01.12.2012 Views

Influence of Thermal Fluctuations on Interfacial Electron Transfer in ...

Influence of Thermal Fluctuations on Interfacial Electron Transfer in ...

Influence of Thermal Fluctuations on Interfacial Electron Transfer in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> <str<strong>on</strong>g>Fluctuati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> IET <strong>in</strong> TiO2<br />

Figure 2. Local geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the relaxed nanostructure next to the catechol<br />

adsorbate. The four types <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>in</strong>cluded <strong>in</strong> this simulati<strong>on</strong> (Ti, O, C,<br />

H) are represented by the colors green, red, turquoise, and white,<br />

respectively. The capp<strong>in</strong>g hydrogen i<strong>on</strong>s and oxygen i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the semic<strong>on</strong>ductor<br />

lattice are <strong>in</strong>dicated, as is the hexacoord<strong>in</strong>ated Ti 4+ i<strong>on</strong> near the<br />

adsorbate, and the nearest <str<strong>on</strong>g>of</str<strong>on</strong>g> the two pentacoord<strong>in</strong>ated Ti 4+ i<strong>on</strong>s directly<br />

anchor<strong>in</strong>g the catechol adsorbate.<br />

functi<strong>on</strong>al (PW91) and ultras<str<strong>on</strong>g>of</str<strong>on</strong>g>t Vanderbilt pseudopotentials for model<strong>in</strong>g<br />

the core electr<strong>on</strong>s. 82,83 The Kohn-Sham (KS) Hamilt<strong>on</strong>ian is<br />

projected <strong>on</strong>to a plane-wave basis set, and high-efficiency iterative<br />

methods are used to obta<strong>in</strong> the KS eigenstates and eigenvalues. Selfc<strong>on</strong>sistency<br />

is accelerated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> efficient charge density mix<strong>in</strong>g<br />

schemes. <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>s and nuclear trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> ab <strong>in</strong>itio<br />

MD simulati<strong>on</strong>s are computed by tak<strong>in</strong>g full advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

parallelized versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the code with a parallel SP2 supercomputer.<br />

The ph<strong>on</strong><strong>on</strong> spectral density, obta<strong>in</strong>ed as the Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the i<strong>on</strong>ic velocity autocorrelati<strong>on</strong> functi<strong>on</strong>, is c<strong>on</strong>sistent with previous<br />

calculati<strong>on</strong>s 41 as well as with the experimentally determ<strong>in</strong>ed normal<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the TiO2-anatase semic<strong>on</strong>ductor <strong>in</strong> the 262-876 cm -1 range. 84<br />

Higher-frequency res<strong>on</strong>ances <str<strong>on</strong>g>of</str<strong>on</strong>g> the comb<strong>in</strong>ed catechol-semic<strong>on</strong>ductor<br />

crystal complex are mostly localized <strong>in</strong> the 800-1600 cm -1 range, the<br />

highest (at 3100 cm -1 ) corresp<strong>on</strong>d<strong>in</strong>g to the C-H stretch<strong>in</strong>g modes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the adsorbed catechol. Most relevant for the study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong><br />

transfer is the low-frequency porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ph<strong>on</strong><strong>on</strong> spectrum, which<br />

is assigned to vibrati<strong>on</strong>al modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate <strong>in</strong> good agreement<br />

with earlier studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the isolated catechol molecule. 57 These earlier<br />

ab <strong>in</strong>itio studies also found that the ground state vibrati<strong>on</strong>al frequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the catechol molecule are <strong>on</strong>ly slightly affected by photoexcitati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the molecule to the S1 electr<strong>on</strong>ic state. 57 Further, the delocalized<br />

vibrati<strong>on</strong>al modes <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2-anatase are expected to be <strong>on</strong>ly marg<strong>in</strong>ally<br />

affected by photoexcitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate molecule or electr<strong>on</strong><br />

<strong>in</strong>jecti<strong>on</strong> <strong>in</strong>to the c<strong>on</strong>ducti<strong>on</strong> band (i.e., same vibrati<strong>on</strong>al frequencies).<br />

Therefore, it is reas<strong>on</strong>able to assume that nuclear moti<strong>on</strong> is quite<br />

<strong>in</strong>sensitive to changes <str<strong>on</strong>g>of</str<strong>on</strong>g> dist<strong>in</strong>ct electr<strong>on</strong>ic character dur<strong>in</strong>g the ultrafast<br />

<strong>in</strong>terfacial electr<strong>on</strong> transfer, an approximati<strong>on</strong> successfully applied <strong>in</strong><br />

previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>alized semic<strong>on</strong>ductors. 33,42<br />

2.2. Electr<strong>on</strong>ic Structure. Realistic simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial<br />

electr<strong>on</strong>ic relaxati<strong>on</strong> face the challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> model<strong>in</strong>g quantum dynamics<br />

<strong>in</strong> rather extended model systems s<strong>in</strong>ce f<strong>in</strong>ite size effects or even<br />

periodic boundary c<strong>on</strong>diti<strong>on</strong>s can produce <strong>in</strong>accurate results due to<br />

artificial recurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic populati<strong>on</strong>. 41 To address these<br />

challenges, electr<strong>on</strong>ic relaxati<strong>on</strong> is simulated <strong>in</strong> 3 nm particles<br />

c<strong>on</strong>structed by the juxtapositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex units described<br />

<strong>in</strong> secti<strong>on</strong> 2.1., extended al<strong>on</strong>g the [-101] and [010] crystallographic<br />

directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the TiO2-anatase structure (see Figure 3). Periodic<br />

boundary c<strong>on</strong>diti<strong>on</strong>s are applied al<strong>on</strong>g the unextended crystallographic<br />

directi<strong>on</strong> <strong>in</strong> each case.<br />

(82) Vanderbilt, D. Phys. ReV. B1990, 41, 7892-7895.<br />

(83) Laas<strong>on</strong>en, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. ReV.<br />

B 1993, 47, 10142-10153.<br />

(84) G<strong>on</strong>zalez, R. J.; Zallen, R.; Berger, H. Phys. ReV. B1997, 55, 7014-<br />

7017.<br />

ARTICLES<br />

Figure 3. TiO2-anatase nanostructures extended al<strong>on</strong>g the [-101] (upper<br />

structure) and [010] directi<strong>on</strong>s (lower structure).<br />

The electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> these extended 3 nm particles can be<br />

described accord<strong>in</strong>g to a tight b<strong>in</strong>d<strong>in</strong>g model Hamilt<strong>on</strong>ian ga<strong>in</strong>ed from<br />

the extended Hückel (EH) approach. 85,86 Advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this method<br />

are that it requires a relatively small number <str<strong>on</strong>g>of</str<strong>on</strong>g> transferable parameters<br />

and is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> provid<strong>in</strong>g accurate results for the energy bands <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elemental materials (<strong>in</strong>clud<strong>in</strong>g transiti<strong>on</strong> metals) as well as compound<br />

bulk materials <strong>in</strong> various phases. 86 In additi<strong>on</strong>, the EH method is<br />

applicable to large extended systems and provides valuable <strong>in</strong>sight <strong>on</strong><br />

the role <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical b<strong>on</strong>d<strong>in</strong>g. 87 It is therefore most suitable to develop<br />

a clear chemical picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<strong>in</strong>g relaxati<strong>on</strong> dynamics at the<br />

semiquantitative level, <strong>in</strong> an effort to provide fundamental <strong>in</strong>sight <strong>on</strong><br />

the role played by <strong>in</strong>itial electr<strong>on</strong>ic state spatial distributi<strong>on</strong> and<br />

symmetry under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>homogeneous broaden<strong>in</strong>g <strong>in</strong> the<br />

underly<strong>in</strong>g <strong>in</strong>jecti<strong>on</strong> mechanism.<br />

The EH Hamilt<strong>on</strong>ian is computed <strong>in</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> Slater-type orbitals<br />

� for the radial part <str<strong>on</strong>g>of</str<strong>on</strong>g> the atomic orbital (AO) wave functi<strong>on</strong>s, 41,88<br />

<strong>in</strong>clud<strong>in</strong>g the 4s, 4p, and 3d atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ i<strong>on</strong>s, the 2s and 2p<br />

atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2- i<strong>on</strong>s, the 2s and 2p atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> C atoms,<br />

and the 1s atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> H atoms. The AOs {|�i(t)〉} form a<br />

mobile (n<strong>on</strong>orthog<strong>on</strong>al) basis set due to nuclear moti<strong>on</strong>, with Sij(t) )<br />

〈�i(t)|�j(t)〉, the corresp<strong>on</strong>d<strong>in</strong>g time-dependent overlap matrix elements.<br />

The overlap matrix is computed us<strong>in</strong>g periodic boundary c<strong>on</strong>diti<strong>on</strong>s<br />

al<strong>on</strong>g the [010] or [-101] directi<strong>on</strong>s for the [-101] and [010] extended<br />

systems, respectively. Diag<strong>on</strong>alizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the EH Hamilt<strong>on</strong>ian predicts<br />

a 3.3 eV band gap for the 3.0 nm model system <strong>in</strong> its relaxed<br />

c<strong>on</strong>figurati<strong>on</strong> (see energy diagram <strong>in</strong> Figure 1). C<strong>on</strong>sider<strong>in</strong>g that the<br />

semic<strong>on</strong>ductor band gap is larger for smaller nanoparticles, the 3.3 eV<br />

band gap is c<strong>on</strong>sistent with the experimental band gap <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.2 eV for<br />

bulk TiO2-anatase, 3.4 eV for 2.4 nm particles, 89 and 3.7 eV for the<br />

1.2 nm model system. 41,90<br />

2.3. Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> Injecti<strong>on</strong>. We c<strong>on</strong>f<strong>in</strong>e ourselves to<br />

an approximate mixed quantum-classical method <strong>in</strong> which the electr<strong>on</strong>s<br />

are treated quantum mechanically and the nuclei classically. The nuclei<br />

evolve <strong>on</strong> an effective mean-field Potential Energy Surface (PES), Veff,<br />

accord<strong>in</strong>g to classical trajectories R � ) R � (t), with <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s<br />

specified by <strong>in</strong>dex �. The actual calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Veff, or equivalently <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the set <str<strong>on</strong>g>of</str<strong>on</strong>g> trajectories R � (t), is a difficult problem. 91 However, <strong>in</strong> the<br />

(85) McGlynn, S. P.; Vanquickenborne, L. G.; K<strong>in</strong>oshita, M.; Carroll, D. G.<br />

Introducti<strong>on</strong> to Applied Quantum Chemistry; Holt, R<strong>in</strong>ehart, and W<strong>in</strong>st<strong>on</strong><br />

Inc.: New York, 1972.<br />

(86) Cerdá, J.; Soria, F. Phys. ReV. B2000, 61, 7965-7971.<br />

(87) H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, R. ReV. Mod. Phys. 1988, 60, 601-628.<br />

(88) For a numerical implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the method: Landrum, G. A; Glassy,<br />

W. V. The YAeHMOP project, http://yaehmop.sourceforge.net.<br />

(89) H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, M. R.; Mart<strong>in</strong>, S. T.; Choi, W.; Bahnemann, D. W. Chem. ReV.<br />

1995, 95, 69-96.<br />

(90) Bredow, T.; Geudtner, G.; Jug, K. J. Chem. Phys. 1996, 105, 6395-6400.<br />

(91) Pechukas, P. Phys. ReV. 1969, 181, 166-174.<br />

J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005 18237

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!