> may dom<strong>in</strong>ate <strong>the</strong> response on a century time scale.In order to predict future sea level change with more confidence, it is necessary to better underst<strong>and</strong><strong>the</strong> current evolution of cont<strong>in</strong>ental ice masses, <strong>and</strong> to quantify <strong>the</strong>ir present mass balance.The present <strong>and</strong> upcom<strong>in</strong>g gravity missions CHAMP, GRACE, <strong>and</strong> GOCE are expected to lead tosignificant advances <strong>in</strong> our knowledge of ice mass balance <strong>and</strong> sea level. The new altimetry missionsICESat <strong>and</strong> CryoSat will provide a detailed picture of <strong>the</strong> spatial distribution of surface elevation<strong>and</strong> its temporal evolution, <strong>and</strong> will cover polar areas beyond latitudes currently accessed.Syn<strong>the</strong>tic aperture radar <strong>in</strong>terferometry provides <strong>the</strong> surface velocity field of ice sheets, <strong>in</strong>clud<strong>in</strong>gshort-term variability <strong>in</strong> <strong>the</strong>ir flow <strong>and</strong> extent. The determ<strong>in</strong>ation of <strong>the</strong> <strong>Earth</strong>’s time-variantgravity field by <strong>the</strong> GRACE mission will provide additional constra<strong>in</strong>ts on mass redistributions,of which ice mass imbalances <strong>and</strong> isostatic rebound are crucial components. To properly <strong>in</strong>terpret<strong>the</strong>se satellite data <strong>in</strong> terms of ice volume changes, numerical models of <strong>the</strong> coupled ice-sheet/ice-shelf/lithosphere system are required. Ice sheet models assist to dist<strong>in</strong>guish between <strong>the</strong> longer-termice-dynamic evolution <strong>and</strong> short-term mass-balance changes, <strong>and</strong> are needed to extract<strong>the</strong> current ice mass evolution from gravity <strong>and</strong> altimetry trends contam<strong>in</strong>ated by postglacial rebound.These models require <strong>the</strong> best possible <strong>in</strong>put data derived from satellite remote sens<strong>in</strong>g,<strong>and</strong> provide unique tools for predictions.Sea ice does not contribute to sea level change, but is an important <strong>in</strong>dicator of climate change.However, its thickness is closely related to atmosphere <strong>and</strong> ocean circulation. CryoSat <strong>and</strong> IC-ESat offer <strong>the</strong> opportunity for sea ice thickness measurements with unprecedented accuracy.Ice mass balance <strong>and</strong> sources for sea level riseIce mass balanceIce sheets <strong>and</strong> glaciers cont<strong>in</strong>uously exchange fresh water with <strong>the</strong> ocean. They ga<strong>in</strong> mass byaccumulation of snow, which is gradually transformed <strong>in</strong>to ice, <strong>and</strong> lose mass by melt<strong>in</strong>g at <strong>the</strong>surface or base with subsequent runoff. Ice may also be removed by discharge <strong>in</strong>to a float<strong>in</strong>g iceshelf or glacier tongue, from which it is lost by basal melt<strong>in</strong>g <strong>and</strong> calv<strong>in</strong>g of icebergs. The differencebetween total mass <strong>in</strong>put <strong>and</strong> total mass output is called <strong>the</strong> mass balance. Net accumulationoccurs at higher altitude, net ablation at lower altitude. To compensate for net accumulation <strong>and</strong>ablation, ice flows downhill by <strong>in</strong>ternal deformation of <strong>the</strong> ice <strong>and</strong> slid<strong>in</strong>g <strong>and</strong> bed deformation at<strong>the</strong> base. In ice sheets, <strong>the</strong> discharge at <strong>the</strong> marg<strong>in</strong> mostly occurs concentrated <strong>in</strong> outlet glaciers<strong>and</strong> ice streams, which often lie <strong>in</strong> depressions <strong>and</strong> move much faster than <strong>the</strong> surround<strong>in</strong>g ice.The average annual precipitation fall<strong>in</strong>g onto <strong>the</strong> Antarctic <strong>and</strong> Greenl<strong>and</strong> ice sheets is equivalentto 6.5 mm of sea level (Church et al., 2001). For glaciers <strong>and</strong> small ice caps, <strong>the</strong> value is about1.9 mm per year. This <strong>in</strong>put is approximately balanced by loss from melt<strong>in</strong>g <strong>and</strong> iceberg calv<strong>in</strong>g.For <strong>the</strong> two polar ice sheets, <strong>the</strong> balance of <strong>the</strong>se processes is not <strong>the</strong> same, on account of <strong>the</strong>irdifferent climatic regimes. Antarctic temperatures are so low that <strong>the</strong>re is virtually no surface runoff;<strong>the</strong> ice sheet ma<strong>in</strong>ly loses mass by ice discharge <strong>in</strong>to float<strong>in</strong>g ice shelves, which experiencemelt<strong>in</strong>g at <strong>the</strong>ir underside <strong>and</strong> eventually break up to form icebergs. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, summertemperatures on <strong>the</strong> Greenl<strong>and</strong> ice sheet are high enough to cause widespread melt<strong>in</strong>g, whichaccounts for about half of <strong>the</strong> ice loss, <strong>the</strong> rema<strong>in</strong>der be<strong>in</strong>g discharged as icebergs or <strong>in</strong>to smallice-shelves. If mass-balance terms do not balance, sea level will change <strong>and</strong> <strong>the</strong> mass <strong>and</strong> shape49


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>of <strong>the</strong> ice sheets will adjust until a steady state is rega<strong>in</strong>ed. This occurs over time scales of <strong>the</strong> orderof 100 to 10000 years. Hence it is likely that <strong>the</strong> ice sheets are still dynamically adjust<strong>in</strong>g to<strong>the</strong>ir past history (long-term background trend). This trend is separate from <strong>the</strong> direct response tomass-balance changes <strong>in</strong> <strong>the</strong> recent past (one or two centuries), <strong>and</strong> both components need to beaccounted for when assess<strong>in</strong>g <strong>the</strong>ir future contributions to sea level. Despite recent advances <strong>in</strong><strong>the</strong> underst<strong>and</strong><strong>in</strong>g of polar ice sheets, <strong>the</strong>ir current mass balance is still not known.<strong>Mass</strong> budget estimates of polar ice sheetsThe traditional method to obta<strong>in</strong> <strong>the</strong> state of balance of <strong>the</strong> polar ice sheets, or parts <strong>the</strong>reof, is toestimate <strong>in</strong>dividual mass balance terms <strong>and</strong> calculate <strong>the</strong> budget. With present-day measurementprecision, <strong>the</strong> budget method is not able to constra<strong>in</strong> <strong>the</strong> total balance of both polar ice sheets tobetter than ± 20 % of <strong>the</strong>ir mass <strong>in</strong>put (Church et al., 2001). The major error source is relatedto <strong>the</strong> mass loss terms, as recent accumulation estimates display a tendency for a convergencetowards a common value with a rema<strong>in</strong><strong>in</strong>g error of about 5%. For Antarctica, <strong>the</strong> ice dischargefrom <strong>the</strong> grounded ice sheet dom<strong>in</strong>ates <strong>the</strong> uncerta<strong>in</strong>ty because of <strong>the</strong> difficulty of determ<strong>in</strong><strong>in</strong>g<strong>the</strong> position <strong>and</strong> thickness of <strong>the</strong> ice at <strong>the</strong> ground<strong>in</strong>g l<strong>in</strong>e, where grounded ice starts to float <strong>and</strong>transforms <strong>in</strong>to an ice shelf. There, also assumptions about <strong>the</strong> vertical velocity have to be made.For Greenl<strong>and</strong>, surface runoff of meltwater is an important term. However, net ablation has onlyat a few locations been measured directly <strong>and</strong> <strong>the</strong>refore has to be calculated from models, whichhave considerable sensitivity to <strong>the</strong> surface elevation <strong>and</strong> <strong>the</strong> parameters of <strong>the</strong> melt <strong>and</strong> refreez<strong>in</strong>gmethods used. An additional complication is <strong>the</strong> important role played by bottom melt<strong>in</strong>gbelow float<strong>in</strong>g glaciers <strong>in</strong> nor<strong>the</strong>rn Greenl<strong>and</strong>, when consider<strong>in</strong>g calv<strong>in</strong>g fluxes. These terms areneglected <strong>in</strong> earlier analyses. In a nutshell, current mass budget results suggest, that <strong>the</strong> mass balanceof both ice sheets lies between -35% <strong>and</strong> +5% of <strong>the</strong>ir annual mass <strong>in</strong>put, or a comb<strong>in</strong>ed imbalanceequivalent to a sea-level contribution of between +2.4 <strong>and</strong> –0.2 mm/ year. This range islarge compared to <strong>the</strong> central estimate of 1.5 mm/year of total sea level rise for <strong>the</strong> last century,but not significantly different from zero (Church et al., 2001).Direct monitor<strong>in</strong>g of surface elevation changes of ice sheetsProvided that changes <strong>in</strong> ice <strong>and</strong> snow density <strong>and</strong> bedrock elevation are small or can be determ<strong>in</strong>edo<strong>the</strong>rwise, elevation changes can be used to estimate changes of mass of <strong>the</strong> ice sheets.In <strong>the</strong> past five years, important progress was achieved based on altimetric methods, both fromsatellites <strong>and</strong> from aircraft. Improvements of nearly two orders of magnitude have occurred <strong>in</strong><strong>the</strong> accuracy of <strong>the</strong> localisation of satellite <strong>and</strong> aircraft platforms <strong>and</strong> <strong>the</strong> reduction of o<strong>the</strong>r errorsources. Recent results from Greenl<strong>and</strong> from 20 years of SEASAT/GEOSAT satellite radar altimetrydata <strong>and</strong> 6 years of airborne laser altimetry data show a broad picture of a small thicken<strong>in</strong>g<strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>and</strong> a mixed pattern of a substantially larger th<strong>in</strong>n<strong>in</strong>g <strong>in</strong> <strong>the</strong> ablation area (Krabill etal., 2000; Thomas et al., 2001). ERS-1/ERS-2 satellite between 1992 <strong>and</strong> 1999 <strong>in</strong>dicate that muchof <strong>in</strong>terior East Antarctica is close to balance, but with substantially more negative trends <strong>in</strong> WestAntarctica, largely located <strong>in</strong> <strong>the</strong> P<strong>in</strong>e Isl<strong>and</strong> <strong>and</strong> Thwaites Glacier bas<strong>in</strong>s (W<strong>in</strong>gham et al., 1998;Shepherd et al., 2002)Problems with current satellite data are miss<strong>in</strong>g data poleward of 72°N/S (SEASAT/ GEOSAT)or 82°N/S (ERS-1/ERS-2) as well as from <strong>the</strong> steeper parts at <strong>the</strong> marg<strong>in</strong>, so that important areaswith possibly large changes rema<strong>in</strong> undetected. Ano<strong>the</strong>r limitation is <strong>the</strong> short period over whichsatellite data are presently available. Altimetry records are at present too short to confidently dist<strong>in</strong>guishbetween a short-term surface mass-balance variation <strong>and</strong> <strong>the</strong> longer-term ice-sheet dynamicimbalance.50


3.2 Ice mass balance <strong>and</strong> sea levelNumerical modell<strong>in</strong>g of ice sheetsModell<strong>in</strong>g of <strong>the</strong> past history of <strong>the</strong> ice sheets <strong>and</strong> <strong>the</strong>ir underly<strong>in</strong>g beds over a glacial cycle is an<strong>in</strong>dependent way to obta<strong>in</strong> an estimate of <strong>the</strong> present ice evolution. Current large-scale, three-dimensional<strong>the</strong>rmomechanic flow models simulate <strong>the</strong> flow <strong>and</strong> form of ice sheets on grids of 20-40 km horizontal spac<strong>in</strong>g with 10-30 vertical layers. They <strong>in</strong>clude ice shelves, basal slid<strong>in</strong>g <strong>and</strong>visco-elastic bedrock adjustment <strong>and</strong> need bedrock elevation <strong>and</strong> surface mass balance as ma<strong>in</strong><strong>in</strong>puts. They calculate <strong>the</strong> three-dimensional velocity field, <strong>the</strong> distribution of ice thickness, <strong>the</strong>temperature distribution <strong>in</strong>side <strong>the</strong> ice, <strong>and</strong> <strong>the</strong> spatial extent of <strong>the</strong> ice. Glacial cycle simulationsrequire time-dependent boundary conditions (surface mass balance, surface temperature, <strong>and</strong> sealevel to model ground<strong>in</strong>g-l<strong>in</strong>e changes) derived from sediment <strong>and</strong> ice core records. The resultsare constra<strong>in</strong>ed by geomorphological <strong>and</strong> glacial-geological data of past ice sheet st<strong>and</strong>s. Recently,such ice sheet models are coupled to models of <strong>the</strong> o<strong>the</strong>r components of <strong>the</strong> climate systemto <strong>in</strong>vestigate <strong>the</strong> <strong>in</strong>teractions with oceans <strong>and</strong> atmospheres. 3-D ice-sheet models are presentlyapplied to <strong>the</strong> Antarctic ice sheet (Figure 3.2.1), <strong>the</strong> Greenl<strong>and</strong> ice sheet, <strong>and</strong> <strong>the</strong> Quaternary icesheets of <strong>the</strong> nor<strong>the</strong>rn hemisphere cont<strong>in</strong>ents dur<strong>in</strong>g <strong>the</strong> ice ages (Marshall et al., 2002; Charbit etal., 2002; Huybrechts, 2002).Current ice-sheet simulations suggest, that <strong>the</strong> Greenl<strong>and</strong> ice sheet is close to balance, while<strong>the</strong> Antarctic ice sheet is still los<strong>in</strong>g mass, ma<strong>in</strong>ly due to <strong>in</strong>complete ground<strong>in</strong>g-l<strong>in</strong>e retreat of<strong>the</strong> West Antarctic ice sheet s<strong>in</strong>ce <strong>the</strong> Last Glacial Maximum (LGM; Huybrechts <strong>and</strong> Le Meur,1999). The long-term ice-dynamic response is estimated to be between –0.1 <strong>and</strong> 0.0 mm/year ofsea-level equivalent from <strong>the</strong> Greenl<strong>and</strong> ice sheet <strong>and</strong> between +0.1 <strong>and</strong> 0.5 mm/year from <strong>the</strong>Antarctic ice sheet. Model simulations forced by output from Atmosphere-Ocean General CirculationModel (AOGCM) simulations suggest that anthropogenic climate change could haveproduced an additional contribution of between –0.2 to 0.0 mm/year of sea-level from <strong>in</strong>creasedaccumulation <strong>in</strong> Antarctica over <strong>the</strong> last 100 years, <strong>and</strong> between 0.0 <strong>and</strong> 0.1 mm/year from Greenl<strong>and</strong>,from both <strong>in</strong>creased accumulation <strong>and</strong> ablation.Figure 3.2.1: Snapshots of Antarctica’s ice-sheet evolution dur<strong>in</strong>g <strong>the</strong> last glacial cycle obta<strong>in</strong>ed from acomprehensive 3-D ice-sheet model (s.l.e. = sea-level equivalent). The ice mass balance can be diagnosedfrom <strong>the</strong> ice-sheet response at <strong>the</strong> present time (Huybrechts, 2002).51


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>The quality of glacial cycle simulations depends on how good <strong>the</strong> past history of environmentalconditions can be described <strong>and</strong> on how good <strong>the</strong> models deal with certa<strong>in</strong> aspects of ice dynamics.Large uncerta<strong>in</strong>ties are associated with past patterns of climatic change beyond <strong>the</strong> <strong>in</strong>formationwhich can be derived from ice cores. Increased use of output from General CirculationModels is needed to improve <strong>the</strong> prescription of surface mass balance. A critical po<strong>in</strong>t <strong>in</strong> <strong>the</strong>semodels is <strong>the</strong> ground<strong>in</strong>g l<strong>in</strong>e. At this transition zone, <strong>the</strong>re is a fundamental change <strong>in</strong> <strong>the</strong> dynamicflow regime. This is of relevance for <strong>the</strong> Antarctic ice sheet <strong>and</strong> for parts of <strong>the</strong> Quaternary icesheets border<strong>in</strong>g <strong>the</strong> Arctic Ocean. Ano<strong>the</strong>r weakness is <strong>the</strong> <strong>in</strong>corporation of concentrated flow<strong>in</strong> outlet glaciers <strong>and</strong> ice streams, which are responsible for most of <strong>the</strong> discharge <strong>in</strong>to <strong>the</strong> ocean.These features often have dimensions at <strong>the</strong> sub-grid scale <strong>and</strong>, <strong>the</strong>refore cannot be explicitlyconsidered. Also, <strong>the</strong> approximations on which both grounded ice sheet <strong>and</strong> ice shelf models arebased may break down <strong>in</strong> <strong>the</strong>se areas because of <strong>the</strong> large stress gradients. One step ahead is tonest higher-order local models, which take <strong>in</strong>to account <strong>the</strong> full stress balance equations, <strong>in</strong>tolarge-scale ice sheet models, with <strong>the</strong> use of multi scale techniques.Contribution from glaciers <strong>and</strong> ice capsBecause of <strong>the</strong>ir higher accumulation <strong>and</strong> ablation rates, glaciers <strong>and</strong> ice caps have shorter turnovertimes <strong>and</strong> are more sensitive to climate change than <strong>the</strong> polar ice sheets. To evaluate <strong>the</strong>ircontribution to global sea level change, we need to know <strong>the</strong> rate of change of total glacier mass.Unfortunately, sufficient measurements only exist for a small m<strong>in</strong>ority of <strong>the</strong> world’s 100000 glaciers.Therefore global algorithms are developed (Gregory <strong>and</strong> Oerlemans, 1998), <strong>in</strong>corporat<strong>in</strong>garea-wise glacier distribution, mass-balance sensitivity, <strong>and</strong> dynamic response, but <strong>the</strong> databasefor such studies from glacier <strong>in</strong>ventories is still <strong>in</strong>complete <strong>in</strong> many of <strong>the</strong> ma<strong>in</strong> glaciated mounta<strong>in</strong>areas (Alaska, Patagonia, Central Asia). There is consensus that <strong>the</strong> global glacier volumesubstantially decreased s<strong>in</strong>ce <strong>the</strong> high st<strong>and</strong> of <strong>the</strong> middle 19 th century. Current estimates place<strong>the</strong> average sea-level contribution from glaciers <strong>and</strong> ice caps dur<strong>in</strong>g <strong>the</strong> 20 th century to between0.2 <strong>and</strong> 0.4 mm/year (Church et al., 2001).Expla<strong>in</strong><strong>in</strong>g mean sea level rise over <strong>the</strong> past centuryThe primary source of <strong>in</strong>formation on secular trends <strong>in</strong> global sea level dur<strong>in</strong>g <strong>the</strong> past centuryare tide gauge observations. Tide gauges measure <strong>the</strong> level of <strong>the</strong> sea surface relative to that of <strong>the</strong>l<strong>and</strong>, <strong>and</strong> <strong>the</strong>refore need to be corrected for vertical l<strong>and</strong> displacements. The most important contributorto such changes is postglacial rebound, <strong>and</strong> its corrections are usually obta<strong>in</strong>ed from geophysicalrebound modell<strong>in</strong>g constra<strong>in</strong>ed by geological observations to estimate <strong>Earth</strong> responsefunctions or ice-load parameters (Peltier <strong>and</strong> Jiang, 1997; Lambeck et al., 1998). O<strong>the</strong>r corrections<strong>in</strong>clude <strong>the</strong> <strong>Earth</strong>’s elastic <strong>and</strong> gravitational response to <strong>the</strong> changed water load<strong>in</strong>g whenmass is added <strong>in</strong>to <strong>the</strong> oceans. This has <strong>the</strong> effect of reduc<strong>in</strong>g <strong>the</strong> observed rise at cont<strong>in</strong>entalmarg<strong>in</strong> sites from ongo<strong>in</strong>g mass contributions by as much as 30%. On <strong>the</strong> basis of <strong>the</strong> publishedliterature, it can be concluded, that <strong>the</strong> average rate of sea-level rise dur<strong>in</strong>g <strong>the</strong> 20 th century wasbetween 1.0 mm/year <strong>and</strong> 2.0 mm/year, with a central value of 1.5 mm/ year. Tide gauge data giveno evidence for any acceleration of sea level rise dur<strong>in</strong>g this period (Church et al., 2001).In contrast to <strong>the</strong> sparse network of coastal <strong>and</strong> mid-ocean isl<strong>and</strong> tide gauges, measurements ofsea level by satellite radar altimetry provides near global <strong>and</strong> homogenous coverage of <strong>the</strong> world’soceans, <strong>the</strong>reby allow<strong>in</strong>g <strong>the</strong> determ<strong>in</strong>ation of regional sea-level change (Sect. 2.2). While <strong>the</strong> resultsmust also be corrected for isostatic adjustment, satellite altimetry avoids o<strong>the</strong>r vertical l<strong>and</strong>movements (tectonic motions, subsidence) that affect local determ<strong>in</strong>ations of sea-level trendsmeasured by tide gauges. To date, <strong>the</strong> TOPEX/Poseidon satellite-altimeter mission (cf. Chapter 2),52


3.2 Ice mass balance <strong>and</strong> sea levelwith its (near) global coverage from 66°N to 66°S (almost all of <strong>the</strong> ice-free oceans) from late 1992to <strong>the</strong> present, has proved to be of highest value for direct estimates of sea-level change.The TOPEX/Poseidon data suggest a rate of sea-level rise dur<strong>in</strong>g <strong>the</strong> 1990s greater than <strong>the</strong> meanrate of rise derived from <strong>the</strong> tide gauges. It is not yet clear whe<strong>the</strong>r this is <strong>the</strong> result of a recent acceleration,or of systematic differences between <strong>the</strong> two measurement techniques, or of <strong>the</strong> shortnessof <strong>the</strong> record (6 years) (Cazenave et al., 1999).In order to have confidence <strong>in</strong> our ability to predict future changes <strong>in</strong> sea level, we need to confirmthat we are able to expla<strong>in</strong> <strong>the</strong> current rate of change (Figure 3.2.2). Accord<strong>in</strong>g to <strong>the</strong> ThirdAssessment Report (TAR) of <strong>the</strong> IntergovernmentalPanel on Climate Change (IPCC;Church et al., 2001), <strong>the</strong> contributions fromall components of sea-level rise dur<strong>in</strong>g <strong>the</strong>20 th century can be estimated to range from–0.8 mm/year to 2.2 mm/year, with a centralvalue of 0.7 mm/year. The upper boundis close to <strong>the</strong> observational upper bound(2.0 mm/year), but <strong>the</strong> central value is lessthan <strong>the</strong> observational lower bound (1.0mm/year), <strong>and</strong> <strong>the</strong> lower bound is negativei.e. <strong>the</strong> sum of components is biased lowcompared to <strong>the</strong> observational estimates. Inthis assessment, <strong>the</strong> largest uncerta<strong>in</strong>ty (by afactor of more than two) is <strong>in</strong> <strong>the</strong> terrestrialstorage terms, especially from <strong>the</strong> effect ofdam build<strong>in</strong>g. In contrast to earlier assessments,<strong>the</strong> contribution <strong>and</strong> range fromcont<strong>in</strong>ental ice masses is smaller, but stillconsiderable (Figure 3.2.2).Figure 3.2.2: Ranges of uncerta<strong>in</strong>ty for <strong>the</strong> averagerate of sea level rise dur<strong>in</strong>g <strong>the</strong> 20 th century <strong>and</strong><strong>the</strong> estimated contributions from different processes(Church et al., 2001) Total sea level rise is <strong>the</strong> sum ofall contributions <strong>and</strong> uncerta<strong>in</strong>ties.Improv<strong>in</strong>g mass balance estimates with newspaceborne observationsThe upcom<strong>in</strong>g satellite missions are expected to greatly improve our knowledge of <strong>the</strong> state of <strong>the</strong>cont<strong>in</strong>ental cryosphere. For <strong>the</strong> issue of ice mass balance <strong>and</strong> global sea level <strong>the</strong>se improvementswill primarily come from new gravimetry <strong>and</strong> altimetry data.Structure of <strong>the</strong> polar gravity field <strong>and</strong> gravity field changesThe recent <strong>and</strong> upcom<strong>in</strong>g gravity field missions CHAMP, GRACE, <strong>and</strong> GOCE provide global gravityfield <strong>in</strong>formation with an extraord<strong>in</strong>ary spatial resolution, down to half-wavelengths of about 70km. For polar regions, <strong>the</strong> gravity field is an important source to improve <strong>the</strong> knowledge on both<strong>the</strong> solid <strong>Earth</strong> <strong>and</strong> <strong>the</strong> ice sheets. Fur<strong>the</strong>rmore, <strong>the</strong> recovery of gravity field changes as outl<strong>in</strong>ed <strong>in</strong>chapter 2.1 allows an <strong>in</strong>dependent monitor<strong>in</strong>g of mass changes on spatial scales down to 500 km.These mass changes are a comb<strong>in</strong>ed effect of <strong>the</strong> ice sheets <strong>the</strong>mselves <strong>and</strong> of <strong>the</strong> visco-elasticresponse of <strong>the</strong> solid <strong>Earth</strong> due to recent <strong>and</strong> historical ice load changes (Chapter 3.3). Model pre-53


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>dictions confirm that <strong>the</strong> new satellite gravity data with <strong>the</strong>ir unprecedented accuracy (cf. Chapter2) allow to validate <strong>and</strong> to improve <strong>the</strong> presently exist<strong>in</strong>g models (Figure 3.2.3). For example,with a comb<strong>in</strong>ation of GRACE, ICESat/CryoSat <strong>and</strong> ground-based GPS measurements <strong>the</strong> compet<strong>in</strong>geffects of postglacial rebound, ice mass balance trends, <strong>and</strong> firn density changes can beseparated (Wahr et al., 2000; Velicogna <strong>and</strong> Wahr, 2003).At <strong>the</strong> same time, GRACE data are expected to greatly improve our knowledge on postglacialrebound elsewhere on <strong>the</strong> globe. This is important e.g. to correct records of <strong>the</strong> relative sea levelat <strong>the</strong> coastIce surface elevations <strong>and</strong> elevation changesThe ma<strong>in</strong> product of <strong>the</strong> CryoSat <strong>and</strong> ICESat altimeter missions (cf. Chapter 2) will be time seriesof seasonal <strong>and</strong> <strong>in</strong>terannual variations <strong>in</strong> surface elevation of <strong>in</strong>l<strong>and</strong> ice <strong>and</strong> ice shelves. This willgreatly improve exist<strong>in</strong>g elevation models <strong>and</strong> give unprecedented <strong>in</strong>formation of its variability.High precision requires that <strong>the</strong> accuracy of <strong>the</strong> ice surface retrieval is known. Therefore <strong>the</strong> <strong>in</strong>fluenceof <strong>the</strong> physical properties of <strong>the</strong> snow cover such as moisture content, density, crystal size,<strong>and</strong> roughness on <strong>the</strong> retrieved signal must be known. This requires <strong>the</strong> performance of <strong>in</strong>-situ orground-truth measurements <strong>and</strong> elevation retrieval validation <strong>in</strong> <strong>the</strong> field.Figure 3.2.3: Calculations with a coupled ice-sheet/ visco-elastic Greenl<strong>and</strong> ice sheet model over <strong>the</strong> lastglacial cycle <strong>in</strong>dicate that <strong>the</strong> gravity anomaly trend is dom<strong>in</strong>ated by postglacial rebound (represented by<strong>the</strong> ‘viscous effect’), which complicates efforts to extract <strong>the</strong> contribution from <strong>the</strong> current ice mass change(represented by <strong>the</strong> ‘elastic effect’ from <strong>the</strong> mean ice thickness background evolution over <strong>the</strong> last 200years) from <strong>the</strong> total response (Le Meur <strong>and</strong> Huybrechts, 2001).54


3.2 Ice mass balance <strong>and</strong> sea levelHowever, <strong>the</strong> ma<strong>in</strong> obstacle to fur<strong>the</strong>r geodetic constra<strong>in</strong>t is <strong>the</strong> unknown snow accumulationfluctuation. Its spatial covariance is not well known, <strong>and</strong> this bears directly on <strong>the</strong> century-scaleimbalance uncerta<strong>in</strong>ty (W<strong>in</strong>gham et al., 1998). It is important that recent statistics of accumulationfluctuation are obta<strong>in</strong>ed from extensive shallow cor<strong>in</strong>g of <strong>the</strong> ice sheets. In addition, <strong>the</strong> timeseries of variations <strong>in</strong> ice elevations <strong>the</strong>mselves will provide unique data for validation of iceaccumulation rates from atmospheric GCM model results. The longer <strong>the</strong> altimetry record, <strong>the</strong>clearer short-term variability <strong>in</strong> ice accumulation <strong>and</strong> surface melt<strong>in</strong>g can be separated from longtermtrends <strong>in</strong> net balance.O<strong>the</strong>r problems <strong>in</strong>volved to derive ice mass changes from altimetry records <strong>in</strong>clude <strong>the</strong> fact that<strong>the</strong> surface elevation change <strong>in</strong>cludes a signal from both isostatic rebound (Chapter 3.3) <strong>and</strong> froma variable rate of compaction of snow. Modell<strong>in</strong>g efforts are required to separate <strong>the</strong>se processes.As mentioned above, this can be achieved by a comb<strong>in</strong>ation of spaceborne gravity, altimetry, <strong>and</strong>GPS measurements (Velicogna <strong>and</strong> Wahr, 2003).Altimetry data are also urgently needed to determ<strong>in</strong>e surface elevation of glaciers. Toge<strong>the</strong>r withaerial photography, high-resolution satellite visible <strong>and</strong> <strong>in</strong>frared imagery e.g. from ASTER <strong>and</strong>L<strong>and</strong>sat, this will supplement glacier <strong>in</strong>ventory data to determ<strong>in</strong>e <strong>the</strong> distribution of crucial glacierparameters such as elevation, area, <strong>and</strong> area-altitude relations, so that mass balance, glacierdynamics <strong>and</strong> runoff/sea-level rise models can be more realistically framed.Surface velocity fieldThe <strong>in</strong>terferometric analysis of Syn<strong>the</strong>tic Aperture Radar (InSAR) data provides a tool for mapp<strong>in</strong>g<strong>the</strong> ice surface velocity field from space (Figure 3.2.4). A comparison of <strong>the</strong>se velocitieswith modelled balance velocities (Figure 3.2.5) gives valuable <strong>in</strong>formation about <strong>the</strong> presentmass balance status of <strong>the</strong> ice sheets.Fur<strong>the</strong>rmore, <strong>the</strong> ground<strong>in</strong>g l<strong>in</strong>e as <strong>the</strong> boundary between <strong>the</strong> (grounded) ice sheet <strong>and</strong> <strong>the</strong> (float<strong>in</strong>g)ice shelves can be mapped accurately us<strong>in</strong>g InSAR data <strong>and</strong> regard<strong>in</strong>g <strong>the</strong> vertical tidal displacementof ice shelves. With <strong>the</strong> obta<strong>in</strong>ed velocities across <strong>the</strong> ground<strong>in</strong>g l<strong>in</strong>e <strong>and</strong> additional icethickness <strong>in</strong>formation <strong>the</strong> mass output of <strong>the</strong> ice sheet can be <strong>in</strong>ferred. Any changes of <strong>the</strong> locationof <strong>the</strong> ground<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>dicate changes of ice thickness <strong>and</strong> sea level, respectively, which arekey quantities <strong>in</strong> mass balance studies.Airborne <strong>and</strong> surface observations for complementary datasetsAdditional data are needed <strong>in</strong> order to make extensive use of <strong>the</strong> new satellite data for <strong>the</strong> improvementof our knowledge on sub-ice, solid-<strong>Earth</strong> mass anomalies <strong>and</strong> mass changes of polarice sheets.Radio echo sound<strong>in</strong>g (RES) provides <strong>in</strong>formation on <strong>the</strong> sub-glacial bedrock topography, whichforms an important boundary condition for ice sheet modell<strong>in</strong>g.Spatial <strong>and</strong> temporal features of <strong>the</strong> accumulation pattern can be obta<strong>in</strong>ed by RES (structures of<strong>in</strong>ternal layers) <strong>in</strong> comb<strong>in</strong>ation with shallow ice cor<strong>in</strong>g. This is important for <strong>the</strong> estimation of <strong>the</strong>accumulation signal <strong>and</strong> its variance/covariance both for extract<strong>in</strong>g this signal from different data(altimetry, gravimetry) <strong>and</strong> for modell<strong>in</strong>g.Repeated GPS observations at ice-free locations like nunataks (ice-free rock outcrops) allow <strong>the</strong>determ<strong>in</strong>ation of glacio-isostatic crustal deformations. With this <strong>in</strong>formation possible gravityfield changes can be separated <strong>in</strong>to solid <strong>Earth</strong> <strong>and</strong> ice sheet contributions. Static <strong>and</strong> k<strong>in</strong>ematic55


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 3.2.4: Interferometric SAR analysis gives a detailed picture on horizontal ice velocities (region ofSchirmacher Oasis, central Dronn<strong>in</strong>g Maud L<strong>and</strong>) (Bäßler & Dietrich, 2002)Figure 3.2.5: Balance velocities <strong>in</strong> Dronn<strong>in</strong>g Maud L<strong>and</strong> / Antarctica (Huybrechts et al., 2000)56


3.2 Ice mass balance <strong>and</strong> sea levelGPS observations at <strong>the</strong> ice surface providevaluable ground truth data for surface height,height changes <strong>and</strong> <strong>the</strong> velocity field (Figure3.2.6).F<strong>in</strong>ally, airborne <strong>and</strong> surface gravimetry yieldsimportant datasets not only for validation, butalso for <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> spatial resolution of <strong>the</strong>satellite gravity <strong>in</strong>formation to improve <strong>the</strong>knowledge on <strong>the</strong> underly<strong>in</strong>g <strong>Earth</strong> crust.Role of ice-sheet modell<strong>in</strong>gA major benefit from <strong>the</strong> new satellite missionswill be greatly improved data sets forice-sheet model <strong>in</strong>put <strong>and</strong> model validation.Surface elevation is an important boundarycondition to derive <strong>the</strong> force balance <strong>and</strong> <strong>the</strong>Figure 3.2.6: Set-up of GPS <strong>and</strong> a corner reflectoras a ground control for ERS-1/2 SAR <strong>in</strong>terferometry(central Dronn<strong>in</strong>g Maud L<strong>and</strong>, Wohlthat <strong>Mass</strong>if,photograph: J. Perlt)distribution of stress <strong>and</strong> velocities with depth <strong>and</strong> is fur<strong>the</strong>rmore required to determ<strong>in</strong>e <strong>the</strong> bedrockelevation from measured ice thickness. Toge<strong>the</strong>r with surface velocities <strong>and</strong> <strong>the</strong>ir directionsderived from syn<strong>the</strong>tic aperture radar <strong>in</strong>terferometry (ERS1/2, RADARSAT, <strong>and</strong> EnviSat), thisconstitutes a complete set of surface boundary conditions to study <strong>the</strong> dynamics of ice flow. At<strong>the</strong> same time, such data yield ice fluxes. Comb<strong>in</strong>ed with accumulation <strong>and</strong> ablation observations,it allows to reduce uncerta<strong>in</strong>ties of estimates of <strong>the</strong> mass imbalance of <strong>in</strong>dividual dra<strong>in</strong>age bas<strong>in</strong>sfrom todays about 10-15% to probably below 5%.The role of large-scale numerical ice-sheet models to help with <strong>the</strong> <strong>in</strong>terpretation of satellite observationsis twofold. First, it provides an <strong>in</strong>dependent approach to determ<strong>in</strong>e <strong>the</strong> vertical componentfrom isostatic rebound, which is required to transform surface elevation changes <strong>in</strong>to icethickness changes, <strong>and</strong> to transform relative sea-level changes from tide gauges <strong>in</strong>to ocean levelchanges. Second, <strong>the</strong>y provide a glaciologically sound load<strong>in</strong>g history which <strong>in</strong> comb<strong>in</strong>ation withvisco-elastic <strong>Earth</strong> models can be used to simulate <strong>the</strong> gravitational effects of isostatic l<strong>and</strong> movementsto dist<strong>in</strong>guish <strong>the</strong>m from ice mass changes.Improved modell<strong>in</strong>g of <strong>the</strong> ice sheets dur<strong>in</strong>g <strong>the</strong> glacial cycles, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> improvedboundary conditions, will also lead to improved simulations of <strong>the</strong> current evolution of ice sheets.But above all, models are necessary tools to <strong>in</strong>vestigate <strong>and</strong> separate <strong>the</strong> effects of various processes<strong>and</strong> are irreplaceable to make predictions <strong>in</strong>to <strong>the</strong> future.Global sea-level riseSatellite altimetry over oceans can be used to generate improved time series of sea-level changesfor different regions as well as for <strong>the</strong> global mean. Long-term tide gauge records may also be <strong>in</strong>terpreted<strong>in</strong> terms of global sea-level change, provided <strong>the</strong>y are corrected for vertical crustal uplift(which could be obta<strong>in</strong>ed by GPS). Altimetry <strong>and</strong> tide gauge measurements are to a great extentcomplementary: Tide gauges cover a long time period (<strong>in</strong> <strong>the</strong> order of 100 years), but are restrictedto coastal areas. Altimetry data cover a shorter time period, but large parts of <strong>the</strong> world’socean. Therefore, <strong>the</strong> comb<strong>in</strong>ation of both datasets will significantly improve our knowledge onsea-level change <strong>and</strong> its temporal <strong>and</strong> spatial behaviour (cf. Chapter 3.1).57


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Integrated observations of mass balance, gravity,<strong>and</strong> sea level changeThe subject of ice mass balance <strong>and</strong> sea level represents a complicated ice-ocean-solid <strong>Earth</strong> <strong>in</strong>teractionwith<strong>in</strong> <strong>the</strong> <strong>Earth</strong> system. Therefore, it is closely related to o<strong>the</strong>r discipl<strong>in</strong>es, <strong>in</strong> particularto oceanography, geophysics, <strong>and</strong> geodesy.Ice melt<strong>in</strong>g <strong>and</strong> accumulation represent mass transfers between ocean <strong>and</strong> ice sheets (resp. glaciers).Due to <strong>the</strong> change of <strong>the</strong> gravity potential caused by <strong>the</strong>se mass redistributions <strong>the</strong> result<strong>in</strong>gsea-level change is not globally uniform (see sea-level equation A 3.2 <strong>in</strong> Annex A3). In addition,<strong>the</strong> solid <strong>Earth</strong> response on chang<strong>in</strong>g loads (generated by both ice <strong>and</strong> ocean mass changes) results<strong>in</strong> vertical crustal deformations. Visco-elastic <strong>Earth</strong> models (cf. Chapter 3.3) <strong>and</strong> ice loadhistory models – <strong>in</strong> comb<strong>in</strong>ation with recent observations on gravity field changes <strong>and</strong> verticalcrustal deformations – have to be merged toge<strong>the</strong>r to improve our knowledge about both, mantleviscosity, <strong>and</strong> about ice load history (Figure 8 ??).These mass re-distributions with<strong>in</strong> <strong>the</strong> system <strong>Earth</strong> <strong>in</strong>troduce not only a time-dependency <strong>in</strong> <strong>the</strong><strong>Earth</strong>’s gravity field <strong>in</strong> general, but also – related to <strong>the</strong> harmonics of degree two – <strong>in</strong> <strong>the</strong> <strong>Earth</strong>’s<strong>in</strong>ertia tensor. Consequences of <strong>the</strong> latter are observed <strong>in</strong> <strong>the</strong> planet’s rotation, both as an acceleration<strong>in</strong> its rotation rate <strong>and</strong> as a shift <strong>in</strong> <strong>the</strong> position of <strong>the</strong> rotation axis, which is recently observedby space geodetic methods (GPS, SLR, VLBI) with a high precision. The secular change of <strong>the</strong>degree two zonal term of <strong>the</strong> gravity field (<strong>the</strong> planet’s dynamic flatten<strong>in</strong>g) is largely dom<strong>in</strong>atedby postglacial rebound. <strong>Mass</strong> shifts with<strong>in</strong> <strong>and</strong> on <strong>the</strong> <strong>Earth</strong> depend on postglacial rebound frompast ice sheet geometries, on <strong>the</strong> <strong>Earth</strong>’s rheology, on ocean circulation, <strong>and</strong> on recent, past <strong>and</strong>present rates of melt<strong>in</strong>g of <strong>the</strong> residual ice sheets. Hence, unique estimates of recent mass shiftsfrom ice sheets <strong>and</strong> glaciers cannot be <strong>in</strong>ferred from such observations alone. However, constra<strong>in</strong>tson <strong>the</strong> present rate of change of cont<strong>in</strong>ental ice masses can be obta<strong>in</strong>ed through a comb<strong>in</strong>ationof <strong>the</strong> rotational observations with geological <strong>and</strong> tide-gauge estimates of sea-level change.Therefore - also with<strong>in</strong> this context - <strong>the</strong> polar ice sheets play a key role for <strong>the</strong> underst<strong>and</strong><strong>in</strong>g <strong>and</strong><strong>in</strong>terpretation of <strong>Earth</strong> rotation, polar motion <strong>and</strong> secular gravity field changes.Figure 3.2.7: Long-term tidal records need to be corrected for vertical l<strong>and</strong> movement due to postglacialrebound. A history of ice load<strong>in</strong>g <strong>and</strong> unload<strong>in</strong>g to determ<strong>in</strong>e <strong>the</strong> crust’s response can be provided by coupledice-sheet/bedrock/climate modell<strong>in</strong>g. This example shows ice sheet elevation at <strong>the</strong> Last Glacial Maximumfrom a time-dependent simulation over <strong>the</strong> last glacial cycle (Zweck <strong>and</strong> Huybrechts, 2003)58


3.2 Ice mass balance <strong>and</strong> sea levelAno<strong>the</strong>r l<strong>in</strong>k between ice-sheet reconstruction <strong>and</strong> global sea level change concerns <strong>the</strong> correctionof long-term tide gauge records for vertical l<strong>and</strong> movements. The l<strong>and</strong> displacement may beof two types: that caused by active tectonics <strong>and</strong> that caused by postglacial rebound. On a globalscale, <strong>the</strong> dom<strong>in</strong>ant process is <strong>the</strong> ongo<strong>in</strong>g rebound follow<strong>in</strong>g <strong>the</strong> retreat of <strong>the</strong> last Pleistocene icesheets. This retarded adjustment of <strong>the</strong> <strong>Earth</strong>‘s surface to <strong>the</strong> unload<strong>in</strong>g is controlled by both <strong>the</strong>viscosity distribution <strong>in</strong> <strong>the</strong> <strong>Earth</strong>‘s mantle <strong>and</strong> by <strong>the</strong> space-time distribution of <strong>the</strong> Pleistoceneice sheets. Whereas <strong>the</strong> extent of former ice sheets can often be <strong>in</strong>ferred from geomorphological,stratigraphic, or biological <strong>in</strong>dicators, <strong>the</strong> past ice thicknesses have only <strong>in</strong> a few <strong>in</strong>stances beenmeasured directly, <strong>and</strong> <strong>the</strong>refore, must be estimated by modell<strong>in</strong>g. This can be done by trial-<strong>and</strong>errortechniques, <strong>in</strong> which a load<strong>in</strong>g history is imposed that satisfies constra<strong>in</strong>ts on past relativesea level variations <strong>in</strong>ferred from e.g. raised beaches. The result<strong>in</strong>g ice sheet profiles are howeveroften not glaciologically consistent. Alternatively, <strong>the</strong> load<strong>in</strong>g history can also be derived fromforward modell<strong>in</strong>g of <strong>the</strong> ice sheet evolution <strong>in</strong> coupled 3-D ice-sheet/lithosphere/climate models(Figure 3.2.7; cf. Section 3.3).Improvements of current knowledgeThe exploitation of future satellite results is expected to be an important step forward to answer<strong>the</strong> basic question of <strong>the</strong> mass balance of <strong>the</strong> ice sheets <strong>and</strong> <strong>the</strong>ir current contribution to global sealevels. Expected results for <strong>the</strong> com<strong>in</strong>g 5 years <strong>in</strong>clude:• A significantly improved gravity field for <strong>the</strong> polar regions, comb<strong>in</strong>ed from satellite <strong>and</strong>airborne data, to study mass anomalies <strong>in</strong> <strong>the</strong>se regions• A greatly improved elevation model over all of Greenl<strong>and</strong> <strong>and</strong> most of Antarctica• An improved set of <strong>in</strong>put <strong>and</strong> validation data for numerical modell<strong>in</strong>g of ice flow• Much stronger constra<strong>in</strong>ts on <strong>the</strong> current volume/mass change of <strong>the</strong> Antarctic <strong>and</strong>Greenl<strong>and</strong> ice sheets, <strong>in</strong> particular by comb<strong>in</strong><strong>in</strong>g altimetry data with gravimetric data <strong>and</strong><strong>the</strong> <strong>in</strong>tegrated use of numerical models• Detailed knowledge on recent vertical crustal deformation due to <strong>the</strong> viscoelastic responseof <strong>the</strong> <strong>Earth</strong>’s crust on historical <strong>and</strong> recent ice mass changes• New <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> global sea-level change, its spatial <strong>and</strong> temporal pattern, <strong>and</strong>signifycantly improved estimates for <strong>the</strong> contribut<strong>in</strong>g processesIt is however equally important that measurements be cont<strong>in</strong>ued for at least 15 years to establish<strong>the</strong> climate sensitivities of <strong>the</strong> mass balance <strong>and</strong> decadal-scale trends. In view of <strong>the</strong> average lifetimeof 3-5 years of forthcom<strong>in</strong>g missions, this implies a follow-up beyond <strong>the</strong> current generationof planned missions.ReferencesBäßler, M. <strong>and</strong> Dietrich, R (2002): Investigations of Ice Dynamics at <strong>the</strong> Ground<strong>in</strong>g Zone of anAntarctic Ice Shelf Utiliz<strong>in</strong>g SAR Interferometry. Presentation at <strong>the</strong> Symposium “50 YearsGeodetic Science at <strong>the</strong> Ohio State University”, Columbus/Ohio, 1-5 October 2002.Cazenave, A., K. Dom<strong>in</strong>h, L. Soudrar<strong>in</strong>, F. Ponchaut, <strong>and</strong> C. Le Provost (1999). Sea level changesfrom TOPEX-POSEIDON altimetry <strong>and</strong> tide gauges <strong>and</strong> vertical crust motions from DORIS.Geophysical Research Letters, 26, 2077-2080.Charbit, S., Ritz, C., <strong>and</strong> Ramste<strong>in</strong>, G. (2002). Simulations of nor<strong>the</strong>rn hemisphere ice-sheet59


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>retreat: sensitivity to physical mechanisms <strong>in</strong>volved dur<strong>in</strong>g <strong>the</strong> last deglaciation. QuaternaryScience Reviews 21, 243-265.Church, J.A., J.M. Gregory, Ph. Huybrechts, M. Kuhn, C. Lambeck, M.T.Nhuan, D. Q<strong>in</strong>, P.L.Woodworth (2001). Changes <strong>in</strong> sea level. <strong>in</strong>: J.T Houghton, Y. D<strong>in</strong>g, D.J. Griggs, M. Noguer,P.J. Van der L<strong>in</strong>den, X. Dai, K. Maskell, <strong>and</strong> C.A. Johnson (eds.): Climate Change 2001: TheScientific Basis: Contribution of Work<strong>in</strong>g Group I to <strong>the</strong> Third Assessment Report of <strong>the</strong>Intergovernmental Panel on Climate Change, Cambridge University Press (Cambridge, NewYork), 639-694.Gregory, J. M., <strong>and</strong> Oerlemans, J. (1998). Simulated future sea-level rise due to glacier melt basedon regionally <strong>and</strong> seasonally resolved temperature changes. Nature 391, 474-476.Huybrechts, P., <strong>and</strong> Le Meur, E. (1999). Predicted present-day evolution patterns of ice thickness<strong>and</strong> bedrock elevation over Greenl<strong>and</strong> <strong>and</strong> Antarctica. Polar Research 18, 299-308.Huybrechts, Ph. (2002). Sea-level changes at <strong>the</strong> LGM from ice-dynamic reconstructions of <strong>the</strong>Greenl<strong>and</strong> <strong>and</strong> Antarctic ice sheets dur<strong>in</strong>g <strong>the</strong> glacial cycles. Quaternary Science Reviews,21 (1-3), 203-231.Huybrechts, Ph., D. Ste<strong>in</strong>hage, F. Wilhelms, <strong>and</strong> J.L. Bamber (2000): Balance velocities <strong>and</strong>measured properties of <strong>the</strong> Antarctic ice sheet from a new compilation of gridded data formodell<strong>in</strong>g. Annals of Glaciology 30, 52-60.Krabill, W. B., Abdalati, W., Frederick, E., Manizade, S., Mart<strong>in</strong>, C., Sonntag, J., Swift, R.,Thomas, R. H., Wright, W., <strong>and</strong> Yungel, J. (2000). Greenl<strong>and</strong> ice sheet: high-elevationbalance <strong>and</strong> peripheral th<strong>in</strong>n<strong>in</strong>g. Science 289, 428-430.Lambeck, K., Smi<strong>the</strong>r, C., <strong>and</strong> Johnston, P. J. (1998). Sea-level change, glacial rebound <strong>and</strong> mantleviscosity for nor<strong>the</strong>rn Europe. Geophysical Journal International 134, 102-144.Le Meur, E., <strong>and</strong> Ph. Huybrechts (2001). A model computation of <strong>the</strong> temporal changes of surfacegravity <strong>and</strong> geoidal signal <strong>in</strong>duced by <strong>the</strong> evolv<strong>in</strong>g Greenl<strong>and</strong> ice sheet. Geophysical JournalInternational, 145, 835-849.Marshall, S. J., James, T. S., <strong>and</strong> Clarke, G. K. C. (2002). North American ice sheet reconstructionsat <strong>the</strong> Last Glacial Maximum. Quaternary Science Reviews 21, 175-192.Peltier, W. R., <strong>and</strong> X., Jiang (1997). Mantle viscosity, glacial isostatic adjustment <strong>and</strong> <strong>the</strong> eustaticlevel of <strong>the</strong> sea. Surveys <strong>in</strong> Gephysics, 18, 239-277.Shepherd, A., W<strong>in</strong>gham, D. J., <strong>and</strong> Mansley, J. A. D. (2002). Inl<strong>and</strong> th<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Amundsen Seasector, West Antarctica. Geophysical Research Letters 29, doi:10.1029/2001GL014183.Thomas, R. H., Csatho, B. M., Davis, C. H., Kim, C., Krabill, W. B., Manizade, S., McConnell, J.R., <strong>and</strong> Sonntag, J. (2001). <strong>Mass</strong> balance of higher-elevation parts of <strong>the</strong> Greenl<strong>and</strong> ice sheet.Journal of Geophysical Research 106 (D24), 33707-33716.Velicogna, I., <strong>and</strong> J. Wahr (2003). A method for separat<strong>in</strong>g Antarctic postglacial rebound <strong>and</strong> icemass balance us<strong>in</strong>g future ICESat Geoscience Laser Altimeter <strong>System</strong>, Gravity Recovery <strong>and</strong>Climate Experiment, <strong>and</strong> GPS satellite data. Journal of Geophysical Research 107 (B10),,2263, doi: 10.1029/2001JB000708.Wahr, J., W<strong>in</strong>gham, D. J., <strong>and</strong> Bentley, C. R. (2000). A method of comb<strong>in</strong><strong>in</strong>g ICESat <strong>and</strong> GRACEsatellite data to constra<strong>in</strong> Antarctic mass balance. Journal of Geophysical Research 105 (B7),16279-16294.W<strong>in</strong>gham, D. J., Ridout, A. J., Scharroo, R., Ar<strong>the</strong>rn, R. J., <strong>and</strong> Shum, C. K. (1998). Antarcticelevation change from 1992 to 1996. Science 282, 456-458.Zweck, C., <strong>and</strong> P. Huybrechts (2003): Modell<strong>in</strong>g <strong>the</strong> mar<strong>in</strong>e extent of nor<strong>the</strong>rn hemisphere icesheets dur<strong>in</strong>g <strong>the</strong> last glacial cycle, Annals of Glaciology 37, <strong>in</strong> press.60


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantleDynamics, structure <strong>and</strong> isostaticadjustment of <strong>the</strong> crust <strong>and</strong> mantle<strong>Mass</strong> anomalies at <strong>the</strong> <strong>Earth</strong>’s surface, <strong>in</strong> <strong>the</strong> crust <strong>and</strong> <strong>in</strong> <strong>the</strong> mantle areboth <strong>the</strong> cause <strong>and</strong> <strong>the</strong> result of various geodynamic processes such asglacial isostatic adjustment, plate tectonics or mantle convection. In comb<strong>in</strong>ationwith <strong>the</strong> new generation of seismic tomography <strong>and</strong> dynamictopography models high precision determ<strong>in</strong>ations of <strong>the</strong> <strong>in</strong>stantaneousgravity field may be used to constra<strong>in</strong> large <strong>and</strong> small scale mantle convectionmodels <strong>and</strong> <strong>the</strong> rheology of <strong>the</strong> <strong>Earth</strong>. New available data of <strong>the</strong>time vary<strong>in</strong>g gravity field may provide new constra<strong>in</strong>ts on isostatic adjustment,ice models <strong>and</strong> mantle viscosity. Time dependent mantle convectionor plate tectonic processes such as fast plumes, retreat<strong>in</strong>g subductionzones or detach<strong>in</strong>g lithospheric roots might produce gravity signals com<strong>in</strong>gclose to or exceed<strong>in</strong>g <strong>the</strong> resolution of <strong>the</strong> new GRACE data.Static, <strong>in</strong>stantaneous <strong>and</strong> temporally vary<strong>in</strong>ggravity fieldThe ma<strong>in</strong> parts of <strong>the</strong> <strong>Earth</strong>‘s mantle are assumed to behave as a highly viscous fluid on geologicaltime scales, overla<strong>in</strong> by a set of elastic or viscoelastic, mobile lithospheric plates. <strong>Mass</strong>anomalies associatedwith <strong>the</strong>rmal or compositionalheterogeneities orDYNAMICS OF THE EARTH’S CRUST AND MANTLEwith deflected boundariesbetween layers of differentdensity produce flowstructures <strong>and</strong> processesknown as mantle convection(<strong>in</strong>clud<strong>in</strong>g plumes,subduct<strong>in</strong>g lithosphericslabs <strong>and</strong> sublithosphericconvection), plate tectonicsor isostatic adjustment(Figure 3.3.1). Theprocesses associated withsuch mass anomalies maybe static, steady or timedependent.BENEFITS− The static <strong>and</strong> time variable gravity field models from CHAMP, GRACE<strong>and</strong> GOCE allow a much better <strong>and</strong> more detailed determ<strong>in</strong>ation of <strong>the</strong>mantle viscosity, one of <strong>the</strong> key parameters of <strong>the</strong> <strong>Earth</strong>’s <strong>in</strong>terior.− Crust <strong>and</strong> lithosphere modell<strong>in</strong>g will benefit from <strong>the</strong> homogeneity of <strong>the</strong>new gravity field models, without gaps or offsets at coasts or nationalborders.CHALLENGES− Mantle convection models have to be extended to shorter spatial scales.− The identification of <strong>the</strong> small effects from mantle plumes <strong>and</strong> subduct<strong>in</strong>gslabs <strong>in</strong> <strong>the</strong> GRACE signal is very challeng<strong>in</strong>g.− The comb<strong>in</strong>ation with <strong>the</strong> exist<strong>in</strong>g terrestrial gravity data sets will be very<strong>in</strong>formative, but laborious, too.61


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Examples for essentially steady processes <strong>in</strong>clude <strong>the</strong>rmally <strong>in</strong>duced mass anomalies associatedwith <strong>the</strong>rmal convection or cool<strong>in</strong>g oceanic plates, long term temporal variations of such processesoccur on time scales of 100 Ma or longer. Examples for static mass anomalies are compositionalor structural density variations with<strong>in</strong> <strong>the</strong> lithosphere, or deflected boundaries, such as <strong>the</strong>“isostatic topography” of <strong>the</strong> base of <strong>the</strong> crust (Moho) if kept <strong>in</strong> place by long-term lithosphericstresses. Strongly time-dependent processes may be associated with <strong>the</strong> transport or advectionof compositional or <strong>the</strong>rmal density anomalies, such as glacial isostatic adjustment, orogenicprocesses, or lithospheric subduction with retreat<strong>in</strong>g trenches or start<strong>in</strong>g plumes. Whe<strong>the</strong>r densityanomalies are <strong>in</strong> a static or time dependent mode strongly depends on <strong>the</strong> associated length scales(short wavelengths anomalies may be supported elastically) <strong>and</strong> <strong>the</strong> strength of <strong>the</strong> lithosphere.In any case, static structural density anomalies with<strong>in</strong> <strong>the</strong> lithosphere or crust are <strong>the</strong> result oftime-dependent geodynamic processes. Thus, expla<strong>in</strong><strong>in</strong>g structural mass anomalies also requiresknowledge of <strong>the</strong> underly<strong>in</strong>g geodynamic processes.All mass anomalies associated with static, steady state or time dependent processes produce <strong>in</strong>stantaneousgravity <strong>and</strong> geoid signals on various wavelengths, which may also vary with time. Ama<strong>in</strong> objective <strong>in</strong> solid <strong>Earth</strong> geophysics is to decompose <strong>the</strong> composite gravity or geoid signal<strong>in</strong>to its <strong>in</strong>dividual contributions <strong>and</strong> to assign specific geodynamic processes <strong>and</strong> density structuresto <strong>the</strong>m. While it is difficult or impossible to <strong>in</strong>vert for <strong>the</strong> sources of <strong>the</strong> <strong>in</strong>stantaneous geoidundulations without fur<strong>the</strong>r constra<strong>in</strong>ts, a new <strong>and</strong> <strong>in</strong>dependent data set will be provided by <strong>the</strong>temporal variation of <strong>the</strong> geoid field. Figure 3.3.1 shows schematically that <strong>the</strong> geoid undulations<strong>and</strong> <strong>the</strong>ir temporal derivatives may be spatially <strong>in</strong> phase or out of phase. If <strong>the</strong>se two geoid datasets – <strong>the</strong> <strong>in</strong>stantaneous geoid <strong>and</strong> its time variations – are complemented by fur<strong>the</strong>r data sets,such as seismic tomography <strong>and</strong> topography, new constra<strong>in</strong>ts upon dynamic processes, lithosphericstructures <strong>and</strong> rheology will be achieved.Figure 3.3.1: Sketch of geodynamic processes associated with mass movements generat<strong>in</strong>g steady state(N) <strong>and</strong> time variable ( N ) geoid anomalies. Not to scale62


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantleThe time-dependent geoid signal does not only conta<strong>in</strong> <strong>the</strong> contributions of different geodynamicprocesses, but also of mass anomalies <strong>and</strong> <strong>the</strong>ir movements associated with hydrological, oceanographic<strong>and</strong> glacial processes. Only by a comb<strong>in</strong>ed effort of analys<strong>in</strong>g <strong>the</strong> time dependent <strong>and</strong><strong>in</strong>stantaneous gravity data <strong>in</strong> <strong>the</strong> spatial <strong>and</strong> spectral space complemented by additional observations<strong>and</strong> modell<strong>in</strong>g efforts, a separation of <strong>the</strong> geoid signal <strong>in</strong>to its various contributions maybe possible <strong>and</strong> <strong>the</strong> solid <strong>Earth</strong> effects may be extracted. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, geodynamic modelsbased on seismic tomography, plate tectonic observations or glacial isostatic models can be usedto predict <strong>the</strong> <strong>in</strong>stantaneous geoid or gravity <strong>and</strong> its temporal variations provid<strong>in</strong>g corrections for<strong>the</strong> o<strong>the</strong>r discipl<strong>in</strong>es.Solid <strong>Earth</strong> mass anomalies, transport <strong>and</strong> <strong>the</strong><strong>in</strong>stantaneous gravity potentialGlobal mantle flowsMantle flows from seismic tomographyMantle flows control <strong>the</strong> <strong>Earth</strong>’s surface, plate tectonic movements, <strong>the</strong> gravity field <strong>and</strong> geoidas well as <strong>the</strong>ir time dependent variations. If we know <strong>the</strong> driv<strong>in</strong>g density anomalies with<strong>in</strong> <strong>the</strong><strong>Earth</strong>’s <strong>in</strong>terior <strong>and</strong> <strong>the</strong> gravity potential outside of <strong>the</strong> <strong>Earth</strong>, <strong>in</strong>ferences about rheological propertiescan be made <strong>and</strong> mantle flows may be determ<strong>in</strong>ed quantitatively. Whereas <strong>the</strong> gravity potentialis a key parameter for <strong>the</strong> dynamics of <strong>the</strong> <strong>Earth</strong>’s <strong>in</strong>terior, <strong>the</strong> relation between <strong>the</strong> densitydistribution <strong>and</strong> <strong>the</strong> gravity field is not unique <strong>and</strong> additional <strong>in</strong>formation, such as <strong>the</strong> seismic velocitystructure, is needed. Seismic tomography <strong>and</strong> <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> deflection of <strong>the</strong> <strong>in</strong>ternalboundaries provide supplementary <strong>in</strong>formation, which has improved drastically dur<strong>in</strong>g <strong>the</strong>last years. The new generation of tomographic models, such as those of Ritsema <strong>and</strong> van Heijst(2000) or Montelli et al. (2003), has a global resolution of at least 1500 km (Figure 3.3.2a). Regionaltomography models have been improved down to resolutions of 200 km or less <strong>and</strong> showdetailed structures, such as slabs <strong>and</strong> plumes with<strong>in</strong> <strong>the</strong> upper mantle or <strong>in</strong> <strong>the</strong> transition zone.This resolution is comparable to <strong>the</strong> high resolution to be obta<strong>in</strong>ed by <strong>the</strong> new satellite missionsCHAMP, GRACE <strong>and</strong> GOCE, <strong>and</strong> new ways of <strong>in</strong>terpretation must be found.Density-velocity relationA fundamental problem is <strong>the</strong> relation between <strong>the</strong> anomalous seismic velocity <strong>and</strong> <strong>the</strong> densityor temperature. While a constant factor has often been used <strong>in</strong> <strong>the</strong> past, m<strong>in</strong>eral physics providesimproved depth dependent constra<strong>in</strong>ts (e.g. Karato, 1993) <strong>and</strong> ref<strong>in</strong>ements of density structuresbased on seismic tomography have become possible. Alternatively, <strong>the</strong> density-velocity relationmay be <strong>in</strong>verted from gravity (e.g. Kaban <strong>and</strong> Schw<strong>in</strong>tzer, 2001), but <strong>the</strong> uncerta<strong>in</strong>ties of such<strong>in</strong>versions are large. In pr<strong>in</strong>ciple, higher quality tomography <strong>and</strong> geoid data comb<strong>in</strong>ed with constra<strong>in</strong>tsfrom m<strong>in</strong>eral physics may be used to separate <strong>the</strong> <strong>the</strong>rmal <strong>and</strong> compositional contributionsof density anomalies <strong>in</strong> <strong>the</strong> mantle.Dynamic topographyDensity anomalies produce spatial variations of buoyancy forces, which drive <strong>the</strong> flow <strong>in</strong> <strong>the</strong><strong>Earth</strong>’s mantle. These flows are associated with stresses, which produce deflections of <strong>in</strong>ternalor external boundaries, known as dynamic topography. In contrast, <strong>the</strong> isostatic topography is63


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 3.3.2: Examples of different observablesrelated by dynamic mantle flows. a) Seismicanomalies at a depth of 600 km from a seismictomography study by Ritsema <strong>and</strong> van Heijst(2000). b) Dynamic topography (roughly – 1.5to +1.5 km) estimated from subtract<strong>in</strong>g <strong>the</strong>isostatic topography from <strong>the</strong> total topography(Panasyuk <strong>and</strong> Hager, 2000b). c) Geoid undulationswith respect to <strong>the</strong> hydrostatic spheroid(Marquart, pers. comm). For dynamic processes<strong>the</strong> hydrostatic spheroid is a better referencethan <strong>the</strong> geodetic reference ellipsoid.<strong>the</strong> result isostatically compensated density anomalies not associated with mantle flow. The totalsurface topography is <strong>the</strong> sum of both. Dynamic topography is difficult to determ<strong>in</strong>e, becausedetailed knowledge of <strong>the</strong> lithospheric structure (e.g. Mooney et al., 1998) is needed as it controls<strong>the</strong> “isostatic topography”. Figure 3.3.2b shows an estimate of <strong>the</strong> global dynamic topography,but <strong>the</strong> uncerta<strong>in</strong>ties are large. Moreover, deflected boundaries also contribute to <strong>the</strong> geoidanomalies. Consequently, both <strong>the</strong> geoid undulation <strong>and</strong> <strong>the</strong> dynamic surface topography reflect<strong>the</strong> dynamic flow field <strong>and</strong> <strong>the</strong> flow properties, i.e. <strong>the</strong> viscosity of <strong>the</strong> mantle. In general, <strong>the</strong> relationbetween <strong>the</strong> geoid, dynamic topography <strong>and</strong> seismic anomalies is complicated, which is illustrated<strong>in</strong> Figure 3.3.2. While <strong>the</strong> subducted West Pacific slabs (blue region <strong>in</strong> <strong>the</strong> tomographicimage) correlate with <strong>the</strong> geoid <strong>and</strong> dynamic topography highs, <strong>the</strong> relation between <strong>the</strong>se quantities<strong>in</strong> o<strong>the</strong>r regions is probably superimposed by mantle dynamics <strong>and</strong> rheology. Thus, detaileddynamic modell<strong>in</strong>g is required to <strong>in</strong>terpret such signals.Modell<strong>in</strong>gSo far, long wavelength geoid anomalies (L = 2 – 12) have usually been expla<strong>in</strong>ed by global dynamicflow models assum<strong>in</strong>g radially dependent viscosity (see Appendix A4 for <strong>the</strong> ma<strong>the</strong>maticalformulation of this problem). Tak<strong>in</strong>g reasonable spatial distributions of subducted slabs orobserved seismic tomography, relative viscosity profiles have been estimated (e.g. Panasyuk<strong>and</strong> Hager, 2000a). Absolute profiles have been determ<strong>in</strong>ed when us<strong>in</strong>g plate velocities as additionalconstra<strong>in</strong>t (e.g. Forte et al., 2002). The correlation coefficients between <strong>the</strong> modelled <strong>and</strong>observed geoid reach values above 0.8 for very long wavelengths, but <strong>the</strong> correlation drasticallydecreases for spherical harmonic degrees above 8. It is somewhat surpris<strong>in</strong>g that many successfulgeoid <strong>in</strong>versions predict dynamic topographies <strong>in</strong> disagreement with first estimates, such as <strong>the</strong>64


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantledynamic topography shown <strong>in</strong> Figure 3.3.2b. Thus, ref<strong>in</strong>ements of dynamic topography models<strong>and</strong> reliable viscosity flow models are needed.So far, only two <strong>in</strong>vestigations (Zhang <strong>and</strong> Christensen, 1993, Cadek <strong>and</strong> Fleitout, 2003) haveconsidered lateral viscosity variations with conflict<strong>in</strong>g results. While Zhang <strong>and</strong> Christensen donot f<strong>in</strong>d a significant improvement of <strong>the</strong> geoid fit, Cadek <strong>and</strong> Fleitout obta<strong>in</strong> a considerably improvedfit if lateral viscosity variations are allowed with<strong>in</strong> <strong>the</strong> lithosphere-as<strong>the</strong>nosphere depthrange. The technical problem of models with lateral viscosity variations is mode coupl<strong>in</strong>g betweensource <strong>and</strong> signal spectrum, which requires forward modell<strong>in</strong>g.Small-scale sublithospheric convectionThe presence of small-scale sublithospheric convection was first postulated already <strong>in</strong> <strong>the</strong> 1970s,but direct observations are scarce. While under slowly mov<strong>in</strong>g or stagnant plates an irregularcellular pattern is expected, fast mov<strong>in</strong>g plates reorganize <strong>the</strong> flow <strong>in</strong>to convective rolls alignedwith <strong>the</strong> plate movements. Marquart et al. (1999) analysed growth rates <strong>and</strong> wavelengths of suchconvective <strong>in</strong>stabilities <strong>and</strong> suggested that <strong>the</strong>y are weakly visible <strong>in</strong> <strong>the</strong> gravity anomalies asl<strong>in</strong>ear anomalies cross<strong>in</strong>g faults zones <strong>in</strong> <strong>the</strong> Pacific (Figure 3.3.3, e.g. between –15S,225E <strong>and</strong>–5S, 250E). The expected high-resolution data set of <strong>the</strong> GRACE <strong>and</strong> GOCE missions could opennew possibilities of identify<strong>in</strong>g sublithospheric convection structures also <strong>in</strong> o<strong>the</strong>r regions.Figure 3.3.3: Gravity anomalies <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>ast Pacific derived from ERS-1 geodetic mission data (fromMarquart et al., 1999)65


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Active, convergent plate boundaries<strong>Mass</strong> <strong>and</strong> energy transports at convergent cont<strong>in</strong>ent-cont<strong>in</strong>ent or cont<strong>in</strong>ent-ocean plate boundariesare characterized by numerous strongly <strong>in</strong>teract<strong>in</strong>g processes, such as active deformation, uplift<strong>and</strong> erosion, magmatism <strong>and</strong> crustal accretion, seismic energy release (more than 90% of <strong>the</strong>global release) <strong>and</strong> <strong>the</strong> formation of m<strong>in</strong>eral deposits. While <strong>the</strong> general plate tectonic concept ofmounta<strong>in</strong> build<strong>in</strong>g as a consequence of cont<strong>in</strong>ent-cont<strong>in</strong>ent or ocean-cont<strong>in</strong>ent collision has beenwidely accepted, <strong>the</strong> underly<strong>in</strong>g complex dynamical, rheological <strong>and</strong> <strong>the</strong>rmal mechanisms arenot well understood yet. Only a comb<strong>in</strong>ed multidiscipl<strong>in</strong>ary effort of utiliz<strong>in</strong>g ground based geophysical<strong>and</strong> geological data comb<strong>in</strong>ed with regional high-resolution gravity data from GRACE<strong>and</strong> GOCE as well as structural <strong>and</strong> dynamic modell<strong>in</strong>g will give new <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> complex<strong>in</strong>terplay of <strong>the</strong> controll<strong>in</strong>g mechanisms for <strong>the</strong> different types of mounta<strong>in</strong> build<strong>in</strong>g. In this context,<strong>the</strong> Andean subduction orogeny constitutes an excellent case study <strong>in</strong> view of <strong>the</strong> efforts ofseveral <strong>in</strong>ternational geophysical <strong>and</strong> geodetic l<strong>and</strong>- <strong>and</strong> sea-based programmes <strong>in</strong> <strong>the</strong> past years(CINCA, ANCORP <strong>and</strong> o<strong>the</strong>rs, e.g. ANCORP Work<strong>in</strong>g Group, 2003).To underst<strong>and</strong> <strong>the</strong> dynamics of Andean type mounta<strong>in</strong> build<strong>in</strong>g, <strong>the</strong> distribution <strong>and</strong> evolution offorces <strong>and</strong> mechanical stresses associated with subduction are of particular <strong>in</strong>terest. Key parametersare <strong>the</strong> rheology <strong>and</strong> flexural rigidity of <strong>the</strong> down go<strong>in</strong>g plate <strong>and</strong> <strong>the</strong> rheological behaviourof <strong>the</strong> decoupl<strong>in</strong>g zone between <strong>the</strong> two plates. The effectiveness of <strong>the</strong> decoupl<strong>in</strong>g zone dependson <strong>the</strong> temperature <strong>and</strong> <strong>the</strong> depth of dehydration <strong>and</strong> subsequent fluid migration. First ideas about<strong>the</strong> fluid distribution with<strong>in</strong> <strong>the</strong> decoupl<strong>in</strong>g zone are provided by correlat<strong>in</strong>g seismic reflectors,discont<strong>in</strong>uities from seismic receiver functions <strong>and</strong> zones of high seismicity with<strong>in</strong> <strong>the</strong> Benioffzones. The three-dimensional <strong>and</strong> time-dependent nature of <strong>the</strong>se processes results <strong>in</strong> asperities<strong>and</strong> stra<strong>in</strong> segmentation along <strong>the</strong> subduction zones. Recently, GPS <strong>and</strong> INSAR measurementshave provided <strong>the</strong> first k<strong>in</strong>ematical view of <strong>the</strong> ongo<strong>in</strong>g surface deformation.Based on <strong>the</strong> structural <strong>in</strong>formation of <strong>the</strong> subduct<strong>in</strong>g <strong>and</strong> overrid<strong>in</strong>g lithospheres from geophysicalstudies, <strong>the</strong> new high resolution gravity data of <strong>the</strong> GOCE mission call for new dynamicalmodels, which fur<strong>the</strong>r constra<strong>in</strong> <strong>the</strong> rheological properties of <strong>the</strong> system <strong>and</strong> quantify <strong>the</strong> decoupl<strong>in</strong>gprocesses at subduction zones.Recent studies along <strong>the</strong> circum-Pacific belt have shown that negative Bouguer anomalies arecorrelated with large-scale asperity structures (regions where <strong>the</strong> relative movement along faultsis <strong>in</strong>terrupted). As <strong>the</strong>se structures are located with<strong>in</strong> <strong>the</strong> ocean-cont<strong>in</strong>ent transition region, mapp<strong>in</strong>gof asperity structures <strong>and</strong> o<strong>the</strong>r important density anomalies along subduction zones havesuffered from problems <strong>in</strong> comb<strong>in</strong><strong>in</strong>g sea-based, l<strong>and</strong>-based <strong>and</strong> satellite-based measurements.The expected high-resolution satellite data from GRACE <strong>and</strong> GOCE will solve this problem <strong>and</strong>provide accurate regional anomalies of <strong>the</strong> gravity field <strong>and</strong> its gradient along active cont<strong>in</strong>entalmarg<strong>in</strong>s.This new database from GRACE <strong>and</strong> GOCE will also provide constra<strong>in</strong>ts for forward <strong>and</strong> <strong>in</strong>versemodell<strong>in</strong>g of <strong>the</strong> geoid, <strong>the</strong> isostatic gravity anomaly <strong>and</strong> its gradient <strong>in</strong> various segments alongactive cont<strong>in</strong>ental marg<strong>in</strong>s, but also for o<strong>the</strong>r regions of <strong>in</strong>terest. New <strong>in</strong>sights are expected for1) <strong>the</strong> detailed structure of <strong>the</strong> lithospheric ocean-cont<strong>in</strong>ent contact zone,2) <strong>the</strong> flexural rigidity of <strong>the</strong> associated lithospheres <strong>and</strong> <strong>the</strong> viscosity distribution <strong>in</strong> <strong>the</strong>subduction zone,3) <strong>the</strong> distribution of stresses <strong>and</strong> buoyancy forces at specific active cont<strong>in</strong>ental marg<strong>in</strong>s basedon 3D density models <strong>and</strong> dynamical modell<strong>in</strong>g,4) <strong>the</strong> state of isostasy <strong>and</strong> <strong>the</strong> flexural rigidity of <strong>the</strong> lithosphere <strong>in</strong> o<strong>the</strong>r active or passiveregions, such as <strong>the</strong> Antarctic marg<strong>in</strong>, Ural mounta<strong>in</strong>s, eastern Alps, nor<strong>the</strong>rn German bas<strong>in</strong>etc.66


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantleTemporal gravity field variations due to glacialisostatic <strong>and</strong> geodynamic processesIce mass balance <strong>and</strong> glacial isostatic adjustmentAn important process <strong>in</strong> <strong>the</strong> solid <strong>Earth</strong> is its glacial isostatic adjustment <strong>in</strong> response to past <strong>and</strong>present changes of <strong>the</strong> cont<strong>in</strong>ental ice loads. This topic has been briefly addressed <strong>in</strong> chapter 3.2,where it was mentioned that ice load changes cause elastic or viscoelastic deformations of <strong>the</strong><strong>Earth</strong>. The calculation of <strong>the</strong> <strong>Earth</strong>’s elastic response to <strong>the</strong> present ice redistributions over Greenl<strong>and</strong><strong>and</strong> Antarctica is a straightforward problem. The result is that, for a given ice mass loss, <strong>the</strong>total mass deficit is reduced by about 10 per cent.More difficult is <strong>the</strong> consideration of changes <strong>in</strong> <strong>the</strong> polar ice masses dur<strong>in</strong>g <strong>the</strong> past hundreds tothous<strong>and</strong>s of years. The reason for this is that <strong>the</strong> history of <strong>the</strong> Greenl<strong>and</strong> <strong>and</strong> Antarctic ice sheetsis recorded as an ongo<strong>in</strong>g viscoelastic relaxation of <strong>the</strong> <strong>Earth</strong> (e.g. Nakada et al., 2000, Tarasov<strong>and</strong> Peltier, 2002, see Appendix A5 for <strong>the</strong> ma<strong>the</strong>matical formulation of this problem). The calculationof <strong>the</strong> associated vertical motion requires a ra<strong>the</strong>r detailed knowledge of both <strong>the</strong> viscositystratification <strong>in</strong> <strong>the</strong> <strong>Earth</strong>’s mantle <strong>and</strong> <strong>the</strong> evolution of <strong>the</strong> ice sheets s<strong>in</strong>ce <strong>the</strong> Pleistocene. Butwhereas <strong>the</strong> <strong>Earth</strong>’s viscosity profile has been determ<strong>in</strong>ed with<strong>in</strong> certa<strong>in</strong> bounds from studies of<strong>the</strong> glacial isostatic adjustment follow<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g of <strong>the</strong> major Pleistocene ice sheets on <strong>the</strong>nor<strong>the</strong>rn hemisphere, much less is known about <strong>the</strong> history of <strong>the</strong> present day polar ice sheets.This situation particularly applies to Antarctica, where <strong>the</strong> development of <strong>the</strong> West Antarctic icesheet has been controversially discussed for years (see Figure 3.2.1 for a numerical model). As aconsequence, <strong>the</strong> uncerta<strong>in</strong>ties of calculat<strong>in</strong>g <strong>the</strong> bedrock responses for Greenl<strong>and</strong> <strong>and</strong> Antarcticaare significant <strong>and</strong> may exceed <strong>the</strong> signals associated with <strong>the</strong> present day ice mass fluctuations.An alternative <strong>and</strong> possibly more promis<strong>in</strong>g method of <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> bedrock response is to determ<strong>in</strong>eit by terrestrial measurements. The most direct approach <strong>in</strong>volves <strong>the</strong> <strong>in</strong>stallation of permanentGPS receivers on exposed bedrock along <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong> Greenl<strong>and</strong> <strong>and</strong> Antarctic icesheets (e.g. Tregon<strong>in</strong>g et al., 2000, Wahr et al., 2001). Experience ga<strong>in</strong>ed from <strong>the</strong> BIFROSTGPS network <strong>in</strong>stalled <strong>in</strong> Fennosc<strong>and</strong>ia has shown that, with vertical displacement rates of <strong>the</strong>order of several millimetres per year, reliable l<strong>in</strong>ear trends can be extracted from <strong>the</strong> GPS time seriesafter a record<strong>in</strong>g period of about 5 to 8 years (Milne et al., 2001). Recently, absolute gravitymeasurements have been used as a control for GPS results. However, although <strong>the</strong> sensitivity ofterrestrial gravity measurements to ice mass fluctuations is less pronounced than that of satellitegravity measurements, <strong>the</strong> <strong>in</strong>fluence of such variations cannot be completely ignored. A differentproblem shared by GPS <strong>and</strong> absolute gravimetry is that <strong>the</strong> measurements are restricted to <strong>the</strong>peripheries of <strong>the</strong> ice sheets, where <strong>the</strong> pattern of vertical motion tends to be complicated. Thisis a consequence of <strong>the</strong> development of a peripheral bulge at some distance from <strong>the</strong> ice marg<strong>in</strong>.After <strong>the</strong> ice sheet starts melt<strong>in</strong>g, <strong>the</strong> peripheral bulge gradually collapses <strong>and</strong> may also migratelaterally. The details of this behaviour strongly depend on <strong>the</strong> shallow viscous stratification. Asa consequence, <strong>the</strong> vertical motion <strong>in</strong> <strong>the</strong> peripheral regions is not representative <strong>and</strong> not easilyextrapolated towards <strong>the</strong> centres of <strong>the</strong> ice sheets.Apart from <strong>the</strong> gravity change associated with long period ice mass changes <strong>in</strong> Greenl<strong>and</strong> <strong>and</strong>Antarctica, <strong>the</strong> secular gravity signal is <strong>in</strong>fluenced by <strong>the</strong> ongo<strong>in</strong>g glacial isostatic adjustment follow<strong>in</strong>g<strong>the</strong> retreat of <strong>the</strong> major Pleistocene ice sheets <strong>in</strong> Fennosc<strong>and</strong>ia <strong>and</strong> Canada. The ma<strong>in</strong> surfacefeatures associated with this process are <strong>the</strong> residual depressions <strong>in</strong> Hudson Bay <strong>and</strong> <strong>the</strong> Gulfof Bothnia, both of which give rise to negative free air gravity anomalies. The benefit of <strong>the</strong>se signaturesis, however, imparted by <strong>the</strong>ir superposition with <strong>the</strong> gravity anomalies caused by mantleconvection. So far, this has prevented <strong>the</strong>ir use as an additional constra<strong>in</strong>t when <strong>in</strong>vert<strong>in</strong>g glacial67


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>isostatic adjustment data <strong>in</strong> terms of <strong>the</strong> viscosity distribution <strong>in</strong> <strong>the</strong> <strong>Earth</strong>’s mantle, although <strong>the</strong>new generation of seismic tomography <strong>in</strong>versions <strong>and</strong> associated mantle flow models might providesome useful constra<strong>in</strong>ts. The conventional procedure of modell<strong>in</strong>g glacial isostatic adjustmentfollowed over <strong>the</strong> last three decades has been to <strong>in</strong>vert raised postglacial shorel<strong>in</strong>es <strong>in</strong> termsof <strong>the</strong> viscosity of <strong>the</strong> <strong>Earth</strong>’s mantle (e.g. Wu <strong>and</strong> Peltier, 1983, Lambeck et al., 1990, Kaufmann<strong>and</strong> Wolf, 1996). Figure 3.3.4 shows <strong>the</strong> spatial <strong>and</strong> age distributions of dated shorel<strong>in</strong>es mappedon <strong>the</strong> nor<strong>the</strong>rn hemisphere. The modell<strong>in</strong>g of <strong>the</strong> postglacial uplift recorded by <strong>the</strong>m is based onus<strong>in</strong>g viscoelastic <strong>Earth</strong> models loaded by surface masses represent<strong>in</strong>g <strong>the</strong> Pleistocene ice cover.A pr<strong>in</strong>cipal problem of this procedure has been our uncerta<strong>in</strong>ty about <strong>the</strong> space-time distributionof <strong>the</strong> cont<strong>in</strong>ental ice cover dur<strong>in</strong>g <strong>the</strong> Pleistocene. This has resulted <strong>in</strong> <strong>the</strong> development ofa series of global ice models, which, however, simulate <strong>the</strong> actual Pleistocene conditions onlycrudely. Widely used is still <strong>the</strong> global model ICE-3G (Tush<strong>in</strong>gham <strong>and</strong> Peltier, 1991) shown <strong>in</strong>Figure 3.3.5.Recently, additional types of data have been used to impose tighter constra<strong>in</strong>ts on <strong>the</strong> <strong>Earth</strong>‘sviscosity profile. Most important among <strong>the</strong>m are <strong>in</strong>terpretations of tide gauge <strong>and</strong> GPS measurements.With time series sufficiently long, l<strong>in</strong>ear trends may be extracted <strong>and</strong> <strong>in</strong>terpreted (e.g.Lambeck et al., 1998, Scherneck et al., 2002, Velicogna <strong>and</strong> Wahr, 2002a, b). An advantage oftide gauge <strong>and</strong> GPS measurements is that <strong>the</strong>y refer to <strong>the</strong> present time. In contrast to postglacialshorel<strong>in</strong>es reflect<strong>in</strong>g <strong>the</strong> complete uplift history s<strong>in</strong>ce deglaciation, <strong>the</strong>y are thus less affected byour <strong>in</strong>adequate knowledge of <strong>the</strong> Pleistocene ice cover. So far, longer time series of GPS datahave been obta<strong>in</strong>ed only at a limited number of locations. The situation is more favourable fortide gauge stations, where time series extend<strong>in</strong>g over decades or even more than a century exist.However, tide gauge records monitor relative sea level change, a comb<strong>in</strong>ation of l<strong>and</strong> movement,Figure 3.3.4: Spatial (left) <strong>and</strong> age (right) distributions of radiocarbon-dated postglacial shorel<strong>in</strong>es on<strong>the</strong> nor<strong>the</strong>rn hemisphere.68


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantlegeoid change <strong>and</strong> absolute sea level change,which complicates <strong>the</strong>ir use <strong>in</strong> studies of glacialisostasy.A more promis<strong>in</strong>g constra<strong>in</strong>t on <strong>the</strong> <strong>Earth</strong>’sviscosity profile is expected to result from<strong>the</strong> GRACE satellite mission. Accord<strong>in</strong>g tosensitivity studies, <strong>the</strong> mission is capable ofresolv<strong>in</strong>g <strong>the</strong> temporal variations of gravityassociated with <strong>the</strong> ongo<strong>in</strong>g glacial isostaticrecovery (e.g. Wahr <strong>and</strong> Velicogna, 2003).This, <strong>in</strong> particular, applies to Canada, where<strong>the</strong> largest Pleistocene ice sheet was located<strong>and</strong> where reliable estimates of <strong>the</strong> currentl<strong>and</strong> uplift are still miss<strong>in</strong>g because of <strong>in</strong>adequateGPS coverage of <strong>the</strong> Hudson Bayregion. The GRACE gravity data provide anew <strong>and</strong> <strong>in</strong>dependent constra<strong>in</strong>t on <strong>the</strong> modeof readjustment, which will allow us to imposetighter constra<strong>in</strong>ts on <strong>the</strong> viscosity distribution<strong>in</strong> <strong>the</strong> <strong>Earth</strong>’s mantle.Temporal variations of gravity are not restrictedto <strong>the</strong> Pleistocene centres of glaciation<strong>in</strong> Fennosc<strong>and</strong>ia <strong>and</strong> Canada, butencompass <strong>the</strong> whole <strong>Earth</strong>. This is shown<strong>in</strong> Figure 3.3.5, where <strong>the</strong> present day geoidrise is predicted on <strong>the</strong> basis of comb<strong>in</strong><strong>in</strong>gice model ICE-3G <strong>and</strong> viscosity modelVM-2 (Peltier, 1998). The calculation also<strong>in</strong>cludes effects due to <strong>the</strong> redistribution ofmelt water <strong>in</strong> <strong>the</strong> oceans, which requires <strong>the</strong>solution of <strong>the</strong> sea level equation (e.g. Peltieret al., 1978, Wolf et al., 2002). As expla<strong>in</strong>edabove, geoid variations also enter <strong>in</strong>to relativesea level variations. Their contributionmust <strong>the</strong>refore be taken <strong>in</strong>to account whenattempt<strong>in</strong>g to extract absolute sea levelchanges from <strong>the</strong> tide gauge record.0˚0˚180˚90˚-90˚ -90˚180˚ -90˚ 0˚ 90˚ 180˚Figure 3.3.5: Difference <strong>in</strong> ice thickness for ice modelICE-3G between 21 ka BP <strong>and</strong> today (top) <strong>and</strong> associatedpresent day geoid rise (bottom).An important problem to be solved is <strong>the</strong> differentiation between <strong>the</strong> <strong>in</strong>dividual processes contribut<strong>in</strong>gto <strong>the</strong> l<strong>in</strong>ear trend <strong>in</strong> <strong>the</strong> GRACE signal. Of some assistance is <strong>the</strong> fact that <strong>the</strong> GRACEsatellite mission is sensitive to gravity variations down to fairly short wavelengths. This is illustrated<strong>in</strong> Figure 3.3.6, where <strong>the</strong> signal components of <strong>the</strong> ma<strong>in</strong> processes responsible for seculargravity variations are seen to be above <strong>the</strong> GRACE error up to fairly high spherical harmonic degrees.The benefit of this sensitivity to smaller scale features is that a ra<strong>the</strong>r detailed spatial distributionof gravity variability is expected to evolve from <strong>the</strong> analysis of <strong>the</strong> GRACE data. With this,it will become possible to associate particular patterns with <strong>the</strong> <strong>in</strong>dividual processes mentionedabove <strong>and</strong>, <strong>the</strong>refore, to decouple <strong>the</strong>m when <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> gravity variations.30˚-30˚30˚0-30˚60˚-60˚60˚-60˚180˚90˚-100000-2000-2000-90˚-90˚ -90˚180˚ -90˚ 0˚ 90˚ 180˚-90˚-100000˚0˚-100090˚90˚180˚90˚-1000-3000 -2000 -1000 0Difference <strong>in</strong> ice thickness (m)180˚90˚0-3 -2 -1 0 1 2 3Rate of geoid rise (mm/a)060˚-60˚60˚-60˚30˚-30˚30˚0˚0˚-30˚69


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>10 -1Magnitude of rate of geoid change (mm/a)10 -210 -310 -4Global glacial-isostatic adjustmentLaurentide glacial-isostatic adjustmentFennosc<strong>and</strong>ian glacial-isostatic adjustmentAntarctic ice-mass balance (Rignot & Thomas, 2002)Greenl<strong>and</strong> ice-mass balance (Thomas et al., 2001)Estimated GRACE accuracy0 5 10 15 20 25 30 35 40DegreeFigure 3.3.6: Present day geoid change predicted for different glacial isostatic processes <strong>and</strong> ice mass balances.Convect<strong>in</strong>g mass anomalies <strong>in</strong> <strong>the</strong> mantle <strong>and</strong> o<strong>the</strong>r plate tectonicprocessesSo far, <strong>the</strong> temporal variations of <strong>the</strong> geoid due to mantle convection <strong>and</strong> plate tectonic processeshave not attracted much attention. As mentioned above, many geodynamic processes are timedependent<strong>and</strong>, consequently, produce a time-dependent geoid signal. Thus, Ricard et al. (1993)calculated temporal variations of long wavelength (L = 2 – 12) geoid anomalies due to mantleflow <strong>in</strong>duced by s<strong>in</strong>k<strong>in</strong>g slabs <strong>and</strong> predicted variations up to 5 × 10 -3 mm/a <strong>in</strong> <strong>the</strong> spatial doma<strong>in</strong>.A similar model by Marquart (pers. comm.) is shown <strong>in</strong> Figure 3.3.7. If decomposed <strong>in</strong>to <strong>the</strong>spectral doma<strong>in</strong>, <strong>the</strong> variations are close to or with<strong>in</strong> <strong>the</strong> resolution limits of <strong>the</strong> GRACE mission(5 years). The question arises whe<strong>the</strong>r <strong>the</strong>se predictions are still robust with respect to newtomography models, o<strong>the</strong>r viscosity distributions or rheological laws <strong>and</strong> o<strong>the</strong>r plate boundaryconditions.Regionally, several geodynamic processes may be characterized by high velocities of <strong>the</strong> mov<strong>in</strong>gmasses. For example, plate boundaries may migrate with velocities above 20 cm/a (e.g. <strong>the</strong>retreat<strong>in</strong>g Tonga subduction zone). Models of detach<strong>in</strong>g lithospheric roots with<strong>in</strong> collision zonesor of ris<strong>in</strong>g plumes have shown that a non-l<strong>in</strong>ear viscous mantle rheology may result <strong>in</strong> verticalflow velocities between 10 cm/a <strong>and</strong> 1 m/a. Associated rates of change of <strong>the</strong> geoid result<strong>in</strong>g fromsuch processes are estimated to range between 10 -3 <strong>and</strong> 10 -2 mm/a for degrees L = 30 – 50, whichcould possibly be identified <strong>in</strong> <strong>the</strong> GRACE signal.Uplift <strong>and</strong> erosion rates <strong>in</strong> active orogenic areas may not always be <strong>in</strong> a steady state. Measurementsof uplift rates are based on geodetic methods, while denudation rates are determ<strong>in</strong>ed fromestimates of sediment discharge <strong>and</strong> <strong>the</strong>rmo-chronometry of m<strong>in</strong>erals with low clos<strong>in</strong>g temperatures,which allow <strong>the</strong> reconstruction of recent unroof<strong>in</strong>g histories dur<strong>in</strong>g exhumation. Uplift <strong>and</strong>denudation estimates for active orogenic areas range between 0.2 <strong>and</strong> 10 mm/a. If <strong>the</strong>se rates applyto steady state conditions, <strong>the</strong>y must be equal <strong>and</strong> opposite, <strong>and</strong> no temporal gravity signalshould be expected (e.g. <strong>the</strong> sou<strong>the</strong>rn Alps <strong>in</strong> New Zeal<strong>and</strong>). Any departure from steady state –both secular <strong>and</strong> seasonal – will produce a time-dependent gravity signal. Deviations from steadystate are observed for several orogens. An example is <strong>the</strong> uplift rate of <strong>the</strong> Alps, which is about 5times higher than <strong>the</strong> denudation rate. Non-steady state uplift-denudation rates of several mm/aare expected to produce gravity signals of several µGal/a. Measur<strong>in</strong>g temporal variations of grav-70


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantleFigure 3.3.7: Temporal variations of <strong>the</strong> geoid <strong>in</strong>ferred from <strong>the</strong> slab s<strong>in</strong>k<strong>in</strong>g model. A) Variations <strong>in</strong> <strong>the</strong>spatial doma<strong>in</strong> of a model with reduced as<strong>the</strong>nospheric viscosity. B) Change rates <strong>in</strong> <strong>the</strong> spectral doma<strong>in</strong> ofa model with (upper Figure) <strong>and</strong> without (lower Figure) a low viscosity channel <strong>in</strong> <strong>the</strong> as<strong>the</strong>nosphere. Thered l<strong>in</strong>es show <strong>the</strong> expected resolution of GRACE (Wahr et al., 1998).ity by GRACE should provide an additional constra<strong>in</strong>t on <strong>the</strong> unresolved question of steady stateversus non-steady state uplift rates <strong>in</strong> orogens.While <strong>the</strong> above-mentioned geodynamic <strong>and</strong> plate tectonic processes are associated with longtermvelocities of <strong>the</strong> order of 1 mm/a to more than 10 cm/a, <strong>the</strong> short-term scale of <strong>the</strong>se processesmay be episodic. This is particularly <strong>the</strong> case along plate boundaries, where <strong>the</strong> relativemovement of <strong>the</strong> plates is accomplished by <strong>Earth</strong>quakes. Cont<strong>in</strong>uous GPS measurements nearplate boundaries, such as <strong>the</strong> San Andreas fault system or <strong>the</strong> rift system <strong>in</strong> Icel<strong>and</strong>, reveal that,with<strong>in</strong> a b<strong>and</strong> of several 100 km width, <strong>the</strong> plate tectonic concept of steady plate velocities is nolonger applicable <strong>and</strong> episodic motions associated with seismic <strong>and</strong> post-seismic deformationsor volcanic activity are dom<strong>in</strong>at<strong>in</strong>g. Depend<strong>in</strong>g on <strong>the</strong> style of deformation, such “episodic platetectonics” may show up <strong>in</strong> <strong>the</strong> gravity field, with temporal variations of several µGal/a. Monitor<strong>in</strong>g<strong>the</strong> gravity field along plate boundaries us<strong>in</strong>g GRACE data may <strong>the</strong>refore provide additionalconstra<strong>in</strong>ts on <strong>the</strong> episodicity of plate tectonics along plate boundaries.Comb<strong>in</strong><strong>in</strong>g <strong>and</strong> validat<strong>in</strong>g satellite gravity withcomplementary dataAs a result of various geodynamic processes, such as cont<strong>in</strong>ental collision or subduction, complexcrustal or lithospheric structures have evolved dur<strong>in</strong>g geological history <strong>and</strong> cont<strong>in</strong>ue to evolveat present. Such structures produce gravity signals, which provide important constra<strong>in</strong>ts for anygeological model. A major problem is, however, <strong>the</strong> fact that <strong>Earth</strong> based gravity measurements71


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong><strong>in</strong> different cont<strong>in</strong>ental areas have different resolutions <strong>and</strong> non-compatible reference systems,sometimes result<strong>in</strong>g <strong>in</strong> discrepancies of up to 60 mGal. Changes of resolution <strong>and</strong> reference systemoften occur at political borders, which may co<strong>in</strong>cide with tectonic boundaries. Thus, a betterunderst<strong>and</strong><strong>in</strong>g of tectonic processes <strong>and</strong> result<strong>in</strong>g structures requires a gravity anomaly field withuniformly high resolution for wavelengths down to <strong>the</strong> order of 100 km.To comb<strong>in</strong>e measurements from sea, l<strong>and</strong>, air <strong>and</strong> satellites, a homogeneous set of gravity datafor <strong>the</strong> <strong>Earth</strong>’s surface <strong>and</strong> different altitudes is needed. This “test box” should be chosen for a regionshow<strong>in</strong>g considerable gravity variations <strong>and</strong> high coverage of measurements, which allowsits use for <strong>the</strong> validation <strong>and</strong> calibration of satellite missions. Because of <strong>the</strong> high density of terrestrialdata, possible “test boxes” are <strong>the</strong> active or passive cont<strong>in</strong>ental marg<strong>in</strong>s of South America<strong>and</strong> o<strong>the</strong>r appropriate regions. Complementary <strong>in</strong>traplate “test boxes” are also desirable. Of significanceis <strong>the</strong> development of methods to comb<strong>in</strong>e, analyse <strong>and</strong> <strong>in</strong>terpret <strong>the</strong> gravity measurementsfrom <strong>the</strong> different platforms, with particular emphasis on horizontal <strong>and</strong> vertical gradients.These are also directly measured by <strong>the</strong> GOCE satellite mission. The new algorithms should <strong>the</strong>nbe tested <strong>and</strong> applied to <strong>the</strong> new satellite data.Particular emphasis must be placed on <strong>the</strong> representation of <strong>the</strong> geoid or gravity field <strong>in</strong> geophysical<strong>in</strong>terpretations. While, for long wavelengths, <strong>the</strong> spherical harmonic representation is most appropriate,global base functions may not be optimal for analyses of regional geologic structuresor processes. Here, a wavelet analysis may provide improvements, as target regions may be analysed<strong>in</strong> <strong>the</strong> spectral doma<strong>in</strong> without loos<strong>in</strong>g <strong>the</strong> spatial <strong>in</strong>formation (e.g. Freeden et al., 1999).Geologic features, such as ancient suture zones (zones where an ocean has been closed), may beresolved <strong>in</strong> this way, which can be detected <strong>in</strong> <strong>the</strong> spatial doma<strong>in</strong> only with very high-resolutiongravity data (Vecsey et al., 2002).Essential complementary data sets for <strong>in</strong>terpretations of geoid or gravity data <strong>in</strong>clude seismic <strong>and</strong>topographic data (dynamic <strong>and</strong> isostatic). As mentioned above, a dist<strong>in</strong>ction between <strong>the</strong> dynamic<strong>and</strong> isostatic topography requires global crustal models (e.g. Mooney et al., 1998), whose resolutionis still <strong>in</strong>sufficient. For example, <strong>in</strong> some regions <strong>the</strong> errors of <strong>the</strong> dynamic topography are of<strong>the</strong> order of <strong>the</strong> signal itself. Here, an improvement is expected from a new global crustal modelbased on a better coverage by seismic stations comb<strong>in</strong>ed with <strong>the</strong> use of receiver functions <strong>and</strong> reflectedseismic phases. Such seismological data may also be used to constra<strong>in</strong> <strong>the</strong> thickness of <strong>the</strong>transition zone <strong>and</strong> <strong>the</strong> deflections of <strong>the</strong> phase boundaries at 410 <strong>and</strong> 660 km depth. In additionto tomography models, <strong>the</strong>se data are also important constra<strong>in</strong>ts or even <strong>in</strong>put for dynamic geoidmodels. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> new gravity data from GRACE <strong>and</strong> GOCE must also be used toref<strong>in</strong>e <strong>the</strong> global crustal model <strong>in</strong> regions where seismic <strong>in</strong>formation is miss<strong>in</strong>g.Separation of <strong>the</strong> solid <strong>Earth</strong> gravity signal fromo<strong>the</strong>r signalsAs all mass anomalies <strong>and</strong> movements with<strong>in</strong> <strong>the</strong> system <strong>Earth</strong> produce gravity signals that addup to <strong>the</strong> total gravity or geoid signal, <strong>the</strong> different discipl<strong>in</strong>es have a natural connection. However,analys<strong>in</strong>g <strong>the</strong> data <strong>in</strong> different spatial, spectral <strong>and</strong> temporal doma<strong>in</strong>s, <strong>the</strong> decomposition of<strong>the</strong> total signal <strong>in</strong>to its <strong>in</strong>dividual contributions should be possible to some extent.One objective is <strong>the</strong> analysis of temporal gravity potential variations caused by long-term geodynamicprocesses <strong>and</strong> episodic plate tectonic events. While <strong>the</strong> glacial isostatic adjustment signalsare well above <strong>the</strong> resolution of GRACE, <strong>the</strong> o<strong>the</strong>r solid <strong>Earth</strong> processes produce rates near oronly slightly above it. Ideally, it would be desirable that oceanography, hydrology, meteorology72


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantle<strong>and</strong> glaciology provide corrections to be used to isolate solid <strong>Earth</strong> generated temporal gravitysignals. Both global <strong>and</strong> regional predictions are required, depend<strong>in</strong>g on <strong>the</strong> geophysical targetregion or process. For example, separation of <strong>the</strong> temporal geoid signal of a retreat<strong>in</strong>g subductionzone, such as <strong>the</strong> Tonga trench, may only be extracted from <strong>the</strong> observational data if gravitychanges due to sea level changes <strong>and</strong> ocean currents <strong>in</strong> that region are removed from <strong>the</strong> GRACEsignals.On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, forward models of time-dependent geodynamic processes have <strong>the</strong> potentialto predict longer wavelength gravity or geoid variations. Although <strong>the</strong>se are expected to be closeto <strong>the</strong> resolution limit of GRACE, <strong>the</strong>y may still be useful as corrections for o<strong>the</strong>r discipl<strong>in</strong>es us<strong>in</strong>gsecular geoid variations, such as oceanography, hydrology or glaciology. Regional dynamicor structural models of active or passive cont<strong>in</strong>ental marg<strong>in</strong>s allow us to predict <strong>the</strong> tectonic contributionto <strong>the</strong> gravity potential signal <strong>and</strong> its gradients. As <strong>the</strong>se signals cover also ocean areas,<strong>the</strong>y may also be used as corrections for oceanographic purposes.Episodic variations of <strong>the</strong> gravity potential along active plate boundaries will be monitored. If<strong>the</strong>y can be associated with tectonic, seismic or erosional effects, <strong>the</strong>se contributions to <strong>the</strong> totalsignal will serve as an important correction for hydrological, oceanographic <strong>and</strong> glacial processes.As an important by-product of large-scale geodynamic models, temporal variations of <strong>the</strong> globalor regional dynamic topography will be predicted. In <strong>the</strong> spatial doma<strong>in</strong>, such variations are of <strong>the</strong>order of 0.1 to 1 mm/a globally or 1 to 10 mm/a regionally, which is important for <strong>the</strong> determ<strong>in</strong>ationof secular sea level variations.Impact of <strong>the</strong> new satellite missions on solid<strong>Earth</strong> mass anomalies <strong>and</strong> movementsInstantaneous global <strong>and</strong> regional gravity potential fieldThe <strong>in</strong>stantaneous global gravity potential field may be used <strong>in</strong> comb<strong>in</strong>ation with seismological<strong>and</strong> m<strong>in</strong>eral physics data to ref<strong>in</strong>e global flow models with laterally vary<strong>in</strong>g viscosity. Such ref<strong>in</strong>ements<strong>in</strong>clude deflections of <strong>in</strong>ternal boundaries, such as <strong>the</strong> 410 km <strong>and</strong> 660 km discont<strong>in</strong>uity.New structures <strong>in</strong> <strong>the</strong> wavelength range of 50 to 500 km are expected to show up <strong>in</strong> <strong>the</strong> highresolutiongravity potential field of GOCE <strong>and</strong> its gradient. These structures <strong>in</strong>clude active <strong>and</strong>passive cont<strong>in</strong>ental marg<strong>in</strong>s, ancient suture zones, buried cont<strong>in</strong>ental faults, asperities at subductionzones, sublithospheric convection cells beneath oceanic <strong>and</strong> cont<strong>in</strong>ental plates <strong>and</strong> o<strong>the</strong>r features.With complementary terrestrial data, e.g. from seismology, <strong>the</strong> new GOCE data may be used toimprove <strong>the</strong> global crustal model <strong>in</strong> areas with sparse terrestrial observations.Temporal changes of <strong>the</strong> gravity fieldThe comb<strong>in</strong>ed data sets of geoid <strong>and</strong> geoid variation may be used to <strong>in</strong>fer not only relative, butalso absolute viscosity distributions with<strong>in</strong> <strong>the</strong> <strong>Earth</strong>. In comb<strong>in</strong>ation with improved seismologicaldata (seismic tomography <strong>and</strong> deflected <strong>in</strong>ternal boundaries) <strong>and</strong> dynamic topography data(from improved crustal models), such data sets may allow us to <strong>in</strong>fer also lateral variations of <strong>the</strong>viscosity with<strong>in</strong> <strong>the</strong> as<strong>the</strong>nosphere. In addition, <strong>the</strong> spectral modes of <strong>the</strong> geoid variation seemto be more sensitive to a low viscosity zone beneath <strong>the</strong> lithosphere than <strong>the</strong> <strong>in</strong>stantaneous ge-73


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>oid itself. Thus, for <strong>the</strong> first time, temporal geoid variations may provide a data set that fur<strong>the</strong>rconstra<strong>in</strong>s mantle rheology <strong>and</strong> mantle flows. While viscosity estimates from glacial isostatic adjustmentare expected to be biased by cont<strong>in</strong>ental <strong>in</strong>fluences, <strong>the</strong> GRACE data provide an evenlydistributed coverage.The measured temporal gravity variations can be analysed <strong>in</strong> <strong>the</strong> spatial <strong>and</strong> spectral doma<strong>in</strong>s<strong>and</strong> separated <strong>in</strong>to drift<strong>in</strong>g <strong>and</strong> non-drift<strong>in</strong>g contributions. Correlations with drift<strong>in</strong>g lithosphericplates should provide some <strong>in</strong>terest<strong>in</strong>g clues.Ano<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g question is <strong>the</strong> possible correlation between <strong>the</strong> <strong>in</strong>stantaneous gravity field<strong>and</strong> its rate of change. Such correlations potentially conta<strong>in</strong> additional <strong>in</strong>formation about <strong>the</strong> geodynamicprocesses <strong>in</strong>volved. For example, <strong>the</strong> correlation between geoid <strong>and</strong> geoid rate is expectedto be different for retreat<strong>in</strong>g subduction zones, detach<strong>in</strong>g slabs <strong>and</strong> develop<strong>in</strong>g plumes.An important new field will also be <strong>the</strong> monitor<strong>in</strong>g of episodic <strong>and</strong> steady mass movement processesalong active plate boundaries or <strong>in</strong> orogens.Forward modell<strong>in</strong>gFuture forward modell<strong>in</strong>g of <strong>the</strong> new satellite based gravity data should focus on <strong>the</strong> follow<strong>in</strong>g:Global:- Global models will <strong>in</strong>clude laterally variable or stress- <strong>and</strong> temperature-dependentviscosity- Improvements of <strong>the</strong> seismological models <strong>and</strong> m<strong>in</strong>eral physics relations may push geoidmodell<strong>in</strong>g towards higher degrees (L = 20 – 40 ra<strong>the</strong>r than 10 – 20)- Non-l<strong>in</strong>ear relations between <strong>the</strong> density distribution <strong>in</strong> <strong>the</strong> mantle <strong>and</strong> <strong>the</strong> result<strong>in</strong>g satellitegravity signals based on tomography or deflection of <strong>in</strong>ternal boundaries from seismologymay be detected- Modell<strong>in</strong>g of temporal geoid variations may become important <strong>in</strong> <strong>the</strong> light of <strong>the</strong> highresolution GRACE dataRegional:- Subduction zones are characterized by high seismicity <strong>and</strong>, as a consequence, hightomographic resolution. Detailed structural <strong>and</strong> dynamic models (steady state or timedependent)may predict <strong>the</strong> seismic signal to be correlated with <strong>the</strong> satellite gravity signal- What is <strong>the</strong> effect of slabs ly<strong>in</strong>g flat at <strong>the</strong> 660 km discont<strong>in</strong>uity (Figure 3.3.1) on gravity?- What is <strong>the</strong> effect of plumes <strong>in</strong>teract<strong>in</strong>g with <strong>the</strong> lithosphere, do <strong>the</strong>y show up <strong>in</strong> <strong>the</strong> gravitydata?- What are <strong>the</strong> f<strong>in</strong>e features of <strong>the</strong> gravity signal of cont<strong>in</strong>ent-ocean transitions?- How do temporal gravity fields of develop<strong>in</strong>g plumes, detach<strong>in</strong>g slabs, collision zones <strong>and</strong>subduction zones look like, <strong>and</strong> do <strong>the</strong>y show up <strong>in</strong> <strong>the</strong> GRACE data?InversionsIn selected regions with good seismic coverage, jo<strong>in</strong>t <strong>in</strong>versions of seismic <strong>and</strong> satellite gravitydata may result <strong>in</strong> improved models of lithospheric (Moho depth) or upper mantle structures74


3.3 Dynamics, structure <strong>and</strong> isostatic adjustment of <strong>the</strong> crust <strong>and</strong> mantleReferencesANCORP Work<strong>in</strong>g Group, 2003. Seismic imag<strong>in</strong>g of a convergent cont<strong>in</strong>ental marg<strong>in</strong> <strong>and</strong> plateau<strong>in</strong> <strong>the</strong> central Andes (Andean Cont<strong>in</strong>ental Research Project 1996 (ANCORP´96)). J. Geophys.Res., 108:B7, ESE 3–1 to ESE 3–25, pp. 25.Čadek, O. <strong>and</strong> L. Fleitout, 2003. Effect of lateral viscosity variations <strong>in</strong> <strong>the</strong> top 300 km on <strong>the</strong>geoid <strong>and</strong> dynamic topography. Geophys. J. Int., 152:566–580.Freeden, W., O. Glockner <strong>and</strong> M. Thalhammer, 1999. Multiscale field recovery from GPS-Satellite-to-Satellite Track<strong>in</strong>g. Stud. Geophys. Geod., 43:229–264.Forte, A.M., J.X. Mitrovica <strong>and</strong> A. Espesset, 2002. Geodynamic <strong>and</strong> seismic constra<strong>in</strong>ts on <strong>the</strong><strong>the</strong>rmochemical structure <strong>and</strong> dynamics of convection <strong>in</strong> <strong>the</strong> deep mantle. Phil. Trans. R.Soc. Lond. A, 360:2521–2543.Kaban, M.K. <strong>and</strong> P. Schw<strong>in</strong>tzer, 2001. Oceanic upper mantle structure from experimental scal<strong>in</strong>gof Vs <strong>and</strong> density at different depths. Geophys. J. Int., 147:199–214.Karato, S.-I., 1993. The importance of anelasticity <strong>in</strong> <strong>the</strong> <strong>in</strong>terpretation of seismic tomography.Geophys. Res. Lett., 20:1623–1626.Kaufmann, G. <strong>and</strong> D.Wolf, 1996. Deglacial l<strong>and</strong> emergence <strong>and</strong> lateral upper-mantle heterogeneity<strong>in</strong> <strong>the</strong> Svalbard Archipelago-II. Extended results for high-resolution load models. Geophys.J. Int., 127:125–140.Lambeck, K., P. Johnston <strong>and</strong> M. Nakada, 1990. Holocene glacial rebound <strong>and</strong> sea-level change<strong>in</strong> NW Europe. Geophys. J. Int., 103:451–468.Lambeck, K., C. Smi<strong>the</strong>r <strong>and</strong> M. Ekman, 1998. Tests of glacial rebound models forFennosc<strong>and</strong><strong>in</strong>avia based on <strong>in</strong>strumental sea- <strong>and</strong> lake-level records. Geophys. J. Int., 135:375–387.Marquart, G., H. Schmel<strong>in</strong>g <strong>and</strong> A. Braun, 1999. Small Scale Instabilities below <strong>the</strong> cool<strong>in</strong>goceanic lithosphere. Geophys. J. Int., 138:655–666.Milne, G.A., J.L. Davis, J.X. Mitrovica, H.-G. Scherneck, J.M. Johansson <strong>and</strong> M. Vermeer, 2001.Space-geodetic constra<strong>in</strong>ts on glacial isostatic adjustment <strong>in</strong> Fennosc<strong>and</strong>ia. Science, 291:2381–2385.Montelli R., G. Nolet, F.A. Dahlen, G. Masters, E.R. Engdahl <strong>and</strong> S.-H. Hung, 2003. F<strong>in</strong>itefrequencytomography reveals a variety of plumes <strong>in</strong> <strong>the</strong> mantle. Published onl<strong>in</strong>eDecember 9, 10.1126/science.1092485 (Science Express Research Article).Mooney, W.D., G. Laske <strong>and</strong> T.G. Masters, 1998. CRUST 5.1: A global crustal model at 5 × 5degrees. J. Geophys. Res., 103:727–747.Nakada, M., R. Kimura, J. Okuno, K. Moriwaki, H. Miura <strong>and</strong> H. Maemoku, 2000. LatePleistocene <strong>and</strong> Holocene melt<strong>in</strong>g history of <strong>the</strong> Antarctic ice sheet derived from sea-levelvariations. Mar. Geol., 167:85–103.Panasyuk, S.V. <strong>and</strong> B.H. Hager, 2000a. Inversion from mantle viscosity profiles constra<strong>in</strong>edby dynamic topography <strong>and</strong> <strong>the</strong> geoid, <strong>and</strong> <strong>the</strong>ir estimated errors. Geophys. J. Int., 143:821–836.Panasyuk, S.V. <strong>and</strong> B.H. Hager, 2000b. Models of isostatic <strong>and</strong> dynamic topography, geoidanomalies <strong>and</strong> <strong>the</strong>ir uncerta<strong>in</strong>ties. J. Geophys. Res., 105:28199–28209.Peltier, 1998. Postglacial variations <strong>in</strong> <strong>the</strong> level of <strong>the</strong> sea: implications for climate dynamics <strong>and</strong>solid-<strong>Earth</strong> geophysics. Rev. Geophys., 36:603–689.Peltier, W.R., W.E. Farrell <strong>and</strong> J.A. Clark, 1978. Glacial isostasy <strong>and</strong> relative sea level: a globalf<strong>in</strong>ite element model. Tectonophysics, 50:81–110.75


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Ricard, Y., M.A. Richards, C. Lithgow-Bertelloni <strong>and</strong> Y. LeStnuff, 1993. A geodynamic model ofmantle density heterogeneity. J. Geophys. Res., 98:21895–21909.Rignot, E., Thomas, R.H., 2002. <strong>Mass</strong> balance of polar ice sheets. Science, 297, 1502 -1506.Ritsema, J. <strong>and</strong> H.-J. van Heijst, 2000. Seismic imag<strong>in</strong>g of structural heterogeneity <strong>in</strong> <strong>Earth</strong>’smantle: evidence for large-scale mantle flow. Science Progress, 83:243–259.Scherneck, H.-G., J.M. Johansson, G. Elgered, J.L. Davis, B. Jonsson, G. Hedl<strong>in</strong>g, H. Koivula,M. Ollika<strong>in</strong>en, M. Poutanen, M. Vermeer, J.X. Mitrovica <strong>and</strong> G. Milne, 2002. BIFROST:observ<strong>in</strong>g <strong>the</strong> three-dimensional deformation of Fennosc<strong>and</strong>ia, <strong>in</strong>: J.X. Mitrovica, B.L.A.Vermeersen (eds.): Ice Sheets, Sea Level <strong>and</strong> <strong>the</strong> Dynamic <strong>Earth</strong>, American GeophysicalUnion, Wash<strong>in</strong>gton, 69-93.Tarasov, L. <strong>and</strong> W.R. Peltier, 2002. Greenl<strong>and</strong> glacial history <strong>and</strong> local geodynamic consequences.Geophys. J. Int., 150:198–229.Thomas, R., Csatho, B., Davis, C., Kim, C., Krabill, W., Manizade, S., McConnell, J., Sonntag,J., 2001. <strong>Mass</strong> balance of higher-elevation parts of <strong>the</strong> Greenl<strong>and</strong> ice sheet. J. Geophys. Res.,106, 33707 - 33716.Tregon<strong>in</strong>g, P., A. Welsh, H. McQueen <strong>and</strong> K. Lambeck, 2000. The search for postglacial reboundnear <strong>the</strong> Lambert glacier. <strong>Earth</strong> Planet. Space, 52:1037–1041.Tush<strong>in</strong>gham, A.M. <strong>and</strong> W.R. Peltier, 1991. Ice-3G: a new global model of late Pleistocenedeglaciation based upon geophysical predictions of post-glacial relative sea level change. J.Geophys. Res., 96:4497–4523.Vecsey, L., C.A. Hier Majumder <strong>and</strong> D.A. Yuen, 2002. Multi resolution tectonic features over <strong>the</strong><strong>Earth</strong> <strong>in</strong>ferred from <strong>the</strong> wavelet transformed geoid. Submitted to Electronic Geosciences,Sept. 25.Velicogna, I. <strong>and</strong> J. Wahr, 2002a: A method for separat<strong>in</strong>g Antarctic postglacial rebound <strong>and</strong> icemass balance us<strong>in</strong>g future ICESat Geoscience Laser Altimeter <strong>System</strong>, Gravity Recovery<strong>and</strong> Climate Experiment, <strong>and</strong> GPS satellite data. J. Geophys. Res., 107, 2263, doi:1029/2001JB000708.Velicogna, I. <strong>and</strong> J. Wahr, 2002b: Postglacial rebound <strong>and</strong> <strong>Earth</strong>’s viscosity structure fromGRACE. J. Geophys. Res., 107, 2376, doi:10.1029/2001JB001735.Wahr, J., M. Molenaar <strong>and</strong> F. Bryan, 1998. Time variability of <strong>the</strong> <strong>Earth</strong>‘s gravity field:hydrological <strong>and</strong> oceanic effects <strong>and</strong> <strong>the</strong>ir possible detection us<strong>in</strong>g GRACE. J. Geophys. Res.103:30205–30229.Wahr, J., T. van Dam, K. Larson <strong>and</strong> O. Francis, 2001. GPS measurements of vertical crustalmotion <strong>in</strong> Greenl<strong>and</strong>. J. Geophys. Res., 106:33755–33759.Wahr, J. <strong>and</strong> I. Velicogna, 2003: What might GRACE contribute to studies of postglacial rebound?Space Sci. Rev., 108:319–330.Wolf, D., J. Hagedoorn <strong>and</strong> M. Mart<strong>in</strong>ec, 2002. A new time-doma<strong>in</strong> method of implement<strong>in</strong>g <strong>the</strong>sea-level equation <strong>in</strong> glacial-isostatic adjustment. EOS, 83(47), Fall Meet. Suppl.: AbstractG12A–1059.Wu, P. <strong>and</strong> W.R. Peltier, 1983. Glacial isostatic adjustment <strong>and</strong> <strong>the</strong> free air gravity anomaly as aconstra<strong>in</strong>t on deep mantle viscosity. Geophys. J. R. Astr. Soc., 74: 377–449.Zhang, S. <strong>and</strong> U. Christensen, 1993. Some effects of lateral viscosity variations on geoid <strong>and</strong>surface velocities <strong>in</strong>duced by density anomalies <strong>in</strong> <strong>the</strong> mantle. Geophys. J. Int., 114:531–547.76


3.4 Cont<strong>in</strong>ental hydrologyCont<strong>in</strong>ental hydrologyIn view of <strong>the</strong> pivotal role <strong>the</strong> cont<strong>in</strong>ental water storage plays <strong>in</strong> <strong>the</strong><strong>Earth</strong>’s water, energy <strong>and</strong> biogeochemical cycles, <strong>the</strong> temporal <strong>and</strong> spatialvariations of water storage for large areas are presently not knownwith satisfactory accuracy. GRACE observations of <strong>the</strong> time-variablegravity field will, for <strong>the</strong> first time, allow to directly quantify mass changeson <strong>the</strong> cont<strong>in</strong>ents. In comb<strong>in</strong>ation with o<strong>the</strong>r remote sens<strong>in</strong>g observationssuch as altimetry, this will allow to considerably enhance <strong>the</strong>knowledge on cont<strong>in</strong>ental water storage variations <strong>in</strong> order to close <strong>the</strong>water balance at different scales <strong>in</strong> space <strong>and</strong> time, <strong>and</strong> to validate <strong>and</strong>improve <strong>the</strong> predictive capacity of large-scale hydrological models.The hydrological cycleThe system of water redistribution with<strong>in</strong> <strong>the</strong> global water cycle is <strong>the</strong> ma<strong>in</strong> driv<strong>in</strong>g force for lifeon <strong>the</strong> l<strong>and</strong> masses. By transformation <strong>and</strong> transport processes <strong>in</strong> <strong>the</strong> hydrological cycle, water ischang<strong>in</strong>g its phase from liquid to vapour <strong>and</strong> back to liquid or ice. Water fluxes with<strong>in</strong> <strong>and</strong> betweenl<strong>and</strong> <strong>and</strong> ice masses, oceans <strong>and</strong> atmosphere are closely coupled to each o<strong>the</strong>r. In <strong>the</strong> formof a complex system of nested cycles from local up to global scales (cf. Figure 3.4.1), mass <strong>and</strong>energy is transported over large distances. Atmospheric water vapour orig<strong>in</strong>at<strong>in</strong>g from evaporationat <strong>the</strong> ocean surface returns as precipitation on <strong>the</strong> oceans <strong>and</strong>, after vapour transport, on <strong>the</strong>l<strong>and</strong> masses.Figure 3.4.1: The global hydrological cycle (Max-Planck-Institute for Meteorology, Hamburg)77


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>On <strong>the</strong> cont<strong>in</strong>ents, water is recycled locally to <strong>the</strong> atmosphere by ongo<strong>in</strong>g evaporation from openwater surfaces or soils <strong>and</strong> by transpiration from plants <strong>and</strong> is returned by precipitation as ra<strong>in</strong> orsnow. These evapotranspiration processes are complex <strong>and</strong> vary considerably <strong>in</strong> time <strong>and</strong> space.They depend on <strong>the</strong> type of l<strong>and</strong> use, i.e., <strong>the</strong> vegetation type, its vegetation period <strong>and</strong> leaf area,on <strong>the</strong> available soil moisture <strong>and</strong> on <strong>the</strong> local atmospheric conditions.THE HYDROLOGICAL CYCLEBENEFITS− For <strong>the</strong> first time, temporal <strong>and</strong> spatial variations of <strong>the</strong> cont<strong>in</strong>ental waterstorage can be quantified for large areas.− This will allow to close <strong>the</strong> water balance of large river bas<strong>in</strong>s <strong>and</strong>cont<strong>in</strong>ents, <strong>and</strong> to validate <strong>and</strong> improve exist<strong>in</strong>g simulation modelstowards an enhanced description of <strong>the</strong> hydrological cycle <strong>and</strong> <strong>the</strong> impactsof climate / environmental change.CHALLENGES− The methodology of deriv<strong>in</strong>g water storage changes from GRACE gravitydata must be verified for well observed areas of appropriate size beforeit can be applied to ungauged river bas<strong>in</strong>s. This is a prerequisite for <strong>the</strong>separation of <strong>the</strong> hydrological component from <strong>the</strong> gravity signal.− The separation of different water storage components such asgroundwater, surface water <strong>and</strong> snow or ice by help of complementaryhydrological data is a complex <strong>and</strong> comprehensive task for largecatchment areas.After withdrawal of watervolumes by evapotranspiration,<strong>the</strong> rema<strong>in</strong><strong>in</strong>gra<strong>in</strong> or snow melt is splitup <strong>in</strong>to a surface runoffcomponent, a fast <strong>in</strong>terflowcomponent <strong>in</strong> <strong>the</strong>shallow soil zone <strong>and</strong><strong>in</strong>to percolation to deepersubsurface zones result<strong>in</strong>g<strong>in</strong> a slow groundwaterflow component. Therelative contribution of<strong>the</strong> different flow componentsto total runoff isgoverned by topography,vegetation, soil characteristics,underly<strong>in</strong>g hydrogeologicalconditions<strong>and</strong> <strong>the</strong> actual status of<strong>the</strong> related storage. Ino<strong>the</strong>r words, <strong>the</strong>se factorsdeterm<strong>in</strong>e <strong>the</strong> relative contribution <strong>and</strong> <strong>the</strong> residence time of water masses <strong>in</strong> <strong>the</strong> differentsoil <strong>and</strong> rock storage compartments <strong>and</strong>, thus, <strong>the</strong> time-variable soil moisture <strong>and</strong> groundwaterstorage volumes. Runoff from <strong>the</strong> l<strong>and</strong>scape is concentrated <strong>in</strong>to <strong>the</strong> river dra<strong>in</strong>age system. Riverrunoff as well as groundwater flow at large spatial scales passes various <strong>in</strong>termediate storages,such as retention <strong>in</strong> <strong>the</strong> river network itself, <strong>in</strong> lakes or wetl<strong>and</strong>s. There, it is partly subject toevaporation or extraction for human consumption, before be<strong>in</strong>g fed back <strong>in</strong>to <strong>the</strong> oceans.For a catchment area, be<strong>in</strong>g <strong>the</strong> basic spatial unit of hydrological analysis <strong>and</strong> water managementissues, <strong>the</strong> water balance can be written as:hP = hQ + hET + ∆ hS(3.4.1)h P[mm] Precipitation height,h Q[mm] Discharge height,h ET[mm] Evapotranspiration height,∆h S[mm] Storage change<strong>in</strong> units of water column per time <strong>in</strong>terval.However, <strong>the</strong> rates of water fluxes between <strong>the</strong> different components of <strong>the</strong> hydrological cyclevary considerably <strong>and</strong> show a specific temporal behaviour due to <strong>the</strong> different storage characteristics.This storage <strong>in</strong> <strong>the</strong> form of snow or ice cover, vegetation <strong>in</strong>terception, surface water, soilmoisture <strong>and</strong> groundwater all exhibit <strong>in</strong>dividual residence times, maximum storage levels <strong>and</strong>paths for water <strong>in</strong>put <strong>and</strong> output. Characteristic average residence times of cont<strong>in</strong>ental water storage,for <strong>in</strong>stance, range from a few days for <strong>the</strong> biomass or upper soil layers to several hundredsor thous<strong>and</strong>s of years for deep groundwater storage (cf. Figure 3.4.2).78


3.4 Cont<strong>in</strong>ental hydrologyFigure 3.4.2: Storage <strong>in</strong> <strong>the</strong> global hydrological cylce. Storage volumes (1000 km³, <strong>in</strong> brackets), fluxes(1000 km³_/year, <strong>in</strong> italics) <strong>and</strong> order of magnitude of mean water residence times (T) (after WBGU, 1997)Although mak<strong>in</strong>g up only about 3.5% of total water <strong>in</strong> <strong>the</strong> hydrologic cycle, cont<strong>in</strong>ental waterstorage <strong>and</strong> related mass redistribution processes have a huge importance for <strong>the</strong> dynamic <strong>Earth</strong>system. Soil moisture, for <strong>in</strong>stance, has frequently shown to be a key parameter as it l<strong>in</strong>ks <strong>the</strong> water<strong>and</strong> energy cycles via <strong>the</strong> transport of latent heat envolved <strong>in</strong> <strong>the</strong> evapotranspiration process<strong>and</strong>, <strong>in</strong> addition, <strong>the</strong> biogeochemical cycle by transport of solutes <strong>and</strong> suspended load be<strong>in</strong>g associatedwith water mass redistribution.Fur<strong>the</strong>rmore, cont<strong>in</strong>ental water storage is of highest importance for civilization on <strong>Earth</strong>. Thereplenishment of surface <strong>and</strong> groundwater storage provides <strong>the</strong> basis for water supply to a widerange of uses <strong>in</strong> <strong>the</strong> domestic, <strong>in</strong>dustrial <strong>and</strong> agricultural sectors. Soil moisture is essential forplant growth, <strong>in</strong>clud<strong>in</strong>g agricultural crops <strong>and</strong> thus food supply. About two-thirds of global wateruse is attributed to irrigation <strong>in</strong> agriculture. Population growth <strong>and</strong> economic development leadto an <strong>in</strong>creas<strong>in</strong>g water dem<strong>and</strong> <strong>and</strong> ris<strong>in</strong>g extractions from cont<strong>in</strong>ental water storage. However,<strong>the</strong> physiographic sett<strong>in</strong>gs of many regions <strong>in</strong> <strong>the</strong> world toge<strong>the</strong>r with climate variability oftenconstra<strong>in</strong> water availability to amounts be<strong>in</strong>g below <strong>the</strong> actual dem<strong>and</strong>. About two-thirds of <strong>the</strong>population of <strong>the</strong> world live at least temporarily <strong>in</strong> such a condition of water stress.Global climate change associated with a projected <strong>in</strong>crease of global surface temperature <strong>in</strong> <strong>the</strong>range of 1.5 to 5.8°C between 1990 <strong>and</strong> 2100 (IPCC, 2001) provides an <strong>in</strong>crease of available energyfor evapotranspiration <strong>and</strong> is expected to change volumes <strong>and</strong> flux rates between <strong>the</strong> storagesof <strong>the</strong> hydrological cycle. With<strong>in</strong> a general tendency of <strong>in</strong>creas<strong>in</strong>g variability, global atmosphericwater vapour <strong>and</strong> precipitation is expected to <strong>in</strong>crease, although effects at <strong>the</strong> regional scale maydeviate from <strong>the</strong> global tendency <strong>and</strong> are highly uncerta<strong>in</strong> (IPCC, 2001). These changes, toge<strong>the</strong>rwith o<strong>the</strong>r aspects of global change such as l<strong>and</strong> use changes which directly affect evapotranspiration<strong>and</strong> mass transport at <strong>the</strong> l<strong>and</strong> surface, affect water availability <strong>in</strong> surface <strong>and</strong> groundwaterwater storage be<strong>in</strong>g essential for human use.Thus, <strong>the</strong> knowledge <strong>and</strong> underst<strong>and</strong><strong>in</strong>g of temporal <strong>and</strong> spatial variations <strong>in</strong> cont<strong>in</strong>ental waterstorage is of crucial environmental <strong>and</strong> economic importance. It forms <strong>the</strong> basis for a reasonabledescription of mass redistribution processes <strong>in</strong> <strong>the</strong> hydrological cycle for current conditions <strong>and</strong>consequently also for reliable estimates of <strong>the</strong> future development by scenario simulations. This,79


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong><strong>in</strong> turn, is essential for <strong>the</strong> implementation of adequate long-rang<strong>in</strong>g water management strategiesat <strong>the</strong> regional scale of river bas<strong>in</strong>s <strong>in</strong> view of both chang<strong>in</strong>g water availability <strong>and</strong> water dem<strong>and</strong>.Go<strong>in</strong>g even beyond <strong>the</strong> regional scale, a global scale analysis is required due <strong>the</strong> close <strong>in</strong>teractionof changes <strong>in</strong> <strong>the</strong> cont<strong>in</strong>ental water storage <strong>and</strong> <strong>the</strong> climate system <strong>and</strong> its feedback on futureclimate conditions.A large-scale monitor<strong>in</strong>g system of changes <strong>in</strong> cont<strong>in</strong>ental water storage, however, does not exist.Ground-based observations of soil moisture or groundwater levels give only po<strong>in</strong>t estimates of <strong>the</strong>water storage <strong>and</strong> are hard to be <strong>in</strong>terpolated to larger areas <strong>in</strong> view of <strong>the</strong> sparse measurement network<strong>and</strong> <strong>the</strong> multitude of <strong>in</strong>fluenc<strong>in</strong>g factors. For large areas, estimates by remote sens<strong>in</strong>g existfor <strong>the</strong> snow cover <strong>and</strong> for water levels <strong>in</strong> lakes, reservoirs <strong>and</strong> wetl<strong>and</strong>s. Also data on soil moistureare given by remote sens<strong>in</strong>g methods for larger areas, however <strong>the</strong>y are limited to <strong>the</strong> uppermostcentimetres of <strong>the</strong> soil <strong>and</strong> do not capture <strong>the</strong> important deeper soil water <strong>and</strong> groundwater storage.While adequate measurements of precipitation <strong>and</strong> runoff may be available <strong>in</strong> some cases at <strong>the</strong>river bas<strong>in</strong> scale, a calculation of storage changes by use of <strong>the</strong> water balance equation (see equation3.4.1) usually is not feasible as no reliable estimates of evapotranspiration are available forlarge scales. The shortage of adequate data (for model <strong>in</strong>put <strong>and</strong> validation) also limits <strong>the</strong> applicabilityof hydrological simulation models to quantify water storage components for large areas.Temporal variations of cont<strong>in</strong>ental mass measured by <strong>the</strong> GRACE mission are expected to be ofextraord<strong>in</strong>ary importance to overcome <strong>the</strong> lack of direct measurements of changes <strong>in</strong> <strong>the</strong> cont<strong>in</strong>entalwater storage at large scales. Simultaneous altimetric measurements of surface water levelchanges <strong>and</strong> of changes <strong>in</strong> snow or ice cover will allow for a fur<strong>the</strong>r separation of <strong>the</strong> <strong>in</strong>volvedstorage components. In <strong>the</strong> follow<strong>in</strong>g chapters an overview is given on present open questions <strong>in</strong>hydrology <strong>and</strong> on <strong>the</strong> perspectives which are opened up by <strong>the</strong> use of gravitational <strong>and</strong> altimetricmeasurements.Global water balanceUntil present, <strong>the</strong> global <strong>and</strong> cont<strong>in</strong>ental water balance is not known with sufficient accuracynei<strong>the</strong>r <strong>in</strong> its temporal variation nor for its mean annual values. Values differ considerably fordifferent data sources (see Figs. 3.4.1, 3.4.2, 3.4.3). This uncerta<strong>in</strong>ty is due to <strong>the</strong> difficulty ofdirect measurements of <strong>the</strong> climatic components of <strong>the</strong> water cycle (precipitation <strong>and</strong> evaporation)at <strong>the</strong> l<strong>and</strong> surface <strong>in</strong> terms of <strong>the</strong> spatial coverage <strong>and</strong> density of measurement po<strong>in</strong>ts. Problemsalso arise with <strong>the</strong> accurate measurement of river discharge on <strong>the</strong> global scale, especially for <strong>the</strong>ma<strong>in</strong> contribut<strong>in</strong>g river systems of <strong>the</strong> world with large discharge volumes. Estimates of totalcont<strong>in</strong>ental discharge <strong>in</strong>to <strong>the</strong> oceans vary by about 20% (cf. Figure 3.4.3).Even more uncerta<strong>in</strong> is <strong>the</strong> quantification of <strong>the</strong> considerably smaller net flux between oceans <strong>and</strong>l<strong>and</strong> masses. It is def<strong>in</strong>ed by <strong>the</strong> imbalance between water vapour transport to <strong>the</strong> l<strong>and</strong> masses <strong>and</strong>total runoff, <strong>and</strong> contributes to estimates of sea level change. Similar problems exist for <strong>the</strong> massbalance of ice masses (here <strong>the</strong> Antarctic <strong>and</strong> Greenl<strong>and</strong> ice sheets), for which <strong>the</strong> mass outputcannot be determ<strong>in</strong>ed better than +/- 20% of <strong>the</strong> mass <strong>in</strong>put (see Chapter 3.2). However, <strong>the</strong>semass balances <strong>and</strong> <strong>the</strong> result<strong>in</strong>g net mass fluxes are essential for <strong>the</strong> determ<strong>in</strong>ation of changes <strong>in</strong><strong>the</strong> oceanic mass storage.Observations of gravity changes by GRACE measurements allow a direct determ<strong>in</strong>ation of massvariations <strong>and</strong>, thus, of net fluxes between <strong>the</strong> three compartments l<strong>and</strong> masses, oceans <strong>and</strong> ice(cf. Figure 3.4.2). As mass loss from l<strong>and</strong> <strong>and</strong> ice areas occur not only via liquid water but alsovia <strong>the</strong> release of water vapour to <strong>the</strong> atmosphere, <strong>the</strong> exchange with <strong>the</strong> atmosphere as an additionallyflow path has to be accounted for. These four compartments of global water storage areclosely coupled.80


3.4 Cont<strong>in</strong>ental hydrologyFigure 3.4.3: Long-term average annual cont<strong>in</strong>ental discharge <strong>in</strong>to oceans (Estimations of six observation-based<strong>and</strong> model-based studies compared <strong>in</strong> Döll et al. 2003)Atmospheric mass variationsAs <strong>the</strong> gravitational measurements <strong>in</strong>tegrate cont<strong>in</strong>ental water <strong>and</strong> atmospheric mass variations,<strong>the</strong> effect of air mass redistributions has to be elim<strong>in</strong>ated from <strong>the</strong> total signal prior to its use forhydrological analyses. The accuracy of <strong>the</strong>se atmospheric corrections is of fundamental importance,as it determ<strong>in</strong>es <strong>the</strong> accuracy of mass variations determ<strong>in</strong>ed for all <strong>the</strong> residual components,especially on short time scales. Local atmospheric mass per unit area is determ<strong>in</strong>ed by <strong>the</strong> surfacelevel pressure. The pressure fields will usually be derived from atmospheric models such as byECMWF (European Centre for Medium-Range Wea<strong>the</strong>r Forecasts) <strong>and</strong> by NCEP (National Centrefor Environmental Predictions, USA) or of <strong>the</strong> respective re-analysis data. Their accuracy hasto be assessed by means of a comparison with measured barometric data. It has been shown thatpressure fields from operational analyses were usually adequate to remove <strong>the</strong> atmospheric contributionfrom GRACE gravity signals for hydrological applications with an accuracy of few millimetresof equivalent water thickness (Velicogna et al., 2001). Similarly, a pressure field derivedfrom barometric measurements alone might be adequate if <strong>the</strong> station density is large enough. As<strong>the</strong> uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> hydrological signals due to atmospheric corrections varies with time <strong>and</strong>location, <strong>the</strong> error has to be assessed for each hydrological analysis of <strong>the</strong> gravity field measurements,depend<strong>in</strong>g on <strong>the</strong> area of <strong>in</strong>vestigation.A direct check of <strong>the</strong> consistency of atmospheric mass changes derived from gravitational signalswith that derived from surface pressure <strong>and</strong> thus a quantification of <strong>the</strong> result<strong>in</strong>g accuracy of atmosphericcorrections is feasible <strong>in</strong> areas where all o<strong>the</strong>r fluxes caus<strong>in</strong>g mass changes are knownor negligible. This may apply to arid zones, where after long periods without ra<strong>in</strong>fall any massredistribution by evaporation or runoff can be excluded <strong>and</strong> changes <strong>in</strong> <strong>the</strong> gravity signal are dueto atmospheric mass fluxes only. Ano<strong>the</strong>r possibility for a consistency check is to take advantageof characteristic response times of different components of <strong>the</strong> water cycle that contribute to massvariations. This may allow separat<strong>in</strong>g <strong>the</strong> atmospheric signal with a high-frequency temporal behaviourfrom slower mass changes like groundwater storage variations.81


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Large-scale variations of <strong>the</strong> cont<strong>in</strong>ental waterstorageIntra-annual <strong>and</strong> <strong>in</strong>ter-annual dynamics of cont<strong>in</strong>ental water storage vary substantially betweenenvironments of different physiographic <strong>and</strong> climatic conditions. For example, <strong>the</strong> <strong>in</strong>tra-annualvariation between maximum <strong>and</strong> m<strong>in</strong>imum water storage amounts to about 50 mm of water column<strong>in</strong> river bas<strong>in</strong>s with ra<strong>the</strong>r uniform climatic conditions, whereas it is up to 450 mm <strong>in</strong> tropicalriver bas<strong>in</strong>s with a strong seasonal variation of climatic forc<strong>in</strong>g, <strong>in</strong> particular precipitation <strong>in</strong>put(Figures 3.4.4 <strong>and</strong> 3.4.6). This makes <strong>the</strong> cont<strong>in</strong>ental hydrology one of <strong>the</strong> strongest signal componentsof <strong>the</strong> total gravity field time variations measured by GRACE, which are expected to beavailable at a water column resolution of about 10 mm for areas of about 400000 km 2 (Wahr etal., 1998; Swenson et al., 2003).However, <strong>the</strong> spatial <strong>and</strong> temporal variability of water storage changes is not sufficiently knownuntil now. Observations of variations <strong>in</strong> cont<strong>in</strong>ental water storage such as soil moisture or groundwaterare rarely available even on small scales of sub-areas of river bas<strong>in</strong>s due to <strong>the</strong> limitationsof <strong>the</strong> measurement methods with regard to sample density, spatial coverage or soil penetrationdepth as <strong>in</strong> <strong>the</strong> case of radar remote sens<strong>in</strong>g of soil moisture. Yet even more difficult is <strong>the</strong> quantificationof water fluxes between <strong>the</strong> storages which often <strong>in</strong>clude complex <strong>in</strong>teractions.Hydrological processes that <strong>in</strong>fluence <strong>the</strong> water storage can usually only be quantified by us<strong>in</strong>ghydrological water balance models. A wide range of hydrological models exists, reach<strong>in</strong>g fromdetailed physically-based process models up to simplified models which make use of <strong>in</strong>terrelatedconceptual storage to represent water fluxes (e.g., evapotranspiration, percolation, runoff generation,river network rout<strong>in</strong>g). More comprehensive models of water management also addressanthropogenic, time variant <strong>in</strong>fluences on water storage, such as pump<strong>in</strong>g from groundwater orwithdrawal from surface reservoirs for irrigation or o<strong>the</strong>r uses (cf. Figure 3.4.5).Figure 3.4.4: Average seasonal changes (changes between <strong>the</strong> months of maximum <strong>and</strong> m<strong>in</strong>imum storage)of <strong>the</strong> total cont<strong>in</strong>ental water storage (composed of <strong>the</strong> storage components snow, soil water, groundwater,river, lakes <strong>and</strong> wetl<strong>and</strong>s), simulated on a 0.5° global grid with <strong>the</strong> model WGHM (Döll et al., 2003),period 1961-1995.82


3.4 Cont<strong>in</strong>ental hydrologyFigure 3.4.5: Flow chart of a water balance model (IWS Stuttgart, Hohai University Nanj<strong>in</strong>g)The applicability of a specific model type depends, among o<strong>the</strong>rs, on <strong>the</strong> spatial scale <strong>and</strong> <strong>the</strong>available <strong>in</strong>formation on soils, hydrogeology, l<strong>and</strong> use <strong>and</strong> climate. On small scales with detailedspatially distributed <strong>in</strong>formation, models can address a complex system of various <strong>in</strong>teract<strong>in</strong>g hydrologicalprocesses. These models often use a spatial discretization based ei<strong>the</strong>r on a raster representationof all relevant parameters or on a sub-division of <strong>the</strong> river bas<strong>in</strong> <strong>in</strong>to areas of similarhydrological response.With an <strong>in</strong>crease <strong>in</strong> scale <strong>and</strong> a related decrease of detail <strong>in</strong> <strong>the</strong> available data, <strong>the</strong> actual l<strong>and</strong>scapeheterogeneity can no longer be explicitly represented <strong>in</strong> <strong>the</strong> model. Thus, scal<strong>in</strong>g approaches areused to describe <strong>the</strong> sub-scale variability, e.g., by means of average parameters, distribution functionsor simplify<strong>in</strong>g lumped process formulations.In general, <strong>the</strong> capability of hydrological models to represent <strong>the</strong> hydrological cycle <strong>and</strong>, thus,<strong>the</strong>ir predictive power to quantify current <strong>and</strong> future variations <strong>in</strong> cont<strong>in</strong>ental water storage, isdependent on <strong>the</strong> accuracy of <strong>in</strong>put data, on <strong>the</strong> appropriateness of process formulations <strong>and</strong> on<strong>the</strong> availability of data for model calibration <strong>and</strong> validation. Large differences between regionsof different climate or physiography <strong>in</strong> terms of hydrological processes <strong>and</strong> storage dynamicsprevent hydrological models from be<strong>in</strong>g easily transferred from one region to ano<strong>the</strong>r. In particularfor large-scale applications, <strong>the</strong> only available variable for model validation usually is riverdischarge. Although satisfactory results may be obta<strong>in</strong>ed when compar<strong>in</strong>g mean simulated <strong>and</strong>observed river discharge, <strong>the</strong> temporal variability <strong>and</strong> <strong>the</strong> state of soil, groundwater <strong>and</strong> surfacewater storage volumes may be unsatisfactorily simulated <strong>in</strong> <strong>the</strong> model. As an example, currentlimitations of hydrological models to accurately quantify cont<strong>in</strong>ental storage changes are shown<strong>in</strong> Figure 3.4.6 <strong>in</strong> terms of large differences <strong>in</strong> temporal storage variations between model results<strong>and</strong> water balance studies for large river bas<strong>in</strong>s.In view of <strong>the</strong> exist<strong>in</strong>g uncerta<strong>in</strong>ties mentioned above, a multi-variable validation of hydrologicalmodels go<strong>in</strong>g beyond river discharge as validation variable has often been called for. In this83


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 3.4.6: Mean difference between annual maximum <strong>and</strong> m<strong>in</strong>imumcont<strong>in</strong>ental water storage for large river bas<strong>in</strong>s, (a) medianvalue of 10 global l<strong>and</strong>-surface models, years 1987-1988, (b) valuederived from a water balance study, years 1989-1992 (data summarized<strong>in</strong> Rodell & Famiglietti, 1999)respect, measurements of cont<strong>in</strong>entalwater storage changes by<strong>the</strong> GRACE mission can providea unique additional data sourcefor model validation. The accuracythat can be expected fromGRACE <strong>in</strong> determ<strong>in</strong><strong>in</strong>g changes<strong>in</strong> monthly cont<strong>in</strong>ental waterstorage are <strong>in</strong> <strong>the</strong> order ofabout 10 mm water equivalentfor regions hav<strong>in</strong>g areas of about400000 km 2 (Wahr et al., 1998;Swenson et al., 2003). Accuraciesare expected to be betterfor larger regions. Thus, storagevariations at monthly <strong>and</strong> longertime scales can be expected to beobservable by GRACE for mostlarge bas<strong>in</strong>s with sufficient accuracy to constra<strong>in</strong> uncerta<strong>in</strong>ties of exist<strong>in</strong>g estimates <strong>and</strong> modelresults (cf. Figures 3.4.4 <strong>and</strong> 3.4.6 until 3.4.8). As gravity-based observations of cont<strong>in</strong>entalmass variations deliver <strong>in</strong>tegral values of storage changes of groundwater, soil moisture, snow,<strong>and</strong> surface water, additional data may help to dis-aggregate <strong>the</strong> signal <strong>in</strong>to its <strong>in</strong>dividual components.Complementary measurements of water levels <strong>in</strong> surface waters by altimetry provide <strong>the</strong>outst<strong>and</strong><strong>in</strong>g opportunity of quantify<strong>in</strong>g changes <strong>in</strong> this surface water storage <strong>and</strong> of separat<strong>in</strong>g itfrom <strong>the</strong> o<strong>the</strong>r components.Of course <strong>the</strong> use of satellite-based measurements as a fundamental additional <strong>in</strong>formation forlarge catchment areas has to be cross-checked with measurements from well observed catchments.Thus <strong>the</strong> validation of GRACE measurements of cont<strong>in</strong>ental water storage variations by groundbasedmeasurements <strong>and</strong> <strong>the</strong> quantification of related uncerta<strong>in</strong>ties is of fundamental importancefor hydrological modell<strong>in</strong>g <strong>and</strong> forecast<strong>in</strong>g <strong>and</strong>, as a consequence, for <strong>the</strong> separation of o<strong>the</strong>r contributionsto gravity signals like <strong>the</strong> <strong>Earth</strong>’s mantle <strong>and</strong> crust dynamics (see Chapter 3.3). In pr<strong>in</strong>ciple,it consists of an <strong>in</strong>vestigation of <strong>the</strong> consistency between climatic <strong>and</strong> hydrological data on<strong>the</strong> one h<strong>and</strong>, <strong>and</strong> observed mass changes from GRACE on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>. For this comparisoncatchments are to be selected where ground-based measurements of soil moisture, groundwaterlevels, surface water storage <strong>and</strong> possibly snow cover exist with sufficient density <strong>and</strong> for which<strong>the</strong> processes are understood <strong>and</strong> reliable model estimates of water storage variations are availableAn example for such a well observed <strong>and</strong> modelled catchment (cf. Figures 3.4.7 <strong>and</strong> 3.4.8) is<strong>the</strong> Rh<strong>in</strong>e catchment (Bardossy A., Hundecha J., 2004), although its spatial extent of about 200 x600 km is at <strong>the</strong> limit of <strong>the</strong> observable resolution of GRACE mass changes.If averaged for sufficiently large areas, observed <strong>and</strong> modelled temporal changes of <strong>the</strong> waterstorage will allow a check of <strong>the</strong> consistency <strong>and</strong> plausibility of GRACE measurements on mediumscales.In summary, <strong>the</strong> knowledge of cont<strong>in</strong>ental water storage variations measured by GRACE is expectedto considerably improve <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of hydrological processes <strong>and</strong> <strong>the</strong>ir dependencieson climate or physiography. Start<strong>in</strong>g out from <strong>the</strong> cont<strong>in</strong>ental scale <strong>and</strong> go<strong>in</strong>g to a higherspatial resolution correspond<strong>in</strong>g to that atta<strong>in</strong>ed by GRACE, <strong>the</strong> <strong>in</strong>vestigation of a large numberof different environments <strong>and</strong> river bas<strong>in</strong>s will allow to cover <strong>the</strong> maximum diversity <strong>in</strong> bas<strong>in</strong>characteristics <strong>and</strong> storage responses, rang<strong>in</strong>g from humid tropical, arid <strong>and</strong> semi-arid, humidtemperate to snow- <strong>and</strong> ice-dom<strong>in</strong>ated regions. In this way, relationships between storage variations<strong>and</strong> climate variability can be quantified for different bas<strong>in</strong> characteristics <strong>and</strong> used to im-84


3.4 Cont<strong>in</strong>ental hydrologyprove model transferability <strong>and</strong> to reduce related uncerta<strong>in</strong>ty. This is of particular importance formodel transfer to ungauged catchments, where no calibration <strong>and</strong> validation with discharge datais possible.Figure 3.4.7: Spatial distribution of seasonal subsurface water storage changes <strong>in</strong> <strong>the</strong> Rh<strong>in</strong>e catchmentbetween months of maximum <strong>and</strong> m<strong>in</strong>imum storage accord<strong>in</strong>g to <strong>the</strong> HBV model.Figure 3.4.8: Time series of cont<strong>in</strong>ental water storage averaged over 90525 km²of <strong>the</strong> Rh<strong>in</strong>e catchment for soil moisture, <strong>in</strong>terflow <strong>and</strong> groundwater85


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Large-scale evapotranspirationEvapotranspiration fluxes <strong>and</strong> <strong>the</strong>ir temporal distribution, depend<strong>in</strong>g on climatic conditions, soilmoisture availability, <strong>the</strong> vegetation type <strong>and</strong> period <strong>and</strong> <strong>the</strong> time-variable area of surface waterbodies such lakes, reservoirs <strong>and</strong> wetl<strong>and</strong>s, are poorly known or large scales. Different modell<strong>in</strong>gapproaches may deliver substantially dissimilar results at <strong>the</strong> monthly, seasonal or even annualtime scale. GRACE measurements of water storage changes toge<strong>the</strong>r with <strong>the</strong> altimetric monitor<strong>in</strong>gof changes <strong>in</strong> surface water levels, however, will enable to close <strong>the</strong> water balance <strong>and</strong> resolve<strong>the</strong> water balance equation for evapotranspiration (see Equation 1). This will allow for an evaluation<strong>and</strong> improvement of evapotranspiration models with respect to a realistic description underdifferent hydrological situations (different climate zones, soil <strong>and</strong> vegetation conditions). Thus,GRACE observations of <strong>the</strong> temporal variability of cont<strong>in</strong>ental water storage should be suitablefor <strong>the</strong> validation of exist<strong>in</strong>g evapotranspiration modules <strong>in</strong> hydrological models. This reduces<strong>the</strong> degree of freedom <strong>in</strong> conceptional models <strong>and</strong> considerably enhances <strong>the</strong> quality of parameterestimations <strong>and</strong> <strong>the</strong> prognostic power of <strong>the</strong> models. The transfer of this knowledge to ungaugedcatchments will <strong>the</strong>n allow a calculation of discharge on <strong>the</strong> basis of known water storage changesfrom GRACE <strong>and</strong> climatic data <strong>and</strong> thus deliver an essential <strong>in</strong>put to <strong>the</strong> assessment of <strong>the</strong> globalwater balance.Long-term trends <strong>in</strong> cont<strong>in</strong>ental water storageProcesses of environmental change may cause gradual changes <strong>in</strong> cont<strong>in</strong>ental water fluxes <strong>and</strong>storage volumes, which are of high importance for ecosystems <strong>and</strong> human water <strong>and</strong> food supply.As ground-based measurements of storage are very <strong>in</strong>accurate, storage changes can only bedeterm<strong>in</strong>ed <strong>in</strong>directly via <strong>the</strong> water balance on <strong>the</strong> basis of discharge <strong>and</strong> climatic data. For areaswith sparse monitor<strong>in</strong>g data, storage changes cannot be detected. Inter-annual changes <strong>in</strong> <strong>the</strong> hydrologicalcontribution to <strong>the</strong> gravity field measured by GRACE will allow <strong>the</strong> <strong>in</strong>vestigation ofslowly chang<strong>in</strong>g storage, i.e. of groundwater or cont<strong>in</strong>ental ice masses, <strong>and</strong> thus enable <strong>the</strong> directdetection of long-term trends for large spatial scales. New signals of climate change may becomeobservable. In high latitudes, for <strong>in</strong>stance, <strong>in</strong>creas<strong>in</strong>g temperature is expected to lead to a th<strong>in</strong>n<strong>in</strong>gor disappearance of permafrost. A long-term storage decrease will contribute to cont<strong>in</strong>entalnet discharge <strong>and</strong> thus to sea level rise. In arid to sub-humid areas, climate change is likely to decreasesoil moisture, caus<strong>in</strong>g runoff changes, l<strong>and</strong> degradation or desertification.Large scale anthropogenic impacts on water storage are expected to become observable by changes<strong>in</strong> <strong>the</strong> gravity field. Direct impacts by water management like withdrawal use of groundwater<strong>and</strong> surface water for irrigation as well as <strong>in</strong>direct impacts via changes <strong>in</strong> l<strong>and</strong> use like deforestationor dra<strong>in</strong>age of wetl<strong>and</strong>s could be detected <strong>in</strong> areas where <strong>the</strong>se data are not available by o<strong>the</strong>rmeans (Rodell, M., & Famiglietti, J. S., 2002). Excessive water use from lakes <strong>and</strong> reservoirs orfrom <strong>the</strong>ir contribut<strong>in</strong>g rivers leads to a decreas<strong>in</strong>g trend <strong>in</strong> <strong>the</strong>ir storage volumes (Aral Sea, LakeNasser etc.). As on large spatial scales different hydrological storage (ice, groundwater, soil water,wetl<strong>and</strong>s) are coexist<strong>in</strong>g, for a differentiated description of trends <strong>the</strong>se components have tobe separated by means of complementary data from remote sens<strong>in</strong>g like altimetry, ground-basedmeasurements <strong>and</strong>/or hydrological models. Remote sens<strong>in</strong>g as well as ground-based measurementsof mass changes <strong>in</strong> snow or ice covers or long-term variations <strong>in</strong> <strong>the</strong> groundwater table are<strong>the</strong>refore <strong>in</strong>dispensable <strong>in</strong> order to quantify <strong>the</strong> consistency with <strong>the</strong> GRACE signal <strong>and</strong> to separatedifferent storage by means of signal dynamics <strong>in</strong> well observed areas.The <strong>in</strong>vestigation of a dependency of <strong>the</strong> observed cont<strong>in</strong>ental storage changes on chang<strong>in</strong>g en-86


3.4 Cont<strong>in</strong>ental hydrologyvironmental boundary conditions <strong>in</strong> <strong>the</strong> context of climate change or human impacts is not onlyimportant for <strong>the</strong> underst<strong>and</strong><strong>in</strong>g of hydrological processes <strong>and</strong> <strong>the</strong> evaluation of hydrologicalmodels, but also for <strong>the</strong> separation of geophysical contributions (by <strong>Earth</strong>’s mantle <strong>and</strong> crust dynamics),as both are contribut<strong>in</strong>g to mass changes on this long-term time scale. In areas which are<strong>in</strong>sufficiently observed <strong>in</strong> terms of <strong>the</strong>ir hydrological behaviour it is <strong>in</strong>evitable to determ<strong>in</strong>e longtermchanges <strong>in</strong> water storage from climatic data on <strong>the</strong> basis of models. Only after <strong>the</strong> separationof hydrological gravity changes based on hydrological models, a separate analysis of o<strong>the</strong>r geophysicalcomponents is possible.Long-term environmental change is not only expressed by changes <strong>in</strong> <strong>the</strong> mean, but also bychanges <strong>in</strong> <strong>the</strong> temporal distribution or variability. In this respect, ano<strong>the</strong>r potential to detect gradualchanges <strong>in</strong> <strong>the</strong> hydrological cycle by gravity measurements is via <strong>the</strong> analysis of changes <strong>in</strong><strong>the</strong> <strong>in</strong>tra-annual regime of storage variations on a monthly basis as <strong>the</strong>y are provided by GRACEmeasurements. Particularly, temporal shifts <strong>in</strong> <strong>the</strong> soil moisture regime due to an <strong>in</strong>creas<strong>in</strong>g fractionof ra<strong>in</strong>fall relative to snow <strong>in</strong> <strong>the</strong> course of global warm<strong>in</strong>g can be analysed. Long-termchanges <strong>in</strong> water storage due to chang<strong>in</strong>g frequencies of different atmospheric circulation patternscan potentially be detected. These analysis help to quantify <strong>the</strong> impact of environmental change,ei<strong>the</strong>r due to natural climate variability or various anthropogenic <strong>in</strong>fluences, on long-term cont<strong>in</strong>entalmass variations <strong>and</strong> changes <strong>in</strong> <strong>the</strong> hydrological cycle.ReferencesAlsdorf, D., D.P. Lettenmeier <strong>and</strong> C. Vörösmarty, 2003: The need for global, satellite-basedobservations of terrestrial surface waters. EOS, 84(29):269-276.Bárdossy, A . <strong>and</strong> Y. Hundecha, 2004: Modell<strong>in</strong>g of <strong>the</strong> effect of l<strong>and</strong>use changes on <strong>the</strong> runoffgeneration of a river bas<strong>in</strong> through parameter regionalization of a watershed model. Journalof Hydrology, <strong>in</strong> press.Dickey, J. O., C. R Bentley, R. Bilham, J. A. Carton, R. J. Eanes, T. A. Herr<strong>in</strong>g, W. M. Kaula, G.S. E. Lagerloef, S. Rojstaczer, W. H. F. Smith, H. M. van den Dool, J. M. Wahr <strong>and</strong> M. T.Zuber, 1999: Gravity <strong>and</strong> <strong>the</strong> hydrosphere: new frontier. Hydrological Sciences Journal 44(3):407-415.Döll, P., F. Kaspar <strong>and</strong> B. Lehner, 2003: A global hydrological model for deriv<strong>in</strong>g water availability<strong>in</strong>dicators: model tun<strong>in</strong>g <strong>and</strong> validation. Journal of Hydrology, 270:105-134.IPCC (2001): Intergovernmental Panel on Climate Change. 3rd Assessment report. CambridgeUniversity press, UK.Rodell, M. <strong>and</strong> J. S. Famiglietti, 1999: Detectability of variations <strong>in</strong> cont<strong>in</strong>ental water storagefrom satellite observations of <strong>the</strong> time dependent gravity field. Water Resources Research35(9):2705-2723.Rodell, M. <strong>and</strong> J. S. Famiglietti, 2001: An analysis of terrestrial water storage variations <strong>in</strong> Ill<strong>in</strong>oiswith implications for <strong>the</strong> Gravity Recovery <strong>and</strong> Climate Experiment (GRACE). WaterResources Research 37(5):1327-1339.Rodell, M. <strong>and</strong> J. S. Famiglietti, 2002: The potential for satellite-based monitor<strong>in</strong>g of groundwaterstorage changes us<strong>in</strong>g GRACE: <strong>the</strong> High Pla<strong>in</strong>s aquifer, Central US. Journal of Hydrology263:245-256.Swenson, S., J. Wahr <strong>and</strong> P.C.D. Milly, 2003: Estimated accuracies of regional water storagevariations <strong>in</strong>ferred from <strong>the</strong> Gravity Recovery <strong>and</strong> Climate Experiment (GRACE). WaterResources Research, 39(8):1223, doi:10.1029/2002WR001808.87


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Swenson, S. <strong>and</strong> J. Wahr, 2002: Methods for <strong>in</strong>ferr<strong>in</strong>g regional surface-mass anomalies fromGravity Recovery <strong>and</strong> Climate experiment (GRACE) measurements of time-variable gravity.Journal of Geophysical Research, 107 (B9), 2193, doi: 10.1029/2001JB000576.Velicogna, I., J. Wahr. <strong>and</strong> D. H. Van, 2001: Can surface pressure be used to remove atmosphericcontributions from GRACE data with sufficient accuracy to recover hydrological signals?Journal of Geophysical Research B: Solid <strong>Earth</strong> 106:16415-16434.Wahr, J., M. Molenaar <strong>and</strong> F. Bryan, 1998: Time variability of <strong>the</strong> <strong>Earth</strong>’s gravity field:Hydrological <strong>and</strong> oceanic effects <strong>and</strong> <strong>the</strong>ir possible detection us<strong>in</strong>g GRACE. Journal ofGeophysical Research – Solid <strong>Earth</strong> 103(B12):30205-30229.WBGU, 1997: Welt im W<strong>and</strong>el – Wege zu e<strong>in</strong>em nachhaltigen Umgang mit Süßwasser.Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen, Spr<strong>in</strong>ger-Verlag,Berl<strong>in</strong>-Heidelberg.88


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesA common framefor <strong>the</strong> <strong>Earth</strong> system:<strong>in</strong>tegration <strong>and</strong> synergiesThe gravity field <strong>and</strong> altimetry missions give us a new tool to observe masssignals. However, <strong>in</strong> order to study <strong>and</strong> underst<strong>and</strong> each <strong>in</strong>dividual massphenomenon, <strong>the</strong> <strong>in</strong>terrelations with all o<strong>the</strong>rs have to be considered.<strong>Mass</strong> exchanges between <strong>the</strong> system components must be modelledconsistently. Major challenges are <strong>the</strong> separation of superimposed masssignals <strong>and</strong> <strong>the</strong> homogeneity of reference systems <strong>and</strong> st<strong>and</strong>ards <strong>in</strong> all<strong>in</strong>volved discipl<strong>in</strong>es.4.1 <strong>Mass</strong> transport processes: parts of acomprehensive systemIn Chapter 3, mass transport <strong>and</strong> mass distribution associated with a wide range of processes from<strong>the</strong> various parts of <strong>the</strong> <strong>Earth</strong> system have been discussed <strong>in</strong> detail, outl<strong>in</strong><strong>in</strong>g <strong>the</strong> current status ofmodell<strong>in</strong>g <strong>and</strong> future perspectives for each of <strong>the</strong>m. It has been shown that by <strong>the</strong> new satellitegravity <strong>and</strong> altimetry data mass signals can be detected which cannot be detected by o<strong>the</strong>r means,<strong>and</strong> thus a fundamentally new way is opened to model very central processes <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system.Now <strong>the</strong> question will be addressed, why an <strong>in</strong>tensive cooperation between <strong>the</strong> different researchareas is required <strong>in</strong> order to reach substantial progress on each <strong>in</strong>dividual field. It will be po<strong>in</strong>tedout that research on each of <strong>the</strong> <strong>in</strong>dividual processes described <strong>in</strong> this report would benefit considerablyfrom <strong>the</strong> <strong>in</strong>tegration <strong>in</strong>to a jo<strong>in</strong>t research framework.The overall structure of <strong>the</strong> proposed research framework is, once aga<strong>in</strong>, outl<strong>in</strong>ed <strong>in</strong> Figure 4.1.The new satellite data, shown on <strong>the</strong> left h<strong>and</strong> side of <strong>the</strong> Figure, are <strong>the</strong> common basis for allapplications. The central research fields, represented by <strong>the</strong> boxes to <strong>the</strong> right, are now complementedwith some keywords taken from Chapter 3. The box for <strong>the</strong> atmosphere represents a veryimportant neighbour<strong>in</strong>g field, which is, however, not planned to be a central research field <strong>in</strong> <strong>the</strong>framework. The yellow ribbon connect<strong>in</strong>g <strong>the</strong> central research fields symbolizes <strong>the</strong> <strong>in</strong>teractions<strong>and</strong> <strong>in</strong>terconnections between <strong>the</strong> fields. The yellow rectangle attached to <strong>the</strong> ribbon conta<strong>in</strong>ssome key <strong>the</strong>mes concern<strong>in</strong>g <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> satellite data products which will warrant<strong>the</strong> consistent use of <strong>the</strong> data <strong>in</strong> all applications <strong>and</strong> enable <strong>the</strong> separation of effects <strong>and</strong> <strong>the</strong> mutualexchange of model results.The <strong>in</strong>dividual research projects <strong>in</strong> this common framework are connected due to three basicfacts, which are:89


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>1. Complementarity of gravity <strong>and</strong> altimetry missions: For many of <strong>the</strong> proposedapplications, <strong>the</strong> exploitation of satellite gravity or altimetry data alone is not sufficient, but<strong>the</strong> comb<strong>in</strong>ation of both is needed, as well as <strong>the</strong> comb<strong>in</strong>ation with o<strong>the</strong>r complementarymissions. This is particularly challeng<strong>in</strong>g, because <strong>the</strong> mass signals to be determ<strong>in</strong>ed areso small, <strong>and</strong> because <strong>the</strong> sensor systems <strong>and</strong> data types to be comb<strong>in</strong>ed are profoundlydifferent.2. <strong>Mass</strong> exchanges: For many of <strong>the</strong> described processes, <strong>the</strong> exchange of massesbetween system components, i.e. between oceans, ice <strong>and</strong> l<strong>and</strong> masses is of centralimportance. Results from one process serve as <strong>in</strong>put quantities for o<strong>the</strong>r processes.3. Separation of <strong>in</strong>tegral signals: The satellite observations result from <strong>the</strong> sum of all masschanges <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system. A strategy has to be established to identify <strong>the</strong> contribution ofeach <strong>in</strong>dividual mass change. The better we underst<strong>and</strong> all o<strong>the</strong>r signal components, <strong>the</strong>better we can extract <strong>and</strong> use one s<strong>in</strong>gle component of <strong>in</strong>terest.The long term goal must be to build a comprehensive global model for mass transport <strong>and</strong> massbalance <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system. This will lead to a much deeper underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> <strong>in</strong>dividual processes,<strong>and</strong> will enable forecasts of <strong>Earth</strong> system behaviour. The authors agree that such a comprehensivemodel is not feasible on <strong>the</strong> short run. A valid start<strong>in</strong>g po<strong>in</strong>t is <strong>the</strong> coupled modell<strong>in</strong>gof some processes, such as <strong>the</strong> comb<strong>in</strong>ed modell<strong>in</strong>g of glacial isostatic adjustment <strong>and</strong> recent icemass change <strong>in</strong> <strong>the</strong> polar regions. In o<strong>the</strong>r cases, closed sub-systems will be dealt with whereby<strong>the</strong> <strong>in</strong>terface with o<strong>the</strong>r system components is to be def<strong>in</strong>ed, <strong>and</strong> exchange will take place bymeans of correction terms. In any case, <strong>the</strong> aim of <strong>the</strong> proposed framework is to develop methodsfor an <strong>in</strong>teractive modell<strong>in</strong>g of <strong>the</strong> <strong>in</strong>volved <strong>Earth</strong> system components.4.2 Neighbour<strong>in</strong>g fields: atmosphere, <strong>Earth</strong> core,magnetic field <strong>and</strong> <strong>Earth</strong> rotationThis report does not cover all mass transport processes <strong>and</strong> mass distributions <strong>in</strong> <strong>the</strong> <strong>Earth</strong> system.The fields proposed as core elements of this jo<strong>in</strong>t research framework (Figure 4.1) are those, forwhich <strong>the</strong> gravity field missions <strong>in</strong> comb<strong>in</strong>ation with satellite altimetry enable completely newapproaches.On purpose, some related phenomena will not be subject of <strong>the</strong> research framework. These areatmospheric mass transport (which will be taken from available atmospheric models), motionsof <strong>the</strong> <strong>Earth</strong>’s core (which seem beyond <strong>the</strong> capability of <strong>the</strong> available generation of gravity missions),magnetic field effects (because <strong>the</strong>se are subject to a DFG priority program on its own),<strong>and</strong> <strong>Earth</strong> rotation (which is subject of a recent DFG research group project). The <strong>in</strong>teractionswith <strong>the</strong>se fields will be taken <strong>in</strong>to account, however, to <strong>the</strong> necessary extent.Atmospheric pressure <strong>and</strong> mass transport are <strong>in</strong>terconnected <strong>in</strong> many ways to <strong>the</strong> mass signals<strong>and</strong> transport processes discussed <strong>in</strong> this report. Over l<strong>and</strong>, atmospheric mass variations causeone of <strong>the</strong> strongest components of <strong>the</strong> time variable gravity field signal. To avoid contam<strong>in</strong>ationof <strong>the</strong> o<strong>the</strong>r signal components, it is very important to compute corrections to <strong>the</strong> gravity fieldobservables us<strong>in</strong>g <strong>the</strong> best available atmospheric models <strong>and</strong> algorithms. Over <strong>the</strong> oceans, <strong>the</strong> atmosphericmass variations are to a large extent isostatically compensated, <strong>the</strong> so-called <strong>in</strong>versebarometer effect. The deviations from this effect <strong>and</strong> <strong>the</strong> consequences, particularly for ocean circulationvariability, have to be studied. However, at present one does not expect that gravity fieldobservations can improve <strong>the</strong> atmospheric <strong>and</strong> climatological models.90


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesFigure 4.1: The new satellite data serve as common basis for <strong>the</strong> modell<strong>in</strong>g of mass transport <strong>and</strong> mass distribution <strong>in</strong><strong>the</strong> <strong>Earth</strong> system. Many <strong>in</strong>terconnections exist between <strong>the</strong> <strong>in</strong>dividual geophysical processes, due to physical reasons, butalso result<strong>in</strong>g from observational data characteristics.An important water mass exchange takes place between <strong>the</strong> atmosphere on <strong>the</strong> one h<strong>and</strong>, <strong>and</strong>oceans, ice <strong>and</strong> <strong>the</strong> cont<strong>in</strong>ental water cycle on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>. This has been discussed <strong>in</strong> <strong>the</strong> correspond<strong>in</strong>gsections of Chapter 3. Fur<strong>the</strong>r on, <strong>the</strong> snow <strong>and</strong> ice coverage <strong>and</strong> <strong>the</strong> water content ofsoil <strong>and</strong> vegetation have a strong <strong>in</strong>fluence on radiation <strong>and</strong> <strong>Earth</strong> albedo, on <strong>the</strong> <strong>the</strong>rmal structureof <strong>the</strong> atmosphere <strong>and</strong> on atmospheric circulation.In <strong>the</strong> <strong>Earth</strong>’s core, <strong>the</strong>re is a wide range of mass movements <strong>and</strong> oscillations such as core modes,<strong>in</strong>ner <strong>and</strong> outer core nutation, <strong>and</strong> coupl<strong>in</strong>g at <strong>the</strong> core-mantle boundary. They cause gravity fieldvariations, although <strong>the</strong>ir effect on <strong>the</strong> magnetic field is much more important. The gravity fieldvariations are very small, <strong>and</strong> most of <strong>the</strong>m occur at short time scales that are not resolved by<strong>the</strong> CHAMP <strong>and</strong> GRACE missions. Therefore, <strong>the</strong> <strong>Earth</strong>’s core does not appear <strong>in</strong> <strong>the</strong> proposedframework structure.The comb<strong>in</strong>ation of gravity <strong>and</strong> magnetic field data for a more complete <strong>Earth</strong> system underst<strong>and</strong><strong>in</strong>gcould be very <strong>in</strong>terest<strong>in</strong>g, not only for <strong>the</strong> study of <strong>the</strong> <strong>Earth</strong>’s core, but also for <strong>the</strong> atmosphere<strong>and</strong> possibly for ocean circulation <strong>and</strong> tides. On CHAMP, this comb<strong>in</strong>ation is realizedfrom <strong>the</strong> observational side. Due to <strong>the</strong> currently runn<strong>in</strong>g DFG priority program, for <strong>the</strong> proposedframework it is recommended to restrict to gravity <strong>and</strong> altimetry as core data.<strong>Earth</strong> rotation, <strong>the</strong> last neighbour<strong>in</strong>g field to be mentioned here, is subdivided <strong>in</strong>to nutation, variation<strong>in</strong> sp<strong>in</strong> rate <strong>and</strong> polar motion. Any mass change <strong>in</strong> <strong>Earth</strong> system <strong>and</strong> any relative forc<strong>in</strong>gbetween <strong>Earth</strong> system components results <strong>in</strong> variations of <strong>Earth</strong> rotation. Like gravitation, <strong>the</strong> observed<strong>Earth</strong> rotation parameters (length-of-day <strong>and</strong> polar motion) reflect <strong>the</strong> <strong>in</strong>tegral effect of allexchanges of angular momentum <strong>in</strong> <strong>Earth</strong> system. The separation of effects is possible by meansof typical time periods of <strong>the</strong> <strong>in</strong>dividual effects or based on external models. <strong>Earth</strong> rotation analy-91


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>sis ideally complements <strong>the</strong> gravity field <strong>and</strong> altimetry approach to mass transports. At <strong>the</strong> timeof writ<strong>in</strong>g, <strong>the</strong> establishment of a special research group on <strong>Earth</strong> rotation <strong>and</strong> global geodynamicprocesses has been proposed to <strong>the</strong> Deutsche Forschungsgeme<strong>in</strong>schaft, toge<strong>the</strong>r with a conceptdocument (Schuh et al., 2003). A close cooperation with this group is planned.4.3 Synopsis of signal components <strong>and</strong>amplitudesIn Chapters 2 <strong>and</strong> 3, numbers of required accuracies <strong>and</strong> estimated signal amplitudes are discussed<strong>in</strong> various places. For <strong>the</strong> gravity field, this <strong>in</strong>formation is compiled <strong>in</strong> Tables 4.1 <strong>and</strong> 4.2,augmented by some fur<strong>the</strong>r estimates from o<strong>the</strong>r sources (NRC 1997, Rummel et al., 2003). Table4.1 shows <strong>the</strong> requirements on <strong>the</strong> static gravity field <strong>in</strong> terms of geoid heights <strong>and</strong> gravity anomalies,<strong>and</strong> <strong>the</strong> required spatial resolution, from <strong>the</strong> ma<strong>in</strong> areas of modell<strong>in</strong>g. These requirementswill essentially be met by <strong>the</strong> GRACE <strong>and</strong> GOCE gravity field models.Table 4.2 lists <strong>the</strong> gravity field time variations, show<strong>in</strong>g <strong>the</strong> typical signal amplitudes, typical spatialscales <strong>and</strong> time periods, as estimated today. The signal amplitudes are still subject of discussions,as simulation results vary considerably, some giv<strong>in</strong>g regional extreme values, o<strong>the</strong>rs globalst<strong>and</strong>ard deviations. The consolidation of <strong>the</strong>se numbers will be among <strong>the</strong> tasks of <strong>the</strong> proposedresearch program. Therefore, <strong>in</strong> Table 4.2 (as <strong>in</strong> Table 4.1) only orders of magnitude are given,which are ra<strong>the</strong>r certa<strong>in</strong> <strong>in</strong> most cases.The comparison of <strong>the</strong>se signal amplitudes with <strong>the</strong> expected mission performance of CHAMP,GRACE <strong>and</strong> GOCE discussed <strong>in</strong> Chapter 2 (see Table 2.1, Figures 2.7, 2.8 <strong>and</strong> 2.9) shows that <strong>the</strong>amplitudes of most signal components exceed <strong>the</strong> gravity field errors <strong>and</strong> are thus <strong>in</strong> <strong>the</strong> measurablerange, at least for large spatial scales. For <strong>the</strong> small numbers for secular changes <strong>in</strong> Table 4.2,it has to be taken <strong>in</strong>to account that <strong>the</strong> accuracy of l<strong>in</strong>ear trend determ<strong>in</strong>ation improves fast with<strong>in</strong>creas<strong>in</strong>g mission duration: From 5 years of monthly gravity field solutions, each of <strong>the</strong>m withan accuracy of 0.01 mm <strong>in</strong> terms of geoid for <strong>the</strong> best resolved spherical harmonic degrees (seeFigure 2.9), a l<strong>in</strong>ear trend <strong>in</strong> geoid variation can be estimated with an extremely high accuracy ofabout 0.8 µm/y for <strong>the</strong>se degrees.Table 4.1: Static gravity field requirements for mass transport <strong>and</strong> mass distribution modell<strong>in</strong>gocean circulation<strong>and</strong> transportice dynamics<strong>Earth</strong> mantle <strong>and</strong>crustgeodesyApplicationgeoid[cm]Accuracygravity[mGal]Resolution[km halfwavelength]short scale sea surface topography 1 100bas<strong>in</strong> scale sea surface topography 0.1 1000rock basement 1 50ice height reference 1 100crust <strong>and</strong> lithosphere structure, plateboundaries10 1 50mantle convection 10 1 200mantle plumes 10 1 50sublithospheric convection,oceanic as<strong>the</strong>nosphere10 1 100unified height systems, tide gauges 1 100GPS levell<strong>in</strong>g 1 100orbits (LEO) 0.01 20092


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesTable 4.2: Time variable gravity field signal components: amplitude, spatial scales <strong>and</strong> ma<strong>in</strong> periods.Secular signal amplitudes are given <strong>in</strong> mm/year, µm/year or µGal/year. Amplitudes referr<strong>in</strong>g to o<strong>the</strong>r timeperiods are given <strong>in</strong> mm or µGal.ocean circulation<strong>and</strong> transport,sea levelice<strong>Earth</strong> mantle<strong>and</strong> crustcont<strong>in</strong>entalhydrologyApplicationAmplitudeSpatialscalesgeoid gravity (km)Ma<strong>in</strong> periodsocean currents, deep 10 mm 10 µGal 30-5000 (sub-) seasonalcirculation, eddies,0.01to <strong>in</strong>terannual,1000-5000sea levelmm/yearsecular1 mm 1 µGal 100-4000 (sub-) seasonalice sheet mass balance 0.01to <strong>in</strong>terannual5000mm/yearsecularglacial isostatic adjustment 1 mm/year 1 µGal/year 500-10000 secularmantle plumes, slabs 1 µm/year 0.01 µGal/year 100-2000 seculartectonics, orogens 1 µm/year 1 µGal/year 100-2000 secularwater storage,evapotranspiration, runoff,exchange with oceans10 mm 10 µGal 100-5000atmosphere 10 mm 10 µGal 50-5000tidessolid <strong>Earth</strong> <strong>and</strong>ocean tides1000 mm 100 µGal 10-10000some weeks to<strong>in</strong>terannualannual, seasonal,daily, o<strong>the</strong>rsdaily, semi-daily,semi-monthlyWhen look<strong>in</strong>g at <strong>the</strong> numbers for <strong>the</strong> time variations <strong>in</strong> Table 4.2, one should keep <strong>in</strong> m<strong>in</strong>d thatany observation even be<strong>in</strong>g only slightly above <strong>the</strong> error level is already very valuable <strong>and</strong> representsa completely new piece of <strong>in</strong>formation on mass transport processes.An impression of <strong>the</strong> type of <strong>in</strong>terconnections between <strong>the</strong> processes <strong>and</strong> discipl<strong>in</strong>es is given byFigure 4.2, which is show<strong>in</strong>g <strong>the</strong> spatial <strong>and</strong> temporal scales of geoid signals caused by <strong>the</strong> various<strong>Earth</strong> system processes <strong>in</strong> synoptic way (adapted from Rummel et al., 2003). For both, space<strong>and</strong> time, one has to deal with a wide variety of scales, rang<strong>in</strong>g from static down to very highfrequent signals <strong>in</strong> <strong>the</strong> time doma<strong>in</strong>, <strong>and</strong> from local to global scales <strong>in</strong> <strong>the</strong> space doma<strong>in</strong>. Thebubbles of <strong>the</strong> various signals superimpose each o<strong>the</strong>r <strong>in</strong> many places. Some processes have signalsrang<strong>in</strong>g over nearly <strong>the</strong> entire spectrum, such as ocean circulation, or hydrology. The Figurealso shows <strong>the</strong> expected limits of spatial <strong>and</strong> temporal resolution for <strong>the</strong> gravity field missionsCHAMP, GRACE <strong>and</strong> GOCE. It becomes clear that <strong>the</strong> signal of some processes is partly or entirelybeyond <strong>the</strong> time or space resolution of <strong>the</strong>se satellite missions. Signals with spatial scalessmaller than 70 km will not be resolved <strong>in</strong> <strong>the</strong> next few years, although we hope to extend thislimit with future missions. In <strong>the</strong> time doma<strong>in</strong>, <strong>the</strong> current resolution limit is given by <strong>the</strong> monthlyGRACE gravity field solutions. Higher frequency signal components, with periods from hours todays, e.g. tides or high frequency atmosphere variations, tend to alias <strong>in</strong>to <strong>the</strong> observed time series.To keep this under control, for <strong>the</strong>se components reductions us<strong>in</strong>g <strong>the</strong> best available modelshave to be applied. Altoge<strong>the</strong>r, with <strong>the</strong> current missions we can achieve considerable progress<strong>in</strong> many areas, but we will not be able to cover all processes relevant for mass transport <strong>and</strong> massdistribution. The present missions are a first important step for mass transport <strong>and</strong> mass distributionmonitor<strong>in</strong>g <strong>in</strong> <strong>Earth</strong> system research.93


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure 4.2: Spatial <strong>and</strong> temporal scales of geoid signals associated to solid <strong>Earth</strong> (orange), ocean (green),ice (dark blue) <strong>and</strong> cont<strong>in</strong>ental hydrology (light blue) processes. The red l<strong>in</strong>es show <strong>the</strong> spatial <strong>and</strong> temporalresolution limits of <strong>the</strong> CHAMP, GRACE <strong>and</strong> GOCE missions.4.4 Common challenges for satellite data analysisThis section addresses <strong>the</strong> topics <strong>in</strong> <strong>the</strong> yellow rectangle of Figure 4.1, which are prerequisite for<strong>the</strong> derivation of mass signals from <strong>the</strong> satellite data products, <strong>and</strong> concern all geophysical applications.The box represents <strong>the</strong> <strong>in</strong>terface between <strong>the</strong> satellite geodetic sensor data <strong>and</strong> <strong>the</strong> variousgeophysical discipl<strong>in</strong>es. It provides <strong>the</strong> process<strong>in</strong>g cha<strong>in</strong> from sensor data to mass signals, <strong>and</strong>supports geophysical modell<strong>in</strong>g <strong>in</strong> transform<strong>in</strong>g <strong>the</strong> mission data <strong>in</strong>to a format <strong>and</strong> representationadequate to data assimilation requirements.94


Consistent comb<strong>in</strong>ation of missions4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesThe comb<strong>in</strong>ation of data products from different satellite missions allows some of <strong>the</strong> most <strong>in</strong>terest<strong>in</strong>g<strong>and</strong> novel applications:• The static geoid from GRACE <strong>and</strong> GOCE will be comb<strong>in</strong>ed with <strong>the</strong> sea surface as derivedfrom <strong>the</strong> ocean altimetry missions <strong>in</strong> order to determ<strong>in</strong>e global dynamic sea surfacetopography, which is <strong>the</strong> deviation of <strong>the</strong> sea surface from a state of rest. This allows acompletely new <strong>and</strong> direct way of modell<strong>in</strong>g <strong>the</strong> quasi-static ocean circulation, <strong>and</strong> hasimportant implications for <strong>the</strong> determ<strong>in</strong>ation of mass <strong>and</strong> heat balance, for climate <strong>and</strong>ocean forecast<strong>in</strong>g (cf. Chapter 3.1).• <strong>Mass</strong> variations as derived from GRACE over <strong>the</strong> oceans can be comb<strong>in</strong>ed with geometricvariations of <strong>the</strong> sea surface height from altimetry <strong>in</strong> order to identify <strong>the</strong> temperaturedependent (steric) component of sea level variations (cf. Chapter 3.1).• <strong>Mass</strong> variations from GRACE over ice sheets <strong>in</strong> comb<strong>in</strong>ation with height changes fromICESat <strong>and</strong> CryoSat, toge<strong>the</strong>r with ground based GPS, will allow to analyse <strong>the</strong> complexsuperimposition of glacial isostatic adjustment, recent ice mass changes <strong>and</strong> ice compaction(cf. Chapter 3.2 <strong>and</strong> 3.3).With such comb<strong>in</strong>ations, a number of new research tasks arise: Each satellite mission has itsspecific sampl<strong>in</strong>g <strong>and</strong> resolution <strong>in</strong> space <strong>and</strong> time. In particular, gravity missions – measur<strong>in</strong>ga field quantity – have characteristics very different from those of altimetry missions. Thus, anoptimal fusion of time series from both types of missions is to be found – with m<strong>in</strong>imum loss ofsignal content – <strong>and</strong> to be adjusted to <strong>the</strong> requirements of <strong>the</strong> assimilation models. To adapt <strong>the</strong>sampl<strong>in</strong>g, <strong>in</strong>terpolation <strong>in</strong> space <strong>and</strong> time is required. To adapt <strong>the</strong> resolution, filter<strong>in</strong>g may berequired. As an example, <strong>the</strong> results for dynamic sea surface topography would be heavily disturbedwithout a consistent low-pass filter<strong>in</strong>g of geoid <strong>and</strong> altimetric data. For satellite altimetry,special focus will be given on multi-mission comb<strong>in</strong>ations exploit<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g characteristicsof <strong>the</strong> various missions, <strong>in</strong> order to obta<strong>in</strong> long time series for <strong>the</strong> ocean <strong>and</strong> ice surfacegeometry, with both high temporal <strong>and</strong> spatial resolution, a task which s<strong>in</strong>gle satellite missionscannot fulfil.Not only <strong>the</strong> signal data, but also <strong>the</strong> correspond<strong>in</strong>g stochastic models have to be established <strong>and</strong>comb<strong>in</strong>ed <strong>in</strong> a consistent way. This is an ambitious task because <strong>the</strong> error characteristics of <strong>the</strong>data sets vary considerably.Reference systems <strong>and</strong> st<strong>and</strong>ardsThe geometric <strong>and</strong> gravimetric signals to be analysed are very small. Only due to <strong>the</strong> enormoustechnological progress of recent years <strong>the</strong>y became observable with adequate precision, <strong>and</strong> spatial<strong>and</strong> temporal resolution. The required relative precision is close to 1 p.p.b. (10 -9 ), correspond<strong>in</strong>gto 1 mm for distances of 1000 km or 1 µGal relative to “g”. It is a great challenge to transport<strong>the</strong> 1 p.p.b. precision from <strong>the</strong> sensor systems through various transformations <strong>in</strong>to <strong>the</strong> geophysicalmass related models, <strong>and</strong> to ma<strong>in</strong>ta<strong>in</strong> this st<strong>and</strong>ard when exchang<strong>in</strong>g data between all <strong>in</strong>volvedmodels.The l<strong>in</strong>k of <strong>the</strong> various space segments (satellite sensors) is established via <strong>the</strong> orbits, i.e. via <strong>the</strong>track<strong>in</strong>g systems <strong>and</strong> ground stations. The objective will be to comb<strong>in</strong>e all data, from space segments<strong>and</strong> terrestrial systems, with a precision of 10 -8 to 10 -9 , relatively, <strong>in</strong> one global referencesystem, <strong>and</strong> to keep this comb<strong>in</strong>ation consistent <strong>in</strong> space <strong>and</strong> <strong>in</strong> time over decades. This objectiveis precondition <strong>in</strong> particular for <strong>the</strong> detection of anomalous trends <strong>in</strong> time <strong>and</strong> space.95


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>The lowest degree coefficients of <strong>the</strong> satellite gravity models, where <strong>the</strong> reference system <strong>and</strong> <strong>the</strong>scale are impr<strong>in</strong>ted, have to be analysed carefully. The global height system requires particular attention,as it provides <strong>the</strong> connection between l<strong>and</strong> surface, ice <strong>and</strong> ocean, by means of tide gauges<strong>and</strong> control markers on l<strong>and</strong> <strong>and</strong> ice. Fur<strong>the</strong>rmore, all <strong>in</strong>cluded reduction models such as solid<strong>Earth</strong> <strong>and</strong> ocean tides, polar tides, <strong>and</strong> ocean load<strong>in</strong>g have to be applied <strong>in</strong> a consistent manner forall quantities to be determ<strong>in</strong>ed. These problems are probably greatly underestimated at present.Any violation of a consistent process<strong>in</strong>g will lead to systematic distortions, with <strong>the</strong> danger of anerroneous <strong>in</strong>terpretation <strong>in</strong> terms of geophysical significance.The efforts for a high precision <strong>and</strong> consistent reference system fit to <strong>the</strong> aims of <strong>the</strong> <strong>in</strong>ternationalgeodetic-geodynamic community to establish an Integrated Geodetic-Geodynamic Observ<strong>in</strong>g<strong>System</strong> (IGGOS). Such a system will <strong>in</strong>tegrate <strong>the</strong> observables of <strong>the</strong> geometric shape, <strong>the</strong> gravityfield <strong>and</strong> <strong>the</strong> rotation of <strong>the</strong> <strong>Earth</strong>, with <strong>the</strong> reference system as <strong>the</strong> very central issue. In <strong>the</strong> past,<strong>the</strong> gravity field was a weak element of such an <strong>in</strong>tegrated observ<strong>in</strong>g system, which is chang<strong>in</strong>gnow due to <strong>the</strong> present gravity missions.Data preparation for model assimilationThe mass signals derived from <strong>the</strong> satellite data are given <strong>in</strong> a certa<strong>in</strong> appropriate ma<strong>the</strong>maticalrepresentation, typically <strong>in</strong> spherical harmonic representation, as global grids, or along satellitetracks. These have to be made compatible with <strong>the</strong> ma<strong>the</strong>matical representation (<strong>in</strong> space <strong>and</strong>time) that is chosen for <strong>the</strong> geophysical models, such as triangular meshes or 3D grids for oceancirculation models, river catchment boundaries for hydrological modell<strong>in</strong>g, po<strong>in</strong>t values, profiles,<strong>and</strong> o<strong>the</strong>rs. This, aga<strong>in</strong>, has to be accomplished with m<strong>in</strong>imum loss of <strong>in</strong>formation. It also <strong>in</strong>cludes<strong>the</strong> appropriate treatment of truncated high frequency signal <strong>and</strong> of alias<strong>in</strong>g.The study of representation <strong>and</strong> parameterization when <strong>in</strong>troduc<strong>in</strong>g satellite data <strong>in</strong>to <strong>the</strong> applicationmodels must become a central task <strong>in</strong> <strong>the</strong> proposed jo<strong>in</strong>t research framework. Similar considerationsapply when <strong>in</strong>troduc<strong>in</strong>g complementary data (see below).Separation of signal componentsThe satellite observations represent <strong>in</strong>tegral signals conta<strong>in</strong><strong>in</strong>g components of all mass relatedprocesses. To separate <strong>the</strong>m <strong>and</strong> to identify <strong>the</strong> contributions of each <strong>in</strong>dividual process is generallyseen as one of <strong>the</strong> most challeng<strong>in</strong>g scientific issues for <strong>the</strong> com<strong>in</strong>g years. Time variationsfrom oceanic variability, from glacial isostatic adjustment, tectonics at plate boundaries, ice masschanges, variations <strong>in</strong> cont<strong>in</strong>ental water storage <strong>and</strong> from atmospheric mass sum up to an <strong>in</strong>tegralsignal. The superposition of effects can be seen <strong>in</strong> Figure 4.2. This applies certa<strong>in</strong>ly to <strong>the</strong>gravity field signal, but to some extent to <strong>the</strong> geometry signal from altimetry, too: For example,<strong>in</strong> Antarctica, height changes measured by ICESat <strong>and</strong> CryoSat will conta<strong>in</strong> <strong>the</strong> sum of verticalmovements due to <strong>the</strong> glacial isostatic adjustment <strong>and</strong> of ice thickness changes. GRACE, <strong>in</strong>turn, is measur<strong>in</strong>g <strong>the</strong> superimposed mass effect of glacial isostatic adjustment mass variations<strong>and</strong> ice mass changes. The signal superposition is particularly pronounced for sea level change.The measured sea level variations conta<strong>in</strong> contributions from <strong>the</strong>rmal expansion, ocean currentchanges, ice melt<strong>in</strong>g, changes <strong>in</strong> precipitation <strong>and</strong> river runoff, <strong>and</strong> from vertical l<strong>and</strong> <strong>and</strong> oceanfloor movements.A strategy for signal separation has to be developed based on <strong>the</strong> follow<strong>in</strong>g available elements:• Separation <strong>in</strong> space doma<strong>in</strong> us<strong>in</strong>g regional signal characteristics, e.g. by filter<strong>in</strong>g out <strong>the</strong>signal component for a river catchment or a certa<strong>in</strong> tectonic unit,96


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergies• Separation <strong>in</strong> time doma<strong>in</strong> based on long time series, isolat<strong>in</strong>g typical time periods such asannual <strong>and</strong> semi-annual periods,• Separation <strong>in</strong> spectral doma<strong>in</strong> us<strong>in</strong>g spectral characteristics <strong>in</strong> space (e.g. for <strong>the</strong> separationof glacial isostatic adjustment <strong>and</strong> ice mass changes) <strong>and</strong> time (e.g. for hydrology us<strong>in</strong>gcharacteristic response times, cf. Chapter 3.4),• Use of known geophysical contributions based on models such as atmospheric models,• Use of complementary terrestrial / <strong>in</strong>-situ data. Important examples are deep sea pressuregauges <strong>in</strong> <strong>the</strong> case of ocean bottom pressure variations, GPS vertical l<strong>and</strong> movementobservations for glacial isostatic adjustment, hydrological data from well observed areas,terrestrial gravity data for cont<strong>in</strong>ental plate boundaries, or permanent superconduct<strong>in</strong>ggravimetry for <strong>the</strong> identification of local gravity variations e.g. due to ground watervariations,• Use of complementary remote sens<strong>in</strong>g mission data: sea surface temperature, sal<strong>in</strong>ity,w<strong>in</strong>ds, soil moisture, snow, deformations, see <strong>the</strong> correspond<strong>in</strong>g box <strong>in</strong> Figure 4.1,• Mutual exchange of mass transport estimates as derived from models of <strong>in</strong>dividual <strong>Earth</strong>system components (ocean, hydrology, solid <strong>Earth</strong> <strong>and</strong> ice). In general, <strong>the</strong> process modelledwith <strong>the</strong> <strong>in</strong>ferior accuracy will benefit from <strong>the</strong> output of all o<strong>the</strong>r areas <strong>in</strong> order to isolate itsown contribution,• Use of special satellite configurations, crossovers, <strong>and</strong> repeat orbits, <strong>in</strong> order to reduce highfrequency variations (periods of hours or days <strong>in</strong> tides, atmosphere, hydrology, etc.) <strong>and</strong> toavoid alias<strong>in</strong>g.For <strong>the</strong> separation approaches, see also Tables 4.4 to 4.11 below.<strong>Mass</strong> balance determ<strong>in</strong>ationBesides <strong>the</strong> extreme accuracy, one of <strong>the</strong> strongest advantages of <strong>the</strong> new satellite data is <strong>the</strong> completenessof coverage. Geoid, gravity <strong>and</strong> <strong>the</strong>ir time variation are measured with global coverageby <strong>the</strong> gravity field missions. From <strong>the</strong> new generation altimetry satellite missions, <strong>the</strong> surfacegeometry <strong>and</strong> its time variation are obta<strong>in</strong>ed for <strong>the</strong> entire oceans (ice-free <strong>and</strong> ice-covered), for<strong>the</strong> entire ice sheets <strong>and</strong> for glaciers, with <strong>the</strong> exception of very t<strong>in</strong>y polar gaps. The issue of completenessis particularly important for <strong>the</strong> study of mass transport balance. In-situ data may sometimesbe more accurate or cover a longer time span, but only for s<strong>in</strong>gle po<strong>in</strong>ts or regions. They arevery valuable, e.g. for <strong>the</strong> separation strategy. But a reliable knowledge of mass balance requires<strong>the</strong> observation of <strong>the</strong> processes as a whole, i.e. for <strong>the</strong> complete oceans, for whole cont<strong>in</strong>ents orice sheets, which can only be realized by <strong>the</strong> new satellite missions.4.5 Interconnection tables for <strong>the</strong> <strong>in</strong>dividualprocessesIn <strong>the</strong> follow<strong>in</strong>g, for all major mass related processes <strong>the</strong> <strong>in</strong>terconnections between processes <strong>and</strong>data sets are collected, see Tables 4.3 to 4.11. The number <strong>and</strong> <strong>in</strong>tensity of <strong>in</strong>terconnections underl<strong>in</strong>es<strong>the</strong> need for <strong>in</strong>teractive modell<strong>in</strong>g between <strong>the</strong> <strong>in</strong>volved research discipl<strong>in</strong>es, <strong>and</strong> <strong>the</strong> necessityof a jo<strong>in</strong>t research framework. The collection is based on <strong>the</strong> discussion of <strong>the</strong> <strong>in</strong>dividual97


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>processes <strong>in</strong> Chapter 3.Table 4.3 gives an overview <strong>in</strong> matrix form. The matrix entries show processes, for which <strong>in</strong>terconnectionsexist. The matrix is well filled. The number of entries demonstrates that all <strong>the</strong>seprocesses form one unity.Tables 4.4 to 4.11 conta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g entries for each of <strong>the</strong> ma<strong>in</strong> processes <strong>and</strong> researchfields:• <strong>in</strong>teract<strong>in</strong>g processes, by exchange of mass <strong>and</strong> energy (heat), or by <strong>in</strong>teraction of forces;• superimposed signal components, mass <strong>and</strong>/or geometry signals, caused by o<strong>the</strong>r processesact<strong>in</strong>g <strong>in</strong> <strong>the</strong> same geographical region, which have to be considered <strong>and</strong> separated from <strong>the</strong>signal component of <strong>in</strong>terest; <strong>the</strong>se cases require an <strong>in</strong>teractive modell<strong>in</strong>g of all <strong>in</strong>volvedprocesses <strong>and</strong> an exchange of results;• data products from <strong>the</strong> new satellite missions; <strong>in</strong> many cases <strong>the</strong> comb<strong>in</strong>ation of two or threedata types is needed;• complementary data <strong>and</strong> models, <strong>and</strong>• approaches for <strong>the</strong> separation of signal components.The tables reflect an assessment of <strong>the</strong> current status <strong>and</strong> will probably undergo changes withtime. After each of Tables 4.4 to 4.11, <strong>the</strong> most important <strong>in</strong>terconnections <strong>and</strong> synergies areTable 4.3: Interconnection matrix; black dots on red cells <strong>in</strong>dicate considerable <strong>in</strong>teractions between processesor superposition of signal components, circles on light red cells <strong>in</strong>dicate less important <strong>in</strong>terconnection.time variableocean circulationice massbalance●●glacial isostaticadjustment ● ●sea levelchange ○ ● ● ●global mantledynamics ● ○subductionzones ○ ● ●hydrologicalcycle ○ ● ● ○ ● ○atmospheremass variation ● ● ● ● ●quasi-staticocean circul.time variableocean circul.ice massbalanceglacial isost.adjustmentsea levelchangemantleconvectionsubductionzoneshydrologicalcycleexpla<strong>in</strong>ed. Some aspects appear repeatedly, as it is natural for <strong>in</strong>terconnections between severalfields.98


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesTable 4.4 Quasi-Static Ocean CirculationResearch Topics: major questions of global climate: how much heat does <strong>the</strong> ocean transport <strong>and</strong>redistribute; determ<strong>in</strong>ation of global absolute surface velocities, climatologic 3D circulation <strong>and</strong>associated transports of heat, mass, nutrients <strong>and</strong> trace substances, ocean – atmosphere exchange ofheat <strong>and</strong> mass, <strong>in</strong>teraction of mean flow <strong>and</strong> eddy field, role of ocean bottom topographyInteract<strong>in</strong>g Processes, Superimposed Signals:time variable ocean circulation, sea level anomalies (time variation of sea surface), eddies, tides, load<strong>in</strong>geffects, coastal bathymetryData from <strong>the</strong> New Missions:static high resolution geoidaltimetric sea level: mean <strong>and</strong> timevariationprecise gravity field for altimeterorbit correctionsComplementary Data <strong>and</strong> Models:ocean circulation modelshydrographic <strong>in</strong>-situ data (ocean temperature, sal<strong>in</strong>ity)velocities from moored <strong>in</strong>struments <strong>and</strong> drifterssea surface temperature <strong>and</strong> sal<strong>in</strong>ity from remote sens<strong>in</strong>g (e.g.SMOS)tide models, tide gaugesmar<strong>in</strong>e gravimetry, bathymetryfuture: altimetry by GNNS reflections, wide swath altimetryApproaches for Separation of Signal Components:accurate <strong>and</strong> consistent modell<strong>in</strong>g of sea surface time variability (consistent time series, improvement ofspatial-temporal <strong>in</strong>terpolation)comparison of long time averaged observations with solutions from steady state forward <strong>and</strong> <strong>in</strong>versemodelsimprovement of tide <strong>and</strong> load<strong>in</strong>g modell<strong>in</strong>gIn <strong>the</strong> past, when oceanographers approached questions concern<strong>in</strong>g <strong>the</strong> climate, <strong>the</strong>y had no possibilityto use measured dynamic sea surface topography for <strong>the</strong>ir purpose. Until now dynamictopography could only be measured at coastal tide gauges. With <strong>the</strong> new <strong>and</strong> accurate geoid <strong>in</strong>formationa reference surface for altimetry is available <strong>and</strong> oceanographers can use a novel type ofdata for comparison <strong>and</strong> assimilation <strong>in</strong>to circulation models. It is expected that when assimilat<strong>in</strong>g<strong>the</strong> absolute sea surface topography <strong>in</strong>to ocean circulation models, many features will appearthat have not been visible <strong>in</strong> <strong>the</strong> past, when modell<strong>in</strong>g was only based on oceanographic <strong>in</strong>-situdata. The <strong>in</strong>-situ data, however, rema<strong>in</strong> very important for <strong>the</strong> deep ocean, <strong>and</strong> <strong>the</strong> optimal comb<strong>in</strong>ationof <strong>the</strong>se very different data types (satellite gravity, satellite altimetry <strong>and</strong> <strong>in</strong>-situ data) isone of <strong>the</strong> major challenges <strong>in</strong> this field.The altimetric sea surface necessary for this approach cannot be derived from a s<strong>in</strong>gle satellitemission, but one has to advance <strong>the</strong> strategies for multi-mission comb<strong>in</strong>ation <strong>in</strong> order to get <strong>the</strong>best possible spatio/temporal coverage of <strong>the</strong> dynamic sea surface topography. Here ano<strong>the</strong>rsynergy effect is <strong>the</strong> accuracy improvement for <strong>the</strong> past altimetry missions when us<strong>in</strong>g <strong>the</strong> newsatellite gravity field models for orbit recomputation <strong>and</strong> reanalysis.99


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Table 4.5 Time Variable Ocean CirculationResearch Topics: <strong>in</strong>traseasonal <strong>and</strong> <strong>in</strong>terannual variations of <strong>the</strong> ocean <strong>in</strong> relation to mean flows <strong>and</strong>transports, global <strong>and</strong> regional sea level change, dist<strong>in</strong>ction between mass <strong>and</strong> volume changes,<strong>in</strong>crease <strong>in</strong> heat storage related to global climate change, ocean response to El N<strong>in</strong>o, <strong>the</strong> North AtlanticOscillation <strong>and</strong> changes <strong>in</strong> <strong>the</strong> atmosphere, ocean bottom pressure anomalies <strong>and</strong> associated changes<strong>in</strong> shape of <strong>the</strong> <strong>Earth</strong> <strong>and</strong> <strong>Earth</strong> rotation, eddy <strong>in</strong>duced mean flow, generation of eddies by <strong>in</strong>stability of<strong>the</strong> mean flowInteract<strong>in</strong>g Processes, Superimposed Signals:mass exchange between atmosphere, ocean, l<strong>and</strong> <strong>and</strong> cryosphereatmospheric mass variation over l<strong>and</strong> <strong>and</strong> ocean, deviation from <strong>in</strong>verse barometer modeltides, load<strong>in</strong>goceanic response to vary<strong>in</strong>g atmospheric conditionssea ice coverage <strong>and</strong> freshwater transports by sea iceData from <strong>the</strong> New Missions:time variation of <strong>the</strong> geoidtime variation of altimetric sea leveltime variation of shape of <strong>in</strong>l<strong>and</strong> icetime variation of sea ice coverage<strong>and</strong> thicknessComplementary Data <strong>and</strong> Models:ocean circulation modelshydrographic <strong>in</strong>-situ datadeep sea pressure gaugesvelocities from moored <strong>in</strong>struments <strong>and</strong> drifterssea surface temperature <strong>and</strong> sal<strong>in</strong>ity from remote sens<strong>in</strong>gtide models, tide gauges<strong>Earth</strong> orientation parametersfuture: altimetry by GNNS reflections, wide swath altimetryApproaches for Separation of Signal Components:separation of volume <strong>and</strong> mass changes based on gravity <strong>and</strong> sea surface height changescomb<strong>in</strong>ation with deep sea pressure gaugessupport by atmospheric models <strong>and</strong> datasupport by cont<strong>in</strong>ental water balance results <strong>and</strong> ice sheet modell<strong>in</strong>gimprovement of tidal <strong>and</strong> load<strong>in</strong>g modell<strong>in</strong>gTime vary<strong>in</strong>g ocean circulation can only be studied reasonably if <strong>the</strong> mean circulation is knownsufficiently well. Realistic ocean modell<strong>in</strong>g always <strong>in</strong>cludes time dependence <strong>and</strong> <strong>in</strong>teraction betweenmean (i.e. average) circulation <strong>and</strong> temporal variations. Their <strong>in</strong>teraction is a key researchtopic <strong>in</strong> oceanography at present. Therefore, both <strong>the</strong> study of high resolution mean conditionsbased on GOCE as well as mass changes derived from GRACE offer unprecedented opportunitiesto oceanographers.For time variable circulation, satellite gravity <strong>and</strong> altimetry missions support each o<strong>the</strong>r. The seasurface height changes (anomalies) observed by altimetry satellites conta<strong>in</strong> a volume (density)<strong>and</strong> a mass component, which cannot be dist<strong>in</strong>guished by altimetry alone. With mass change observationsfrom GRACE, <strong>the</strong> dist<strong>in</strong>ction becomes possible. Thus, by <strong>the</strong> comb<strong>in</strong>ation of satellitedata, one can determ<strong>in</strong>e (1) mass changes due to circulation variations, e.g. from deep ocean circulationvariations, <strong>and</strong> due to melt<strong>in</strong>g <strong>and</strong> o<strong>the</strong>r freshwater <strong>in</strong>flow, <strong>and</strong> (2) <strong>the</strong> steric volume expansionof water due to variations <strong>in</strong> temperature <strong>and</strong> sal<strong>in</strong>ity <strong>in</strong> <strong>the</strong> deep ocean <strong>and</strong> at its surface.Both results are needed for ocean circulation modell<strong>in</strong>g, <strong>and</strong> <strong>the</strong>y are necessary <strong>in</strong> order to underst<strong>and</strong>present sea level rise.Due to <strong>the</strong> mass exchange between <strong>the</strong> ocean, <strong>the</strong> cont<strong>in</strong>ental water cycle (river runoff), <strong>the</strong> atmosphere(precipitation, evaporation) <strong>and</strong> <strong>the</strong> ice masses (discharge, melt<strong>in</strong>g, sea ice transport),ocean modell<strong>in</strong>g depends very much on a better underst<strong>and</strong><strong>in</strong>g of processes on <strong>the</strong>se fields.100


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Table 4.7 Glacial Isostatic Adjustment (GIA)Research Topics: vertical movement, 3D displacement, <strong>in</strong>ternal mass redistribution, sea level change,3D distribution of mantle viscosity, development of Pleistocene l<strong>and</strong> iceInteract<strong>in</strong>g Processes, Superimposed Signals:recent ice mass balanceabsolute sea level changetectonic vertical movementhydrological <strong>and</strong> oceanic mass variationsData from <strong>the</strong> New Missions:time variation of <strong>the</strong> geoidice altitude changesComplementary Data <strong>and</strong> Models:vertical movement from repeated levell<strong>in</strong>g <strong>and</strong> from paleo-shorel<strong>in</strong>es3D displacement from GPSmass redistribution from absolute gravimetry <strong>and</strong> modell<strong>in</strong>gsea level change from tide gauges, GPS <strong>and</strong> modell<strong>in</strong>gmantle viscosity from viscoelastic <strong>Earth</strong> modelsPleistocene l<strong>and</strong> ice from geomorphology <strong>and</strong> modell<strong>in</strong>gdynamic ice flow modelsviscoelastic <strong>Earth</strong> modelshydrological <strong>and</strong> ocean modelsApproaches for Separation of Signal Components:jo<strong>in</strong>t determ<strong>in</strong>ation of 3D displacement, <strong>in</strong>ternal mass redistribution <strong>and</strong> sea level changeconsideration of recent ice mass balance <strong>and</strong> absolute sea level changeconsideration of tectonic vertical movementcorrections from hydrological <strong>and</strong> ocean modelsThe aspects of glacial isostatic adjustment (GIA) are manifold. One of <strong>the</strong>m concerns <strong>the</strong> predictionof various signatures related to GIA. An important signature is <strong>the</strong> relative sea level change<strong>in</strong>duced by GIA. This is of particular significance for estimat<strong>in</strong>g <strong>the</strong> global sea level rise causedby <strong>the</strong> recent melt<strong>in</strong>g of <strong>the</strong> polar ice sheets <strong>and</strong> ice caps <strong>and</strong> <strong>the</strong> mounta<strong>in</strong> glaciers. Therefore, <strong>the</strong><strong>in</strong>terconnection between GIA <strong>and</strong> all sea level related observations is very close. Ano<strong>the</strong>r GIAsignature is <strong>the</strong> temporal gravity variation associated with readjustment processes. In view of <strong>the</strong>irsize, <strong>the</strong> rebound<strong>in</strong>g areas of Canada, Fennosc<strong>and</strong>ia <strong>and</strong> Antarctica are of particular importance,<strong>and</strong> <strong>the</strong> result<strong>in</strong>g secular gravity trends are expected to be part of <strong>the</strong> gravity variation recorded byGRACE. Forward calculations <strong>the</strong>refore serve to correct monthly GRACE solutions for <strong>the</strong> <strong>in</strong>fluenceof ongo<strong>in</strong>g GIA. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, after a satellite mission duration exceed<strong>in</strong>g five years itshould become possible to extract <strong>the</strong> GIA <strong>in</strong>duced secular gravity change over Canada directlyfrom <strong>the</strong> GRACE data. For Antarctica <strong>and</strong> Greenl<strong>and</strong>, <strong>the</strong> GIA mass change is superimposed bypresent ice mass changes. Therefore, ice mass balance results based on ice altimetry can supportGIA modell<strong>in</strong>g. Toge<strong>the</strong>r with complementary data, such as GPS, it will be possible to <strong>in</strong>vert for<strong>the</strong> viscoelastic stratification of <strong>the</strong> <strong>Earth</strong>’s mantle <strong>and</strong>, thus, to improve our constra<strong>in</strong>ts on <strong>the</strong>viscosity model. The viscosity model, <strong>in</strong> turn, represents <strong>the</strong> <strong>in</strong>terconnection to global mantle dynamics,because it is vital for models of mantle convection <strong>and</strong> <strong>the</strong> evolution of <strong>the</strong> <strong>Earth</strong>.102


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesTable 4.8 Sea Level ChangeResearch Topics: global sea level change, pattern of spatial variation, dist<strong>in</strong>ction of mass exchangefrom volume change, quantification of s<strong>in</strong>gle contributions, separation of recent variations from long termchangeInteract<strong>in</strong>g Processes, Superimposed Signals:vertical l<strong>and</strong> movement: tectonics, glacial isostatic adjustmentmelt<strong>in</strong>g of ice sheets <strong>and</strong> glaciershydrological cyclevolume change due to temperature changeschange <strong>in</strong> composition of ocean properties, velocities, dynamical sea surface topographytides, load<strong>in</strong>g effects, atmospheric mass variations, water exchange with atmosphereData from <strong>the</strong> New Missions:quasi-static <strong>and</strong> time variable geoidaltimetric sea surface: mean <strong>and</strong> timevariationice surfaces: elevation <strong>and</strong> extensionchanges from altimetryComplementary Data <strong>and</strong> Models:core probes from ocean drill<strong>in</strong>g, geological <strong>and</strong> climatologicaldata, coralspaleo-shorel<strong>in</strong>esGPS elevation change, levell<strong>in</strong>gtide gaugesocean surface temperature <strong>and</strong> sal<strong>in</strong>ity from remote sens<strong>in</strong>g<strong>and</strong> <strong>in</strong>-situ dataocean circulation model resultsrunoff, hydrological modelsApproaches for Separation of Signal Components:Modell<strong>in</strong>g <strong>the</strong> <strong>the</strong>rmo-hal<strong>in</strong>e expansion of sea water us<strong>in</strong>g climatological data (temperature/sal<strong>in</strong>ityprofiles), drifters, XBT data or remotely sensed sal<strong>in</strong>ity (SMOS-mission) or sea surface temperatureComparison between tide gauge record<strong>in</strong>gs <strong>and</strong> altimetric time seriesModell<strong>in</strong>g sea-air <strong>in</strong>teraction, evapotranspiration, river run-offGlobal sea level, <strong>the</strong> most prom<strong>in</strong>ent <strong>in</strong>dicator of global change, is <strong>in</strong>terconnected to nearly all of<strong>the</strong> processes discussed <strong>in</strong> this report. <strong>Mass</strong> balance changes of <strong>the</strong> polar ice, of <strong>the</strong> atmosphericwater content <strong>and</strong> <strong>in</strong> <strong>the</strong> cont<strong>in</strong>ental hydrological cycle – all reappear as sea level change. Absoluteor relative sea level is also changed by ocean circulation variations, by <strong>the</strong>rmal ocean volumeexpansion <strong>and</strong> by vertical movements due to glacial isostatic adjustment. Thus, <strong>the</strong> total sea levelchange signal is very complex <strong>and</strong> has a large range of spatial <strong>and</strong> temporal scales.Drill<strong>in</strong>g at ocean sediments, for example, <strong>in</strong>dicate sea level changes of about 120 m for <strong>the</strong> geologicalsequence of glacial era <strong>and</strong> <strong>in</strong>termediate warm<strong>in</strong>g periods. The last deglaciation causes verticalcrustal movements of up to 1 cm/year, visible at paleo-shorel<strong>in</strong>es or observable by repeatedor cont<strong>in</strong>uously performed precise po<strong>in</strong>t position<strong>in</strong>g. Today, sea level is monitored by tide gauges<strong>and</strong> satellite altimetry, two observation systems that complete each o<strong>the</strong>r. Tide gauges provide veryprecise records of mean sea level for time periods up to 100 years or even more, limited, however,to sites of an <strong>in</strong>homogeneously distributed network. Satellite altimetry, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, providesfast, repeated, precise <strong>and</strong> nearly global observation of <strong>the</strong> sea level. ICESat <strong>and</strong> CryoSat, willextend <strong>the</strong> coverage to nearly <strong>the</strong> entire global oceans. However, vertical control <strong>and</strong> long-termstability of altimeter systems is available only s<strong>in</strong>ce <strong>the</strong> last decade. A careful calibration <strong>and</strong> crosscalibrationof altimeter systems is as necessary as <strong>the</strong> knowledge about <strong>the</strong> actual vertical crustalmovement at tide gauges to ensure that both systems really observe <strong>the</strong> same sea level signal.Altimeter data of <strong>the</strong> last decade show large areas with completely different evolution of <strong>the</strong> sealevel, <strong>the</strong> rates of change reach<strong>in</strong>g ±15-20 mm/year. Most of <strong>the</strong>se changes are attributed to <strong>the</strong> <strong>the</strong>rmo-hal<strong>in</strong>eexpansion of <strong>the</strong> upper layer water. The comb<strong>in</strong>ation of satellite altimetry <strong>and</strong> GRACEobservations will help to clarify associated mass changes; see also <strong>the</strong> comment on Table 4.5.103


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Table 4.9 Global Mantle DynamicsResearch Subjects: global mantle flow <strong>and</strong> dynamic topography of <strong>Earth</strong> surface <strong>and</strong> <strong>in</strong>ternal boundariesfrom seismic <strong>and</strong> geoid data, time-dependent mantle convection <strong>and</strong> plate rearrangements, plumes,3Dviscosity models, small scale sublithospheric convection processes, improvement of crust <strong>and</strong>lithosphere modelsInteract<strong>in</strong>g Processes, Superimposed Signals:structure <strong>and</strong> gravity field signal of <strong>the</strong> lithosphereviscosity models from glacial isostatic adjustment models<strong>the</strong>rmally, compositionally <strong>and</strong> water <strong>in</strong>duced variations of seismic velocities <strong>and</strong> densityphase transformations <strong>in</strong> <strong>the</strong> mantlek<strong>in</strong>ematics of <strong>the</strong> platesplume – lithosphere <strong>in</strong>teractionData from <strong>the</strong> New Missions:quasi-static geoid <strong>and</strong> gravitytime-dependent geoidComplementary Data <strong>and</strong> Models:crust <strong>and</strong> lithosphere modelsdynamic <strong>and</strong> isostatic topographyseismic velocities, seismic tomographyPREMseismic velocity – density conversion modelsviscosity models (vertical, lateral)experimental viscosity dataApproaches for Separation of Signal Components:<strong>in</strong>dependent modell<strong>in</strong>g of dynamic <strong>Earth</strong> surface topography us<strong>in</strong>g crust <strong>and</strong> lithosphere modelscomb<strong>in</strong>ation with seismic tomographycorrelation gravity – topography – plate k<strong>in</strong>ematics to identify sublithospheric convectioncorrelation with heat flowrelate quasi-static with time-dependent geoid variations<strong>Mass</strong> anomalies associated with global convective mantle flows lead to a complex system of dynamic<strong>and</strong> rheological <strong>in</strong>teractions with observables such as gravity, geoid, long term variations of<strong>the</strong>se fields, dynamic topography, seismic velocities, heat flow etc. Interpretation of new gravitypotential data <strong>in</strong> terms of such mantle dynamic processes requires a comb<strong>in</strong>ed effort of dynamicforward modell<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g 1D or 3D-variations of mantle viscosities based on models of glacialisostatic adjustment models, as well as plate k<strong>in</strong>ematics, <strong>and</strong> account<strong>in</strong>g for seismic tomography<strong>and</strong> crustal <strong>and</strong> lithospheric structures. Thus, seismic tomography, dynamic topography, surfacedeformations, gravity <strong>and</strong> <strong>the</strong> vertical <strong>and</strong> lateral viscosity structure of <strong>the</strong> mantle are <strong>the</strong> keyobservables <strong>and</strong> parameters for a three <strong>and</strong> four dimensional modell<strong>in</strong>g of mantle dynamics.The worldwide seismic station network enables <strong>the</strong> improvement of global models of <strong>the</strong> <strong>Earth</strong>’scrust (density distribution <strong>and</strong> thickness) <strong>and</strong> of tomographic velocity models of <strong>the</strong> <strong>Earth</strong>’s mantle.The spatial structure of <strong>the</strong> gravity field gives boundary values for (1) an isostatic model of <strong>the</strong><strong>Earth</strong>’s lithosphere to <strong>in</strong>vestigate its static equilibrium (medium to short-scale) <strong>and</strong> (2), by this, to<strong>in</strong>fer <strong>the</strong> dynamic topography due to mantle dynamics for <strong>the</strong> mantle’s temperature <strong>and</strong> densitydistribution. The knowledge of <strong>the</strong> <strong>Earth</strong>’s crustal structure <strong>and</strong> <strong>the</strong> resolution <strong>and</strong> accuracy oftomographic models is, compared to <strong>the</strong> knowledge of <strong>the</strong> quasi-static gravity field, ra<strong>the</strong>r low.Therefore, <strong>the</strong>re is a need for improv<strong>in</strong>g <strong>the</strong> seismologic monitor<strong>in</strong>g <strong>and</strong> modell<strong>in</strong>g. This situationchanges, when turn<strong>in</strong>g to smaller wavelengths appropriate e.g. for sublithospheric convection,plume – lithosphere <strong>in</strong>teractions or to regional tectonic modell<strong>in</strong>g. In <strong>the</strong> latter case accurategravity down to wavelengths of some kilometres is required, <strong>and</strong> satellite gravity field missionswill provide <strong>the</strong> longer wavelengths frame for a reliable detailed geoid <strong>and</strong> gravity field modell<strong>in</strong>gwith a data coverage densified by terrestrial <strong>and</strong> ship- <strong>and</strong> airborne measurements.104


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesTable 4.10 Subduction Zones, TectonicsResearch Subjects:s<strong>in</strong>k<strong>in</strong>g slabs <strong>in</strong> <strong>Earth</strong> mantle, roll back of subduction zones, active <strong>and</strong> passive cont<strong>in</strong>ental marg<strong>in</strong>s,orogeny, episodic mass shifts,Interact<strong>in</strong>g Processes, Superimposed Signals:topography, bathymetrymass changes from ocean, cont<strong>in</strong>ental hydrology, <strong>and</strong> atmospheremantle gravity fieldphase boundaries <strong>in</strong> <strong>the</strong> mantleviscosity stratification of <strong>the</strong> mantle <strong>and</strong> viscosity structure of <strong>the</strong> slabsData from <strong>the</strong> New Missions:time variable <strong>and</strong> static geoidtime variable <strong>and</strong> static gravity anomaliesComplementary Data <strong>and</strong> Models:surface deformation <strong>and</strong> uplift/subsidence rates fromINSAR, GPS, levell<strong>in</strong>gviscosity parametersrigidity, elasticityseismic dataPREMtide gaugesabsolute gravimetry, airborne gravimetryterrestrial gravimetryApproaches for Separation of Signal Components:forward modell<strong>in</strong>g of subduction <strong>and</strong> orogenic processescorrelation with seismicityreduction of time-dependent gravity signals from hydrology <strong>and</strong> oceanographyA challeng<strong>in</strong>g task will be <strong>the</strong> search of time dependent signals near plate boundaries such assubduction zones or orogens, <strong>and</strong> to identify processes such as vertical mass movements <strong>in</strong> <strong>the</strong>mantle associated with subduction or delam<strong>in</strong>ation, trench roll back or o<strong>the</strong>r episodic mass movements.Such time variations will be near <strong>the</strong> resolution limit of GRACE. Therefore careful analysesof temporal variations of <strong>the</strong> gravity field <strong>in</strong> <strong>the</strong> space doma<strong>in</strong> <strong>in</strong> comb<strong>in</strong>ation of dynamicforward modell<strong>in</strong>g utiliz<strong>in</strong>g geometric, k<strong>in</strong>ematic or seismic observations will be necessary.105


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Table 4.11 Cont<strong>in</strong>ental Hydrological CycleResearch Subjects: global <strong>and</strong> cont<strong>in</strong>ental water balance (water fluxes between atmosphere,cont<strong>in</strong>ents, oceans <strong>and</strong> ice masses), spatial <strong>and</strong> temporal variations of <strong>the</strong> terrestrial water storage,evapotranspiration of <strong>the</strong> l<strong>and</strong> surface, effects of climate change / environmental change on <strong>the</strong> terrestrialwater storageInteract<strong>in</strong>g Processes, Superimposed Signals:atmospheric mass variationsmass variations <strong>in</strong> <strong>the</strong> ocean adjacent to <strong>the</strong> l<strong>and</strong> surfaceatmospheric circulation (meteorological <strong>and</strong> climatological conditions as forc<strong>in</strong>g of <strong>the</strong> hydrological cycle)mass change <strong>in</strong> cont<strong>in</strong>ental snow <strong>and</strong> ice zoneschange of l<strong>and</strong> use <strong>and</strong> vegetation zoneshuman water usemass changes by glacial isostatic adjustmentData from <strong>the</strong> New Missions:time variation of geoid <strong>and</strong> gravityaltimetry of water levels <strong>in</strong> lakes, reservoirs,wetl<strong>and</strong>s <strong>and</strong> rivers (time-variations)Complementary Data <strong>and</strong> Models:meteorological datahydrological data (river discharge, soil moisture,groundwater)data from remote sens<strong>in</strong>g of <strong>the</strong> l<strong>and</strong> surface (l<strong>and</strong>use, snow cover, ice cover, surface temperature)large-scale hydrological models(global) circulation models of <strong>the</strong> atmosphere <strong>and</strong> <strong>the</strong>oceans (GCMs)snow <strong>and</strong> ice balance modelsApproaches for Separation of Signal Components:corrections of <strong>the</strong> gravity signal with results from ocean <strong>and</strong> atmosphere circulation models <strong>and</strong> withmeteorological dataseparation of components of <strong>the</strong> terrestrial water storage by us<strong>in</strong>g hydrological data <strong>and</strong> modelsseparation of mass variations <strong>in</strong> surface water <strong>and</strong> snow-/ice cover with <strong>the</strong> help of altimetry <strong>and</strong> o<strong>the</strong>rremote sens<strong>in</strong>g dataspatial filter<strong>in</strong>g for <strong>the</strong> geometry of river bas<strong>in</strong>stemporal filter<strong>in</strong>g by process-specific time constantsThe cont<strong>in</strong>ental hydrological cycle is coupled to a large number of concurrent processes whichaffect mass variations at a broad range of space <strong>and</strong> time scales. Exchanges between <strong>the</strong> terrestrialwater storage <strong>and</strong> <strong>the</strong> atmosphere are driven via precipitation <strong>and</strong> evapotranspiration processes.Variations of <strong>the</strong> ice or snow mass balance of glaciated areas contribute to changes <strong>in</strong> <strong>the</strong>water balance of river bas<strong>in</strong>s. Long-term variations <strong>in</strong> <strong>the</strong> freshwater runoff from cont<strong>in</strong>ental areas<strong>in</strong>duced by climate variability <strong>and</strong> climate change are directly connected to oceanic processessuch as sea level change or <strong>the</strong> time-variable oceanic circulation due to sal<strong>in</strong>ity changes. Glacialisostatic adjustment may <strong>in</strong>teract with a gravity signal due to hydrological processes at high latitudesfor longer time scales. In addition, human impacts by l<strong>and</strong> use changes or water use affect<strong>the</strong> hydrological cycle <strong>and</strong> <strong>the</strong> terrestrial water storage.Due to <strong>the</strong>se numerous coupl<strong>in</strong>gs, <strong>the</strong>re is an <strong>in</strong>dispensable need for a jo<strong>in</strong>t analysis <strong>in</strong>clud<strong>in</strong>g data<strong>and</strong> models from a variety of discipl<strong>in</strong>es <strong>in</strong> order to separate <strong>the</strong> contributions to mass variations<strong>in</strong>duced by <strong>the</strong> <strong>in</strong>volved processes. Measured mass changes from GRACE, monitored surfacewater levels from altimetry missions as well as ground based hydrological measurements allow toquantify changes <strong>in</strong> <strong>the</strong> water storage, to separate <strong>the</strong> different storage components <strong>and</strong> to elim<strong>in</strong>ate<strong>the</strong> hydrological component of <strong>the</strong> time-variable gravity signal as a basis for <strong>the</strong> <strong>in</strong>vestigationof o<strong>the</strong>r processes.106


4 A common frame for <strong>the</strong> <strong>Earth</strong> system: <strong>in</strong>tegration <strong>and</strong> synergiesReferencesNRC Committee on <strong>Earth</strong> gravity from space, 1997. Satellite gravity <strong>and</strong> <strong>the</strong> geosphere, NationalAcademy Press Wash<strong>in</strong>gton.Rummel, R., J. Flury, R. Haagmans, C. Hughes, P. Le Gr<strong>and</strong>, J. Riegger, E. Schrama, N. Sneeuw, B.Vermeersen, <strong>and</strong> P. Woodworth, 2003. Scientific objectives for future geopotential missions,technical note, ESA contract “Enabl<strong>in</strong>g observation techniques for future geopotentialmissions”, <strong>in</strong> preparation.Schuh, H., R. Dill, H. Gre<strong>in</strong>er-Mai, H. Kutterer, J. Müller, A. Nothnagel, B. Richter, M. Rothacher,U. Schreiber, <strong>and</strong> M. Soffel, 2003. Erdrotation und globale dynamische Prozesse. Conceptreport of <strong>the</strong> DFG research project “Rotation der Erde”, Bundesamt für Kartographie undGeodäsie, Frankfurt/Ma<strong>in</strong>, <strong>in</strong> press.107


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>AnnexThe follow<strong>in</strong>g annexations provide <strong>the</strong> conceptional background <strong>and</strong> <strong>the</strong>state-of-<strong>the</strong>-art <strong>in</strong> physical <strong>and</strong> ma<strong>the</strong>matical methods applied <strong>in</strong> globalgravity field analysis <strong>and</strong> <strong>in</strong> <strong>the</strong> research fields that are addressed <strong>in</strong> thisrepart. The satellite mission fact sheets (A7) summarize <strong>the</strong> characteristicsof <strong>the</strong> relevant recent <strong>and</strong> com<strong>in</strong>g missions.A1 Gravity field tutorialThe formulae <strong>and</strong> derivations <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g Chapters A1.1 to A1.3 are based on Heiskanen <strong>and</strong>Moritz (1967) <strong>and</strong> Lambeck (1990).A1.1 Expansion of <strong>the</strong> gravitational potential <strong>in</strong>to spherical harmonicsThe stationary part of <strong>the</strong> <strong>Earth</strong>’s gravitational potential U at any po<strong>in</strong>t P(r,ϕ,λ) on <strong>and</strong> above <strong>the</strong><strong>Earth</strong>’s surface is expressed on a global scale conveniently by summ<strong>in</strong>g up over degree <strong>and</strong> orderof a spherical harmonic expansion. The spherical harmonic (or Stokes’) coefficients represent <strong>in</strong><strong>the</strong> spectral doma<strong>in</strong> <strong>the</strong> global structure <strong>and</strong> irregularities of <strong>the</strong> geopotential field or, more generallyspoken, of <strong>the</strong> gravity field of <strong>the</strong> <strong>Earth</strong>. The equation relat<strong>in</strong>g <strong>the</strong> spatial <strong>and</strong> spectral doma<strong>in</strong>of <strong>the</strong> geopotential is as follows:l ll+1GM ⎡ RU rR r Cmax⎛ R ⎞⎤( , ϕ, λ) = ⎢ 00+ ∑ ∑ ⎜ ⎟ Plm(s<strong>in</strong> ϕ) ( Clmcos mλ+ Slm s<strong>in</strong> mλ)⎥ (A1.1.1)⎣⎢l= 1 m=0 ⎝ r ⎠⎦⎥where r,ϕ,λ - spherical geocentric coord<strong>in</strong>ates of computation po<strong>in</strong>t(radius, latitude, longitude)R - reference length (mean semi-major axis of <strong>Earth</strong>)GM - gravitational constant times mass of <strong>Earth</strong>l,m - degree, order of spherical harmonicP lm- fully normalized Lengendre functionsC , S - Stokes’ coefficients (fully normalized)lmlmThe C 00-term is close to 1 <strong>and</strong> scales <strong>the</strong> value GM. The degree 1 spherical harmonic coefficients( C , C , S ) are related to <strong>the</strong> geocentre coord<strong>in</strong>ates <strong>and</strong> zero if <strong>the</strong> coord<strong>in</strong>ate systems’ orig<strong>in</strong>10 11 11co<strong>in</strong>cides with <strong>the</strong> geocentre. The coefficients ( C , S ) are connected to <strong>the</strong> mean rotational pole21 21position that is a function of time.Subtract<strong>in</strong>g from <strong>the</strong> low-degree zonal coefficients (order 0) <strong>the</strong> correspond<strong>in</strong>g Stokes’ coefficients( C ell , C ell ,…Cell) of an ellipsoidal ‘normal’ potential V(r,ϕ) leads to <strong>the</strong> ma<strong>the</strong>matical representationsof <strong>the</strong> disturb<strong>in</strong>g potential T(r,ϕ,λ) <strong>in</strong> spherical harmonics, related to a conventional00 20 80ellipsoid of revolution that approximates <strong>the</strong> <strong>Earth</strong>’s parameters. At <strong>the</strong> <strong>Earth</strong> surface with r = R(<strong>in</strong> spherical approximation) <strong>the</strong> disturb<strong>in</strong>g potential reads:108


A1 Gravity fi eld tutorialT ( R, ϕ, λ) = U ( R, ϕ, λ) − V ( R, ϕ)(A1.1.2a)lGMT RR C max l⎡’ P C ’m S m ⎤( , ϕ, λ) = ⎢ 00+ ∑ ∑ lm(s<strong>in</strong> ϕ) ( lmcos λ +lms<strong>in</strong> λ)⎥ ,⎣ l= 1 m=0⎦with C ’ = C − C ell’<strong>and</strong> T def<strong>in</strong>ed on <strong>the</strong> geoid. Note, that C 00is close to zero.(A1.1.2b)The maximum degree l maxof <strong>the</strong> expansion <strong>in</strong> Equation (A1.1.1) correlates to <strong>the</strong> spatial resolutionat <strong>the</strong> <strong>Earth</strong> surface byλ m<strong>in</strong>≈ 40000 km /( l max+ 0.5) ,(A1.1.3)where λ m<strong>in</strong>is <strong>the</strong> m<strong>in</strong>imum wavelength (or twice <strong>the</strong> pixel side length) of gravity field features thatare resolved by <strong>the</strong> l max⋅(l max+1) ≈ (l max+ 0.5) 2 parameters C , S .Equation (A1.1.1) conta<strong>in</strong>s <strong>the</strong> upward-cont<strong>in</strong>uation of <strong>the</strong> gravitational potential at <strong>the</strong> <strong>Earth</strong>’ssurface for r > R <strong>and</strong> reflects <strong>the</strong> attenuation of <strong>the</strong> signal with altitude through <strong>the</strong> factor (R/r) l+1 .Figure A1.1.1 gives examples for <strong>the</strong> three different k<strong>in</strong>ds of spherical harmonics P lm(s<strong>in</strong>ϕ)·cosmλ:(a) zonal with l ≠ 0, m = 0, (b) tesseral with l ≠ 0, m ≠ 0 < l <strong>and</strong> (c) sectorial harmonic with l =m. Amplitudes <strong>and</strong> phase of <strong>the</strong> <strong>in</strong>dividual spherical harmonics <strong>the</strong>n are determ<strong>in</strong>ed by multiplicationwith <strong>the</strong> C lm<strong>and</strong> S lmcoefficients.lmlmzonal: l=6, m=0 tesseral: l=16, m=9 sectorial: l=9, m=9Figure A1.1.1: Examples for spherical harmonics P lm(s<strong>in</strong>ϕ)·cosmλ [from –1 (blue) to +1 (violet)].A1.2 Functionals of <strong>the</strong> disturb<strong>in</strong>g gravitational potentialThe geoid undulation N (Figure A1.2.1) is <strong>the</strong> distance between <strong>the</strong> special equipotential surfaceU(R,ϕ,λ) = const that is close to <strong>the</strong> mean sea level <strong>and</strong> <strong>the</strong> surface of <strong>the</strong> conventional ellipsoid ofrevolution. As such <strong>the</strong> geoid is derived from <strong>the</strong> disturb<strong>in</strong>g potential T apply<strong>in</strong>g Bruns formulaNT= γ, (A1.2.1)where γ is ‘normal’ gravity on <strong>the</strong> surface of <strong>the</strong> ellipsoid. With γ = GM/R 2 <strong>in</strong> sphericalapproximation, <strong>the</strong> geoid undulations (or geoid heights) can be computed from <strong>the</strong> sphericalharmonic coefficients <strong>in</strong> Equation (A1.1.2) by2RN ( R , ϕ, λ)= GM⋅ T ( R,ϕ, λ),(A1.2.2a)109


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>lmax⎡l⎤’ ’N( R, ϕ, λ) = R ⎢C00+ ∑ ∑ Plm (s<strong>in</strong> ϕ) ( Clm cos mλ + Slms<strong>in</strong> mλ)⎥ . (A1.2.2b)⎣⎢l= 1 m=0⎦⎥The negative of <strong>the</strong> vertical derivative of <strong>the</strong> disturb<strong>in</strong>g potential δg = − ∂ T is called gravity∂ rdisturbance δg (Figure A1.2.2) that is equal to gravity at a po<strong>in</strong>t P (negative of vertical derivativeof U) m<strong>in</strong>us ‘normal’ gravity at po<strong>in</strong>t P (negative of vertical derivative of V). On <strong>the</strong> geoid <strong>and</strong> <strong>in</strong>spherical approximation (r = R) <strong>the</strong> gravity disturbance <strong>the</strong>n is expressed bylmaxlGM ⎡’ ’⎤δg( R, ϕ, λ) = C + ( l + ) Plm (s<strong>in</strong> ϕ) Clm cos mλ+ S2 ⎢ 00 ∑ 1 ∑ ( lm s<strong>in</strong> mλ)⎥ . (A1.2.3)R ⎣ l= 1 m=0⎦The difference between gravity at a po<strong>in</strong>t P on <strong>the</strong> geoid <strong>and</strong> ‘normal’ gravity at <strong>the</strong> correspond<strong>in</strong>gpo<strong>in</strong>t Q on <strong>the</strong> ellipsoid is called gravity anomaly ∆g (Figure A1.2.3) <strong>and</strong> related to <strong>the</strong> disturb<strong>in</strong>gpotential by∆g= − ∂ T− 2 ∂r r T . (A1.2.4)On <strong>the</strong> geoid this becomes (note: no degree 1 terms appear <strong>in</strong> Equation A1.2.5)lmaxlGM ⎡’ ’⎤∆g( R, ϕ, λ) = − C + ( l − ) Plm(s<strong>in</strong> ϕ) Clmcos mλ+ S2 ⎢ 00 ∑ 1 ∑ ( lms<strong>in</strong> mλ)⎥ ,R ⎣l= 2 m=0⎦(A1.2.5a)thus∆g= δ g − 2R T. (A1.2.5b)The second derivatives of <strong>the</strong> disturb<strong>in</strong>g potential leads to <strong>the</strong> gravity-gradient tensor. The mostTimportant vertical gradient g = ∂ 2rof <strong>the</strong> tensor component can be represented as2∂r3l ll+3GM ⎡max⎛ R ⎞⎛ R ⎞⎤’’gr= − ⎜ ⎟ C + l + l + ⎜ P3 ⎢ 200 ∑ ∑ ( 1)( 2) ⎟ lm(s<strong>in</strong> ϕ) ( Clm cos mλ + Slms<strong>in</strong> mλ)⎥.R ⎣⎢⎝ r ⎠l=1 m=0 ⎝ r ⎠⎦⎥(A1.2.6)Once <strong>the</strong> spherical harmonic coefficients C , S of a global gravity field model are given, <strong>the</strong>lm lmquantities of <strong>the</strong> various functionals described above can be computed <strong>in</strong> its geographical distribution.If computed <strong>in</strong> terms of gravity disturbances or anomalies <strong>and</strong> gravity gradients, <strong>the</strong>higher frequency regional to local content is emphasised through <strong>the</strong> degree-dependent factors(l + 1), (l - 1) <strong>and</strong> (l + 1)(l + 2), respectively, whereas <strong>the</strong> potential <strong>and</strong> geoid representations of<strong>the</strong> gravity field show <strong>the</strong> broad <strong>and</strong> generalized features of <strong>the</strong> gravity field. Vice versa, a gradiometermeasur<strong>in</strong>g gravity gradients is capable to better resolve detailed structures of <strong>the</strong> gravityfield ra<strong>the</strong>r than <strong>the</strong> long wavelength part.The fully normalized spherical harmonic coefficients <strong>in</strong> Equation (A1.1.1) are related to <strong>the</strong> massdistribution with<strong>in</strong> <strong>the</strong> <strong>Earth</strong> by1l( 2l+ 1) Clm= r P (s<strong>in</strong> ) cos m dMllmMR∫∫∫ ϕ λ (A1.2.7a)<strong>Earth</strong>1l( 2l+ 1) Slm= r P (s<strong>in</strong> ) s<strong>in</strong> m dMllmMR∫∫∫ ϕ λ (A1.2.7b)<strong>Earth</strong>with <strong>the</strong> mass element dM=dM (r,ϕ,λ).110


A1 Gravity fi eld tutorialFigure A1.2.1: Geoid undulations N [m]: resolution λ=500 km, rms (N √cos ϕ) = 30.6 mFigure A1.2.2: Gravity disturbances δg [mGal]: resolution λ=500 km, rms (δg √cos ϕ) = 27.2 mGal.Figure A1.2.3: Gravity anomalies ∆g [mGal]: resolution λ=500 km, rms (∆g √cos ϕ) = 20.6 mGal.111


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Figure A1.2.4: Geographical distribution of gravity anomalies [mGal] over Europe with different spectral(l max) <strong>and</strong> spatial resolution pixel size (λ m<strong>in</strong>/2).Figure A1.2.4 depicts <strong>the</strong> geopotential distribution of gravity anomalies over Europe derivedfrom spherical harmonic coefficients complete to l maxequal to 10, 50, 100, 300, respectively, <strong>in</strong>order to demonstrate <strong>the</strong> relation between spectral <strong>and</strong> spatial resolution accord<strong>in</strong>g to Equation(A1.1.1).A1.3 The power spectrum of <strong>the</strong> <strong>Earth</strong>’s gravity fieldGiven <strong>the</strong> fully normalized Stokes’ coefficients C , S of a specific degree l over orders mlm lm(m=0...l), <strong>the</strong> signal degree amplitudes σ l(or square root of power per degree l) of functions of<strong>the</strong> disturb<strong>in</strong>g potential T (R,ϕ,λ) at <strong>the</strong> <strong>Earth</strong>’s surface are readily computed byσ ll∑= ( C + S )m=0’ 2 2lm lm<strong>in</strong> terms of unitless coefficients(A1.3.1a)GMσl( T ) = ⋅ σl <strong>in</strong> terms of disturb<strong>in</strong>g potential values (m 2 /s 2 ) (A1.3.1b)R112


A1 Gravity fi eld tutorialσ ( N) = R ⋅ σ<strong>in</strong> terms of geoid heights (m) (A1.3.1c)llGMσl( δg) = ( l + 1 ) ⋅ σ2 l<strong>in</strong> terms of gravity disturbances (m/s 2 ) (A1.3.1d)RGMσl( ∆ g) = ( l −1 ) ⋅ σ2 l<strong>in</strong> terms of gravity anomalies (m/s 2 ) (A1.3.1e)RGMσl ( gr ) = ( l + 1) ( l + 2 ) ⋅ σ3 l <strong>in</strong> terms of vertical gravity gradients (1/s 2 ) (A1.3.1f)Rwhere <strong>the</strong> C , S are related to <strong>the</strong> ‘normal’ potential. The SI units of <strong>the</strong> physical gravitationallm lmquantities are given <strong>in</strong> paren<strong>the</strong>sis. Follow<strong>in</strong>g Kaula’s ‘rule of thumb’ (Kaula, 1966) <strong>the</strong> powerlaw follows approximatelyσ l≈ ( 2l+ 1)⋅−1010. (A1.3.2)4lExamples for signal degree amplitudes are given <strong>in</strong> Figure A1.3.1.If <strong>the</strong> estimation errors of <strong>the</strong> Stokes’ coefficients <strong>in</strong> a global gravity field model are known, <strong>the</strong>error degree amplitudes (error spectrum) are computed accord<strong>in</strong>gly replac<strong>in</strong>g <strong>the</strong> coefficients<strong>in</strong> Equation (A1.3.1) by <strong>the</strong>ir st<strong>and</strong>ard deviations. Difference degree amplitudes, represent<strong>in</strong>g<strong>the</strong> agreement of two different gravity field models per degree, are readily computed replac<strong>in</strong>g <strong>the</strong>coefficients <strong>in</strong> Equation (A1.3.1) by <strong>the</strong> coefficients’ differences between <strong>the</strong> two models. Examplesfor difference degree amplitudes are given <strong>in</strong> Figure A1.3.2.The degree amplitudes as a function of m<strong>in</strong>imum <strong>and</strong> maximum degree l displays <strong>the</strong> power(signal, error, difference) spectrum accumulated over a spectral b<strong>and</strong> from l 1to l 2:l22σl , l( accumulated ) = ∑ σl(A1.3.3)1 2l1Figure A1.3.1: Signal degree amplitudes for geoid undulations (red), gravity disturbances (blue) <strong>and</strong>gravity anomalies (green) <strong>in</strong> meter <strong>and</strong> mGal, respectively.113


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Usually l 1=0 or 2 is taken to display <strong>the</strong> <strong>in</strong>crease <strong>in</strong> overall power with <strong>in</strong>creas<strong>in</strong>g degree l 2.Recall that <strong>the</strong> spectral degree l is related to <strong>the</strong> spatial extension or wavelength of features <strong>in</strong> <strong>the</strong>gravity field accord<strong>in</strong>g to Equation (A1.1.3). Examples for difference amplitudes as a function ofmaximum degree l (successive accumulation of <strong>the</strong> curves <strong>in</strong> Figure A1.3.1) are given <strong>in</strong> FigureA1.3.2.Equations (A1.3.1) aga<strong>in</strong> demonstrate that <strong>the</strong> higher degree terms, i.e. <strong>the</strong> shorter wavelengths<strong>in</strong> <strong>the</strong> signal spectra, are enhanced by factors proportional to degree l for gravity anomalies <strong>and</strong>disturbances <strong>and</strong> proportional to l 2 for gravity gradients compared to <strong>the</strong> signals <strong>in</strong> <strong>the</strong> geoid <strong>and</strong>gravitational potential.Figure A1.3.2: Difference degree amplitudes (GRACE-01S vs. EGM96) <strong>in</strong> terms of geoid undulations(red), gravity disturbances (blue) <strong>and</strong> gravity anomalies (green) <strong>in</strong> meter <strong>and</strong> mGal, respectivelyFigure A1.3.3: Difference degree amplitudes (GRACE-01S vs. EGM96) as a function of maximum degree<strong>in</strong> terms of geoid undulations (red), gravity disturbances (blue) <strong>and</strong> gravity anomalies (green) <strong>in</strong> meter <strong>and</strong>mGal, respectively114


A1 Gravity fi eld tutorialA1.4 Non-tidal temporal gravity field variationsThe <strong>Earth</strong> <strong>and</strong> ocean tide <strong>in</strong>duced time-vary<strong>in</strong>g part of <strong>the</strong> gravitational potential due to solid<strong>Earth</strong> deformation, water mass redistribution <strong>and</strong> load<strong>in</strong>g is accounted for when solv<strong>in</strong>g for a globalgravity field model. Variations of <strong>the</strong> spherical harmonic coefficients C , S with time <strong>the</strong>reforecan be attributed to environmental <strong>and</strong> climate related processes at <strong>the</strong> <strong>Earth</strong> surface caus<strong>in</strong>glm lmmass redistributions with<strong>in</strong> <strong>and</strong> among <strong>the</strong> atmosphere, cryosphere <strong>and</strong> hydrosphere. Solid <strong>Earth</strong>processes, like core/mantle coupl<strong>in</strong>g, post-glacial adjustment <strong>and</strong> subduction, add low amplitudesecular variations (l<strong>in</strong>ear trend) of <strong>the</strong> spherical harmonic coefficients to <strong>the</strong> overall spectrum oftemporal gravitational variations.The formulae <strong>and</strong> derivations with<strong>in</strong> this <strong>and</strong> <strong>the</strong> follow<strong>in</strong>g chapter are based on Wahr et al.(1998).When solv<strong>in</strong>g for a time series of spherical harmonic coefficients (e.g. monthly values fromCHAMP/GRACE data), <strong>the</strong> gravitational potential <strong>and</strong> <strong>the</strong> Stokes’ coefficients, Equation(A1.1.1), at <strong>the</strong> <strong>Earth</strong> surface (r=R) become time-dependent (t-time):lmaxlGM ⎡⎤U ( t, R, ϕ, λ) = ⎢C00+ ∑ ∑ Plm (s<strong>in</strong> ϕ) ( C( t) lmcos mλ+ Slm( t)s<strong>in</strong> mλ)⎥ . (A1.4.1)R ⎣l= 1 m=0⎦If we concentrate here on <strong>the</strong> surface processes (atmosphere, cryosphere, oceans, cont<strong>in</strong>entalhydrology) with seasonal, <strong>in</strong>terannual <strong>and</strong> long-term variations, <strong>the</strong> variation <strong>in</strong> surface density(i.e., mass/area) can be exp<strong>and</strong>ed <strong>in</strong>to (fully normalized) spherical harmonics (th<strong>in</strong> layerapproximation):lmaxl⎡σ( t, ϕ, λ) = R ρ ˘wC + ∑ ∑ Plm (s<strong>in</strong> ϕ) C˘( t )lm cos mλ+ S˘( t ) s<strong>in</strong> ⎤⎢ 00( lmmλ)⎥ (A1.4.2)⎣l= 1 m=0⎦with ρ w- be<strong>in</strong>g <strong>the</strong> density of water to make <strong>the</strong> coefficients C ˘( t) , ˘( lmS t)dimensionless.lmThe ratio σ(t)/ρ wmeans <strong>the</strong> variation <strong>in</strong> equivalent water thickness (1 mbar/g 1 cm equivalentwater thickness with g be<strong>in</strong>g <strong>the</strong> mean gravitational acceleration at <strong>the</strong> <strong>Earth</strong>’s surface).Then, <strong>the</strong> relation between <strong>the</strong> gravitational spherical harmonic coefficients <strong>in</strong> Equation (A1.4.1)<strong>and</strong> <strong>the</strong> surface density coefficients <strong>in</strong> Equation (A1.4.2) is given by:’⎧⎪C( t)⎫lm ⎪ 3ρk C tw1+⎧l ⎪˘( ) ⎫lm ⎪⎨ ⎬ =⎨ ⎬(A1.4.3)⎩⎪ S ( t)llm ⎭⎪ ρave2 + 1⎩⎪ S˘( t )lm ⎭⎪with ρ avebe<strong>in</strong>g <strong>the</strong> average density of <strong>the</strong> <strong>Earth</strong> (5517 kg/m 3 ) <strong>and</strong> k l’ be<strong>in</strong>g <strong>the</strong> degree dependentload Love numbers (e.g. Farrell, 1972). The factor (1+k l’) <strong>in</strong> Equation (A1.4.3) accounts for both<strong>the</strong> direct mass potential <strong>and</strong> <strong>the</strong> solid <strong>Earth</strong> load<strong>in</strong>g deformation potential.Equations (A1.4.2) <strong>and</strong> (A1.4.3) may be used for forward computations (potential, geoid, gravity,gradients) when a surface mass distribution with time is given from geophysical models <strong>and</strong>measurements.Vice versa, <strong>in</strong>vert<strong>in</strong>g Equation (A1.4.3),⎧⎪C˘( t ) ⎫lm ⎪ ρ l C( t)ave2 + 1 ⎧⎪⎨ ⎬ =’ ⎨⎩⎪ S˘( t ) k S ( t)lm ⎭⎪ 3ρw1+l ⎩⎪lmlm⎫⎪⎬⎭⎪(A1.4.4)<strong>and</strong> <strong>in</strong>sert<strong>in</strong>g C ˘( t) , ˘( lmS t)lm<strong>in</strong>to Equation (A1.4.2), <strong>the</strong> CHAMP/GRACE satellite observed surfacedensity variations can be estimated from <strong>the</strong> solved-for C( t) , S ( t) time series.lmlm115


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>Equations (A1.4.2) to (A1.4.4) are for <strong>in</strong>dicative purposes only. Ref<strong>in</strong>ements, e.g. tak<strong>in</strong>g <strong>in</strong>to account<strong>the</strong> density variations over depths (oceans) or with altitude (atmosphere), are required forhighest accuracy.Filter<strong>in</strong>g <strong>in</strong> <strong>the</strong> spectral <strong>and</strong>/or spatial doma<strong>in</strong> (Wahr et al., 1998) also may be required for <strong>the</strong>localization of effects, for source separation <strong>and</strong> for reduc<strong>in</strong>g <strong>the</strong> impact of less well determ<strong>in</strong>edhigher frequency parts of <strong>the</strong> gravitational spectrum.A1.5 Spatial/temporal power spectra of temporal field variationsThe spatial/temporal power spectra (degree amplitudes) of <strong>the</strong> time vary<strong>in</strong>g fields represented by<strong>the</strong> spherical harmonic coefficients C( t) lm, S ( t) lm(or ∆ C ˘( t ) , ∆ S ˘( t )lm lm) are aga<strong>in</strong> computed follow<strong>in</strong>gEquation (A1.3.1a) but replac<strong>in</strong>g <strong>the</strong> coefficients by <strong>the</strong>ir root mean square (rms) about’ ’mean over <strong>the</strong> time of consideration ( C ( t) = C( t) − C , S ( t) = S ( t)− S :meanmeanlσ ⎡’2’2l ∑ rms C t lmrms S t lmm=0⎣⎢( ) ( ) ⎤ .⎦⎥= ( ) +( )(A1.5.1)Appropriate scal<strong>in</strong>g of <strong>the</strong> coefficients like <strong>in</strong> Equations (A1.3.1b to f) or as be<strong>in</strong>g obvious fromEquation (A1.4.2) allows <strong>the</strong> expression of <strong>the</strong> degree amplitudes <strong>in</strong> terms of functionals of <strong>the</strong>disturb<strong>in</strong>g gravitational potential or <strong>in</strong> terms of surface density <strong>and</strong> equivalent water thickness,respectively (cf. Figure A1.5.1).Figure A1.5.1: Degree amplitudes of longest wavelength mass redistributions <strong>in</strong> terms of (left) geoid <strong>and</strong>(right) equivalent water thickness variations from monthly averages.The spherical harmonic coefficients <strong>in</strong> Equations (A1.4.3) <strong>and</strong> (A1.4.4) may be subject to a temporalspectral analysis to extract amplitudes Ac ( f )lm, As ( f )lm<strong>and</strong> phases ϕc ( f )lm, ϕs ( f )lm or,ssc cbe<strong>in</strong>g equivalent, <strong>the</strong> s<strong>in</strong>e C( f )lm, S ( f )lm<strong>and</strong> cos<strong>in</strong>e terms C( f )lm, S ( f )lmat a given frequencyf (e.g. annual as shown <strong>in</strong> Figure A1.5.2) for <strong>the</strong> time series of each <strong>in</strong>dividual coefficientC( t) lm, S ( t) lm. The power spectrum expressed <strong>in</strong> degree amplitudes of <strong>the</strong> fields vary<strong>in</strong>g at a givenfrequency (cf. Figure A1.5.3) <strong>the</strong>n may be computed start<strong>in</strong>g from:116


A1 Gravity fi eld tutorialσ l1( f ) C( f ) C( f ) S ( f ) S ( f )2ls2c2s2c2= ⎡∑ ( lm ) +( lm ) + ( lm ) +( lm )m=0⎣⎢be<strong>in</strong>g equivalent to1( ) = ( ( ) ) +( ( ) )⎤ .2⎦⎥l2 2σ lf ⎡∑ A cf lmA sf lmm=0⎣⎢⎤⎦⎥(A1.5.2a)(A1.5.2b)ssc cInsert<strong>in</strong>g <strong>the</strong> frequency-dependent coefficients C( f )lm, S ( f )lm , <strong>and</strong> C( f )lm, S ( f )lm , respectively<strong>in</strong>to one of <strong>the</strong> spherical harmonic expansions <strong>in</strong> Chapter A1.2, one gets <strong>the</strong> geographicaldistribution of <strong>the</strong> s<strong>in</strong>ce <strong>and</strong> cos<strong>in</strong>e component, respectively, of <strong>the</strong> correspond<strong>in</strong>g functional(geoid, gravity, gravity gradient) or, apply<strong>in</strong>g Equations (A1.4.4) <strong>and</strong> (A1.4.2), of <strong>the</strong> surfacedensity at a given frequency.Figure A1.5.2: Atmospheric, oceanic <strong>and</strong> hydrological contribution (spherical harmonic degrees 2 through4) to <strong>the</strong> annually vary<strong>in</strong>g geoid component. (top) S<strong>in</strong>e component <strong>and</strong> (bottom) Cos<strong>in</strong>e component (with t= 0 on January 1). Root mean square (weighted by cos<strong>in</strong>e of latitude) is 1.2 mm.Figure A1.5.3: Degree amplitudes of annual component <strong>in</strong> longest wavelengths mass redistributions <strong>in</strong>terms of (left) geoid <strong>and</strong> (right) equivalent water thickness variations.117


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>ReferencesHeiskanen, W.A. <strong>and</strong> H. Moritz, 1967. Physical Geodesy, W.H. Freeman <strong>and</strong> Co., San Francisco.Kaula, W.M., 1966. Theory of Satellite Geodesy, Blaisdell Publ. Company, Waltham, <strong>Mass</strong>.Lambeck, K., 1990. Aristoteles – An ESA Mission to Study <strong>the</strong> <strong>Earth</strong>’s Gravity Field, ESAJournal 14:1-21.Wahr, J., M. Molenaar <strong>and</strong> F. Bryan, 1998. Time Variability of <strong>the</strong> <strong>Earth</strong>’s Gravity Field– Hydrological <strong>and</strong> Oceanic Effects <strong>and</strong> <strong>the</strong>ir Possible Detection Us<strong>in</strong>g GRACE, Journal ofGeophysical Research 103(B12):30 205-30 229.118


A2 Oceanography tutorialA2 Physical oceanographyBasic equationsOcean dynamics are based on physical first pr<strong>in</strong>ciples such as Newton’s law of motion. A generaldescription is given by <strong>the</strong> Navier-Stokes equations. However, <strong>the</strong>se equations are far toocomplex to be solved for general circulation problems concern<strong>in</strong>g <strong>the</strong> global ocean. A number ofsimplifications <strong>and</strong> approximations can be made to make <strong>the</strong> system of equations tractable whichresults <strong>in</strong> a set of coupled partial differential equations. The ocean is considered as a th<strong>in</strong> shellaround <strong>the</strong> globe which is taken as a sphere with radius a. The surface z=0 is assumed to be <strong>the</strong>geoid, i.e. horizontal movement is def<strong>in</strong>ed as along <strong>the</strong> geoid. The earth rotates with constant angularvelocity Ω. The flow field can <strong>the</strong>n be described bydudtdvdtdwdtuv tan ϕ uw 1 ∂p− + − fv = −FuDa a acosϕ ρ∂ λ+ +2u tan ϕ vw 1 ∂p− + + fu = −a a a ∂ + F + vDρ ϕu−+ va2 2= − ∂ p∂z− gρ1 ∂u∂ + ∂ ( vcos ϕ) (∂ w ) +acosϕλ ∂ϕ∂ z= 0with <strong>the</strong> def<strong>in</strong>ition of <strong>the</strong> derivativeddtu v w≡ ∂ ∂ t+ ∂a ∂ + ∂ a∂ + ∂cosϕ λ ϕ ∂zvu(A2.1)(A2.2)(A2.3)(A2.4)(A.2.5)Latitude is denoted by ϕ <strong>and</strong> longitude (east) by λ. Velocities <strong>in</strong> <strong>the</strong> zonal, meridional <strong>and</strong> upward(z) direction are u, v <strong>and</strong> w, respectively. The density of water is ρ, p is pressure <strong>and</strong> g is <strong>the</strong>acceleration of gravity (a negative quantity when z is def<strong>in</strong>ed as upward). f is commonly knownas Coriolis parameter <strong>and</strong> is def<strong>in</strong>ed as f=2Ωs<strong>in</strong>ϕ. F u<strong>and</strong> F vare external forces such as action ofw<strong>in</strong>d or tides. D u<strong>and</strong> D vrepresent frictional <strong>and</strong> diffusive forces. These are largely unknown <strong>and</strong>depend<strong>in</strong>g on choice <strong>and</strong> application <strong>the</strong>y are approximated by l<strong>in</strong>ear or quadratic bottom friction2 24 4or viscosities of <strong>the</strong> type proportional to ∇ u, ∇ v , or −∇ u, − ∇ v called harmonic <strong>and</strong> biharmonicviscosity, respectively.It turns out that <strong>the</strong> terms <strong>in</strong> (A2.1 – A2.3) proportional to squared velocity divided by <strong>the</strong> radiusof <strong>the</strong> earth can be neglected compared to o<strong>the</strong>r terms. For large scale motion <strong>the</strong> horizontalscale is much longer than <strong>the</strong> vertical, which results <strong>in</strong> small vertical accelerations. A commonchoice is to set dw dt to zero <strong>in</strong> (A2.3) lead<strong>in</strong>g to <strong>the</strong> hydrostatic approximation (A2.8). Ano<strong>the</strong>rvery good choice is to replace ρ with a constant ρ 0<strong>in</strong> equations (A2.1-A2.2), which is part of <strong>the</strong>Bouss<strong>in</strong>esq approximation. Both approximations are excellent for large-scale motion.For many applications Cartesian coord<strong>in</strong>ates are used with x, y <strong>and</strong> z po<strong>in</strong>t<strong>in</strong>g east, north <strong>and</strong> upward,respectively. Hydrostatic <strong>and</strong> Bouss<strong>in</strong>esq equations of motion <strong>the</strong>n read119


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>du p− fv = − ∂ FuDudt ∂ x+ +(A2.6)ρ0dv p+ fu = − ∂ FvDvdt ∂ y+ +(A2.7)ρ0p0 = − ∂ g∂z− ρ(A2.8)∂u∂ x+ ∂ v w∂ y+ ∂ ∂ z= 0 (A2.9)The momentum equations are augmented by <strong>the</strong> conservation of temperature T <strong>and</strong> sal<strong>in</strong>ity SdT= FT+ DTdtdS= FS+ DSdt(A2.10)(A2.11)<strong>and</strong> <strong>the</strong> equation of state that describes <strong>the</strong> nonl<strong>in</strong>ear dependence of density on temperature, sal<strong>in</strong>ity<strong>and</strong> pressureρ = ρ( T, S, p )(A2.12)F T,Sare external forc<strong>in</strong>g by sources <strong>and</strong> s<strong>in</strong>ks of temperature <strong>and</strong> sal<strong>in</strong>ity, respectively, which arenon-zero only at <strong>the</strong> ocean-atmosphere boundary. The term D T,Sdescribes <strong>in</strong>ternal mix<strong>in</strong>g due to2 2turbulent motion, frequently denoted as diffusivity <strong>and</strong> assumed proportional to ∇ T, ∇ S . F<strong>in</strong>ally,<strong>the</strong> derivative is now def<strong>in</strong>ed asddt≡ ∂ ∂ u v wt+ ∂∂ + ∂ x ∂ + ∂y ∂ z(A2.13)Equations (A2.6-A2.12) are known as <strong>the</strong> hydrostatic primitive equations. They form <strong>the</strong> basis ofpractically all modern ocean general circulation models.Conservation of trace substances like oxygen, carbon dioxide, freons, nutrients, trace metals <strong>and</strong>so on are <strong>in</strong> analogy to <strong>the</strong> equations for temperature <strong>and</strong> sal<strong>in</strong>ity (A2.10-A2.11). As temperature<strong>and</strong> sal<strong>in</strong>ity take an active part <strong>in</strong> <strong>the</strong> primitive equations, <strong>the</strong>y are usually denoted active tracerswhile all o<strong>the</strong>r tracers are denoted passive.Geostrophic balance <strong>and</strong> <strong>the</strong>rmal w<strong>in</strong>dOn time scales of days <strong>and</strong> longer <strong>and</strong> on spatial scales of longer than 10 km <strong>the</strong> momentum equationscan be approximated very accurately by <strong>the</strong> balance between Coriolis force <strong>and</strong> that due to<strong>the</strong> pressure gradient known as <strong>the</strong> geostrophic balance− = − ∂ pfvρ∂xfu = − ∂ pρ∂y(A2.14)(A2.15)where <strong>the</strong> Bouss<strong>in</strong>esq approximation has been removed. Geostrophy holds <strong>in</strong> <strong>the</strong> open oceanaway from boundaries <strong>and</strong> <strong>the</strong> Equator even on quite short time scales.120


A2 Oceanography tutorialPressure relative to <strong>the</strong> geoid cannot be measured from ships <strong>in</strong> an easy manner. However, byus<strong>in</strong>g <strong>the</strong> hydrostatic equation (A2.8) pressure may be elim<strong>in</strong>ated <strong>in</strong> <strong>the</strong> geostrophic equations <strong>in</strong>favour of density, which can be measured accuratelyff∂vg∂ z= − ∂ρ( )ρ ∂x∂ug∂ z= ∂ρ( )ρ ∂ypp(A2.16)(A2.17)Here <strong>the</strong> <strong>in</strong>dex p denotes derivatives with<strong>in</strong> surfaces of constant pressure, i.e. <strong>the</strong> p-system. Theseequations, which are very useful <strong>in</strong> both meteorology <strong>and</strong> oceanography, are called <strong>the</strong>rmal w<strong>in</strong>drelation. Vertical <strong>in</strong>tegration yields <strong>the</strong> form more familiar to oceanographersρu( z) = ( ρu)+ρv( z) = ( ρv)−00gfgf∫∫zz0zz0∂ρ∂y dz∂ρ∂x dz(A2.18)(A2.19)The <strong>the</strong>rmal w<strong>in</strong>d equations allow <strong>the</strong> diagnosis of <strong>the</strong> geostrophic velocity at any depth z relativeto a reference velocity u 0or v 0. Up to this po<strong>in</strong>t, <strong>the</strong>re is a similarity between atmosphere <strong>and</strong>ocean. The same equations can be applied to both fluids. Differences become visible when weconsider boundaries. As reference velocities <strong>in</strong> <strong>the</strong> atmosphere bottom velocities can used <strong>and</strong>easily be measured. In oceanography, this is more difficult. A common choice for reference velocityis some deep level where <strong>the</strong> ocean is stagnant or <strong>the</strong> current direction reverses. Here a levelof no motion is assumed with reference velocities u 0<strong>and</strong> v 0of zero.The free sea surfaceOne of <strong>the</strong> most apparent differences between atmosphere <strong>and</strong> ocean is <strong>the</strong> ocean surface topographyη. The govern<strong>in</strong>g equation for η describes <strong>the</strong> motion at <strong>the</strong> sea surface∂η ∂ + ∂ η∂ + ∂ ηu v∂ = w z = η( x, y, t) (A2.20)t x yThe vertical velocity w can be derived by <strong>in</strong>tegration of <strong>the</strong> cont<strong>in</strong>uity equation (A.2.9) from <strong>the</strong>bottom H to <strong>the</strong> level zz ∂uvw( z) = w( H ) − ∫ ( )x y dzH∂+ ∂ (A2.21)∂w( H ) = −u ∂H v H z H ( x, y)∂x− ∂ =∂y(A2.22)Equation (A2.22) is called k<strong>in</strong>ematic boundary condition <strong>and</strong> ensures that <strong>the</strong>re is no flow <strong>in</strong>to <strong>the</strong>spatially vary<strong>in</strong>g bottom H(x,y).The free surface η <strong>and</strong> <strong>the</strong> density ρ vary on different time <strong>and</strong> space scales. It is useful to split<strong>the</strong> pressure p <strong>in</strong> <strong>the</strong> hydrostatic primitive equations (A2.6-A2.12) <strong>in</strong>to a part that is due to <strong>the</strong> freesurface <strong>and</strong> one due to density variations121


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>∫z= 0 ηz=0p ( z ) = − g ρ dz − g ρ dz = − g ρ dz − g ρ ηz∫z=0∫z0(A2.23)where <strong>the</strong> surface density is set to ρ 0for simplicity. If we denote <strong>the</strong> first term of <strong>the</strong> right h<strong>and</strong>side of (A2.23) with p´ we can rewrite <strong>the</strong> equations for horizontal momentum (A2.6-A2.7)dudtdvdtp− fv = g ∂ ηFuD∂ − ∂ ′x ρ ∂ x+ +p+ fu = g ∂ ηFvD∂ − ∂ ′y ρ ∂ y+ +00uv(A2.24)(A2.25)F<strong>in</strong>ally we arrive at an expression for <strong>the</strong> geostrophic surface flow u s<strong>and</strong> v sfus= g ∂ η∂ yfvs= −g ∂ η∂ x(A2.26)(A2.27)which concludes <strong>the</strong> oceanography tutorial. Please remember that g is negative <strong>and</strong> η is positiveupward. If <strong>the</strong> free sea surface η (dynamic sea surface) is measured from space, <strong>the</strong> relations(A2.26-A2.27) can be used to calculate surface geostrophic velocities away from <strong>the</strong> equator.This surface velocity now serves as reference velocity <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal w<strong>in</strong>d equations (A2.18-A2.19) <strong>and</strong> us<strong>in</strong>g measured density <strong>the</strong> full 3-dimensional geostrophic velocity field is available.Toge<strong>the</strong>r with <strong>the</strong> w<strong>in</strong>d driven surface currents estimated from <strong>the</strong> w<strong>in</strong>d field total absolutecurrents can <strong>the</strong>n be estimated.A note of caution must be added. The total flow field derived this way may not be mass conserv<strong>in</strong>g<strong>and</strong> small additional corrections will be necessary before <strong>the</strong> velocities can be used for <strong>the</strong>calculation of transports.122


A3 Gravity effect of ice mass changes <strong>and</strong> <strong>the</strong> sea level equationA3 Gravity effect of ice mass changes <strong>and</strong> <strong>the</strong>sea level equation<strong>Mass</strong> changes of ice caps (Antarctica, Greenl<strong>and</strong>) <strong>and</strong> glaciers can be expressed as a function Lof position ϕ,λ <strong>and</strong> time t:L = L( ϕ, λ , t). (A3.1)It is convenient to express <strong>the</strong> chang<strong>in</strong>g load <strong>in</strong> equivalent of water thickness. An expansion ofthis load function <strong>in</strong>to (fully normalized) spherical harmonics leads directly to Equation (A1.4.2)with <strong>the</strong> relation (A1.4.3) between spherical harmonic coefficients <strong>and</strong> <strong>the</strong> surface density.The result<strong>in</strong>g time variable parts of <strong>the</strong> geoid <strong>and</strong> gravity disturbance can be easily computed us<strong>in</strong>gEquations (A1.2.2b) <strong>and</strong> (A1.2.3), respectively. In addition, <strong>the</strong> viscoelastic response of <strong>the</strong><strong>Earth</strong>’s crust <strong>and</strong> mantle have to be taken <strong>in</strong>to account (see A5).The exchange of water between <strong>the</strong> global ocean <strong>and</strong> <strong>the</strong> cont<strong>in</strong>ental ice causes global changes of<strong>the</strong> gravity field. Therefore <strong>the</strong> ocean surface will not change by a uniform water layer thickness,but follow<strong>in</strong>g <strong>the</strong> new shape of <strong>the</strong> equipotential surfaces. This is expressed by <strong>the</strong> so-called sealevel equation (Peltier 1998):{ } (A3.2)δS( ϕ, λ, t) = C( ϕ, λ, t) ⋅ δG( ϕ, λ, t) − δR( ϕ, λ, t)with δS relative sea level change (with respect to <strong>the</strong> solid <strong>Earth</strong>)C ocean function (1 for ocean, 0 for l<strong>and</strong>)δG geoid changeδR vertical deformation of <strong>the</strong> solid <strong>Earth</strong><strong>and</strong>δS( ϕ, λ, t) = C( ϕ, λ, t)⋅t⎧⎪⎛⎞⋅ ∫ ⎡ ∫∫ ⎜1 Φ ( ψ, t − t′ ) − Γ ( ψ, t − t′) ⎟ ⋅ L( ϕ′ , λ′ , t′) dσdt ( t )⎣ ⎢⎤ 1 ⎫⎪(A3.3)⎨⎥ ′ + ∆Φ ⎬⎩⎪ ⎝ g⎠g−∞ σ⎦⎭⎪with Φ, Γ Green’s functions∆Φ <strong>Mass</strong> conservation term.S<strong>in</strong>ce <strong>the</strong> chang<strong>in</strong>g sea level on <strong>the</strong> left h<strong>and</strong> side of Equation (A3.3) is also part of <strong>the</strong> chang<strong>in</strong>gload term L on <strong>the</strong> right h<strong>and</strong> side, Equation (A3.3) has to be solved iteratively. It is easy to concludethat <strong>the</strong> effect of <strong>in</strong>dividual ice masses will not only be different <strong>in</strong> <strong>the</strong> gravity field, but also<strong>in</strong> relative sea level change (“f<strong>in</strong>gerpr<strong>in</strong>ts”).ReferencesW.R. Peltier, Postglacial Variations <strong>in</strong> <strong>the</strong> Level of <strong>the</strong> Sea: Implications for Climate Dynamics<strong>and</strong> Solid-<strong>Earth</strong> Geophysics, Rev. Geophys. 36(4) p. 603-689,1998123


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>A4 Mantle flow <strong>and</strong> gravity potentialDensity anomalies with<strong>in</strong> <strong>the</strong> <strong>Earth</strong>’s mantle affect <strong>the</strong> long term gravity potential <strong>in</strong> several ways:<strong>the</strong>y produce a signal due to Newton’s law of attraction, <strong>and</strong> <strong>the</strong>y lead to viscous flow stresseswhich deflect <strong>in</strong>ternal <strong>in</strong>terfaces between regions of different density (such as <strong>the</strong> core mantleboundary) or <strong>the</strong> <strong>Earth</strong>’s surface (dynamic topography). Deflected boundaries represent massanomalies <strong>and</strong> produce an additional gravitational signal. The density anomalies with<strong>in</strong> <strong>the</strong> <strong>Earth</strong>δρ(r,ϕ,λ) can be exp<strong>and</strong>ed <strong>in</strong>to spherical harmonics, where r,ϕ,λ are <strong>the</strong> spherical coord<strong>in</strong>ateslmaxl⎛ρρ⎞δρ( r, ϕ, λ) = ρ0⎜∑∑Plm (s<strong>in</strong> ϕ)( Clm ( r)cos mλ + Slm( r)s<strong>in</strong> mλ)⎟ (A4.1)⎝ l=1 m=0⎠Here ρ 0is <strong>the</strong> reference density, l <strong>and</strong> m are <strong>the</strong> degree <strong>and</strong> order of <strong>the</strong> spherical harmonicρrepresentation <strong>and</strong> Plm , Clm,Sρ lmare <strong>the</strong> fully normalized Legendre polynomials, <strong>and</strong> <strong>the</strong> sphericalharmonic coefficients of <strong>the</strong> density anomaly distribution, respectively. The coefficient C ρ 00(r) isnot considered, as its <strong>in</strong>tegrated effect is zero.If <strong>the</strong> i-th <strong>in</strong>terface at <strong>the</strong> radial distance r i(or <strong>the</strong> <strong>Earth</strong>´s surface at r = R, R be<strong>in</strong>g <strong>the</strong> <strong>Earth</strong>´s radius)is associated with <strong>the</strong> density contrast ∆ρ i, any deflection of this <strong>in</strong>terface may be describedby <strong>the</strong> dynamic topography h i(ϕ,λ). The associated mass anomaly may be represented by a sphericalshell with variable surface density (mass/area, th<strong>in</strong> layer approximation), which can be exp<strong>and</strong>ed<strong>in</strong>to spherical harmonicslmaxl⎛ii⎞σi ( ri , ϕ, λ) = ∆ρiR⎜∑∑Plm (s<strong>in</strong> ϕ)( Clmcos mλ + Slms<strong>in</strong> mλ)⎟ (A4.2)⎝ l=1 m=0⎠i iwhere Clm, Slmare <strong>the</strong> spherical harmonic coefficients of <strong>the</strong> dynamic topography of <strong>in</strong>terface i,scaled by <strong>the</strong> <strong>Earth</strong>’s radius R.The density anomalies given <strong>in</strong> Equation (A4.1) produce a disturb<strong>in</strong>g potential T(R,ϕ,λ) (seeEquation A1.1.2) at <strong>the</strong> <strong>Earth</strong>’s surface, whose Stokes coefficients are given by⎧C⎫lm 3ρ01 1⎨ ⎬ =⎩Slm⎭ ρave2l + 1 RR∫0⎛ r ⎞⎜ ⎟⎝ R ⎠l+2⎧⎪C⎨⎩⎪ Sρlmρlm( r)⎫( r) ⎬⎪ dr⎭⎪where ρ aveis <strong>the</strong> average density of <strong>the</strong> <strong>Earth</strong>.In a similar way, <strong>the</strong> disturb<strong>in</strong>g potential due to all n deflected <strong>in</strong>terfaces is given by(A4.3)⎧C⎨⎩S124lmlml+2i⎫n3 1 ⎛ ri⎞ ⎧⎪C ⎫lm ⎪⎬ = ∑ i i⎭ avel +⎜i ⎝ R⎟ ∆ρ ⎨ ⎬(A4.4)ρ 2 1 = 1 ⎠ ⎩⎪ Slm⎭⎪Internal density anomalies <strong>and</strong> dynamic topography (of <strong>the</strong> surface or an <strong>in</strong>ternal boundary) arecoupled by <strong>the</strong> equations describ<strong>in</strong>g mantle flow. These are <strong>the</strong> equations of conservation of mass<strong>and</strong> momentum∂ρ∂ + ∇ ( ρv) t= 0 (A4.5)0 = −∇ P + ∂∂xj⎛ ∂v+ ∂ v ⎞i j⎜⎝ ∂ ∂ ⎟ + η ρ gez(A4.6)xjxi⎠where t is <strong>the</strong> time <strong>and</strong> ν is <strong>the</strong> flow velocity of mantle flow, P is <strong>the</strong> pressure, x iis <strong>the</strong> Cartesiancoord<strong>in</strong>ate, η is <strong>the</strong> viscosity, g is <strong>the</strong> gravity acceleration <strong>and</strong> e zis <strong>the</strong> unit vector <strong>in</strong> z-direction.


A4 Mantle fl ow <strong>and</strong> gravity potentialIt should be noted that <strong>in</strong> <strong>the</strong> equation of momentum <strong>in</strong>ertial terms have been neglected. The driv<strong>in</strong>gforce for mantle flow is represented by <strong>the</strong> last term <strong>in</strong> Equation (A4.6), which conta<strong>in</strong>s <strong>the</strong><strong>in</strong>ternal density anomalies.The <strong>in</strong>ternal density anomalies may be due to temperature <strong>and</strong> compositional variations with<strong>in</strong> <strong>the</strong><strong>Earth</strong>, <strong>and</strong> may be written as a l<strong>in</strong>earized equation of stateρ ρρ = ρ ( r ) + ∂ δT+ ∂ 0∂TP∂C, C,P TδC(A4.7)where ρ 0is a reference density, T is <strong>the</strong> temperature, δT is <strong>the</strong> deviation from a referencetemperature, C is a parameter quantify<strong>in</strong>g <strong>the</strong> composition. It should be noted that <strong>the</strong> pressuredependence of <strong>the</strong> density is not accounted for explicitly, s<strong>in</strong>ce it may be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> depthdependent reference state. S<strong>in</strong>ce temperature <strong>and</strong> composition is not known <strong>in</strong> <strong>the</strong> <strong>Earth</strong>’s mantle,<strong>the</strong> density may also be related to observed quantities such as seismic velocities V Por V Sρ = ρ ( ∂ρ0r ) + δ VP,S. (A4.8)∂VP,SThe partial derivative has to be determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> laboratory or by <strong>in</strong>version methods.Once <strong>the</strong> <strong>in</strong>ternal density anomalies are known or assumed us<strong>in</strong>g Equations (A4.7) or (A4.8),Equation (A4.5) <strong>and</strong> (A4.6) may be solved giv<strong>in</strong>g <strong>the</strong> mantle flow field <strong>and</strong> <strong>the</strong> pressure distribution.From this <strong>the</strong> stress tensor⎛ ∂vvi jσij= − Pδ ij+ η + ∂ ⎞⎜⎝ ∂xj∂x⎟i ⎠(A4.9)can be derived (δ ijis <strong>the</strong> Kronecker-δ). Usually <strong>the</strong> <strong>Earth</strong>’s surface at r = R (or <strong>in</strong>ternal <strong>in</strong>terfacei at r i) is kept fixed <strong>in</strong> such calculations. This results <strong>in</strong> non-vanish<strong>in</strong>g normal stresses at <strong>the</strong>surface r = R or r i. If <strong>the</strong> surface were allowed to move vertically (i.e. assum<strong>in</strong>g a free boundarycondition), <strong>the</strong> result<strong>in</strong>g dynamic topography will produce a lithostatic stress, which equilibrates<strong>the</strong> normal stress from <strong>the</strong> flow field at R or r ito first order. Thus, <strong>the</strong> dynamic topography of <strong>the</strong><strong>in</strong>terface i (or of <strong>the</strong> surface) is given byhizzri= σ ( )∆ρg. (A4.10)Equations (A4.5), (A4.6), (A4.9) <strong>and</strong> (A4.10) describe a coupled fluid dynamical system of <strong>the</strong><strong>Earth</strong>’s mantle, which produce gravity perturbations given by Equations (A4.1), (A4.2), (A4.3)<strong>and</strong> (A4.4). It should be noted that this formulation also <strong>in</strong>cludes <strong>the</strong> effect of isostatic topography,as long as it is kept <strong>in</strong> place by a highly viscous lithosphere or crust.In <strong>the</strong> case of only radial viscosity variations Equations (A4.5), (A4.6), (A4.9) <strong>and</strong> (A4.10) mayalso be decomposed <strong>in</strong>to spherical harmonics, <strong>and</strong> <strong>the</strong> relation between a density anomaly at agiven depth <strong>and</strong> <strong>the</strong> associated gravity potential at <strong>the</strong> surface may be represented by kernels. Forexample, <strong>the</strong> geoid anomaly δN lmcaused by an assumed density distribution <strong>in</strong> <strong>the</strong> mantle is obta<strong>in</strong>edby a convolution of <strong>the</strong>se kernels G l(r) with <strong>the</strong> density field:δN4πGR=( 2l+ 1)g∫lm l lmrCMBRG ( r) δρ dr(A4.11)where G is <strong>the</strong> gravitational constant. The determ<strong>in</strong>ation of G l(r) requires <strong>the</strong> full solution of<strong>the</strong> fluid dynamical problem for a given viscosity depth distribution <strong>and</strong> it <strong>in</strong>cludes <strong>the</strong> effect ofdynamic topography.125


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>A5 Glacial-isostatic adjustmentGlacial isostasy is concerned with <strong>the</strong> gravitational viscoelastic response of <strong>the</strong> <strong>Earth</strong> to surfaceloads. To derive <strong>the</strong> govern<strong>in</strong>g <strong>in</strong>cremental field equations <strong>and</strong> <strong>in</strong>terface conditions, <strong>in</strong>f<strong>in</strong>itesimalperturbations of a compositionally <strong>and</strong> entropically stratified, compressible <strong>Earth</strong> <strong>in</strong>itially<strong>in</strong> hydrostatic equilibrium are considered, where <strong>the</strong> perturbations are assumed to be isocompositional<strong>and</strong> isentropic. In <strong>the</strong> follow<strong>in</strong>g, <strong>the</strong> Lagrangian representation of arbitrary tensor fields,f ( ij…X , t ) , will be used, which refers <strong>the</strong> field values to <strong>the</strong> current position, r ( X , it ) , of a particlewhose <strong>in</strong>itial position, X i, at <strong>the</strong> time t = 0 is taken as <strong>the</strong> spatial argument. The total field,f ( ij…X , t ) , is <strong>the</strong>n decomposed accord<strong>in</strong>g to fij …( X, t) = f ( 0) ij… ( X) + f ( δ)( 0ij…( X, t), where f ) ij…( X ) is<strong>the</strong> <strong>in</strong>itial field <strong>and</strong> f( δ ) ( , ij…X t ) is <strong>the</strong> material <strong>in</strong>cremental field, i.e. <strong>the</strong> <strong>in</strong>crement with respect to<strong>the</strong> particle. Sometimes, it is more convenient to consider <strong>the</strong> spatial <strong>in</strong>cremental field, i.e. <strong>the</strong> <strong>in</strong>crementwith respect to a fixed location, given by fij...( X, t) = fij …( ∆) ( δ)( 0)( X, t) − fij …,k( X, t) ui( X, t),where u ( iX , t ) is <strong>the</strong> particle displacement. For <strong>the</strong> material gradient of a field, we usefij …, k( X, t) = ∂fij …( X, t) / ∂ Xk . Henceforth, <strong>the</strong> arguments X <strong>and</strong> t will be suppressed.A5.1 Equations for <strong>the</strong> total fieldsFor a gravitat<strong>in</strong>g <strong>Earth</strong> undergo<strong>in</strong>g perturbations of some <strong>in</strong>itial state, <strong>the</strong> momentum equation isτ + ρ g = ρd r ,( 0) ( 0)2ij,j i t i(A5.1.1)where τ ij are <strong>the</strong> non-symmetric Piola-Kirchhoff stress, ρ ( 0 ) <strong>the</strong> <strong>in</strong>itial volume mass density <strong>and</strong>g i<strong>the</strong> gravitational force per unit mass. The symbols d t<strong>and</strong> d 2 t, respectively, denote <strong>the</strong> first- <strong>and</strong>second-order material time derivative operators. The field g iis given by−gi= φ,jrj, i1 , (A5.1.2)with φ <strong>the</strong> gravitational potential <strong>and</strong> r −1 i, j<strong>the</strong> <strong>in</strong>verse of r i, j . The gravitational potential equationcan be written as( + ) = −−1 −1 −1 ( 0)j φ r r φ r 4 πGρ, (A5.1.3), ij i, k j, k , i i,jjwhere j : = det r i , j is <strong>the</strong> Jacobian determ<strong>in</strong>ant <strong>and</strong> G Newton‘s gravitational constant. Theconstitutive equation is of <strong>the</strong> form( ) ( −⎤)( 0)⎡tij = tij + Mij ⎢r t −t ’ r t t ’ − δ , (A5.1.4)⎣ m, k m,l kl ⎦⎥−where tij = jr1 j,kτ ikis <strong>the</strong> Cauchy stress, M ij<strong>the</strong> anisotropic relaxation functional transform<strong>in</strong>g <strong>the</strong>stra<strong>in</strong> history given by <strong>the</strong> term <strong>in</strong> brackets <strong>in</strong>to <strong>the</strong> material <strong>in</strong>cremental Cauchy stress <strong>and</strong> t’ <strong>the</strong>(excitation time. With Mij, t0 )ij<strong>and</strong> ρ ( 0)prescribed, Equations (A5.1.1) to (A.5.1.4) constitute <strong>the</strong>system of total field equations for g , j, r , t ,τ <strong>and</strong> φ.i i ij ijIn order to <strong>in</strong>corporate ice or water loads, <strong>the</strong> gravitat<strong>in</strong>g <strong>Earth</strong> is assumed to possess (<strong>in</strong>ternalor surficial) <strong>in</strong>terfaces of discont<strong>in</strong>uity occupied by material sheets whose <strong>in</strong>terface mass density,σ , is prescribed. Then, <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>terface conditions result from Equations (A5.1.1) to(A5.1.4):⎡ ri⎣⎢⎤ + = 0⎦⎥ −, (A5.1.5)126


A5 Glacial-isostatic adjustment⎡ φ⎣⎢⎤ + = 0 , (A5.1.6)⎦⎥ −⎡ −1n φ r⎤ + = − 4 πGσ, (A5.1.7)⎣⎢ i , j j,i ⎦⎥ −⎡n t⎤ + = − g σ . (A5.1.8)⎣⎢ j ij ⎦⎥ − iA5.2 Equations for <strong>the</strong> <strong>in</strong>itial fieldsCommonly, <strong>the</strong> <strong>Earth</strong> is assumed to be <strong>in</strong>itially <strong>in</strong> hydrostatic equilibrium. With <strong>the</strong> mechanical( 0) ( 0)pressure def<strong>in</strong>ed by p : = −t ii/ 3 , <strong>the</strong>n tij= −δijp applies <strong>and</strong> Equations (A5.1.1) to (A5.1.4)reduce to− p( 0 ) + ( 0 ) g( 0ρ ) = 0 , (A5.2.1),i i( 0)( 0)g = φ , (A5.2.2)i , iφ( 0 ) π ρ( 0= − 4 G) , (A5.2.3), iip ( 0) ξ ρ ( 0) , λ ( 0) , ϕ ( 0). (A5.2.4)= ( )The last expression is <strong>the</strong> state equation, ξ <strong>the</strong> state function, λ (0) a field represent<strong>in</strong>g <strong>the</strong> <strong>in</strong>itialcomposition <strong>and</strong> ϕ (0) <strong>the</strong> <strong>in</strong>itial entropy density. With ξ, λ (0) <strong>and</strong> ϕ (0) prescribed, Equations (A5.2.1)( 0) ( 0) ( 0)to (A5.2.4) constitute <strong>the</strong> system of <strong>in</strong>itial hydrostatic field equations for g , p , ρ <strong>and</strong> φ (0) .Suppos<strong>in</strong>g σ (0) = 0 , <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>itial <strong>in</strong>terface conditions are obta<strong>in</strong>ed from Equations (A5.1.5)to (A5.1.8):⎡ ( 0)r⎤ + = 0 , (A5.2.5)⎣⎢ i ⎦⎥ −⎡φ ( 0)⎤ + = 0 , (A5.2.6)⎣⎢ ⎦⎥ −⎡ ( 0)( 0)n φ⎤ + = 0 , (A5.2.7)⎣⎢ i , i ⎦⎥ −⎡p ( 0)⎤ + = 0 . (A5.2.8)⎣⎢ ⎦⎥ −iA5.3 Equations for <strong>the</strong> <strong>in</strong>cremental fieldsAfter decomposition of <strong>the</strong> total fields <strong>in</strong> Equations (A5.1.1) to (A5.1.4) <strong>in</strong>to <strong>in</strong>itial <strong>and</strong> <strong>in</strong>crementalparts followed by l<strong>in</strong>earization, we obta<strong>in</strong> for isotropy( δ)( ) ( ) ( ) ( ) ( ) ( )tij,j + ( p u g u g d u, j j ) −, ii ( ρ ρ ρj ) 0 0 0 + 0 ∆=0 2 , (A5.3.1)i t i, j(g ∆ )i = φ , ( ∆)i , (A5.3.2)φ, ( ) π ρ( 0ii 4 G) ui, i∆ = ( ), (A5.3.3)127


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>t( ) − ( − ) ⎦ ( )( δ)2tij = δ ⎡ m t t ’ m t t ’ d u tij ⎣ −⎤ ⎡t ’’ ⎤∫ 0 1 3 2 dt ’⎣ k,k ⎦t∫ 0 2( ) ( ) + ( )+ m t − t ’ d ⎡t ’u t ’ u t dti j j i ’ ⎤ ’, , ,⎣⎦(A5.3.4)where m 1<strong>and</strong> m 2are <strong>the</strong> bulk <strong>and</strong> shear relaxation functions, respectively. With m 1<strong>and</strong> m 2prescribed<strong>and</strong> <strong>the</strong> <strong>in</strong>itial fields given as <strong>the</strong> special solution to <strong>the</strong> <strong>in</strong>itial field equations <strong>and</strong> <strong>in</strong>terfaceconditions, Equations (A5.3.1) to (A5.3.4) constitute <strong>the</strong> material-local form of <strong>the</strong> <strong>in</strong>cremental( ∆) ( δ)gravitational viscoelastic field equations for g , t , u <strong>and</strong> φ (∆) .i ij iDecompos<strong>in</strong>g <strong>the</strong> total fields <strong>in</strong> Equations (A5.1.5) to (A5.1.8) <strong>in</strong>to <strong>the</strong>ir <strong>in</strong>itial <strong>and</strong> <strong>in</strong>crementalparts followed by l<strong>in</strong>earization gives⎡ ui⎣⎢⎤ + = 0 , (A5.3.5)⎦⎥ −⎡ φ ( ∆)⎤ + = 0 , (A5.3.6)⎣⎢ ⎦⎥ −( )⎡ ( 0)( ∆) ( 0)n φ − 4πGρ u⎤4πGσ⎣⎢ i , i i −⎦⎥ + = − , (A5.3.7)⎡ ( 0) ( δ) n t⎤( 0)gj ij i σ⎣⎢ ⎦⎥ −+ = − . (A5.3.8)Before solv<strong>in</strong>g <strong>the</strong> <strong>in</strong>cremental field Equations (A5.3.1) to (A5.3.4) subject to <strong>the</strong> <strong>in</strong>terface conditions(A5.3.5) to (A5.3.8), <strong>the</strong> relaxation functions must be specified. Usually, <strong>the</strong> bulk propertiesare taken as elastic <strong>and</strong> <strong>the</strong> shear properties as Maxwell viscoelastic. Then, <strong>the</strong> shear relaxationfunction, m 2, takes a simple form <strong>in</strong> terms of two parameters: <strong>the</strong> elastic shear modulus, µ, <strong>and</strong><strong>the</strong> shear viscosity, η. The explicit form of m 2<strong>and</strong> <strong>the</strong> basic response characteristics of <strong>the</strong> Maxwellanalogue model are shown <strong>in</strong> Figure A5.1.Shear-relaxation function Analogue modelCreep experiment Figure A5.1: Maxwell viscoelasticity128


A5.4 Solution methods, forward <strong>and</strong> <strong>in</strong>verse modell<strong>in</strong>gA5 Glacial-isostatic adjustmentThe st<strong>and</strong>ard method of solv<strong>in</strong>g <strong>the</strong> field equations for radially symmetric <strong>Earth</strong> models is illustrated<strong>in</strong> Figure A5.2. It <strong>in</strong>volves Laplace transformation with respect to <strong>the</strong> time, t, followed byspherical harmonic expansion of <strong>the</strong> <strong>in</strong>cremental field equations <strong>and</strong> <strong>in</strong>terface conditions, where<strong>the</strong> ice model adopted determ<strong>in</strong>es <strong>the</strong> <strong>in</strong>terface conditions on <strong>the</strong> boundary of <strong>the</strong> <strong>Earth</strong> model.This leads to a (6 × 6) system of l<strong>in</strong>ear first order differential equations represent<strong>in</strong>g <strong>the</strong> <strong>Earth</strong>’sresponse <strong>and</strong> a load spectrum, represent<strong>in</strong>g <strong>the</strong> ice model. Matrix methods return transfer functionsas <strong>the</strong> general solution to <strong>the</strong> differential system, which, upon multiplication with <strong>the</strong> loadspectrum leads to <strong>the</strong> spectralsolution. Inverse Laplacetransformation followed byexpansion of <strong>the</strong> spherical harmonicseries f<strong>in</strong>ally results <strong>in</strong><strong>the</strong> space-time solution. With<strong>the</strong> stratification of <strong>the</strong> <strong>Earth</strong>model given <strong>and</strong> <strong>the</strong> ice modelspecified, this procedure allows<strong>the</strong> calculation of arbitrary fieldquantities characteriz<strong>in</strong>g glacialisostatic adjustment. For <strong>Earth</strong>models <strong>in</strong>volv<strong>in</strong>g lateral viscosityvariations, f<strong>in</strong>ite differenceor f<strong>in</strong>ite element methodsmust be employed to compute<strong>the</strong> <strong>Earth</strong>’s response. Figure A5.2: Solution methodFigure A5.3 illustrates <strong>the</strong> types of field quantity of <strong>in</strong>terest <strong>in</strong> glacial isostasy <strong>and</strong> <strong>the</strong> terrestrial<strong>and</strong> satellite methods available to measure <strong>the</strong>m. In <strong>the</strong> first <strong>in</strong>stance, forward modell<strong>in</strong>g of <strong>the</strong>time changes of <strong>the</strong>se field quantities on <strong>the</strong> basis of st<strong>and</strong>ard <strong>Earth</strong> <strong>and</strong> ice models <strong>and</strong> <strong>the</strong> confirmationof this temporal variability by <strong>the</strong> observational data is of <strong>in</strong>terest. At a later stage, timeseries of <strong>the</strong> <strong>in</strong>dividual types of data may be jo<strong>in</strong>tly <strong>in</strong>verted <strong>in</strong> terms of improved estimates of<strong>the</strong> <strong>Earth</strong>’s viscosity, of <strong>the</strong> Pleistocene ice distribution or of <strong>the</strong> present day mass imbalances of<strong>the</strong> polar ice sheets. <strong>Earth</strong> <strong>and</strong> load modulesObservation or prediction • • • • Gravito-viscoelastic field <strong>the</strong>ory (software):response of <strong>the</strong> earth to surface-load redistribution • • • • • • Figure A5.3: Forward <strong>and</strong> <strong>in</strong>verse modell<strong>in</strong>g of glacial isostatic adjustment129


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>A6 Hydrological processes <strong>and</strong> related masstransport<strong>Mass</strong> changes due to changes <strong>in</strong> terrestrial water storage are conveniently expressed <strong>in</strong> hydrology<strong>in</strong> terms of changes <strong>in</strong> equivalent water thickness ∆h, i.e., water mass changes per surface area(with 1mm water column correspond<strong>in</strong>g to ∼1 l/m² or ∼1 kg/m²). The change of mass due tochanges <strong>in</strong> water storage <strong>in</strong> a th<strong>in</strong> layer at <strong>the</strong> <strong>Earth</strong>’s surface can be written <strong>in</strong> terms of changes <strong>in</strong><strong>the</strong> geoid shape when exp<strong>and</strong>ed as a sum of spherical harmonics accord<strong>in</strong>g to Equations (A1.4.2)<strong>and</strong> (A1.4.4):( ) = ( ) ( ) + ( )∆σ ϕ,λ∞ l∆h = R∑∑Plms<strong>in</strong> ϕ ∆C˘ lmcos mλ ∆S˘ lms<strong>in</strong> mλρwith⎧⎪∆C˘⎨⎩⎪ ∆S⎫⎪wl=0 m=02l+ 1⎧⎪∆C⎨1+kl⎩⎪ ∆Slm ave⎬ =’˘ 3ρlm w⎭⎪ρlmlm⎫⎪⎬⎭⎪( ) (A6.1)(A6.2)ϕ <strong>and</strong> λ are latitude <strong>and</strong> east longitude, ∆σ is <strong>the</strong> change <strong>in</strong> surface density (i.e. mass/area), ρ wis <strong>the</strong> density of water, R is <strong>the</strong> radius of <strong>the</strong> <strong>Earth</strong>, ρ aveis <strong>the</strong> average density of <strong>the</strong> <strong>Earth</strong>, P lmare <strong>the</strong> normalized associated Legendre functions of degree l <strong>and</strong> order m, C˘ , S ˘ , C <strong>and</strong> S lm lm lm lmare dimensionless coefficients with C lm<strong>and</strong> S lmdef<strong>in</strong><strong>in</strong>g <strong>the</strong> geoid model derived from GRACEsatellite observations, <strong>and</strong> k l’ is <strong>the</strong> load Love number of degree l.Changes of <strong>the</strong> water storage ∆h per time <strong>in</strong>terval are described for any spatial unit of <strong>the</strong> l<strong>and</strong>surface, e.g. a river bas<strong>in</strong>, by <strong>the</strong> water balance equation:∆h = P − ET − Q(A6.3)where P is precipitation, ET is evapotranspiration <strong>and</strong> Q is runoff (all <strong>in</strong> mm). Spatial units forwhich Equation3 is valid range from <strong>the</strong> plot scale of a s<strong>in</strong>gle soil profile to <strong>the</strong> catchment area ofa river bas<strong>in</strong> be<strong>in</strong>g <strong>the</strong> basic spatial unit of hydrological analysis <strong>and</strong> water management issues,<strong>and</strong> up to <strong>the</strong> cont<strong>in</strong>ental scale. Precipitation as ra<strong>in</strong> or snow is <strong>the</strong> ma<strong>in</strong> <strong>in</strong>put to <strong>the</strong> terrestrialwater storage. It is measured by po<strong>in</strong>t samplers, ground-based radar or remote sens<strong>in</strong>g <strong>and</strong> subsequently<strong>in</strong>terpolated to a spatial mean for <strong>the</strong> area of <strong>in</strong>terest.Evapotranspiration <strong>in</strong>cludes evaporation def<strong>in</strong>ed as <strong>the</strong> transformation of liquid water to vapourfrom open water surfaces (lakes, rivers), from bare soils <strong>and</strong> from water stored on plant surfaces(<strong>in</strong>terception). Evapotranspiration also <strong>in</strong>cludes <strong>the</strong> transfer of water from <strong>the</strong> soil to <strong>the</strong> atmosphereby transpiration of plants. On scales with variations <strong>in</strong> soil <strong>and</strong> l<strong>and</strong> use it cannot be measureddirectly like precipitation or discharge. Nei<strong>the</strong>r it can be calculated from <strong>the</strong> water balanceequation (Equation A6.3) as <strong>the</strong> variations <strong>in</strong> storage cannot be determ<strong>in</strong>ed with sufficient accuracy.Thus <strong>the</strong>re is need for a description of evapotranspiration by climatic, soil <strong>and</strong> l<strong>and</strong> use data .There are a number of physical approaches as <strong>the</strong> evapotranspiration rate is controlled by <strong>the</strong>availability of energy <strong>and</strong> water at <strong>the</strong> evaporat<strong>in</strong>g surface, <strong>and</strong> by <strong>the</strong> ease with which water vapourcan diffuse <strong>in</strong>to <strong>the</strong> atmosphere, i.e., as a function of plant resistances <strong>and</strong> atmospheric turbulence.Basically, evapotranspiration, expressed as latent heat flux λE, is part of to <strong>the</strong> energybudget of l<strong>and</strong> surfaces:A = R − G = λ E + H(A6.4)nwhere A is <strong>the</strong> available energy at <strong>the</strong> surface, R nis <strong>in</strong>com<strong>in</strong>g net radiant energy (i.e., <strong>the</strong> differencebetween <strong>in</strong>com<strong>in</strong>g <strong>and</strong> reflected solar radiation plus <strong>the</strong> difference between <strong>in</strong>com<strong>in</strong>g <strong>and</strong>130


A6 Hydrological processes <strong>and</strong> related mass transportoutgo<strong>in</strong>g long-wave radiation), G is <strong>the</strong> energy transfer <strong>in</strong>to <strong>the</strong> soil, H is <strong>the</strong> outgo<strong>in</strong>g sensibleheat flux <strong>and</strong> λ is a proportionality factor (latent heat of vaporization of water) to convert fromenergy units <strong>in</strong>to equivalent water thickness. Practical models to describe evapotranspiration <strong>in</strong>hydrology often apply a resistance approach to represent, <strong>in</strong> addition to <strong>the</strong> energy balance, <strong>the</strong>impact of atmospheric turbulence <strong>and</strong> vegetation characteristics on evapotranspiration. One widelyused model of this type is <strong>the</strong> Penman-Monteith approach. It <strong>in</strong>cludes <strong>the</strong> aerodynamic resistancer aas a function of w<strong>in</strong>d speed <strong>and</strong> surface roughness due to vary<strong>in</strong>g height of <strong>the</strong> vegetation,<strong>and</strong> <strong>the</strong> canopy resistance r cto represent plant stomata control on <strong>the</strong> transpiration process as afunction of vegetation type, leaf cover, soil water status <strong>and</strong> micro-meteorological conditions:1 ⎡ ΛA+ ρacpD / ra⎤E =λ ⎣⎢Λ + γ( 1+rc/ ra) ⎦⎥(A6.5)D is <strong>the</strong> water vapour pressure deficit of <strong>the</strong> air,ρ ais <strong>the</strong> density of air, Λ is <strong>the</strong> gradient of <strong>the</strong>saturated vapour pressure curve, c pis <strong>the</strong> specific heat of moist air <strong>and</strong> γ is <strong>the</strong> psychometric constant.Be<strong>in</strong>g simplifications of Equation A6.5, a number of empirical formulations exist to assessevapotranspiration for large areas where data availability does not allow to account for each <strong>in</strong>fluenc<strong>in</strong>gfactor explicitly.Total runoff Q as ano<strong>the</strong>r component of <strong>the</strong> water balance equation (Equation3) is composedof a surface runoff component, a fast <strong>in</strong>terflow component <strong>in</strong> <strong>the</strong> shallow soil zone <strong>and</strong> a slowgroundwater flow component of water percolat<strong>in</strong>g to deeper subsurface zones. In a general form,subsurface water flow Q sub(<strong>in</strong> mm per time unit) through any cross section <strong>in</strong> <strong>the</strong> saturated or unsaturatedsoil zone can be described by Darcy’s equation for a porous medium:QKsub = − ( ) ∂ ∂xθ ψ (A6.6)In Equation (A6.6), written <strong>in</strong> <strong>the</strong> one-dimensional form for simplicity, K(θ) is <strong>the</strong> hydraulicconductivity of <strong>the</strong> soil which is a highly non-l<strong>in</strong>ear function of <strong>the</strong> actual soil moisture θ,reach<strong>in</strong>g its maximum value for a water-saturated soil. ∂ψ <strong>in</strong> Equation (A6.6) is <strong>the</strong> gradient of<strong>the</strong> hydraulic head (or potential) over a distance ∂x, be<strong>in</strong>g <strong>the</strong> sum of primarily (1) <strong>the</strong> capillarypressurehead due to capillary forces act<strong>in</strong>g on water <strong>in</strong> <strong>the</strong> soil matrix <strong>and</strong> (2) of <strong>the</strong> elevationhead due to gravitational forces. It should be noted that <strong>the</strong> capillary-pressure head is aga<strong>in</strong> a nonl<strong>in</strong>earfunction of soil moisture θ, with its form vary<strong>in</strong>g considerably with soil characteristics suchas porosity <strong>and</strong> gra<strong>in</strong> size distribution. When written for <strong>the</strong> vertical direction, Equation (A6.6)is <strong>the</strong> basis to describe <strong>in</strong>filtration of ra<strong>in</strong> <strong>in</strong>to <strong>the</strong> soil. Additional precipitation volumes whichexceed <strong>the</strong> <strong>in</strong>filtrability of <strong>the</strong> soil are transformed <strong>in</strong>to surface runoff Q surf. The applicability ofEquation6 for <strong>the</strong> description of subsurface runoff over large spatial scales such as river bas<strong>in</strong>sis limited, however. One reason is <strong>the</strong> deviation of natural soils from <strong>the</strong> idealized assumptionof be<strong>in</strong>g a homogeneous porous medium. Macropores, for <strong>in</strong>stance, may allow a very fast watertransport, bypass<strong>in</strong>g <strong>the</strong> soil matrix. Additionally, <strong>in</strong> view of <strong>the</strong> large natural heterogeneity, <strong>the</strong>available <strong>in</strong>formation <strong>in</strong> particular on soil characteristics is usually not sufficient for large areasto parameterize Equation (A6.6) appropriately. Thus, simplified formulations are often used todescribe subsurface storage <strong>and</strong> water transport by represent<strong>in</strong>g <strong>the</strong> soil zone or <strong>the</strong> groundwaterby one conceptual storage for an entire river bas<strong>in</strong> or a part of it with similar hydrologicalcharacteristics. Subsurface runoff per time unit from such a storage, expressed <strong>in</strong> equivalentwater thickness for <strong>the</strong> catchment area A (m²), is represented as be<strong>in</strong>g proportional to <strong>the</strong> actualstorage volume V (m³):Qsub =VA⋅ τ(A6.7)131


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>The proportionality constant τ (with units of time) <strong>in</strong> Equation (A6.7) is a storage coefficientwhich is related to <strong>the</strong> average residence time of water <strong>in</strong> <strong>the</strong> groundwater or soil storage. τdepends on geological, topographic <strong>and</strong> soil characteristics <strong>and</strong> usually is a calibration parameter<strong>in</strong> hydrological models.The flow of surface runoff, whe<strong>the</strong>r generated directly as <strong>in</strong>filtration-excess from precipitation oras return flow to <strong>the</strong> l<strong>and</strong> surface or <strong>in</strong>to river channels after <strong>the</strong> passage of <strong>the</strong> soil <strong>and</strong> groundwaterzone, can basically be described by hydrodynamical equations based on mass <strong>and</strong> energybalanc<strong>in</strong>g such as <strong>the</strong> Sa<strong>in</strong>t-Venant equations. In order to describe flow rout<strong>in</strong>g <strong>in</strong> <strong>the</strong> river networkof river bas<strong>in</strong>s, simplified schemes are often used which essentially <strong>in</strong>troduce a time delayof <strong>the</strong> downstream movement of water masses as function of flow distance, flow volume <strong>and</strong> topographicgradient. The retention of river runoff <strong>in</strong> natural <strong>and</strong> man-made reservoirs or <strong>in</strong> wetl<strong>and</strong>scauses an additional delay <strong>in</strong> flow rout<strong>in</strong>g. It <strong>in</strong>fluences <strong>the</strong> water balance <strong>and</strong> related changes <strong>in</strong>water storage (Equation A6.3) when considered at <strong>the</strong> bas<strong>in</strong> scale.132


A7 Satellite mission fact sheetsA7 Satellite mission fact sheetsA7.1 Gravity missionsThe satellite mission CHAMP(CHAlleng<strong>in</strong>g M<strong>in</strong>isatellite Payload)Objectives:(1) global mapp<strong>in</strong>g of <strong>the</strong> <strong>Earth</strong>’s gravity field <strong>and</strong>(2) <strong>the</strong> <strong>Earth</strong>’s magnetic field<strong>and</strong> of temporal field variations, <strong>and</strong>(3) sound<strong>in</strong>g of <strong>the</strong> neutral atmosphere <strong>and</strong> ionosphereby GPS radio occultation techniqueSatellite:trapezoid body (4 m length, 1 m height, 1.7 m width) with 4 m long boomto carry <strong>the</strong> magnetometers, 500 kg massattitude: three-axes stabilized, <strong>Earth</strong>-oriented, boom <strong>in</strong> flight directionattitude control: cold-gas thruster system, magneto-torquersattitude sensors: four star cameras, GPS navigation, fluxgate magnetometersmanufactur<strong>in</strong>g: Jena-Optronic/AstriumInstrumentation <strong>and</strong> Sensors:BlackJack GPS receiver (JPL/NASA, USA) with antennas for orbit determ<strong>in</strong>ation(top side) <strong>and</strong> radio occultation (rear side), STAR three-axes accelerometer (CNES,France),Overhauser scalar magnetometer, 2 Fluxgate vector magnetometers,Digital Ion Drift Meter (USAF USA), Laser Retro-reflective Assembly,two star cameras on both, body <strong>and</strong> boom for attitude knowledgeMission <strong>and</strong> Orbit Profile:launch on July 15, 2000 with Russian COSMOS-3M rocket from Plesetskcosmodrome <strong>in</strong>to an almost polar (<strong>in</strong>cl<strong>in</strong>ation 87°) <strong>and</strong> circular (eccentricity < 0.01)orbit with an <strong>in</strong>itial altitude of 454 km, decay<strong>in</strong>g to 300 km around mid 2008 (predictedend of life time)Responsibilities:GeoForschungsZentrum Potsdam (<strong>GFZ</strong>): overall project management, <strong>in</strong>strument control,management of science ground segment, product dissem<strong>in</strong>ationDeutsches Zentrum für Luft- und Raumfahrt (DLR): mission operation <strong>and</strong> satellitecontrolFund<strong>in</strong>g:Bundesm<strong>in</strong>isterium für Bildung und Forschung (BMBF), DLR, <strong>GFZ</strong>;Exploitation phase funded with<strong>in</strong> BMBF’s GEOTECHNOLOGIENgeoscientific R + D programme133


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>The dual-satellite mission GRACE(Gravity Recovery And Climate Experiment)Objectives:global mapp<strong>in</strong>g of <strong>the</strong> <strong>Earth</strong>’s mean <strong>and</strong> time variable gravity field with enhancedresolution (primary objective), <strong>and</strong> sound<strong>in</strong>g of <strong>the</strong> neutral atmosphere <strong>and</strong>ionosphere by GPS radio occultation technique (secondary objective)Satellites:two identical satellites (CHAMP heritage), each one with trapezoid bodies(3.1 m length, 0.7 m height, 1.9 m width) <strong>and</strong> 490 kg massattitude: three-axes stabilized, <strong>Earth</strong>-orientedattitude control: cold-gas thruster system, magneto-torquersattitude sensors: two star cameras, GPS navigationmanufactur<strong>in</strong>g: AstriumInstrumentation <strong>and</strong> Sensors per Satellite:BlackJack GPS receiver with antennas for precise orbit determ<strong>in</strong>ation (top side)<strong>and</strong> radio occultation (rear side <strong>and</strong> front side, resp.), SuperStar three-axes accelerometer,K-b<strong>and</strong> Intersatellite Rang<strong>in</strong>g <strong>System</strong>, Laser Retro Reflective Assembly, Center of <strong>Mass</strong>Trim Assembly to center <strong>the</strong> accelerometer, two star cameras for attitude knowledgeMission <strong>and</strong> Orbit Profile:launch on March 17, 2002 with a Russian ROCKET launch vehicle from Plesetskcosmodrome <strong>in</strong>to an almost polar (<strong>in</strong>cl<strong>in</strong>ation 89°) <strong>and</strong> circular (eccentricity < 0.01)orbit with an <strong>in</strong>itial altitude of 500 km (485 km <strong>in</strong> mid 2003), design life is five years,both satellites are co-orbit<strong>in</strong>g, separated along track by nom<strong>in</strong>ally 220 kmResponsibilities:Jet Propulsion Laboratories (JPL), USA: project managementDeutsches Zentrum für Luft- und Raumfahrt (DLR) : mission operationCentre for Space Research (CSR), USA: management (PI) of science groundsegment, product generation <strong>and</strong>dissem<strong>in</strong>ationGeoForschungsZentrum Potsdam (<strong>GFZ</strong>): management (Co-PI) of European scienceground segment, product generation <strong>and</strong>dissem<strong>in</strong>ationFund<strong>in</strong>g:National Aeronautics <strong>and</strong> Space Adm<strong>in</strong>istration (NASA), USA,Deutsches Zentrum für Luft- und Raumfahrt (DLR),Fund<strong>in</strong>g of German science ground segment with<strong>in</strong> BMBF’s GEOTECHNOLOGIENgeoscientific R + D programme134


A7 Satellite mission fact sheetsThe gravity gradiometry mission GOCE(Gravity field <strong>and</strong> steady-state Ocean Circulation Explorer)Objectives:global mapp<strong>in</strong>g of <strong>the</strong> <strong>Earth</strong>’s static gravity field with very high resolution(1 cm geoid accuracy <strong>and</strong> 1 mGal gravity accuracy for scales down to 100 km)based on GPS satellite-to-satellite-track<strong>in</strong>g <strong>and</strong> gravity gradiometrySatellite:octagonal body (5 m length, 1 m diameter) <strong>and</strong> 1000 kg massstructure: carbon fibre, several compartments with extreme mechanical <strong>and</strong> <strong>the</strong>rmalstability, high stability <strong>the</strong>rmal controlattitude: three-axes stabilized, <strong>Earth</strong>-orienteddrag free orbit <strong>and</strong> attitude control system: cont<strong>in</strong>uous ion thrusters, cold-gas thrustersystem, magneto-torquersattitude sensors: star cameras, gradiometer, GPS navigationmanufactur<strong>in</strong>g: AstriumInstrumentation <strong>and</strong> Sensors:Laben GPS receiver with antenna for precise orbit determ<strong>in</strong>ation, three-axes gravitygradiometer consist<strong>in</strong>g of 6 electrostatic three-axes accelerometers <strong>in</strong> asymmetricdiamond configuration, mounted on an extremely stable gradiometer structure, LaserRetro Reflector, star cameras for attitude knowledgeMission <strong>and</strong> Orbit Profile:launch <strong>in</strong> 2006 with a Russian ROCKOT or similar launch vehicle <strong>in</strong>to a near polar(<strong>in</strong>cl<strong>in</strong>ation 96.5°), sun synchronous <strong>and</strong> circular orbit with very low constant altitude of250 km, design mission duration is 2 yearsResponsibilities:European Space Agency (ESA): project management. mission operation, <strong>and</strong> level 1mission data generationAlenia Spazio (Italy): prime <strong>in</strong>dustrial contractorscience management <strong>and</strong> science product generation (PI): tbdFund<strong>in</strong>g:European Space Agency (ESA)Fund<strong>in</strong>g of German science ground segment (preparation) with<strong>in</strong> BMBF’sGEOTECHNOLOGIEN geoscientific R + D programme135


<strong>Mass</strong> Transport <strong>and</strong> <strong>Mass</strong> <strong>Distribution</strong> <strong>in</strong> <strong>the</strong> <strong>Earth</strong> <strong>System</strong>A7.2 Altimetry missionsTable A7.2: Ma<strong>in</strong> Characteristic of past, present <strong>and</strong> future satellite altimeter missionsPulsewidth-limited altimeter systems New technologiesMission Geosat 1) ERS-1 TOPEX/Poseidon 2) ERS-2 GFO 3) Jason-1 4) EnviSat 5) ICESat CryoSatOperated by … NOAA ESA CNES/NASA ESA US-NAVY CNES/NASA ESA NASA ESALaunch (month/year) 03/85 07/91 09/92 04/95 02/98 01/02 03/02 01/03 09/04Acquisition until(month/year)09/89 03/96 ongo<strong>in</strong>g ongo<strong>in</strong>g ongo<strong>in</strong>g ongo<strong>in</strong>g ongo<strong>in</strong>g ongo<strong>in</strong>g -Mean height (km) 785.5 785.0 1336.0 781.4 784.5 1336.0 799.8 600 717Incl<strong>in</strong>ation (°) 108.0 98.5 66.0 98.54 108.04 66.0 98.54 94. 92.Latitude coverage (°) ±72.0 ±81.5 ±66.0 ±81.46 ±72.0 ±66.0 ±81,45 ±86.0 ±88.0Repeat cycle (days) 17.05 1) 3/35/168 9.9156 35 17 9.9156 35 183 369Track separation (km) 165 1) 933/80/16 316 80 165 316 80 15 7.5Frequencies (GHz)/wavelengths13.5 13.5 5.3 + 13.6 13.5 13.5 5.3 + 13.5753.2 +13.575Laser1064+532nmSIRAL 6)13.8Altimeter noise (cm) 7 5 2 3 3.5 1.5 2 10 (ice) 0.7 7)Radiometer/Frequencies no yes/2 yes/2 yes/3 yes/2 yes/3 yes/2 no no1) Geosat had two different mission phases, a ‘geodetic mission’ (GM) with a non-repeat, drift<strong>in</strong>g orbit, <strong>and</strong> an ‘exact repeat mission’ (ERM) with <strong>the</strong>orbit characteristics given <strong>in</strong> <strong>the</strong> table2) After <strong>the</strong> t<strong>and</strong>em configuration with Jason-1 (up to 08/2002) <strong>the</strong> TOPEX/Poseidon orbit was shifted by half <strong>the</strong> track separation to double <strong>the</strong> spatialresolution of both missions.3) GFO cont<strong>in</strong>ues to observe <strong>the</strong> same ground tracks as monitored by Geosat ERM (exact repeat mission)4) Jason-1 cont<strong>in</strong>ues to observe <strong>the</strong> same ground tracks as monitored by TOPEX/Poseidon until 08/20025) EnviSat cont<strong>in</strong>ues to observes <strong>the</strong> same ground tracks as ERS-26) SIRAL = Syn<strong>the</strong>tic Aperture Interferometric Radar Altimeter7) Accuracy of ice sheet elevation trend. Due to SAR process<strong>in</strong>g, s<strong>in</strong>gle CryoSat altimeter measurements are subject to radar speckle.136

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!